
1

 www.logofoundation.org

ToonTalk and Logo
Is ToonTalk a colleague, competitor, successor, sibling, or child of Logo?

by Ken Kahn

 © 2001 Logo Foundation

You may copy and distribute this document for educational purposes provided that you do not

charge for such copies and that this copyright notice is reproduced in full.

Abstract

The answer is all of the above. ToonTalk is a colleague because it shares with Logo so many

goals and ways of thinking (so nicely described in Papert's book Mindstorms [Papert 80]).

It is a competitor because teachers and learners have a limited amount of time to devote

to such things. It can be argued that ToonTalk is a successor to Logo because it is built

upon more advanced and modern ideas of computation and interfaces. ToonTalk is like

Logo’s little sister – looking up to her big brother while striving to out do him. And

ToonTalk is a child of Logo in that it grew out of experiences of what worked well and

what didn't in using Logo.

A Brief Introduction to ToonTalk

ToonTalk ([Kahn 96], [Kahn 01]) started with the idea that perhaps animation and

computer game technology might make programming easier to learn and do (and more fun).

Instead of typing textual programs into a computer, or even using a mouse to construct

pictorial programs, ToonTalk allows real, advanced programming to be done from inside a

virtual animated interactive world. The ToonTalk world resembles a modern city. There are

helicopters, trucks, houses, streets, bike pumps, toolboxes, hand-held vacuums, boxes, and

robots. Wildlife is limited to birds and their nests. This is just one of many consistent

themes that could underlie a programming system like ToonTalk. A space theme with

shuttlecraft, teleporters, and so on, would work as well, as would a medieval magical theme

or an Alice in Wonderland theme. The user of ToonTalk is a character in an animated

world. She starts off flying a helicopter over the city. (See Figure 1.) After landing she

controls an on-screen persona. The persona is followed by a dog-like toolbox full of useful

things. (See Figure 2.)

http://www.logofoundation.org/

2

Figure 1 – Flying over the City Figure 2 – Followed by the Toolbox

An entire ToonTalk computation is a city. Most of the action in ToonTalk takes place in

houses. Homing pigeon-like birds provide communication between houses. Birds are given

things, fly to their nest, leave them there, and fly back. Typically, houses contain robots

that have been trained to accomplish some small task. A robot is trained by entering his

“thought bubble” and showing him what to do. Robots remember actions in a manner that

can easily be generalized so they can be applied in a wide variety of contexts. (See Figure

3.)

3

Figure 3 – Training a robot to double a number

4

Computational Abstraction ToonTalk Concretization

computation city

actor

process

concurrent object

house or back of picture

method

clause

robot

guard

method preconditions

thought bubble

method actions

body

actions taught to a

robot

message

array

vector

box

5

comparison test set of scales

process spawning loaded truck

process termination bomb

constants number, text, picture

channel transmit capability

message sending

bird

channel receive capability

message receiving

nest

6

persistent storage

file

notebook

Table 1 - Computer Science Terms and ToonTalk Equivalents

A robot behaves exactly as the programmer trained him. This training corresponds in

computer science terms to defining the body of a method in an object-oriented

programming language such as Java or Smalltalk. A robot can be trained to

 send a message by giving a box or pad to a bird;

 spawn a new process by dropping a box and a team of robots into a truck (which

drives off to build a new house);

 perform simple primitive operations such as addition or multiplication by building a

stack of numbers (which are combined by a small mouse with a big hammer);

 copy an item by using a magician’s wand;

 change a data structure by taking items out of a box and dropping in new ones; or

 terminate a process by setting off a bomb.

The fundamental idea behind ToonTalk is to replace computational abstractions by

concrete familiar objects. Even young children quickly learn the behavior of objects in

ToonTalk. A truck, for example, can be loaded with a box and some robots. (See Figure 4.)

The truck will then drive off, and the crew inside will build a house. The robots will be put

in the new house and given the box to work on. This is how children understand trucks.

Computer scientists understand trucks as a way of expressing the creation of

computational processes or tasks.

Figure 4 - A truck being loaded with robots and a box

7

Introduction to Logo

Seymour Papert once described Logo as taking the best ideas from computer science

about programming languages and environments and “child-engineering” them [Papert 77].

When Logo was designed in the late 1960s the programming language Lisp was very

innovative. Logo’s design was most heavily influenced by Lisp. Lisp programs consist of

procedures that can compute with symbols, lists, and procedures, as well as the data types

of conventional languages. Lisp programs can even construct and run other Lisp programs.

Logo borrowed all of these powerful ways of expressing programs. Much effort was placed

on making the syntax, names of primitives, and error messages child-friendly. Some of the

more difficult aspects of Lisp, such as nested local variables and anonymous procedures,

were dropped. (Recently local variables have returned to some dialects of Logo as

primitives such as “localmake”.)

Soon after the birth of Logo it was extended to control floor turtles – robotic devices

that can move and turn. Turtles also contain a pen that can be extended or retracted so

they can draw on paper as they move around. Soon after floor turtles were introduced,

display turtles were added that behave like floor turtles but are displayed on a computer

screen.

Logo is both the name of a family of programming languages and the name of a broad set

of ideas about learning where the Logo programming language plays an important role. The

core idea is that computer programming can provide a particularly fertile field in which

students can acquire and improve fundamental thinking skills. These include problem

decomposition, representation, procedural thinking, debugging, reflection, and more.

Programming can also be a powerful thinking tool for exploring and modeling other domains

of knowledge from science, language, math, and art. The right programming language, the

right way of teaching programming and problem solving, and the right context greatly

increase the odds that children will acquire these problem solving and thinking skills

[Papert 80].

Colleagues

[Warning: these first two paragraphs may only interest computer scientists.] ToonTalk

was designed as an attempt to once again child engineer the best ideas in computer

science. Lisp was the best source of ideas in the 1960s, and concurrent constraint

programming is the best source 30 years later [Saraswat 93]. Concurrent constraint

programming is a synthesis of the ideas of concurrent logic programming and constraint

logic programming. Rather than build upon the concept of procedures, concurrent

constraint programming builds upon the notion of autonomous communicating agents. A

procedural programming language like Logo is based upon the idea that you compose

program fragments by passing arguments to program pieces called procedures. When a

procedure has completed its task it returns, often passing back a value to its caller. The

caller then proceeds. This is a sequential and restrictive view of computation.

8

Concurrent constraint programming replaces procedures by entities that some call

“agents”, others call “threads”, and still others call “processes”. We will use the term

agents here. An agent is an autonomous activity that consists of some program fragments

that define its behavior and a set of accessible variables that constitute its local state.

The fundamental actions that an agent can perform are to construct new agents, add

constraints to variables (called “telling”), and testing if some proposition is implied by the

current set of constraints (called “asking”). Asking and telling constraints provide a very

expressive way of describing the desired communication between agents and their

synchronization. In the case of ToonTalk, only one limited kind of constraint can be

expressed but it still provides a very rich communication mechanism. In ToonTalk the

constraint that can be told is that something is an element of a multi-set or bag (i.e., a set

that allows duplicates). This is expressed by giving something to a bird. It is then added to

the items covering the bird’s nest, which constitute a multi-set.

Building upon this one can do actor [Agha 87] or concurrent object programming [Kahn and

Saraswat 90a]. The reader may wonder how a language based upon sophisticated notions

such as constraints, implication, synchronization, and the like could possibly be appropriate

for children. It would seem to be accessible only to those with advanced degrees in math,

logic, and computer science.

This is where the idea of concretizing the underlying computational abstractions of

ToonTalk shows its power. ToonTalk programmers need only think about birds, nests,

trucks, and robots and the like. They understand these familiar objects only in terms of

their straightforward behaviors – e.g. that birds take things to their nests. They don’t

need to learn about the underlying theory of concurrent constraint programming. This is

similar to the fact that Logo programmers need not know anything about Church’s Lambda

Calculus [Barenderegt 84] to master Logo. But both Logo and ToonTalk benefit from

having been built upon such strong theoretical foundations.

Besides sharing the idea of borrowing and then child engineering the best ideas in

computer science, ToonTalk shares many goals with Logo. Both aspire to give children tools

that empower them to be creative in new ways. Both wish to provide children with

computational “thinking tools”. Both hope to provide a fertile ground for children to

explore and learn in new and particularly effective ways. Both hope to appeal to children so

that they will use these systems without coercion from schools or parents. Sharing so

much philosophy and sharing so many goals makes Logo and ToonTalk close colleagues.

Siblings

I think of Logo and ToonTalk as siblings as well. Maybe ToonTalk is Logo’s kid sister who

tries to copy or improve on what she sees her big brother has done. This historical

connection is largely due to my early involvement in Logo and my subsequent attempts to

improve on it. Soon after becoming a graduate student at MIT in 1973, my interest and

9

involvement in the MIT Logo Project grew. Soon I was a member of the project, exploring

ideas of how children might use Logo to construct programs that could process and

generate English sentences and programs to produce animations (which was very

challenging with the computers of 1975). I soon began to imagine better programming

languages that were object-oriented and supported a limited kind of parallelism based upon

“ticks” [Kahn and Hewitt 78]. Years later I explored how some of the ideas of logic

programming might contribute to Logo [Kahn 83].

ToonTalk is not my first attempt to bring the ideas of concurrent constraint programming

to children. While at Xerox PARC I build a system called Pictorial Janus [Kahn and

Saraswat 90b]. Pictorial Janus programs are completely visual. Pictorial Janus animated

the execution of programs. Pictorial Janus, while visual, was still formal and abstract and

hence hard for children and most adults.

There is one great idea of Logo currently missing from ToonTalk. This is the idea of turtle

geometry. I haven’t added turtles to ToonTalk because I’ve focused instead on providing

strong support for animation and giving behaviors to pictures. This support is based upon

the idea of sensors and remote controls that can be manipulated by the programmer as

well as by her robots. This framework has proven to be well suited for even young children

who want to program animations or games [Playground 01]. A turtle package could be added

to ToonTalk. It would be a valuable addition but it would not fit as well with the ToonTalk

style of programming as turtle programming does with Logo.

Competitors

The reality of the world is that children, teachers, and parents have only so much time to

be involved in Logo-like activities. Ideally, children should be exposed to several different

computational tools and have the freedom to choose and switch between them. Ideally,

children should be exposed to several different ways of thinking about computation since

this could deepen and broaden their understanding and skills. After all, the best way to

understand something is to understand it in multiple ways.

In attempting to obtain the unfortunately limited attention and resources of teachers,

ToonTalk and Logo are competitors. Too many teachers and school administrators think

that the time and effort of teaching children to use the most common applications (e.g.

word processors, email programs, and web browsers) leaves no time for programming.

Those enlightened teachers who see the value of Logo typically have too little time to

devote to Logo activities as is. How can ToonTalk fit into this picture?

One answer is that ToonTalk is more appropriate for a wider age range than Logo. Unlike

Logo, a ToonTalk user need not be able to read or type. And compared to single-key

interfaces to Logo for young children, ToonTalk is much more expressive and flexible.

Children as young as 5 or 6 can master the full set of ToonTalk elements. They understand

boxes (data structures and variables), robot training (defining behaviors), robot’s thought

10

bubbles (conditionals), trucks (process spawning), birds (message passing), and more. While

5 year olds enjoy the basic elements of ToonTalk, university students can use ToonTalk to

explore and visualize concurrent algorithms and distributed programming.

Another answer is that ToonTalk provides better support than Logo for a large range of

programs. Due to ToonTalk’s underlying concurrency and its extensive support for giving

behaviors to pictures, it is a better tool than Logo for making most kinds of games and

simulations. On the other hand, Logo is better suited for programs that draw or make

heavy use of text. Game programming is very important, since games are what most

children want to program.

A third argument is that ToonTalk supports remote collaboration and distributed

programming in a manner that children can master. The ToonTalk model of concurrent

computation generalizes to networked computations with the recent introduction of

longdistance birds. A long-distance bird acts just like the ordinary birds of ToonTalk,

except that it can fly to a nest on another computer. This enables children to collaborate

by simply giving a copy of what they are building to a bird that takes it to a nest on the

computer of another child. The second child can then run, pull apart, or modify what she

received and send it back. Long-distance birds can also be the foundation for distributed

programs such as networked multi-player games built by children.

A final argument in favor of ToonTalk is that children find it easier to learn. This is due to

the self-revealing nature of the ToonTalk primitives and tools, the fact that there is no

ToonTalk - page 10 of 14 syntax to master, the fact that ToonTalk programmers work out

their programs with concrete examples and later generalize them, and that ToonTalk

includes many learning tools [Kahn 98]. Some of these points are discussed in detail below.

Parent and Child

Despite the many wonderful things about Logo, it does have some shortcomings. Decades

after the birth of Logo, I was able to address some of these problems while designing and

building ToonTalk.

1. Logo is sequential; the world and ToonTalk are concurrent. Just look out of any

window and you’ll see lots of concurrent activity. And each thing you see typically

has lots of internal concurrency – e.g. people are walking and chewing gum at the

same time. Walking in turn has concurrent motions of components: arms and legs.

Modern Logo implementations partially address this by providing threads,

sometimes in the form of multiple simultaneous turtles. This is only a partial

solution because there needs to be good ways of expressing communication and

coordination between these threads. And unlike ToonTalk, conflicts such as race

conditions and deadlock need to be dealt with. Some parallel versions of Logo such

as StarLogo [Resnick 97] and NetLogo [NetLogo 01] do not support fully general

concurrency and are too complex for young children or elementary school teachers.

11

2. Logo rarely succeeds without exceptional teachers; ToonTalk is, to a large

degree, self-teaching. For Logo to succeed a student needs to be taught by

someone who has a deep understanding of programming and who understands the

broader ideas underlying Logo. In the 1980s Logo was widely used in schools in the

US and elsewhere. And yet in most cases the children had an unsatisfactory

experience [Yoder 94]. In an attempt to remedy this problem ToonTalk contains

several learning tools including an interactive coach/guide character, a series of

interactive tutorial puzzles, narrated demos, and more [Kahn 98]. One consequence

of this is that many children have learned ToonTalk at home with little or no

support from their parents. (While this antidotal evidence from parents is

suggestive, a real study of this issue is really needed.) Of course, when available, a

well-trained teacher is much more effective.

3. When children first begin using Logo they typically aren’t having fun; ToonTalk

beginners do. The mechanics of Logo programming involves typing syntactically

correct commands, selecting items from menus, and responding to dialog boxes. The

mechanics of ToonTalk programming involves using animated characters as tools,

flying a helicopter, working with birds, trucks, robots, and bombs, and generally

“living” in an animated game-like world. Not surprisingly children enjoy using

ToonTalk even when not trying to achieve an explicit goal. Advanced users of Logo

and ToonTalk probably derive equal pleasure from the creative and intellectually

challenging programming tasks. In a similar way to how C spawned C++, Basic

spawned Visual Basic, or Logo spawned StarLogo, ToonTalk is a spawn of Logo that

attempts to improve upon its parent.

Successor

For ToonTalk to be a clear successor to Logo it needs more than a better computation

model. And it needs more than a new game-like user interface. And it needs to do more

than enable its users to program with concrete examples and subsequently generalize. To

be a successor, ToonTalk should be equal or better than Logo is all aspects. To achieve this

ToonTalk would need to

1. provide turtle graphics

2. support better the building of text-based applications

3. support the building of GUI applications (i.e., applications that use windows, menus,

and dialog boxes)

4. provide a way to see a program fragment in order to understand it (currently you

can only activate a ToonTalk program fragment and watch it in action)

5. provide a way to edit a program fragment (currently you are limited to editing a

robot’s thought bubble, i.e. the conditional test, and re-training robots)

12

We have plans for dealing with the last two issues. The first three deficiencies are

addressable within the ToonTalk framework but there are no current plans to do so.

ToonTalk users have not asked for these abilities.

Besides the technical deficiencies listed above, ToonTalk lacks the worldwide active

community of support that Logo enjoys. There are many Logo books, teacher training

courses, the Logo Foundation, conferences such as EuroLogo and Logosium and the active

on-line communities of the Usenet comp.lang.logo group and the LogoForum e-mail

discussion list. The ToonTalk community is small but growing.

What other languages are related to Logo and ToonTalk?

Smalltalk began as a programming language for children when it was first implemented in

1972. It also borrowed and pioneered state-of-the-art computer science ideas, especially,

the idea of object-oriented programming. By 1980, however, Smalltalk had evolved into a

programming system for professionals. In recent years interest in children using Smalltalk

has revived with efforts of the Squeak Project [Squeak 01]. Smalltalk meets Logo’s “no

ceiling” goal very well, but does not have a “low threshold”.

AgentSheets [AgentSheets 01] is particularly well suited for simulations. It provides a

grid upon which programmable agents live. Stagecast Creator [Stagecast 01] is also

focused upon simulations and uses a grid. Unlike Logo, ToonTalk, and Smalltalk, these

systems trade-off generality for ease-of-use and simplicity. Creator is very simple and yet

is based upon sophisticated computer science but it is not well suited for a very wide range

of projects. AgentSheets is more general but more complex. Both systems meet Logo’s

“low threshold” goal but have mixed success regarding the “no ceiling” goal.

Basic is a programming language designed for beginners and children. The design

philosophy is quite different from Logo and ToonTalk. Basic borrowed from then current

programming practice rather than advanced computer science. Many powerful programming

concepts were removed from Basic in the interests of simplicity and smallness. Basic,

however, has continued to evolve and progress. A modern implementation like Visual Basic

has come much closer to Logo. Some have even added turtles to Visual Basic. Basic is like

an impoverished and incompetent cousin of Logo that has grown up to be nearly a full

family member.

Conclusion

The relationship between ToonTalk and Logo is complex. ToonTalk is simultaneously a

colleague, competitor, successor, sibling, and child of Logo. And let’s hope they remain

good friends.

13

Acknowledgements

I wish to thank Mary Dalrymple, Richard Noss, and Mikael Kindborg for their comments on

earlier drafts of this paper. This paper was also strongly influenced by many on-line

discussions in the Logo Forum and comp.lang.logo. In particular the discussion held at the

end of 1998 inspired much of this paper. The discussion is archived at

www.toontalk.com/English/logo.htm.

References

[Agha 87] G. Agha, Actors: A Model for Concurrent Computation in Distributed

Systems. The MIT Press, 1987.

[Barenderegt 84] Barenderegt, H.P., The Lambda Calculus - Its Syntax and Semantics,

Second Edition, North Holland 1984

[Kahn and Hewitt 78] Ken Kahn and Carl Hewitt, “Dynamic graphics using quasi-parallelism”,

Proceedings of the ACM/SIGGRAPH Conference, August 1978.

[Kahn and Saraswat 90a] Kenneth Kahn and Vijay Saraswat, “Actors as a special case of

concurrent constraint programming”, Proceedings of the Joint Conference on Object-

Oriented Programming: Systems, Languages, and Applications and the European Conference

on Object-Oriented Programming, ACM Press, October 1990.

[Kahn and Saraswat 90b] Kenneth Kahn and Vijay Saraswat, “Complete visualizations of

concurrent programs and their executions”, Proceedings of the IEEE Visual Language

Workshop, October 1990.

[Kahn 83] Ken Kahn, “A grammar kit in Prolog”, In M. Yazdani, editor, New Horizons in

Educational Computing, Ellis Horwood Ltd., 1984. Also In Instructional Science and

Proceedings of the AISB Easter Conference on AI and Education, Exeter, England, April

1983.

[Kahn 96] Ken Kahn, "ToonTalk - An Animated Programming Environment for Children",

Journal of Visual Languages and Computing, June 1996.

[Kahn 98] Ken Kahn, “Helping children to learn hard things: Computer programming with

familiar objects and actions”, The Design of Children's Technology, A. Druin, Ed., Morgan

Kaufmann, 1998.

[Kahn 01] Ken Kahn, ToonTalk Web Site, www.toontalk.com

[NetLogo 01] NetLogo Web Site, www.ccl.sesp.northwestern.edu/netlogo/

[Papert 77] MIT Logo Project meeting notes, 1977.

[Papert 80] Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas, New

York, Basic Books. 1980.

14

[Playground 01] Playground Research Project Web Site, www.ioe.ac.uk/playground.

[Resnick 1997] Mitchel Resnick, Turtles, Termites, and Traffic Jams : Explorations in

Massively Parallel Microworlds, MIT Press, Cambridge, MA, 1997.

[Saraswat 93] Vijay A. Saraswat, Concurrent Constraint Programming, MIT Press,

Cambridge, MA, ACM Doctoral Dissertation Awards, 1993.

[Yoder 1994] Sharon Yoder, "Discouraged? ... Don't dispair! [sic]", Logo Exchange, ISTE

1994.

http://www.ioe.ac.uk/playground

