
Computational Modeling of T. cruzi 1

Running head: COMPUTATIONAL MODELING OF PARASITE INTERACTION

Computational Modeling of the Interaction of the

T. cruzi Parasite and its Environment

Cailin K. Andruss

Westmont College

MS#1019

955 La Paz Rd.

Santa Barbara, CA 93108

Computational Modeling of T. cruzi 2

Abstract

The Virtual Parasite Project (VPP) aims to design an in silico laboratory that provides insight

into the parasite-host dynamics. It focuses on the behavior of the T. cruzi parasite, the causitive

agent of Chagas’ disease, using host-parasite models of biophysical interactions. The goal of

project was to design a prototype environment that could be used in future development of the

project. Development of this component of the project began in the programming language

Scheme and used a VPP developed visualizer called SimRender. Following numerous

programming problems with Scheme, the this project was completed using NetLogo instead.

This turned out to be an ideal programming environment including an intuitive and well

documented programming language, a customizable interface, and built-in visulization

component.

Keywords: Modeling, Trypanosoma cruzi, Parasite, Three Dimentional, Scheme, SimRender,

 NetLogo, Virtual Parasite Project, Chagas’ Disease

Computational Modeling of T. cruzi 3

Computational Modeling of the Interaction of the

T. cruzi Parasite and its Environment

Chagas’ disease, caused by infection with the Trypanosoma cruzi parasite, is deadly and

wide spread, with 16-18 million people infected and another 120 million at risk for infection [1].

Unfortunately, very little is known about the parasite that could be used in treatment and

prevention. The goal of the Virtual Parasite Project (VPP) is to design an in silico laboratory that

provides insight into the parasite-host dynamics of the T. cruzi parasite with its host by initially

modeling the host-parasite biophysical interactions [2]. To that end, the goal of this

Bioinformatics and Bioengineering Summer Institute (BBSI) project was to implement a

prototype model that could be used in the future development of the project.

Method

 During the first summer of the project, I wrote a program in Scheme [3] (a dialect of

Lisp) that would produce a binary output file readable by the three dimensional graphical

simulator SimRender [4]. The Scheme program included functions for updating the position of

each cell and a basic function that models the elastic collisions of the parasites with the walls of

the world. Over the subsequent academic year, I added several aspects of physics to the basic

movement functions, including gravity and buoyancy. The force of gravity on a single parasite

is given by the equation:

!

r
F grav = "mg ˆ k

Computational Modeling of T. cruzi 4

where m is the mass of the parasite, calculated by multiplying the volume of the parasite by the

density of the parasite, and g is the acceleration of gravity. Similarly, the force of buoyancy on a

single parasite is given by the equation:

!

r
F buoy =

4"a# fluid g

3

ˆ k

where a is the radius of the parasite, ρ is the density of the fluid, and g is the acceleration of

gravity. In essence this calculates the mass of fluid displaced by the parasite by finding the

volume of the parasite and multiplying that by the density of the fluid, and then multiplies the

result by the acceleration of gravity. Since gravity and buoyancy are both forces, I multiplied

them by the mass of the parasite to get the acceleration of the parasite. Since acceleration is the

amount a velocity changes each timestep, multiplying acceleration by the length of the timestep

and then adding the result to the z-direction of the parasite’s velocity vector changes the

parasite’s velocity to reflect how it is affected by the forces of gravity and buoyancy.

I also rewrote the program to increase efficiency by streamlining computations and

eliminating errors, making the code significantly neater and more concise. At the beginning of

the final summer I started adding functions so that the parasites would detect host cells within a

van der Waal’s radius of themselves, ‘stick’ to the host by finding a location for the parasite

along its velocity vector such that the surfaces of the cells were touching, and then invade based

on the cell cycle state of the host cell.

For example, to choose a host, a parasite calls the following function:

 (define (choose-host p s)
 (local ((define (close-host? h)
 (and (symbol=? (cell-type h) 'Host-cell)
 (< (distance-s p h) VDW-DIST)))
 (define possible-hosts (list->vector (filter close-host? s)))
 (define random-ref (random (add1 (vector-length possible-hosts))))
 (define random-host
 (cond
 [(or (= (vector-length possible-hosts) 0)

Computational Modeling of T. cruzi 5

 (= random-ref (vector-length possible-hosts))) null]
 [else (cell-indx (vector-ref possible-hosts random-ref))])))

 (make-cell (cell-indx p) (cell-pos p) (cell-vel p) (cell-rad p)

 (cell-chrg p) (cell-type p) random-host)))

The function takes a parasite and a list of all the cells in the world as arguments. It filters the list

to so that only hosts within a van der Waals radius (VDW-DIST) remain, and then chooses a

random host, or no host. It then returns the original parasite with the cell-state chaged to either

the index of the chosen host or null if no host was chosen.

 Part of the way through the summer, I was introduced to the program NetLogo 3D

Preview 3 [5]. This program incorporates an inuitive language, customizable interface, and

built-in visulization system. I contacted Dr. Uri Wilensky, the author of one of the sample

models included with the 2D version of NetLogo, and asked him if he was planning to port it to

NetLogo 3D. He gave me contact information of Michelle Wilkerson who was working on

converting several of the 2D models to 3D. She sent me the draft of the program GasLab Gas in

a Box [6]. Using this as a starting point, I re-wrote the VPP simulation in NetLogo, focusing on

sticking, invasion, and replication of parasites.

For example, the function for choosing a random host that I showed earlier in Scheme

would be the following in NetLogo:

to choose-host
 let myhostindex -1
 if (random 1 = 0)
 [
 ask particles with [kind = "host"]
 [set myhostindex (who-of (one-of particles in-radius vdw-distance))]
 set state myhostindex
]
end

The fuction, which is called by a parasite, chooses a host within the van der Waals radius, and

sets the state of the parasite to the index of that host. To allow for the possibility that no host is

chosen, the host is only chosen if the result of asking for a random number between zero and one

Computational Modeling of T. cruzi 6

is zero. As you can see many functions like “one-of” and “in-radius” are already defined in the

NetLogo language. Also, NetLogo uses a language that is object oriented rather than purely

function and recursion based like Scheme, making it easier to manage collections of different

kinds of parasites, and to execute commands one by one in order.

Results

 In both the Scheme/SimRender and the NetLogo models, parasites are represented by red

spheres, and host cells by yellow spheres, as shown in Figure 1.

Figure 1: A view of the simulation in SimRender is on the left, and a view of the

simulation in NetLogo is on the right.

Parasites collide elastically with the walls of the world, each other, and host cells. If a parasite

collides with a host cell, it chooses randomly whether to stick or to bounce off, and implements

the appropriate function. If it sticks, then it chooses randomly whether or not to invade, and if it

decides to invade, the cell turns purple and begins entering the host cell, as seen in Figure 2.

Computational Modeling of T. cruzi 7

Figure 2: on the left a parasite has just decided to invade (purple sphere), and on

the right the same parasite is almost through invading the host cell.

Once inside, the cell replicates by creating a random number of new cells between two and ten,

and then lyses the cell, spilling the new cells into the world, seen in Figure 3.

Computational Modeling of T. cruzi 8

Figure 3: on the left, a cluster of parasites remain where there was once a host cell

(see Figure 2). On the right, the cluster has expanded as the parasites begin to

move into the world.

Since only one parasite can invade a given host, any other parasites that are stuck to the host cell

when it lyses are told to swim away in a random direction.

 The interface (see Figure 4) includes sliders for setting several variables including the

number of parasites, the number of hosts, the initial speed of the parasites, and the color theme.

Netlogo allows the user to plot various dynamically changing graphs. My program plots the

number of parasites as the simulation progresses. A switch controls whether a movie is recorded

of the simulation as it runs [7].

Computational Modeling of T. cruzi 9

Figure 4: the NetLogo interface for the VPP simulation (program is currently

running).

Discussion

 Although Scheme is awkward to use in some cases and has very few modeling specific

functions built in, it is SimRender that has the most serious limitations. It does not allow for the

creation of new cells in the middle of the simulation, and is difficult to use in that compiling it is

tricky and it does not work on Macintosh. The NetLogo environment, on the other hand, is ideal

for this type of simulation. The programming language is intuitive and very well documented,

with a great deal of built-in functionality. The interface is easily customizable and allows for

adjustment of the program by people who are not familiar with the language. It even allows for

recording videos of the simulation and exporting plots, and facilitates creation of new cells mid-

simulation without issue. Other things, like randomizing the list of cells before updating at each

time step so that no cell has the advantage of going first, are also done automatically by

NetLogo. It is easier to control the relative sizes of the world and cells in SimRender, as well as

the lengths of time. However, it should be possible to opperationally define relative units of size

and time in NetLogo with some research and testing.

 The prototype itself is a good start in that parasites move and react to each other, stay

contained within the world, invade host cells, and replicate. However, there are several problems

that need to be resolved. First, the new parasites that are created after the invasion of a host cell

do not react in the same way as the original parasites. They do not stick to host cells, and

sometimes they bang repeatedly into a wall until they break through. Also, while a great deal of

progress was made on adding gravity and buoyancy calculations to the simulation, these

Computational Modeling of T. cruzi 10

functions conflict with the functions controlling collisions, leading to odd behaviors of the

parasites. Other functions controlling the host cell cycle and replication, van der Waals

interactions with host cells and charge-charge interactions with parasites, as well as randomized

velocity changes still need to be added to the model.

 The NetLogo environment will allow the model to be refined and expanded easily in

ways that may not have been possible with Scheme and SimRender. For example, NetLogo

allows the user to define ways of interacting with the simulation, like moving parasites and hosts

around using click and drag.

In summary, although NetLogo was found late in the project, it made the BBSI project

more sucessful than expected. Not only did the project result in a prototype model that could be

used in future development, but it also led to the discovery of a programming environment which

could be used for the main Virtual Parasite Project.

Acknowledgements

 This work was supported by grant EEC0234104 from the NSF/NIH Bioinformatics and

Bioengineering Summer Institute program. The author would like to thank Dr. Tarynn M. Witten

for her guidance throughout the BBSI program especially during the portions at Virginia

Commonwealth University, as well as Dr. Wayne Iba for his help, especially during the

academic year at Westmont College. Many thanks also to Dr. Gary An who suggested using

NetLogo, and to Dr. Uri Wilensky & Michelle Wilkerson, who provided the draft of the 3D

version of GasLab Gas in a Box. Without all of these people this project would not have been

possible. Any questions about this paper should be addressed to the author at MS#1019, 955 La

Paz Rd., Santa Barbara, CA 93108; or e-mailed to candruss@westmont.edu . The author’s

Computational Modeling of T. cruzi 11

project website can be found at: http://ramsites.net/~ckandruss/ . The Virtual Parasite Project

website is located at http://www.vcu.edu/csbc/vpp .

Computational Modeling of T. cruzi 12

Figures

Figure 1: A view of the simulation in SimRender is on the left, and a view of the simulation in

NetLogo is on the right.

Figure 2: on the left a parasite has just decided to invade (purple sphere), and on the right the

same parasite is almost through invading the host cell.

Computational Modeling of T. cruzi 13

Figure 3: on the left, a cluster of parasites remain where there was once a host cell (see Figure 2).

On the right, the cluster has expanded as the parasites begin to move into the world.

Figure 4: the NetLogo interface for the VPP simulation (program is currently running).

Computational Modeling of T. cruzi 14

References

1. Special Programme for Research and Training in Tropical Diseases (TDR) (2002). Strategic

Direction for Research: Chagas Disease, UNDP/World Bank/WHO,

http://www.who.int/tdr/diseases/chagas/files/direction.pdf

2. Witten, T. M., et al. (2005). The Virtual Parasite Project – Towards a Biologically Sound

Simulation Model of Parasite Dynamics: T-cruzi as a Prototype, Internal operations

document (http://www.vcu.edu/csbc/vpp).

3. Programmed in the DrScheme programming environment, http://www.plt-

scheme.org/software/drscheme/ . For more information on the Scheme programming

language visit http://www.schemers.org/ .

4. SimRender (2004). In house CSBC software package for visualization of Virtual Parasite

Program simulation data.

5. NetLogo 3D Preview 3 (2006). http://ccl.northwestern.edu/netlogo/

6. The model incorporates functions from the draft of the 3D version of the 2D model:

Wilensky, U. (2006). GasLab Gas in a Box. http://ccl.northwestern.edu/

Since it is not published yet, there is no official way to refer to it as of July 2006.

7. A sample video is available on the author’s project website: http://ramsites.net/~ckandruss/ ,

and the Virtual Parasite Project website: http://www.vcu.edu/csbc/vpp/ .

