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Abstract

Simulation of complex biological events by autonomous agents is particularly conve-
nient whenever: i) the events depend on both time and space, and ii) some collective,
organized trends emerge at the population level from a few simple properties charac-
terizing each single agent. This has been exemplified by simulating two quite different
phenomena, namely: i) the distribution of cod populations in the North Atlantic ocean,
and ii) the synchronous activation of brain neurons occurring in many neurological dis-
orders, including epyleptic seizures.

In both cases simulations of the observed time dependent trends, although qualita-
tive,provided hints to work out relevant mechanistic hypotheses.

Introduction

The collective dynamics arising from the behaviour of various kinds of living entities
encouraged in recent years the design of specific simulation environments, from the
molecular to the ecological level (9), particularly in the study of metabolic and genetic
systems (12; 6). In our opinion, among such environments special attention deserves
NetLogo (1), a general purpose, programmable modeling tool for natural and social
phenomena, authored by Uri Wilensky in 1999 at Northwestern University (Evanston,
IL). NetLogo is endowed, among other things, with a straightforward portability over
different platforms and operating systems, and the tackled simulation problems span
from math and computer science to earth scienc and even art.

In this preliminary account we refer about simulations carried out in ecological and
neurological contexts. In the former case we tried and reproduce the distribution of cod
stocks in the North Atlantic Ocean, associated to hemoglobin phenotypes in the blood of
the various stocks (10), as confirmed by a recent biochemical approach (5). In the latter
case, we modeled the typical electric activity patterns occurring in the central nervous
systems as the result of an epileptic crisis, through the activations of a number of agents
which synchronize their own activity cycle.
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Figure 1. Examples of NetLogo code. The upper and lower panels include
the crucial fragments of the code used to work out, respectively, the simula-
tion of the cod stocks distribution and of the neuronal activation, discussed in
this paper. Notice the straightforward implementation, through appropriate ’if’
statements, of the basic control structures in both cases, namely: the reproduc-
tion and death of cods, and the energy–regulated synchronization of neurons.
In particular, the last ”if” statement includes the dependence of the synchro-
nization ability of each neuron according to an expression of the general form:
SynchronizationAbility = f(Radius)/f(Energy), where Radius quantifies the
extent of the circular region within which active neighbouring neurons may be
sensed and depending, in turn, upon the available metabolic Energy.

In both cases, the connection between the micro-level behavior of individuals and the
macro-level patterns that emerge from their interaction, could be easily explored thanks
to the peculiar features of the NetLogo environment.

Example 1: distribution of cod stocks in the North Atlantic area

In the attempt to simulate the geographical distribution of cod stocks in the North
Atlantic, we considered two hemoglobin phenotypes, corresponding to the Hb11 and
Hb22 homozygotes, and preferring higher and lower temperatures, respectively. A third
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phenotype, corresponding to the heterozygote Hb12, was also considered, and taken as
temperature-insensitive.

Figure 2. Simulation set-up for the distribution of cod stocks in the North
Atlantic.
Central Panel: the sliders in the first column define the initial number of in-
dividuals, up to 1000, for each phenotype Hb11.., Hb22.., Hb12.., as well as the
maximum number MaxCodNr, up to 10000, of individuals of any phenotype
sustainable by the environment. Deactivating the bottom switch, DEFAULTS,
allows substitution of predefined with user-defined values. In the second column,
sliders control the intensity and decay constant for the Reproduction, ReproF ,
and Fishery, FisheryF , fields. The allowed range (0 – 100 and .1 – .01, respec-
tively) is in arbitrary units. The location of the reproduction fields for the three
stocks are indicated by the triangles of the corresponding color (visible in the left
panel); red circles indicate the location of fishery fields. Notice that both type
of fields can be placed everywhere on the map. The last slider in the column is
for the temperature sensitivity coefficient (0 – 100, arbitrary units) of the Hb11
and Hb22 phenotypes as well as for the attraction exerted by the norwegian
coast (deep green in the map) on the Hb12 phenotype. The North Atlantic map
in the middle panel is visualized by the Setup button, which also initializes all
the variables to the default values. The Go button is used to start/pause the
simulation, respectively.
Left and Right Panels show the distribution of cod stocks (Hb11 = green,
Hb22 = yellow, Hb12 = blue) at time = 0 and after about 500 (arbitrary) time
units (see figure 4 for the whole time course). Notice, in the right panel, the
clustering of the three phenotypes in different areas. The simulation was paused
when the total number of fishes reached the maximum allowed value (1000).

Assuming that the ocean temperature increases linearly with decreasing latitude, the
individuals of the Hb11 (red) and Hb22 (yellow) phenotypes, initially distributed at
random in the ocean (Fig. 2, left panel), will move towards South or North according
to their temperature preference, while the Hb12 heterozygote will be attracted by the
norwegian coast (see Figure 2).

Birth and death of fishes may occur with a probability reaching a maximum in spe-
cific ”hot spots” and exponentially decreasing with distance from such spots, as in the
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presence of a sort of Reproduction- and Fishery-Force-Fields, according to the following
expression:

(1) FI = FImax ∗ exp (−dC ∗D)

where FI = FieldIntensity; FImax = Maximal FieldIntensity; dC = Decay Constant; D
= Distance from the corresponding ”hot spot”, where FImax applies. The total number
of the three phenotypes will in no case superseed a given ”sustainable” (MaxCodsNr)
amount. The location of the hot spots for Reproduction and Fishery Fields may be
predefined on the map by appropriate sliders in the input/output control panel(see
Figure 2).

Figure 3. Time course of simulated cod stocks distribution in North At-
lantic. The four panels in both sides refer to the fractional abundance of the
three considered phenotypes (Hb11, Hb22 and Hb12) in the four quadrants
associated to the map in Fig. 2 (the 0,0 point halfway from Iceland and Scot-
land). All simulations used the parameters shown in Figure 2 and identical
initial conditions, except the Temperature Sensitivity (See the Text and the
TempSensitivity slider in Figure 2) which was set to 0 and 50 (arbitrary units)
in the left and right panels, respectively.

Even the simplest model aiming to reproduce the distribution of cod stocks in North
Atlantic should take into account the existence of adaptive correlation between pheno-
types and natural (primarily temperature and salinity) as well as anthropic (primarily
fishery and pollution) factors, in agreement with the available information (10). We
simulated the effect of the former type of variables by including in the set of properties
characterizing any individual fish: i) a propensity to migrate Southwards or Northwards,
respectively, for Hb11 and Hb22 homozygotes, and Eastwards, towards the norwegian
coast, for the heterozygotic (Hb12) individuals, ii) a propensity to better reproduce in
one or two areas, specific for each phenotype. At present, such areas were arbitrarily se-
lected in the aim to couple the known temperature/salinity regimes of the North Atlantic
areas and the heterogeneous preferences of the various stocks. The anthropic factors are
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more difficult to be accounted for, due to the large heterogeneity of their time and space
dependence. We condensed their influence in up to three so called ’fishery fields’, of
arbitrary intensity and location (See Fig. 2), causing an aspecific death of fishes of any
phenotype.

Example 2: Synchronizing brain neurons

In this case, we represented brain neurons in terms of identical, autonomus agents
randomly distributed in a brain-shaped bidimensional space (see figure 4), and switching
between an active and a nonactive state in a completely independent (randomic) fashion.

Figure 4. Simulation set-up for synchronized brain neurons.
Middle section: the first column contains the sliders which define the to-
tal number of neurons in a small, high density region, indicated by the arrow
(Red Neurons), and in the light blue and pink remaining regions of the brain
surface (BackGround: BG Neurons). Notice that in the side panels only the
active neurons at a given instant are visualized as yellow dots. Other two slid-
ers control the length of the activity cycle of each neuron and the minimum
number of active neighbours it must sense in order to synchronize. The second
column contains the sliders (MinRadius and MaxRadius) limiting the length
of the window within which each neuron may sense the activity of the others.
It also contains the slider for the initial level of the metabolic energy, quickly
depleted during syncrhonous activity and restored during normal activity. The
two small panels report the actual, instantaneous value of the above parameters,
throughout the whole simulation.
The left and right panels visualize the activation state of neurons on the
brain surface after 111 and 432 time bits from the beginning of the simulation.
Notice that in the left panel only the neurons of the high density (red) region
appear as partially synchronized; after a while (right panel), synchronization
extended to a large fraction of neurons in the whole brain.

In order to qualitatively reproduce the dynamics of epileptic seizures, we assumed
that neuron populations become synchronized since each neuron tries and match its own
activity cycle with that of other neurons in the neighborhood. A necessary prerequisite,
then, is that it can ’sense’ a minimum number of active neurons within defined spatial and
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temporal windows. Moreover, since keeping synchronized is a strong energy–consuming
activity, it looks reasonable that a synchronized status should be limited by the metabolic
energy level of the tissue. Our model accounts for that in so far as the energy level
influences the maximal distance at which a neuron may sense other neurons: the lower
the energy, the shorter such distance, and hence the lower the chance to get synchronized
(see Fig. 5 and Fig.1).

Figure 5. Block diagram of the neurons’ synchronization rule.

A variety of synchronized activation patterns may soon be observed if each single neu-
ron is influenced by the number of active neurons in its surroundings. More specifically,
if regions of different size and neurons’ density are distinguishable in the brain, assuming
that each neuron may interact with other neurons within a given radius, at least two
different types of interactions can be foreseen: among neurons of the same or of different
regions. An interesting consequence is that, if neurons within a small region easily syn-
chronize due to their high density, they may also act as triggers of synchronous activity
over the whole brain, thus reproducing the role of the so called “epileptic focus”(7).

We could set up a system in which: i) very simple ’agents’ simulate neurons, and
ii) synchronous activation is assumed to depend upon the ability of single neurons to
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Figure 6. Time course of simulated synchronous activation of brain neu-
rons. Simulations in the A, B, C panels were all carried out according to the
conditions detailed in Fig. 4, but for the values listed in the lower-left table.
Notice how the frequency of the activity bursts, at difference with the overall
shape, is very sensitive to the neurons density (panels A,B) as well as to the
length of the activity cycle of single agents (panel A,C). The latter may be de-
fined as the maximum time length between two subsequent active state in the
absence of synchronization. It is also noticeable the dramatic drop of the meta-
bolic energy as a consequence of the massive synchronization within the activity
bursts.

switch from a ’resting’ to an ’active’ state at a given instant within their activity-cycle.
Thus, under resting conditions the activation of single neurons occurs randomly within
the activity-cycle; it may occur, however, that synchronous activation emerges in the
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neurons’ universe (brain) as a result of an autocatalytic process where more and more
neurons become active at the same time.

Figure 6 shows the time-courses corresponding to the interplay of the apparently most
relevant variables which regulate the synchronus activation, namely the neurons density
in a given brain region, and the length of the activity cycle of each single neuron. Notice
that the time units, here as in all our simulations, correspond to the time required by the
environment to update the state of the whole set of agents. No provision has been taken
to scale the arbitrary time units since, at the present stage of our qualitative simulations,
what matters is the occurrence of the considered phenomena relative to each other.

Discussion

In many cases, the smooth learning-curve and the captivating user interface of the
interpreted NetLogo environment counterbalance its non-astonishing number-crunching
power and make it well suited to exploratory modeling and qualitative predictions. Even
more so in the presence of a high number of variables, as in the study of ecological and
nervous systems, where a wide spectrum of conditions has to be considered for an optimal
design of experimental validations.

In our opinion, among the most significant features of NetLogo remains the ability to
easily account for both time and space dependent events. The properties of single agents
at a given time, in fact, may also depend upon the free moving in a non-homogeneous
environment, where any location is endowed with specific features. Simulating cod dis-
tribution in the North Atlantic took full advantage of that, since we assumed that:
i) preferential directions of fish moving reflect latitude-related temperature sensitivity,
and ii) local fish density reflects the relative location of central-symmetric force fields
representing reproduction or lethal (fishery) areas.

While Fig. 4 provides a glimpse of the performance in the qualitative description of
fishery resources, its full exploitation in a possibly predictive context, however, is still out
of reach. A major problem here lies in both the variability of environmental information
and the scarcity of biological data. On the former side, detailed information on the
temperature and salinity regimes in different North Atlantic regions of the type shown
in Fig. 7 (left panel), would be most appropriate, due to the direct influence on the
oxygen availability and hence on the energetic metabolism of marine species. However,
the strong and rapid alterations of seasonal temperature cycles, ice-melting and ocean
salinity levels induced by global warming, has enormously amplified the uncertainty of
any prediction in these fields. On the biological side, after the seminal studies on cod
phenotypes distribution in the North Atlantic ocean by Sick (10), only in recent years
our knowledge on cod physiology and genetics has significantly improved (5).

Another impressive level of performance/simplicity ratio reached by NetLogo is in
the simulation of interactions among agents based upon geometrical or functional links
giving rise to extensively synchronized behaviour 1. In reproducing the emergence of

1It is interesting to note that an analogous task faced by a traditional simulation tool re-
quires considerably deeper theoretical and programming involvement (8; 11). Moreover, as for
flexibility and simplicity/power ratio, NetLogo compares favourably also with general-purpose
environments of similar type, like V-lab (3) or StarLogo (2)
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ordered, synchronized patterns of activity in a population of initially independent neu-
rons, we were initially inspired by a model called ’fireflies’ included in the rich NetLogo
model library (13). Our scheme, however, besides being based upon stationary, instead
of moving – like in the previous case of cod stocks –, agents, contains a number of
original features, primarily the energy-linked switch between a ’synchronized’ and an
’asynchronized’ state for each neuron. In this first attempt to reproduce the occurrence
of epileptic seizures (4), we set up a minimal mechanistic scheme in which the ability to
get synchronized is restricted to contiguous neurons, that is within a circular region of
variable radius. An alternative scheme able to provide activity patterns (Figure 7, right
panel) even more similar to actual epileptic EEG signals 2, may be designed accord-
ing to the same approach followed in the cod stock distribution case, namely assuming
the agents freely moving in some central-symmetric force-fields. It looks quite difficult,
however, to reconcile the latter scheme to any established physiological evidence.

Figure 7. Towards more quantitative simulations. The left panel shows the
false-color map of salinity levels in the North Atlantic. Such data, taken together
with the associated thermoclines, are very important for any reliable simulation
of cod stock distributions in the ocean: as specified in the text, however, the
main difficulty here is the experimental validation of the model’s predictions.
The right panel concerns a neuronal synchronized activity we worked out within
the same simulation environment but using a slightly different model than that
described here. Although less realistic, such a model provides a better fit to
actual EEG recordings (see also the text).

A more promising evolution of our model should be in tracing the preferential chan-
nels (functional links) for the mutual activation of neurons in discontinuous, distant
regions in the brain space. Such a network-like scheme could provide a useful modelistic
counterpart to the well known existence of specific pathways connecting distant regions
in the brain, which become active as the result of several pathological/physiological
events. Moreover, it could also benefit of the considerable refinements recently gathered

2See Panuccio et al. Fig 1B, Fig 2A, in this same issue
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by topologically-oriented networks in modeling other biological activity patterns of huge
complexity, like gene-expression or metabolic-activity patterns. (6; 12)
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