
Finding Forms of Flocking: Evolutionary Search
in ABM Parameter-Spaces

Forrest Stonedahl and Uri Wilensky

Center for Connected Learning and Computer-Based Modeling
Northwestern University, Evanston, IL, USA

forrest@northwestern.edu, uri@northwestern.edu

Abstract. While agent-based models (ABMs) are becoming increas-
ingly popular for simulating complex and emergent phenomena in many
fields, understanding and analyzing ABMs poses considerable challenges.
ABM behavior often depends on many model parameters, and the task of
exploring a model’s parameter space and discovering the impact of differ-
ent parameter settings can be difficult and time-consuming. Exhaustively
running the model with all combinations of parameter settings is gener-
ally infeasible, but judging behavior by varying one parameter at a time
risks overlooking complex nonlinear interactions between parameters. Al-
ternatively, we present a case study in computer-aided model exploration,
demonstrating how evolutionary search algorithms can be used to probe
for several qualitative behaviors (convergence, non-convergence, volatil-
ity, and the formation of vee shapes) in two different flocking models. We
also introduce a new software tool (BehaviorSearch) for performing pa-
rameter search on ABMs created in the NetLogo modeling environment.

Key words: parameter search, model exploration, genetic algorithms,
flocking, agent-based modeling, ABM, multi-agent simulation

1 Motivation

Agent-based modeling is a powerful simulation technique in which many agents
interact according to simple rules resulting in the emergence of complex aggregate-
level behavior. This technique is becoming increasingly popular in a wide range
of scientific endeavors, due to the power it has to simulate many different natural
and artificial processes [1–3]. A crucial step in the modeling process is an anal-
ysis of how the system’s behavior is affected by the various model parameters.
However, the number of controlling parameters and range of parameter values
in an agent-based model (ABM) is often large, the computation required to run
a model is often significant, and agent-based models are typically stochastic in
nature, meaning that multiple trials must be performed to assess the model’s
behavior. These factors combine to make a full brute-force exploration of the
parameter space infeasible. Researchers respond to this difficulty in a variety
of ways. One common approach is to run factorial-design experiments that ei-
ther explore model behavior only in a small subspace or explore the full space

but with very low resolution (which may skip over areas of interest). A second
common approach is to vary only a single parameter at a time, while holding
the other parameters constant, and observe the effect of changing each parame-
ter individually. However, because ABMs often constitute complex systems with
non-linear interactions, these methods risk overlooking parameter settings that
would yield interesting or unexpected behavior from the model.

As an alternative, we argue that many useful model exploration tasks may
instead be productively formulated as search problems by designing appropri-
ate objective functions, as we will demonstrate by example in the domain of
simulated flocking behavior. In this paper, we introduce a new software tool
(BehaviorSearch) that we have created for the purpose of searching/exploring
ABM parameter spaces. Using BehaviorSearch, we offer a case study showing
how search-based exploration can be used to gain insight into the behavior of
two ABMs of flocking that have been implemented in the NetLogo modeling
environment [4, 5]. We also provide a comparison of the performance of three
different search algorithms on several exploratory tasks for these two ABMs.

2 Related Work

Rather than using a full factorial experiment design for sampling points in the
space, several more sophisticated sampling algorithms exist (e.g. Latin hyper-
cube sampling, sphere-packing). These algorithms stem from the design of exper-
iments (DoE) literature or more specifically the more recent design and analysis
of computer experiments (DACE) literature (see [6] for a discussion of applying
DACE methodology to ABMs). While appropriate experimental designs provide
efficient sampling of the space in some situations, this is a separate direction
from the search-oriented approach that we are pursuing here. In particular, we
are interested in the use of genetic algorithms [7] (GAs) to search the ABM pa-
rameter spaces for behaviors of interest. Genetic algorithms have proven to be
quite successful on a wide range of combinatorial search and optimization prob-
lems, and are thus a natural meta-heuristic search technique for this task. There
is prior work on parameter-search and exploration in ABM, and considerably
more on the problem of parameter-search in general.

Calvez and Hutzler have previously used a genetic algorithm (GA) to tune
parameters of an ant foraging model [8], and discuss some of the relevant issues
for applying GAs to ABM parameter search. However, in this case, the GA’s
performance was not compared to any other method, and the effectiveness of
GAs for the ABM parameter search task has not been thoroughly investigated.
Our present work contributes toward this goal. Specifically, we compare the per-
formance of a genetic algorithm against a stochastic mutation-based hill-climber,
as well as uniform random search, to serve as a baseline for comparison. We also
explore a different domain (i.e. flocking models rather than ant foraging), and
thus provide another perspective on the issue of automated model exploration.

Genetic algorithms have also been used to attempt to calibrate agent-based
models with aggregate-level equation-based models as part of the SADDE method-

ology [9] for designing ABMs. Our research places an emphasis on exploration, as
opposed to calibration or model design. The modeler may pose a question about
the model’s behavior which are potentially interesting, and the distribution of
search results should answer that question, and may give additional insight into
the interaction between parameters as well.

Other methods of exploration (besides genetic algorithms) have previously
been considered. Most notably, Brueckner and Parunak proposed a meta-level
multi-agent system to adaptively select points in the parameter-space to evaluate
[10]. This swarm-based approach resembles particle swarm optimization [11] in
that it uses a population of agents that combine global and local information to
choose a direction to move in the search space, but it also considers whether to
run additional simulations to improve the confidence of results at locations in the
space. Brueckner and Parunak also mention in passing that genetic algorithms
would be an appropriate choice for this type of search problem, but they did not
follow this path, and only offer results from the novel multi-agent optimization
algorithm they proposed. A comparison of genetic algorithms with this, and
other swarm-based approaches, would be an interesting area for future work.

Genetic algorithms have also been employed in parameter-search problems
which are not ABM, but closely related fields. For instance, genetic algorithms
have been applied to search for rules in cellular automata (CA) that will pro-
duce a certain behavior (e.g. density classification) [12]. Cellular automata mod-
els could be considered a highly restricted case of agent-based models, and
the cell state transition rules could perhaps be considered the parameters of
such models, in which case this would constitute searching the parameter space.
However, agent-based simulations more typically have numeric parameters, and
whereas CA rules are naturally represented by binary switches, and the density-
classification task is closer to a multi-agent system coordination problem, rather
than an agent-based simulation.

Our present investigation is also inspired by Miller’s work on active non-linear
testing [13], which demonstrated the use of meta-heuristic optimization (genetic
algorithms and hill climbers) for searching the parameter-space of the World3
simulation, a well-known system dynamics model (SDM). Our work departs from
Miller’s in two respects: 1) model stochasticity (which is less frequently present
in SDMs) as not addressed in those experiments, and 2) the characteristics of
search spaces produced by agent-based models likely differ from those which are
produced by aggregate equation-based models.

3 Methods

3.1 Flocking Models Overview

For our case study, we chose two ABMs of bird flocking behavior. The first ABM
is the NetLogo Flocking model [14]. Flocking closely resembles the seminal ABM
of swarming behavior in artificial birds (playfully dubbed “boids”) that was in-
troduced by Reynolds as a way to create life-like cinematic animation of flocking

birds or other flying/swimming/swarming creatures [15]. The behavior of each
“boid” is influenced by three basic rules, which provide impetus toward align-
ment, coherence, and separation. The relative influences of each are controlled
by the parameters max-align-turn, max-cohere-turn,, and max-separate-turn, re-
spectively. Additionally there are parameters controlling the distance at which
birds have knowledge of other birds (vision), and the minimum distance of sep-
aration which birds attempt to maintain (minimum-separation). For this first
model, exploratory search tasks include the discovery of parameters that yield
quick directional convergence (Section 4.1), non-convergence (Section 4.2), and
volatility of the aggregate flock’s heading over time (Section 4.3).

The second model is the NetLogo Flocking Vee Formations model [16], which
we will denote as Flocking VF throughout this paper. Flocking VF is based
loosely on an extension of Reynolds’ work that was proposed by Nathan and
Barbosa [17], attempting to produce the vee-shaped patterns often observed
in large migratory birds, such as Canada geese. Flocking VF has 8 control-
ling parameters, which account for fine-grained control over bird vision (vision-
distance, vision-cone, obstruction-cone), takes into account benefits of “updraft”
from nearby birds (updraft-distance, too-close), as well as flying speeds and ac-
celeration (base-speed, speed-change-factor, and max-turn). The specific details of
these two models are not the focus of this article, and due to space constraints
we refer interested readers to examine the models themselves, which are avail-
able in the NetLogo models library. The final exploratory search task is to seek
parameters that best yields V-shaped flock formations, in both Flocking and
Flocking VF (Section 4.4).

3.2 Search Algorithms

For each search task, we tested three different search algorithms: uniform ran-
dom search (RS), a random-mutation hill climber (HC), and a genetic algorithm
(GA). For all of the search methods, each model parameter’s value was encoded
as a sequence of binary digits (bit string) using a Gray code1, and all the param-
eters’ bit strings were concatenated together, to create a string that represents
one point in the parameter-space. A bit string is evaluated by decoding it into
the parameter settings for the agent-based model, and running the model with
those parameters.

The RS method simply generates one random bit string after another, and
in the end chooses the one that best elicited the desired model behavior. RS
is a naive search techniques, which we included as a baseline for comparison,
to determine whether using more sophisticated meta-heuristics (such as the HC
and GA) were indeed helpful.

Our HC is primarily a local search algorithm. It starts with a random bit
string (s). A new string (snew) is generated from s (each bit of s gets flipped with
1 In a traditional high-order binary encoding, it requires flipping 4 bits to change

from 7 (01112) to 8 (10002), whereas in a Gray code, adjacent numbers may always
be reached by a single bit flip. Gray codes thus create a smoother mapping from
numbers into binary search spaces.

probability 0.05, which is the mutation-rate). If snew is better than s (generates
behavior that judged closer to the desired target behavior), then the HC chooses
to snew as the new s, and the process repeats. If the HC becomes stuck (after
1000 unsuccessful move attempts), it will restart at a new random location in
the search space, which makes this a quasi-local search method.

Our GA is a standard generational genetic algorithm [7], with a population
size of 30, a crossover rate of 0.7, and a mutation rate of 0.05, using tournament
selection with tournament size 3. The GA is a more sophisticated search mech-
anism than HC or RS, and there are several reasons to believe that it might
perform better. First, the GA is population-based, which allows it to explore
multiple regions of the space simultaneously (more of a global search technique).
Second, genetic algorithms have previously been shown to perform well on a va-
riety of nonlinear and multi-modal search/optimization problems. Third, genetic
algorithms (like the biological processes of evolution that inspired them) often
have a way of coming up with creative or unexpected solutions to a problem,
which humans would not have considered. However, depending on the how the
search space is structured, simpler approaches may be more effective. For exam-
ple, it was shown that a HC performed better on a problem that was specifically
designed with the expectation that GAs would work well on it [18]. One impor-
tant consideration, is whether there are so-called building blocks in the solution-
space, which the GA is able to discover and combine (via genetic crossover) to
form better solutions. Phrased at the level of the agent-based model, this ques-
tion becomes: are their certain combinations of several parameter settings, each
of which partially produce desired target behavior, and when combined together
produce that behavior even more strongly? If so, the GA may be able to take
advantage of that structure in the search space to efficiently find solutions.

The objective function (or “fitness function” in the parlance of evolution-
ary computation) was always averaged across 5 model runs (replicates) with
different random seeds, to reduce uncertainty due to model stochasticity. The
uncertainty of objective function values (which is basically “noise” from the
search algorithm’s perspective) is not necessarily reflecting uncertainty within
the agent-based simulation itself. Rather, running the simulations results in a
range of behavior depending on the initial placement of the birds. However,
our objective functions is attempting to characterize the presence or absence
of a certain behavior on average, and short of running the simulation with ev-
ery possible initial condition (which is impossible), there will always be some
amount of uncertainty in the objective function measure. However, examining
the results from several replicate runs of the simulation reduces this uncertainty,
and smooths the search landscape.

The objective functions were different for each task, and will be discussed
individually in each of the investigations below (Sections 4.1-4.4). For efficiency,
objective function values were cached after being computed.2 The search algo-

2 The goal of caching is to avoid repeating expensive computations, which is accom-
plished here. However, because the model is stochastic, re-evaluating points in the
search space could lead to different results than using the cached values, meaning

rithms were stopped after they had run the ABM 12000 times. Each search was
repeated 30 times (except for the volatility exploration in Section 4.3, which
was repeated 60 times for improved statistical confidence), to evaluate search
performance and ensure that search findings were not anomalous.

3.3 BehaviorSearch

To perform these searches, we developed a new tool called BehaviorSearch [20],
which was implemented in Java, and interfaces with the NetLogo modeling en-
vironment, using NetLogo’s Controlling API. BehaviorSearch is an open-source
cross-platform tool that offers several search algorithms and search-space rep-
resentations/encodings, and can be used to explore the parameter space of any
ABM written in the NetLogo language. The user specifies the model file, the de-
sired parameters and ranges to explore, the search objective function, the search
method to be used, and the search space encoding, and then BehaviorSearch
runs the search and returns the best results discovered, and optionally the data
collected from all of the simulations run along the way. BehaviorSearch supports
model exploration through both a GUI (see Figure 1), and a command line in-
terface. A beta-release of BehaviorSearch is freely available for download3. The
software design purposefully resembles that of the widely-used BehaviorSpace
[21] parameter-sweeping tool that is included with NetLogo. Our intent is to
make advanced search techniques accessible to a wide range of modelers so that
the methods and ideas discussed in this paper can be put into practice.

Fig. 1. Screenshot of the BehaviorSearch GUI, displaying search progress.

that the search process is potentially affected by the caching. For further discussion
of noise/uncertainty and fitness caching, see [19]

3 Available at: http://www.behaviorsearch.org/

4 Explorations

4.1 Investigation 1: Convergence

The convergence of swarm-based systems is one potential property of interest,
and has been been formally studied for some theoretical cases [22]. Thus, the
first behavior of interest for the Flocking model was the ability of birds starting
at random locations and headings to converge to be moving in the same direction
(i.e. directional, not positional, convergence). In order to make the search process
effective, we must provide a quantitative measure to capture the rather qualita-
tive notion of convergence. This quantitative measure (the objective function)
will provide the search with information about how good one set of parameters
is, relative to another, at achieving the goal. Specifically, we would like to find
parameters that yield very little variation between birds’ headings. Thus, we will
attempt to minimize the following objective function:

fnonconverged = stdev({vx(b) | b ∈ B}) + stdev({vy(b) | b ∈ B}) (1)

where vx(b) and vy(b) are the horizontal and vertical components of the velocity
of bird b, and B is the set of all birds. The standard deviation (stdev), which
is the square root of the variance, serves as a useful measure of the variation
for velocity, and we must apply it in both the x and y dimensions. A value of
fnonconverged = 0 would indicate complete alignment of all birds. We measure
fnonconverged after 75 ticks (model time steps). While 75 ticks is effective here for
finding parameter settings that cause the flock to quickly converge, if we were
instead interested in the long-term behavior of the system, a longer time limit
would be more appropriate.

The plot of search progress (Figure 2) shows that on average the HC may
have found better model parameters early in the search, but in the end the GA’s
performance was superior (t-test, p < 0.01). Both GA and HC significantly
outperformed random search. The best parameters found in each run (Figure
3) shows us that it is crucial for birds to have long-range vision, and that even
a small urge to cohere is detrimental to convergence. The wide spread for max-
separate-turn suggests that convergence is not very sensitive to this parameter
(given the other parameter settings). Figure 3 also shows one possible converged
state from running the model using the best parameters found by the GA.

4.2 Investigation 2: Non-convergence

Next, we probed for parameter settings that cause the birds not to globally
align. For this task, we simply maximized the same objective function we min-
imized in Section 4.1. This task turned out to be rather trivial, as all three
search methods (GA, HC, and RS) very quickly found parameter settings that
yielded little or no flock alignment. That such behavior is rather common in
the parameter space is illustrated by Figure 4, which shows a wide distribution
of best parameters. The results suggest that for non-convergence, it is helpful

0 2000 4000 6000 8000 10000 12000
of model runs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

va
ria

tio
n

in
 th

e
bi

rd
s'

 d
ire

ct
io

ns
 o

f t
ra

ve
l

Search performance for the convergence task

RS (Random Search)
HC (Hill Climber)
GA (Genetic Algorithm)

Fig. 2. Search performance for the convergence task, comparing how efficiently the GA
(genetic algorithm), HC (hill climber), and RS (random search) can find parameters
that cause the flock to quickly converge to the same heading. (Error bars show 95%
confidence intervals on the mean.)

0 5 10 15 20

max-separate-turn

0 5 10 15 20

max-align-turn

0 5 10 15 20

max-cohere-turn

0 1 2 3 4 5

minimum-separation

0 2 4 6 8 10

vision

parameter ranges

Fig. 3. LEFT: Distribution of model parameter settings found to cause quickest con-
vergence in each of the 30 GA searches. All box-and-whisker plots presented in this
paper show the median line within the lower-to-upper-quartile box, with whiskers en-
compassing the remainder of the data, apart from outliers which are marked with x’s.
RIGHT: Visualization of the flock (after 75 model steps) using the best parameters
the GA discovered.

0 5 10 15 20

max-separate-turn

0 5 10 15 20

max-align-turn

0 5 10 15 20

max-cohere-turn

0 1 2 3 4 5

minimum-separation

0 2 4 6 8 10

vision

parameter ranges

Fig. 4. LEFT: Distribution of model parameter settings found to cause non-
convergence in each of the 30 GA searches. RIGHT: Visualization of a non-converged
flock using the best parameters the GA discovered.

for birds to have a low-to-medium vision range, desire a large amount of sepa-
ration from each other (minimum-separation), and act to achieve the separation
(non-zero max-separate-turn). Digging deeper, the results tell us that it is the
relationship between parameters that matters; if minimum-separation is larger
than vision each bird will seek to avoid any other bird as soon as it sees it, as
separation takes precedence over the align/cohere rules.

4.3 Investigation 3: Volatility

Our third experiment sought parameters for the Flocking model that would yield
the most volatility (or changeability) in global flock heading, by attempting to
maximize fvolatility, as defined in (4).

vx(t) = mean({vx(b) | b ∈ B} at tick t (2)

vy(t) = mean({vy(b) | b ∈ B} at tick t (3)

fvolatility = stdev(vx(t) for t = 400..500) + stdev(vy(t) for t = 400..500) (4)

Again, on average the GA was slightly more successful than the HC in elicit-
ing flock heading volatility, and both significantly outperformed random search
(Figure 5). Only 5 out of the 60 GA searches’ best parameter settings had a non-
zero value for minimum-separation, indicating that birds flying close together is a
key factor for maximal volatility. Long-range vision, and large effects of max-align-
turn and max-cohere-turn are also important (see Figure 6). The flight pattern
of a flock exhibiting considerable volatility is shown in Figure 6. The single bird
positioned at the left side in the rear is at least partially responsible for shift in
flock heading, because of the strong coherence parameter.

0 2000 4000 6000 8000 10000 12000
of model runs

0.0

0.2

0.4

0.6

0.8

1.0

flo
ck

 h
ea

di
ng

 v
ol

at
ili

ty

Search performance for the volatility task

RS (Random Search)
HC (Hill Climber)
GA (Genetic Algorithm)

Fig. 5. Comparison of search algorithm performance for the flock heading volatility
task. The final mean performance of the GA was better than the HC (t-test, p < 0.05),
but not substantially so. (Error bars show 95% confidence intervals on the mean.)

0 5 10 15 20

max-separate-turn

0 5 10 15 20

max-align-turn

0 5 10 15 20

max-cohere-turn

0 1 2 3 4 5

minimum-separation

0 2 4 6 8 10

vision

parameter ranges

Fig. 6. LEFT: Distribution of model parameter settings (from each of the 30 GA
searches) found to cause the most volatility in flock heading. RIGHT: Visualization of
the flock after 500 model steps (also showing each bird’s path over the last 100 steps),
using the best parameters found by the GA.

Despite taking the average of 5 replications, noise due to model stochasticity
was still significant. For example, the search reported finding settings yielding
0.99 volatility, but averaging 1000 runs at those settings showed true volatility
of 0.41. This fact could bias the search toward parameters that occasionally
yield very high volatility, over those that consistently yield moderately high
volatility. Both goals are potentially interesting for model exploration; however,
appropriate noise reduction methodology is a worthy subject for future research.

4.4 Investigation 4: Vee Formations

The final experiment was to search both the Flocking and Flocking VF models
for a more complex behavior, which we shall refer to as veeness. Veeness measures
the degree to which birds are flying in vee, or more generally, echelon formations.
Our specific questions are: 1) Do any parameter settings cause Flocking to exhibit
veeness? 2) How much better can Flocking VF do? and 3) what matters most
for the best vee/echelon creation?

To calculate veeness, we first cluster all the birds in the world into separate
flocks, according to proximity (within 5 distance units of another bird in the
flock) and directional similitude (less than 20 degrees angular difference in head-
ing). A flock with less than 3 birds is assigned a flock veeness score 0. Otherwise,
it is calculated by choosing the optimal “point” bird and right/left echelon angles
(which must be between 25 and 50 degrees, comprising a mid-range of echelon
angles observed in nature [23]) for the flock, to minimize the mean-squared-error
of angles to flockmates compared with the desired echelon angle. Flock group-
ings with echelon angles and flock veeness scores can be seen in Figure 9. The
mean-squared-error value for the best “point” bird is inverted and rescaled so
that a flock in perfect echelon/vee formation has a score of 1.0. Overall veeness is
a weighted average (by flock size) of the veeness scores of individual flocks. Vee-
ness was measured every 100 model ticks, between 1000 and 2000 ticks. Searches
for both Flocking and Flocking VF used 30 birds and the same veeness metric.

Unlike in previous experiments, the HC search method performed slightly
better than the GA (see Figure 7), but the difference was not statistically sig-
nificant. For the Flocking model, RS was not far behind the GA and HC, but
was considerably worse than the other methods for the Vee Flocking model.

The results show that Flocking can create formations that appear only mildly
vee-like at best, but Flocking VF can (as expected) create much better vees (as
shown in Figure 9). For Flocking VF to produce the best vees (according to our
chosen veeness metric), the vision-cone angle should be large, perhaps roughly 3
times larger than the obstruction-cone angle, the bird’s base-speed and max-turn
angle should generally be low, but the speed-change-factor should not be too
small. We will not elaborate on specific implications of these findings for the
Flocking VF model here, but broadly argue that findings such as these can lead
modelers to a better understanding of their model by cognitively linking changes
in model parameters with the qualitative behavior being investigated.

0 2000 4000 6000 8000 10000 12000
of model runs

0.0

0.1

0.2

0.3

0.4

0.5

"v
ee

ne
ss

"
m

ea
su

re

Search performance for the vee-shapedness task

RS [Flocking]
HC [Flocking]
GA [Flocking]

RS [Flocking VF]
HC [Flocking VF]
GA [Flocking VF]

Fig. 7. Comparison of search performance for the vee-shapedness task on both the
Flocking and Flocking Vee Formation models. (Error bars show 95% confidence inter-
vals on the mean.)

0 5 10 15 20

max-separate-turn

0 5 10 15 20

max-align-turn

0 5 10 15 20

max-cohere-turn

0 1 2 3 4 5

minimum-separation

0 2 4 6 8 10

vision

parameter ranges

0.0 0.2 0.4 0.6 0.8 1.0
speed-change-factor

0 5 10 15 20 25 30
max-turn

0 1 2 3 4 5
too-close

0 2 4 6 8 10
updraft-distance

0.0 0.5 1.0 1.5 2.0
base-speed

0 10 20 30 40 50 60 70 80 90
obstruction-cone

0 20 40 60 80 100120140160180
vision-cone

0 2 4 6 8 10
vision-distance

parameter ranges

Fig. 8. Distribution of model parameter settings found to yield the best vees in the
Flocking model (left), and the Flocking Vee Formation model (right), in each of the
30 HC searches.

Fig. 9. Visualization of a run of the Flocking model (left), and the Flocking Vee For-
mation model (right), using the best “vee-forming” parameters found by the 30 HC
searches. Birds are shaded by flock group, dashed lines show average flock heading
relative to the “point” bird, and gray lines show best-fit angles for right and/or left
echelons of the vee formation. The numeric “veeness” measure for each individual flock
is also shown.

5 Conclusion and Future Work

Beyond the specific results concerning the behavior of two particular agent-based
models (Flocking and Vee Flocking), there are several more general conclusions
that may be drawn from this case study. First, evolutionary algorithms such as
the GA and HC are indeed effective means of exploring the parameter space of
ABMs. Their performance was vastly superior to RS, except in the cases where
the task was too easy (e.g. nonconvergence) or too hard (veeness in Flocking) to
make substantial progress. Second, by running multiple searches on a stochastic
model and looking at the distribution of best-found parameter settings, rather
than just the single best setting for the parameters, we can uncover trends (or at
least postulate relationships) about the interactions between model parameters
and behavior. One interpretation is that we are implicitly performing a type
of sensitivity analysis on the search process for a particular behavior, but that
the results of that analysis can tell us something about the model. Note that
the trends we find are unlikely to be global (characterizing the whole parameter
space), but apply only to a local view that is focused on regions of the parameter
space where the target behavior is expressed mostly strongly.

These results also suggest several important areas for future work. First, it is
unclear what circumstances favor the use of a genetic algorithm over a simpler
hill climbing search mechanism. Second, the performance results presented here
may be dependent on any number of search algorithm parameters (not to be
confused with model parameters), such as the population size, mutation rate,
crossover rate, elitism, or chromosomal representation. While we attempted to
choose reasonable values for these search parameters, it is likely that by tuning
these parameters, the algorithms’ efficiency could be improved. It is also possible

that poor search parameter choices could lead to behavior that is worse than ran-
dom search, and should thus be avoided. Also, in future work, we would like to
compare the performance of other search algorithms (such as simulated anneal-
ing, and particle-swarm optimization). Finally, additional consideration should
be given to the treatment of model stochasticity and noisy objective functions;
while running fewer replicates of model runs takes less time for searching, large
quantities of noise can inhibit search progress. In general, the prospects seem
bright for using meta-heuristic search, such as genetic algorithms, to improve
model exploration and analysis. It is our hope that these promising prospects
will encourage ABM practitioners to flock toward, and eventually converge on,
new methodologies for model parameter exploration that take advantage of these
ideas.

Acknowledgments We especially wish to thank William Rand for constructive
feedback on this research, Luis Amaral for generously providing computational
resources to carry out our experiments, and the National Science Foundation for
supporting this work (grant IIS-0713619).

References

1. Bankes, S.: Agent-Based Modeling: A Revolution? PNAS 99(10) (2002) 7199–7200

2. Bryson, J.J., Ando, Y., Lehmann, H.: Agent-based modelling as scientific method:
a case study analysing primate social behaviour. Philosophical Transactions of the
Royal Society B: Biological Sciences 362(1485) (2007) 1685–1698

3. Wilensky, U., Rand, W.: An introduction to agent-based modeling: Modeling natu-
ral, social and engineered complex systems with NetLogo. MIT Press, Cambridge,
MA (in press)

4. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-based
Modeling, Northwestern University, Evanston, IL (1999)

5. Tisue, S., Wilensky, U.: NetLogo: Design and implementation of a multi-agent
modeling environment. In: Proceedings of Agent 2004. (2004) 7–9

6. Sanchez, S.M., Lucas, T.W.: Exploring the world of agent-based simulations: sim-
ple models, complex analyses. In: WSC ’02: Proceedings of the 34th conference on
Winter simulation. (2002) 116–126

7. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI (1975)

8. Calvez, B., Hutzler, G.: Automatic Tuning of Agent-Based Models Using Genetic
Algorithms. In: MABS 2005: Proceedings of the 6th International Workshop on
Multi-Agent-Based Simulation. (2005)

9. Sierra, C., Sabater, J., Augusti, J., Garcia, P.: SADDE: Social agents design
driven by equations. In: Methodologies and software engineering for agent sys-
tems. Kluwer Academic Publishers (2004)

10. Brueckner, S.A., Parunak, H.V.D.: Resource-aware exploration of the emergent
dynamics of simulated systems. In: AAMAS ’03: Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems, New
York, NY, USA, ACM (2003) 781–788

11. Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings
of IEEE international conference on neural networks. Volume 4., Piscataway, NJ,
IEEE (1995) 1942–1948

12. Mitchell, M., Crutchfield, J.P., Das, R.: Evolving cellular automata with genetic
algorithms: A review of recent work. In: Proceedings of the First International
Conference on Evolutionary Computation and Its Applications, Moscow, Russia,
Russian Academy of Sciences (1996)

13. Miller, J.H.: Active nonlinear tests (ANTs) of complex simulation models. Man-
agement Science 44(6) (1998) 820–830

14. Wilensky, U.: NetLogo Flocking model. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL. (1998)

15. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:
SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, New York, NY, USA, ACM (1987) 25–34

16. Wilkerson-Jerde, M., Stonedahl, F., Wilensky, U.: NetLogo Flocking Vee For-
mations model. Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL. (2010)

17. Nathan, A., Barbosa, V.: V-like formations in flocks of artificial birds. Artificial
life 14(2) (2008) 179–188

18. Mitchell, M., Holland, J., Forrest, S.: When will a genetic algorithm outperform
hill climbing? In Cowan, J.D., Tesauro, G., Alspector, J., eds.: Advances in Neural
Information Processing Systems. Volume 6. Morgan Kaufmann, San Mateo, CA
(1994) 51–58

19. Stonedahl, F., Stonedahl, S.: Heuristics for sampling repetitions in noisy landscapes
with fitness caching. In: GECCO ’10: Proceedings of the 12th annual conference
on genetic and evolutionary computation, New York, NY, USA, ACM ([in press])

20. Stonedahl, F.: BehaviorSearch [computer software]. Center for Connected Learning
and Computer Based Modeling, Northwestern University, Evanston, IL. Available
online: http://www.behaviorsearch.org/ (2010)

21. Wilensky, U., Shargel, B.: BehaviorSpace [Computer Software]. Center for
Connected Learning and Computer Based Modeling, Northwestern University,
Evanston, IL. http://ccl.northwestern.edu/netlogo/behaviorspace (2002)

22. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Transactions on auto-
matic control 52(5) (2007) 852–862

23. Heppner, F., Convissar, J., Moonan Jr, D., Anderson, J.: Visual angle and forma-
tion flight in Canada Geese (Branta canadensis). The Auk (1985) 195–198

