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Abstract:  This paper describes an application level, data-centric algorithm that creates clusters 

in a sensor network based on the changes of the signal being observed by the sensor nodes without 

any predetermination by the user. The algorithm was developed for the Self-Organising Collegiate 

Sensor Network (SECOAS) project and its design was influenced by biological examples of 

emergence in complex systems. Specifically, this paper refers to the processes Quorum Sensing 

(QS) and Local Activation and Lateral Inhibition (LALI). The former shows how bacterial cells 

get into clusters while the latter allows the sensors to recognise patterns in the environment that 

influences how the clusters are made. Testing the algorithm involved looking at the scalability and 

the tolerance of the algorithm with a simplified model of the signals to be monitored in SECOAS. 

 

1. Introduction 

Clustering is a good approach to managing sensor networks because it takes the emphasis away from individual 

sensor readings and places more importance on extracting data from the spatial areas covered by the sensor 

network. This gives the data more of a physical meaning in relation to the environment and uses the redundant 

operation of sensor nodes to provide accurate data. Given these benefits, a biologically-inspired clustering 

algorithm was developed to assist with the task of data aggregation in a sensor network deployed for 

environmental monitoring on the coast as a part of the Self-Organising Collegiate Sensor Network (SECOAS) 

project, the details of which can be found in [1]. One of the requirements of the project is the development of 

lightweight and flexible algorithms to be run on each resource-limited sensor node in the network that encourage 

them to collaborate to carry out complicated sensing tasks. This is similar to many situations found in the natural 

world, where there are examples of global emergent behaviour resulting from the actions of entities that operate 

on smaller scale local events [2]. Thus, this algorithm has been based on two processes used in biological 

systems, Quorum Sensing (QS) and Local Activation and Lateral Inhibition (LALI), and has been extended from 

the previous work detailed in [3] to incorporate more self-organization and to give more quantifiable results. 

2. Implementation of Biological Concepts in Clustering 

The foundation of the clustering algorithm is the process of QS, the biological process used in communities of 

bacterial cells with no global awareness to co-ordinate themselves for applications such as bioluminescence, 

where visible light is emitted from a living organism [4]. They organize themselves by transmitting and 

receiving signalling molecules called autoinducers to detect when there is a minimum population of cells. [3] 

shows how this has been incorporated into the design of the clustering algorithm to indicate to the sensor nodes 

when there are enough sensors to make a cluster that monitors the same change, or gradient, in the observed 

signal. The algorithm was subsequently changed to make the clusters formed more controllable and 

representative of the spatial characteristics of the signal by allowing the measurement of gradients between 

neighbouring sensors instead of between sensors and clusterheads that were potentially too far away for 

comparison. This new method of measuring gradients in conjunction with QS alone led to the requirement of an 

initial input from the user concerning the range of gradients allowed in a cluster, a parameter which allows the 

sensors nodes to decide on how the clusters should be made. This may be a difficult task for the user if nothing is 

known about the signal to be observed beforehand. 

The sensor nodes need to decide on this parameter themselves despite having different views of what is going on 

the environment, i.e. sensor nodes in one area may find that they measure a small range of gradients with its’ 

neighbours whereas sensor nodes in another area may measure a larger range of gradients. However, to prevent 

the clusters from overlapping the sensor nodes must have the same range of gradients allowed in a group e.g. if 

one cluster monitors the signal where its gradient varies between 10 and 20 signal units per unit distance, then 

neighbouring clusters should monitor either 0 and 10 signal units per unit distance or 20 and 30 signal units per 

unit distance. Finding a solution to this problem involved looking at biological phenomena demonstrating the 

emergence of ordered patterns given random initial conditions. Examples of this are ant cemetery construction 

[5], head formation in the organism hydra [6] and animal skin patterns [7]. A common thread with these self-

organization examples is the use of the Local Activation, Lateral Inhibition (LALI) mechanism [8]. This is 

where an elevated local concentration of pattern-forming substance encourages more build up in one area but 

inhibits the build-up in another area some distance away. The initial distribution of the substance is unstable and 

any small increases in the substance above the average concentration will cause growth in local areas but its 



effect will be down-regulated in areas further away. These fluctuations carry on until the self-enhancement is in 

equilibrium with the inhibition thus making the system stable. The only requirement is that the self-activation 

has a shorter range than the inhibition and that both are self-regulating [8].  

The LALI mechanism was incorporated into the clustering algorithm by introducing two parameters activator, 

AC and inhibitor, IN. For example, if sensor node A has a gradient range of R1 and receives a message that 

sensor node B that is D distance units away has a gradient range of R2. Sensor node A responds by comparing R1 

to R2 and changing the inhibitor, IN, and activator, AC, according to the following rules: 

• If R1>R2 and D = 1 hop then increment IN 

• If R1 ≠ R2 and D > 1 hop, then increment AC 

Once sensor node A has carried these steps out for all its nearest neighbours all the received messages, it stores 

the gradient ranges of the nearest neighbours. There are two gradient ranges from the neighbours that have the 

closest value to R1, one which is higher, RH, and one which is lower, RL. These values can be used with the 

accumulated values of the inhibitor and activator to change R1 accordingly: 

difference  = AC – 0.1 * IN 

• If difference < 0, R1 = RL 

• If difference > 0, R1= RH 

• If difference = 0, R1 stays the same 

The gradient ranges of the nodes continue to change until it is identical for the whole network. 

3. Algorithm Details 

The clustering algorithm is executed in a series of time steps called epochs; it takes 1 epoch for a sensor node to 

complete a cycle of the algorithm. The following sections explain the events that may occur during a cycle 

depending on the status of the sensor nodes. 

Initialization 

There are two types of packets sent and received by the nodes; the first type is a Node Synchronisation (NS) 

packet which the nodes start broadcasting at a high rate since at initialisation they are all ungrouped. These 

packets allow the nodes to carry out the following tasks: 

• To build a table that stores information from their neighbours such as their identification number and 

the gradient of the observed signal between the node and each neighbour. 

• To alter the range of gradients allowed in each group using the LALI mechanism described in section 2. 

Clusterhead Proposal 

Since the gradient range is continuously changing, they need to keep checking whether they are capable of 

becoming clusterheads. If the gradients giving the smallest difference in their tables lie within consecutive 

integer multiples of the current gradient range then they can form clusters with neighbours that have the same 

gradient range. 

Cluster formation and maintenance 

Potential clusterheads and grouped nodes alternate between sending NS packets and the second type of packet 

called the Group Synchronization (GS) packets. When GS packets are passed between nodes of the same cluster 

during intra-cluster communication the nodes broadcast less often and thus indicating that they are in a 

“quorum”, the minimum number of sensors required to monitor a particular change in the environmental signal. 

GS packets also allow inter-cluster communication can take place between neighbouring nodes in differing 

clusters. 

Reset 

The following events cause a grouped node to reset and erase the group information: 

• If none of the gradients measured between the node and each of its neighbour fits into the gradient 

boundaries of the group then the node may have to change clusters. 

• If the node receives no contact from any other cluster member for a long period of time then the node 

must reset since the cluster seems to no longer exist. 



4. Tests 

Simulations in Netlogo [9] were carried out using the clustering algorithm on a simplified model of the signal 

likely to be observed by the sensor nodes of an oceanographic sensor network. An appropriate selection was a 

signal varying sinusoidally over space and using the graphs in Figure 3(a) – (d), the groups formed by 50 evenly 

spaced sensors can be quantified. The scalability of the algorithm was tested by varying the number of nodes in 

the linear network in Figure 3(a) and measuring the convergence time, the total time in epochs taken to execute 

the algorithm and form the clusters shown in Figure 3(d). The graph in Figure 3(e) suggests that the convergence 

time increases logarithmically with the number of nodes, which may be due to the cluster gradient range. Figure 

3(e) also shows that the range of gradients allowed in a cluster decreases logarithmically with the increasing 

number of nodes. The increase in density allows the network to dissect the signal on a finer scale into a larger 

number of smaller clusters. Figure 3(c) shows that the chosen range of gradients for each cluster is 60 signal 

units/unit distance, but for networks of different size the gradient range may have to become larger or smaller to 

make sure all the nodes are in a cluster. Figure 3(e) shows how the gradient range varies with the size of the 

network. Figure 3(f) shows the number of quorums formed and the percentage of clusterheads in the networks of 

varying size. Even though the number of quorums increases linearly with the number of nodes, the percentage of 

clusterheads sending information to the base station increases very gradually from 20% - 30% of the network. 

 

Figure 3(a) A linear evenly spaced network of 50 sensors, (b) the static signal being monitored, (c) the 

gradient of the observed signal measured between sensors which is grouped every 60 signal units/unit 

distance, (d) 17 clusters of sensors are formed based on the gradient groups, (e) the convergence time and 

cluster gradient range versus the number of nodes, and (f) the no. of quorums and % of clusterheads in 

the network versus number of nodes. 

The signals that the sensor nodes will be monitoring are likely to be dynamic and have varying amplitudes. The 

tolerance tests were carried out to find out how much of this variation in the observed signal the clustering 

algorithm can handle before the clustering becomes ineffective. Figure 3(b) and (c) shows that are 4 parts of the 

sine wave where the gradient is either positive or negative. When the sensor network forms only 4 quorums, the 

clusters only represent the separation between positive and negative gradients and show no other detail about the 

signal variation. It may be more optimal in this case to obtain individual data readings from all the sensor nodes 

than to use clustering because their readings differ too much. It is also expected that if the amplitude of the signal 

is very small and if the signal moves too fast, then 4 quorums will be created. Figure 5 shows these limits of the 

algorithm; the maximum amplitude of the signal has to be greater than 400 signal units to give accurate results. It 

also shows that when the speed of the signal was varied between 0 and 0.05 signal units/unit distance and the 

cluster algorithm ceased to be useful after 0.04 signal units/unit distance. 



 

Figure 4: The effect of signal speed and maximum signal amplitude on the no. of quorums 

5. Conclusion 

The clustering algorithm discussed in this paper is focused on highlighting areas of change in the observed signal 

of a sensor network thus preventing the user from having to make the difficult decision of how many clusters are 

appropriate. It is a unique approach sensor network design because of the inspiration from relevant biological 

examples of emergence. The results show that the algorithm is scalable, flexible for dynamic signals and 

accurate as long as the signal variation is within the stated limits. Implementation of the algorithm in SECOAS 

trials due in August will enable the analysis of the energy efficiency and network lifetime when using the 

algorithm. Currently, the algorithm is being converted into a suitable format for kOS [1]. 
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