

TOWARD A GRAPHICAL ABM TOOLKIT WITH GIS INTEGRATION

W. RAND∗, Northwestern University, Evanston, IL
D. BROWN, University of Michigan, Ann Arbor, MI
R. RIOLO, University of Michigan, Ann Arbor, MI

D. ROBINSON, University of Michigan, Ann Arbor, MI

ABSTRACT

Agent-based modeling (ABM) has proved useful in a number of fields. Many of the
early successes of ABM were due to its ability to represent the processes of a
phenomenon. However, less emphasis has been placed in ABM on developing its ability
to replicate spatial patterns of phenomena. In order to do that, more powerful spatial
modeling techniques, like those within geographical information systems (GIS), are
necessary. The integration of these two tool sets into a cohesive package would allow for
elegant modeling of both process and pattern. One problem with an integrated toolkit is
that most GIS users are not programmers, but most GIS users are familiar with the use of
detailed graphical user interfaces (GUIs) in order to create complex visualizations of data.
Thus providing a detailed GUI to access an integrated ABM-GIS toolkit would vastly
expand the number of users for such a toolkit. This paper is a first step toward that goal.
We first outline several design principles for an ABM-GIS toolkit and then describe a
survey of extant toolkits (RepastPy, NetLogo, and MobiDyc) that were selected based on
the design principles. The toolkits were surveyed to see how well they fulfill some of the
design principles. This survey is not meant to be a comparative review of these toolkits
but rather it was conducted to determine what useful design principles can be gathered
from them that might inform a new “ideal” ABM-GIS toolkit. Finally, the paper
concludes with some design recommendations for such a toolkit.

Keywords: agent-based modeling, toolkit, GUI, GIS, design

INTRODUCTION

Agent-based modeling (ABM) has proved useful in a number of fields, from population

biology, ecology and epidemiology to international relations, economics and urban planning.
However, as this modeling technique continues to mature it will often be useful to integrate it
with more powerful data-handling methods like geographical information systems (GIS). To date
typical agent-based models of spatially embedded systems use very simplistic representations of
space, spatial patterns and spatial processes. Where ABM has excelled is in its ability to
represent the process of a particular phenomenon, but it does not have a rich conception of the
pattern of phenomena. On the other hand, while GIS are regularly used to build complex and
interesting spatial models that clearly represent the pattern of a phenomenon, these models tend
to be either static models of pattern or to be statistical (e.g., Markovian) models of process, and
thus do not contain a rich understanding of the process of the phenomenon. Thus easy access to
ABM techniques would enhance the range of models GIS users could employ, by making it

∗ Corresponding author address: William Rand, Northwestern Institute on Complex Systems, 600 Foster Street,

Evanston, IL 60208-4057; e-mail: wrand@northwestern.edu.

possible to combine individual (bottom-up) models of processes with sophisticated spatial
models of pattern.

However, to make it possible to define arbitrarily complex agent behaviors, general-
purpose agent-based modeling packages rely, more or less, on universal computer programming
languages like Java, NetLogo, Python, Objective-C and so on. But most GIS users are not
programmers by training; instead, they have learned to use the powerful graphical user interfaces
(GUIs) now available on most GIS systems. Thus the motivation for our project is to explore
how to make it easier for GIS users to employ ABM techniques, in combination with standard
GIS tools and using standard GUI interfaces and frameworks. We believe one way to move
toward that goal is to design a conceptual architecture for ABM toolkits that specifically
facilitates the definition of combined spatial and agent-based process models within a GUI
framework. We feel that by doing this we can greatly expand the range of ABM applications and
bring this technology to a new group of users.

Since a number of existing systems have already been designed to make it easier for non-
programmers to create agent-based models, we began by reviewing these systems and their
intended scope. In this paper we examine three ABM GUI toolkits and evaluate their capabilities
on several dimensions related to their functionality, interface and primary intended audience. We
chose these systems on the basis of their explicit use of a GUI, their capability to support
spatially explicit ABMs, and their ability to minimize programming requirements. The first is
NetLogo, which has an easy to use GUI for developing the interface of the ABM. The second is
RepastPy, which has a GUI for model development as well as strong GIS integration. The final
toolkit we examined was MobiDyc, which has one of the most comprehensive GUIs for model
development and also has an ecological focus that aligns well with the interests of many GIS
users.

We carried out a systematic characterization of the functionality of all three platforms. In
this paper we answer a list of questions we devised to categorize and describe the capabilities of
each platform. After describing the results of our review of these systems, we discuss what we
learned about each toolkit's contribution to the development of ABM architecture design, and
then distill these lessons into a list of desiderata for a GUI-based ABM-GIS toolkit. In short, we
found that each toolkit had its own strengths and weaknesses, and we summarize these in order
to create a picture of a more ideal toolkit. We conclude this paper with a presentation of desired
capabilities of our “ideal” toolkit as well as on general lessons gleaned from experience with
existing systems.

DESIGN PRINCIPLES FOR AN ABM-GIS-GUI TOOLKIT

 Having established that there are at least a few reasons why a combined ABM-GIS
toolkit with a GUI would be useful, we needed to figure out what we would want in such a
toolkit. By creating a list of desiderata we can start to understand how such a toolkit could be
put together. Since there are three main elements to this toolkit (ABM, GIS, and GUI) we will
break down what our desired characteristics within each of these three would be.

 To begin with, from the world of ABM we would want the full power of scheduling and
heterogeneous entities that are normally available in ABM. Thus we would want the ability to
schedule an event at any time in the future, and when it occurs allow it to trigger other events.
This aspect of agent-based modeling comes out of work in discrete event simulation (DES)
(Cassandras and Lafortune 1999). This also allows creation of rich models of process and
events. One of the hallmarks of ABM is the ability to create large numbers of heterogeneous
agents and combine those agents into arbitrary groups. This allows the modeler the ability to
describe different properties and methods for different agents in the world. Moreover the
modeler can combine these agents, and ask them to all carry out an action simultaneously.
Another feature of ABM that has proven useful is the ability to use multiple different kinds of
environments with the same model. In the case of this toolkit this might mean being able to
arbitrarily switch between different GIS maps while still utilizing the same model. ABM also
has a powerful representation of the environment. The environment has the ability to carry out
its own processes and interact with the agents in autonomous ways. For instance, a wolf-sheep
ABM may interact with grass that is growing on the environment independently of the wolf and
sheep agents.

 Of course there are also some capabilities from GIS that would be desirable. First of all,
the ability to store multiple layers of data in one data set that is tied together by the physical
location of those layers in the world, is a powerful model that would be useful within an ABM.
For instance, residents moving around in a residential location model should be able to access
information like the amount of open space, distance to central business district, and proximity to
schools for one location in an easy and effective manner. Moreover, the ability to do rapid
spatial queries would be useful. For instance, in the residential location model, developers
should be able to quickly determine which lots are available within a hundred meters of a main
arterial road. Another desired capability would be the transformation of GIS objects into ABM
agents. For instance, a store in a GIS database could be reified as an ABM agent that buys and
sells products with its neighbors. Of course the ability to export the GIS data about the
environment to the ABM is also very important.

 Finally, GUI model building would be very useful. Model builders should be able to
create agents, processes and data reporters with nothing but point and clicking and the typing of
a few names. However, just because the GUI is simple does not mean that it would necessarily
only involve the creation of simple methods. Traditional GIS systems (like ArcView) use drop
down menus to construct detailed and rich SQL (structured query language) queries into the GIS
database. These query systems are easy to use in part because they are graphical and in part
because they require little (if any) formal knowledge of programming.

SURVEY

 On the basis of these design guidelines, we undertook a qualitative survey of toolkits that
have been built with one or more of these guidelines in mind. Our overall goal was to
understand better whether or not extant toolkits had already integrated the aspects of a toolkit
that we desired, and how they had accomplished this integration. The specific objectives of this
survey were therefore twofold: (1) to evaluate the toolkit in terms of how well it accomplished
the task we had set before us, and (2) to examine the basic ideas of the toolkit and see if there

was anything useful we could incorporate into our design of an ideal toolkit. To accomplish this
task, we created a list of questions about the capabilities of each toolkit and sought to answer
those questions by examining the toolkits. However, in order to carry out this survey we first
had to determine what toolkits we would examine, then we had to determine what questions we
would answer about each of the toolkits. Finally we had to actually answer the questions and
summarize the results.

Selection of Toolkits

There exists a myriad of agent-based modeling toolkits (e.g. Repast, Swarm, MAML,
Ascape, AnyLogic, MASON, CORMAS, NetLogo, and MobiDyc among others). As a result,
narrowing down the toolkits to a reasonable number that we could survey was daunting.
However, since a number of existing systems have already been designed to make it easier for
non-programmers to create agent-based models, we began by reviewing these systems and their
intended scope. We developed a list of criteria for determining which toolkits we would
examine. The toolkit had to have a strong GUI, powerful ABM tools, strong support for the
toolkit, and be provided for free. In addition it would be very useful if the toolkit already had
some GIS integration and ability to model ecological systems (since that is one of the major uses
of GIS data).

We chose three ABM GUI toolkits and evaluated their capabilities on several dimensions

related to their functionality, interface and primary intended audience. We chose these systems
on the basis of their explicit use of a GUI, their capability to support spatially explicit ABMs,
and the stated intention of their developers to provide a system that minimizes programming
requirements. The first toolkit we examined was NetLogo, which was developed by Wilensky as
a pedagogical and research tool (Wilensky 1999). NetLogo has an easy to use GUI for
developing the interface of the ABM. It also has an interesting programming paradigm
(everything happens in parallel) and was built with a “low threshold, high ceiling” language
paradigm (Tisue and Wilensky 2004). The second was RepastPy (Collier and North 2004),
which was developed at Argonne National Lab in order to make Repast easier to use (Collier,
Howe et al. 2003). RepastPy has a GUI for model development that utilizes a drag and drop
interface, and RepastPy also has strong GIS integration. The final toolkit we examined was
MobiDyc (Vincent, Christophe et al. 2002), which was developed at the National Research
Center in Avignon, France and was primarily built for ecological modeling. The basic concept
of MobiDyc is that everything is an agent, including tasks and the environment. MobiDyc has
one of the most comprehensive GUIs for model development and requires use of only drop down
menus to build a model. It also has an ecological focus that aligns well with the interests of
many GIS users.

Design of the Survey

We carried out a systematic characterization of the functionality of all three platforms. In
this paper we answer a list of questions we devised to categorize and describe the capabilities of
each platform. These questions are of the form "Can the system...?," referring to specific
capabilities. Besides detailed responses to these questions (Appendix 1) we also graded the
ability of each system to carry out the particular function, using a simplified scale (Appendix 1

and Table 1). The system receives a 'G' (color-coded as green) if it was possible to carry out the
entire task using the (G)raphical interface, a 'P' (color-coded as yellow) if there were specific
(P)rimitives in the toolkit for carrying out the task, a 'C' (color-coded as red) if (C)oding was
required to carry out the task, and an 'N' (color-coded as black) if it was (N)ot Possible (without
extreme measures) to carry out the task.

In order to clarify our thinking about capabilities that we desired in the integrated toolkit,

we distinguished the following six modeling topics crucial to any ABM development used for
rigorous scientific purposes and publication: 1) agents, 2) agent groups, 3) environment, 4)
experiments, 5) reports, and 6) interoperability. We determined these topics were relevant based
on our experience with building and utilizing ABMs in the past. Some of these topics are not
specific to use for GIS users, but design of experiments, software interoperability, and model
output through reports and graphs are important topics to the design, use, and interpretation of an
ABM in general. Therefore it was deemed necessary to include them in the overall survey.

Once we had the six major groups established, we developed a list of questions within

each group that detailed the functionality we desired in any integrated toolkit. Within each
group of questions, we also found it useful to create subcategories that helped to classify the
question. Finally within each of these subcategories we list the questions in approximate order
of difficulty, moving from the least difficult goals to accomplish to the most difficult.

One word of warning: many of these questions were very difficult to answer in any

objective sense. However we did attempt to create standards within the grading so that even if
the answers are not absolute grades in any sense, they are at least a decent relative comparison of
the three toolkits. In the end, due to the subjective nature of these results, they may not be as
applicable for your particular project.

It is also important to remember that surveys like this one only make sense within the

context of the questions being asked. Our questions and answers were designed specifically to
inquire into the construction of an integrated ABM-GIS toolkit with a strong GUI. There are
many criteria that we could have utilized that we did not. For instance, are the primitives easy to
use? Is the architecture of the toolkit intuitive? Is there a wide base of support for the toolkit? It
may very well be impossible to carry out a truly comprehensive survey of toolkits that would be
appropriate for all users, hence all such surveys are going to be subjective and thus at least
partially controversial.

RESULTS

 We present the results of our survey in two different formats. In the more extensive
format (Appendix 1), we present all of the questions and the exact answers that we gave those
questions. Both in terms of a quick description of an answer and the grading system described
above. In addition, for quicker reference and to provide a higher level summary of our results,
Table 1 presents the letter grades that we gave to each toolkit for each answer (G, P, C, N) and is
color-coded to reflect these grades (Green, Yellow, Red, Black). In addition, the questions are
not presented but the categories and subcategories are as well as a keyword referencing the
question.

Table 1: Summarized and Color-coded Results.
Agents Environment
Question? NetLogo RepastPy MobiDyc Question? NetLogo RepastPy MobiDyc
Creation Initialization
Basic P G G values P C G
Types P G G external C C G
Properties GIS C G N
Basic P G G statistical C C G
Values C C G non-Euclidean N G N
Type-based P G G Properties
Methods global P G G
Basic P C G raster G G G
Initialization vector C G N
External G C G GIS methods N C N
GIS C G N layers N C N
Scheduling Methods
Parallel P N G basic P G G
Agents N N G independent P G G
Schedule N G N topology N N N
Heterogeneou
s N G N Scheduling
het. Times N G N schedule N G N
Properties N C N independent N G N
Sensors
other agents C C G Experiments
Environment C C G Question? NetLogo RepastPy MobiDyc
Effectors batch G C G
other agents C C G monte carlo G C G
Environment P C G sweep par. G G G
Termination
Die P N G Interoperability
Kill C N G Question? NetLogo RepastPy MobiDyc
 called from C C N
Groups calls to N C N
Question? NetLogo RepastPy MobiDyc analysis C G G
Creation experimental C C N
Groups C P G
het. Groups C C G Legend
Scheduling N = No
Schedule N N N C = Code
 P = Primitive
Reports G = Graphical
Question? NetLogo RepastPy MobiDyc
world display G G G
agent stats C C G
Envt. Stats C C G
Graphs C G G
output files C G G
GIS N C N

DISCUSSION

 The results of our survey were mixed. It seems obvious that no toolkit yet measures up
to our ideal toolkit in terms of ABM-GIS integration with a strong GUI. However, we were able
to update our design principles by looking over these results.

 For instance, NetLogo has a programming paradigm (enforced parallelism) that forces
the programmer to write code for the model in a specific way. MobiDyc also makes use of a
particular paradigm (everything is an agent). As we went through the questions in the survey we
realized that this had a dramatic effect on the answer for these toolkits to some of the questions,
but it was not necessarily a negative effect. In some cases it probably had a positive effect. In
the end, it was clear that the programming paradigm utilized by a toolkit will force trade-offs in
the toolkit to be made, and thus choosing that paradigm requires careful thought before
designing a new toolkit.

 NetLogo probably has one of the best GUIs for designing the look of the ABM, but has
little to no GUI for actually creating the model. This was an interesting result, and it convinced
us that being able to design the look of the ABM enhances the model development experience
for novices. Having to specify screen coordinates and sizes within code is very daunting; being
able to drag and drop graphs and sliders around the world is much more natural.

 Instead of providing the ability to design many (if any) of the model components
graphically, NetLogo relies on a long list of primitives that can be used to carry out most of the
basic operations that an ABM developer would desire. This emphasis on primitives, as opposed
to visual programming, may not specifically address the goals we had in this survey but it does
seem to aid novice programmers in learning how to program. In fact, NetLogo and MobiDyc
together caused us to reassess our desire for a strictly graphical based language. It may, in fact,
be easier to use a large graphical component with some simple coding than to design a fully
functional GUI-only system.

 NetLogo has also made recent strides in being able to run experiments from the GUI (i.e.,
BehaviorSpace) without ever having to control the model from the command line. This is a
feature that will likely be appreciated by novice model users who simply want to see what the
effect of a particular range of values is on the overall model performance. Part of this work is a
result of the fact that NetLogo has good support and includes new features requested by users on
a regular basis. Though support was not an explicit part of our survey, it does have a positive
impact on many of the questions that we asked in our survey.

 RepastPy has, by far, the best GIS integration of any of the toolkits we examined. It
allows the model developer to read GIS data within the drag and drop of the environment and the
click of a button. In addition, since it works with both OpenMap and ESRI products, it is
useable by a wide variety of GIS practitioners. There is still work that needs to be done in terms
of incorporating topological vector data, multiple layers, and being able to easily carry out
spatial queries, but in general RepastPy is a good first step toward GIS integration into and ABM
toolkit.

 RepastPy also used different GUIs for different types of models. For instance when
working with a vector-based model, a different GUI was required from the one used when
working with a raster-based model. In fact, these two worlds are so different it may be
impossible to reconcile them within one GUI.

 MobiDyc seemed to be the closest toolkit toward our goal of having a truly GUI driven
ABM toolkit. It had selectable menus for everything. However the interface seemed a little
confusing at times, and sometimes it was inefficient to select three or four menu items just to
write a simple equation like “z = x + y”. In addition MobiDyc lacks GIS integration and,
because it is written in SmallTalk, is not easily extensible.

 However, in MobiDyc it is possible to write very complicated expressions with just a few
primitives. The entire MobiDyc “language” can fit on one sheet of paper with brief descriptions
and yet has been used to build some fairly complicated and complex ecological models.
Therefore it seems clear that designing a good system of primitives is critical to the development
of a good toolkit.

CONCLUSION

 In the future, we hope to make use of this survey to design a toolkit that would meet the
goal of integrating ABM and GIS while still being useable by a novice model builder. A large
component of this design will involve the identification and description of the “primitives” of the
language. A “primitive” is a basic command that is easily identifiable and can be used by a
model builder without an explicit knowledge of the internal implementation of that primitive. In
particular, one group of primitives that would be useful for us would be those related to the
modeling of land use dynamics (e.g., “Land-Use Modeling Primitives [LUMPs]”), which would
be tailored to allowing GIS users who are interested in land-use and land-cover change to build
models of real systems.

 The design of primitives is very important to the eventual realization of such a toolkit. If
the primitives of the toolkit are chosen carefully, then it is possible for novice users to build
complicated models. NetLogo provides a clear example of that, having been used, for example,
by elementary school students to build models of traffic simulation. However, the primitives
also dictate what is hard and what is easy in a given language. For instance, because of the
paradigm chosen in NetLogo it can be difficult to build a true discrete event simulator.

 In order to move forward toward the design of such a toolkit, we plan to refine and
reconsider our goals. As mentioned above, maybe it is not necessary to have every aspect of the
toolkit be built around visual programming aspects. Of course, one of the major components of
this design process will be the development of a set of ideal “LUMPs.” This may allow us to
develop a prototype of an ideal ABM-GIS.

 Ultimately, there does appear to be a trade-off between ease of use and power of the
modeling environment, but based on our analysis of these three toolkits we believe that we have
not yet hit the pareto-optimal front of that trade-off yet and that it is possible to continue to make
improvements.

REFERENCES

Cassandras, C. G. and S. Lafortune (1999). Introduction to Discrete Event Systems,
Springer.

Collier, N., T. Howe, et al. (2003). Onward and Upward: The Transition to Repast 2.0.
First Annual North American Association for Computational Social and
Organizational Science Conference, Pittsburgh, PA.

Collier, N. and M. North (2004). Repast for Python Scripting. Agent 2004, Chicago, IL.
Tisue, S. and U. Wilensky (2004). NetLogo: Design and Implementation of a Multi-Agent

Modeling Environment. Agent 2004, Chicago, IL.
Vincent, G., L. P. Christophe, et al. (2002). "A multi-agents architecture to enhance end-

user individual-based modelling." Ecological Modelling(157): 23-41.
Wilensky, U. (1999). NetLogo, Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL.

APPENDIX 1: FULL SURVEY RESULTS
Agents

Question? Can it... NetLogo RepastPy MobiDyc
Creation

create agents? yes P yes G yes G

create different types of
agents?

 yes, by creating different
breeds P

 yes, you create different agent
classes graphically and then

instantiate them, G

 yes called Entities, and there
can be different "stages"

within Entities G
Properties

create agent properties? yes, using -own predicate P yes, agents have fields G yes, agents have attributes G

set agent properties to
heterogeneous values?

 yes, iteratively or randomly,
but not an arbitrary nth agent

C
 yes, iteratively, randomly and

an arbitrary nth agent C
 yes, attributes can be

initialized via a "series" G

create different properties for
each agent type?

 yes, different breeds own
different properties P

 yes, all agents must have their
fields specified G

 yes, each entity has different
properties though some are

automatic ("age", "location")
G

Methods

create agent methods?
 yes, but all methods are
available to all entities P

 yes, agents have individual
methods though right now I

can't seem to add new methods
on the CSCS version C

 yes, agents have tasks, some
of which are built-in and

others can be created G
Initialization

initialize agents from external
sources?

 yes, using import-world and
from text files G

 yes, you can read in data
using standard file i/o C

 yes, there is a standard
initialization file format and
you can write Smalltalk I/O

code G

initialize agents from GIS
data?

 yes, using standard GridAscii
and file I/O C

 yes, agents can be read
directly from shapefiles via the

GUI G

 no, though you could convert
GIS data into the proper

MobiDyc format C
Scheduling

have agents take actions in a
distributed, parallel fashion?

 yes, this is the standard
method of executing actions P

 no, agents take actions in
asynchronous fashion

 yes, you can switch the
scheduler between

synchronous and sequential
modes G

create events as agents?
 no, events are methods that

are requested of agents

 no, methods are something
that agents and the

environment have and are not
agents themselves

 yes, all tasks and events are
actually considered agents and
thus treated in the same way as

other agents G

schedule agents to take
actions?

 no, in the sense that there is
no predefined scheduling

mechanism in NetLogo. Yes,
in the sense that you can ask a

turtle to do anything at any
time C

 yes, there is a full Dynamic
Event System scheduler, G

 no, in the sense that there is
no predefined scheduling

mechanism. Yes, in the sense
that you can ask an agent to

perform a task conditionally G

schedule different agent
classes to take heterogeneous
actions?

 no, but you can filter
agentsets and ask different
agentsets to take different

actions C

 yes, the different agent types
have completely separate

schedules G

 no, but entities are completely
different and carry out

different actions G

schedule the same agent type
to take heterogeneous actions
at different times?

 no, since there is no schedule
but you can filter agentsets and

ask them to take different
actions C

 yes, you can schedule events
at a tick, at a pause, at an

interval, at the start and at the
end G

 no, since there is no schedule
but you can have them take

different actions conditionally
G

schedule agents to take actions
on the basis of their
properties?

 no, since there is no schedule
them but you can ask them to

take actions on the basis of
properties C

 yes, you can determine in the
code if the agent should

actually take the action C

 no, since there is no schedule
them but you can ask them to

take actions on the basis of
properties G

Sensors

have agents learn about other
agents?

 yes, all agents can access
anything about all other
agents, though it can be

difficult to single out agents
that don't have particular

properties or spatial nearness
C

 yes, agents can access
information about other agents

C
 yes, all agents have access to

all other agents G

have agents learn about their
environment?

 yes, agents can ask questions
of the patches C

 yes, agents can access
information about the

environment C

 yes, all agents of any entity
type can access all other

agents G
Effectors

have agents which affect other
agents?

 yes, any agent can ask any
other agent to set a particular

value C

 yes, agents can force other
agents to change fields or

execute methods given the
right permissions C

 yes, "modify an attribute" is
one of the most common tasks

G

have agents which affect the
environment?

 yes, agents can set attributes
of patches and can "stamp"

their environment P
 yes, agents can change
environmental values C

 yes, agents can modify
attributes of the environment

G
Termination

destroy agents? yes, die is a primitive P

 no, Python's del is not
supported, though you can

create workarounds that
"imitate death" usually C yes, "die" is a built in task G

have agents destroy each
other?

 yes, agents can be asked by
other agents to die C no, see above C

 yes, "kill" is a built in
primitive G

Groups

Question? Can it... NetLogo RepastPy MobiDyc
Creation

create groups of agents?
 yes, through the use of

agentsets C

 yes, there are even primitives
to get many basic groups like

neighbors P

 yes, you have entities, stages,
and some basic queries like

neighbors G

create groups made of
heterogeneous agent types?

 yes, but very constrained, you
can create a property shared by

two different groups and then
create an agent class using a

filter based on that property C

 yes, you can create lists of
different types of agents fairly

easily C

 yes, but these groups are
calculated each time you

perform a task and are not
preserved over time G

Scheduling

schedule agents to take actions
on the basis of a group that is
independent of the type?

 no, as mentioned above there
is no general scheduling

mechanism, but you can ask
different groups to take

different actions C

 no, agents in a group can be
asked to perform an action but

it cannot be scheduled

 no, as mentioned above there
is no general scheduling

mechanism, but you can ask
different groups to take

different actions G

Environment
Question? Can it... NetLogo RepastPy MobiDyc

Initialization

create environmental values?
yes, patches have a -own
predicate P

yes, you can create underlying
grids like in regular Repast but
there is no way to just set up a
grid with values from the GUI
C

yes, cells have attributes since
they are also agents G

initialize the environment from
external sources?

yes, you can read in values
from files using standard I/O
and then set patch values
based on that C

yes, you can read in values
from files using standard I/O C

yes, there is a standard
initialization file format G

initialize the environment from
GIS data?

yes, but there are no specific
GIS I/O primitives C

yes, a GIS environment is a
specific type that allows you to
read in shapefiles to define the
environment G

no, there is no standard way to
read in GIS data though you
could write a script to turn GIS
data into the MobiDyc file
format C

initialize the environment from
statistical distributions?

yes, most standard
distributions can be generated
C

yes, most standard
distributions can be generated
C

yes, but the initialization only
happens once and thus is
always the same every time
you start the model G

create non-Euclidean
environments?

no, but you can simulate them
using agents to represent
connections between different
agents C

yes, networked environments
are another built-in
environment type G no, it is all grid based

Properties

create global properties for the
entire model?

yes, the globals command
defines properties for the
whole world P

yes, the environment has fields
that can be set for the whole
world G

yes, these are considered non-
located agents G

create properties in the
environment on a raster basis?

yes, rasters / grids are the basic
environment G

yes, the normal grid data can
be a raster, but there is no way
to import GIS raster data G

yes, rasters / grids are the basic
environment G

create properties in the
environment on a vector basis?

no, but the rasters are large
and agents are vector points C

yes, either through the use of a
network, or through GIS data
G

no, though agents are smaller
than the grid

create properties based on GIS
methods (i.e. buffering,
intersections)?

no, though there are some
things like neighbors and the
like that could be used to
generate similar results C

yes, you can use either
OpenMap or ArcObjects to
manipulate GIS objects C

no, though there are some
things like neighbors and the
like that could be used to
generate similar results G

create properties of the
environment in multiple
layers?

no, but patches can have
multiple properties which
might be equivalent to
multiple layers C

yes, you can create multiple
layers in a GridModel, but not
in a Network Model or GIS
model C

no, but cells can have multiple
properties which might be
equivalent to multiple layers G

Methods

have the environment take
action?

yes, patches can determine that
certain things should be done,
and diffuse is a basic
command P

yes, the environment has its
own actions, in GISModels the
environment is even identified
with agents G

yes, the cells can perform tasks
just like any other agent G

have the environment act
independently of the agents?

yes, diffuse is one clear
example of this P

yes, though sometimes the
environment is an agent as
described above G

yes, and you can even modify
whether the grid or the agents
act first G

have the environment enforce
topological rules?

no, agents are responsible for
checking that they are not
violating any topological rules
C

no, agents are responsible for
checking that they are not
violating any topological rules
C

no, agents are responsible for
checking that they are not
violating any topological rules
G

Scheduling

schedule the environment to
take actions?

no, as mentioned above, but
any patch can be asked to do
anything at any time C

yes, the environment can use
the same scheduler as agents G

no, as mentioned above, but
any cell can be asked to do
anything at any time G

schedule the environment to
take action independently of
the agents?

no, though the whole world
can be asked to diffuse at any
time P

yes, the environment can use
the same scheduler as agents G

no, though the whole world
can be asked to perform
actions at a different time than
the agents G

Reports

Question? Can it... NetLogo RepastPy MobiDyc
generate graphical output of
the world?

yes, this is all manipulated
from the interface G

yes, you drag and drop a
viewer into the model G

yes, you can define your own
visualization options G

calculate statistics about
agents?

yes, but due to the scoping
rules sometimes these results
can be hard to collect
correctly, some commands to
deal with reporting are built-
in, C

yes, you can write code to
calculate just about any stat C

yes, you can perform many
standard statistical calculations
G

calculate statistics about the
environment?

yes, but see above, patches can
be asked to-report values as
well, C

yes, you can write code to
calculate just about any stat C

yes, cells are just like agents in
this environment G

output statistics to graphical
displays?

yes, the graphs themselves are
designed graphically but they
are linked to report values in
the code C

yes, you can select from a drop
down menu what variables
you want to graph G

yes, they have line graphs and
histograms, unfortunately
these are not real time, but can
only be examined after the
experiment G

output statistics to an output
file?

yes, some standard I/O
procedures exist C

yes, this is part of each graph
you care and specified in the
GUI G

yes, you can save the text used
to generate any display G

output data to a GIS server?

no, but the data can be written
to a text file and then imported
C

yes, you can write back to
shapefiles C

no, there is no way to write to
a GIS file, though you could
use the output text file as a
GIS input G

Experiments

Question? Can it... NetLogo RepastPy MobiDyc

run the model in batch mode?

yes, turning off the update
display, it can even be called
from another java program
C/G

yes, you can turn off the GUI
output and just have the
controller come up C

yes, you define it through the
GUI and run it from there but
you can turn off visualization
G

run the model automatically
with different random number
seeds in batch mode? yes, using BehaviorSpace G

yes, though you have to create
a random number seed input
that varies as one of the
parameters in multi-run C

yes, part of the standard batch
mode is to select the number
of times to replication the
experiment G

sweep parameters while
running the model multiple
times? yes, using BehaviorSpace G

yes, using multi-run though I
have never gotten it to work in
our installation G

yes, and there are even
multiple ways that MobiDyc
will sweep the parameters for
you G

Interoperability

Question? Can it... NetLogo RepastPy MobiDyc

be called from Java or C?

yes, there is a Java API that
allows you to call a NetLogo
model C

yes, you can export to Java
and then compile it in anyway
you want C

no, since the code is in
SmallTalk it would be hard to
access from anything but
SmallTalk

call Java or C standard
programming libraries?

no, NetLogo is interpreted and
hence there is no way to call
other code

yes, it supports all python and
java objects C

no, it could read other
SmallTalk libraries but that's it

generate data for use with
other analysis tools?

yes, you can output data to text
files and then analyze it, or
you can use the CSV files
generated by BehaviorSpace G

yes, you can output data to text
files and supposedly multi-run
will output data to xml files C
/ G

yes, in fact they are working
on an interface with R G

be run using third party
experimental tools?

yes, but in a tricky fashion
since you would have to work
through the provided Java API
instead of just using a
command line processor C

yes, since you can create a
standard Repast model but this
takes work C

no, since there is no way to
run it from the command line

