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Abstract

In real world situations, each person is generally in contact with only a small fraction of the entire population and

exchange information through these interactions. Their number and their frequency vary from one to another individual

and may be much depending on mobility of individuals. The objective of this article is to better understand how human

mobility may have an impact on mobile social networking systems. This should help to answer a question as: ”How

might an information, a rumor, a pathogen, etc., driven by physical proximity, spread through a population?”. We

present a first stage of our work in which we focus on percolation processes as information flow mechanisms. We

propose a synthetic mobility model and we define an artificial world populated by heterogeneous agents who differ in

their mobility. Simulations are conducted on a multi-agent programmable environment. Our experimental results clearly

demonstrate positive correlations between agent mobility factors and percolation thresholds.

c© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]
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1. Introduction

The issue of information flow through social networks has risen important modeling issues in different

application domains of information science. Information flow can be considered from the point of view

of either diffusion or percolation. In a diffusion process, the information is considered to be transmitted

from an individual to his neighbours with a given probability while in a percolation process, the transmis-

sion is always achieved between two individuals but the stochastic mechanism is put on each individual

neighbourhood generation. Studying percolation through a network helps finding thresholds that ensure

the connectivity and the spreading of the information like a news or a rumor through the whole network.

On the other hand diffusion allows to find conditions under which an information like a disease may be

spread depending on different parameters such as the probability for an individual to get the information

from another. Network based approaches have been intensively explored in information diffusion modeling

and have proved their relevance to explain the impact of social links and social structures on disease trans-

mission for instance. Most works in this field have explored static characteristics of networks but have not

considered the role of networks dynamics until recently [2, 5].
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The general expression of information may represent either knowledge, rumor, diseases or numeric

viruses for instance even if one can notice a particular emphasis on epidemics in researches on diffusion

phenomena. Whatever is the kind of information, we can identify common trends in the propagation: an

individual (a human being, an animal, a machine) switches from one given state like ignorant to another

one like spreader according to its current stage and its neighborhood all along the spread process. This

analogy is widely admitted and has been discussed in previous works. Modeling principles of dissemination

are frequently based on state transitions of individuals. They usually consider two or three states: the initial

state of an agent before he receives the information, a second when he has received the information, a

third state can be introduced to figure that the agent has become indifferent regarding the information. For

instance, in rumor spreading, individuals are commonly categorized as ignorant, spreader and stifler. In

previous studies few attention has been paid on social agents mobility and its impact on network dynamics

and on the information spread while mobility is obviously an important dimension transverse to any social

practice. New societal challenges like urban planning or traffic management need to get a better knowledge

of user motion patterns and user behavior in their environment. Synthetic mobility models like random walk

models were mostly studied for designing mobile ad hoc networks (Manets) and communication protocols

[1]. More recently, it has appeared concrete schemes that represent real user traces following similar patterns

with cyclic spatio-temporal regularities.

In this paper, our objective is to demonstrate the impact of agent mobility on the information flow through
a social network. In this first work, we focus only on the percolation process as a first stage. In this

approach, the network dynamics is induced by mobility. Individuals are figured by agents and each one is

characterized by his own mobility that represents his way to move. We show how much and why individual

mobility may have an impact on (i) social behavior at the individual level and (ii) afterwards at global level

on the information flow through social links when these links need spatio-temporal co-occurrence. Agent

mobility may induce deep modifications in social links among agents and thus variations on the information

spreading. The mobility that we have considered here is geographic and the social behavior is realized by

the ability for an agent to have a direct contact via spatial proximity. We have defined a synthetic model,

the Eternal Return Model, that dramatically reduces the real world complexity to a simple social behavior.

Social links between agents are solely defined by direct physical contact and a physical contact is supposed

to be induced by proximity only.

When an ignorant meets a spreader, he obtains the information and he becomes a spreader in his turn.

Since the percolation process is only studied here, there is no probability of transmission between two

agents, but the agent density variability induces the process randomness.

Despite its simplicity, this social behavior model gives a true interpretation of the real world where each

individual has generally social contacts with only a closed and small fraction of the entire population. An

agent is considered to have a social contact with another one if and only if this agent is located in his

narrow neighborhood. While rather basic, this situation takes an important social meaning since it happens

when roads are crossing and two people meet in a limited spatio-temporal space. In such a case, social

relationships are rarely meaningless. Each one is likely to transmit an information to others standing in the

same reduced space.

The remaining of the paper is organized in four sections: Section 2 is devoted to the ER model, in

Section 3 we present the social network induced by the agent mobility, in Section 4 we present our results

on the impact of agent mobility on the percolation process and in Section 5 we conclude.

2. The ”Eternal-Return” model of mobility

The Eternal-Return (ER) model defines a kind of spatio-temporal mobility that represents the way people

behave when they move from place to place. Mobility is here considered as circulation that is motion of

individuals like pedestrians in an urban or inter-urban space. The ER mobility model is defined in order to

simulate the tendency of humans to return to the location they visited earlier. This mobility is typical of

homework motions. More generally it is observed in real life experiments on human trajectories that are

much restricted by street configurations and are in contrast with the smooth asymptotic behavior predicted
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for a random walk. People typically tend to follow predefined paths and to travel in similar patterns when

moving through their urban environment [3].

Although the ER model of mobility is freely inspirited, and very restrictive, it is sufficient to express

truly the fact that some agents go across large spaces while others are confined in a small areas: sedentary
(resp. travellers) agents are characterized by low (resp. high) mobility. Each agent has its own location that

is updated when he is moving forward. He has a heading that indicates the direction he is facing and he

will follow to move straightforward. The agent heading is a value between 0◦ and 360◦. At each time step,

each agent moves straight on for one unit. Thereby the speed is constant and identical for all the agents. In

each time-step-slice, we determine the new position for an agent on the basis of his current position and his

mobility. Hereafter we detail the notion of mobility in ER and the principles of the simulations that have

been run.

2.1. Agent mobility
The ER model defines agents trajectory as a regular polygon, with one vertex at each time-step. The

amount an agent ai turns at a corner is his constant exterior angle (noted αi). Walking all the way round the

polygon, an agent makes one full turn. The sum of exterior angles in his trajectory is equal to 360◦. Let

us note f T Li (stands for f ullTurnLength) the length of the path - polygon size- an agent ai has to follow

to come back to a given position. f T Li is thus the number of time-steps needed to make one full turn.

Moreover we assume each agent have his own direction di i.e. he walks around his polygon either clockwise

or counter-clockwise: in the first case di = −1 otherwise di = +1. For each agent the f ullTurnLength is a

fixed number in the range [3, 360]. Finally, we normalize this value by dividing it by its maximum value.

For each agent ai, we define his mobility μi by the following equation:

μi = di · f T Li

360
(1)

So the relation between the mobility and the exterior angle is:

μi · αi = 1 (2)

With these hypotheses, mobility μi is a real number in the range [−1, 0[∪]0,+1], and the absolute value

of the exterior angle αi varies from 1◦ to 120◦. As a consequence, the less mobile agents move on a tiny

triangle and the more mobile agents move on a big polygon of 360 sides. The borderline case of mobility is

for α = 0 (i.e. μ = ∞) and corresponds to a linear trajectory.

Algorithm 1 describes the ER mobility process: depending on its location and its mobility μi, each agent

defines its own motion. Although in real life a same individual can live and travel in different regions defined

for instance by home and workplace, we assume in the ER model a more simple situation where each agent

has an invariable mobility. Agents walk around regular polygons and, as each one has the same speed, their

only characteristic parameter is their mobility. As a consequence, the local behavior of each mobile agent

is deterministic and periodic (see an illustration of agent trajectories on figure 1). As there are many agents,

and so many periods which interact together, it is difficult to predict when and where agents will cross in a

same vicinity.

To clarify the terminology and allow to simplify the analysis, according to mobility, we define two

typical class of agents: the traveller and the sedentary agents. In real life, a sedentary people inhabits the

same locality throughout life and at the opposite, a traveller is a person who is frequently on a trip and moves

around. Let us note that while the ER model requires only one specific parameter by agent, it is realistic

to some extents since it can exhibit sedentary agents as travellers: sedentary agents (resp. travellers) are

defined by low (resp. high) f ullTurnLength.

2.2. Simulation
The Eternal-Return model has been implemented with the NetLogo multiagent programmable modeling

environment [7][4]. The space is a 2-dimensional grid connected circularly so that the model is similar to a

2-D cellular automata model where the “world” includes numerous agents embedded on a toroidal grid.
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Algorithm 1 MakeMove

{Make agents move according to their mobility}
for agent ai in agents do

turn right by 1
μi

degrees

move forward for one step

end for

(a) (b) (c) (d)

Fig. 1. Agent’s trajectory: density = 2%, at time 40

(a) no-mobility (b) f ullTurnlength = 20 sedentaries (c) f ullTurnlength = 180 travellers (d) mixed

mobility

Simulations are performed on a L1 × L2 lattice. The agent density δ is a parameter of the model1. There

are L1.L2.(1 − δ) empty locations and (L1.L2.δ) agents. In order to ensure equivalent samples, whatever

density is, simulations presented in this paper use a population of 1, 000 agents and thus the world size

is adapted accordingly to the density. At the initial step t = 0, agents are randomly distributed across

the unbounded grid. The coordinates of unit areas (i.e. cells) are integers and agents coordinates are real

numbers. Several agents may stand on a same cell at the same time. A mobility is assigned to each agent

via its own f ullTurnLength. All reported results are based on the mean of 100 runs. Algorithm 2 gives the

general outline to simulate the Eternal-Return model.

Algorithm 2 Simulate the Eternal-Return model
t ← 0, density← δ
create (L1.L2.density) agents

for agent ai in agents do
initialize f ullTurnLengthi in [3, 360]

{μi ∈ [−1, 0[∪]0,+1]}
initialize the location (xi(0), yi(0)) at random

end for
loop

Call MakeMove {move agents according to their mobility}
t ← t + 1

end loop

3. Social links induced by mobility

In this section we study the system resulting from activating ER agent motions. Features are studied

according to two points of view: (i) the underlying network, i.e. the resulting network of all distinct contacts

1For humans, the population density is the number of people per unit area
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between agents and (ii) the distribution in the space, i.e. the agent attendance on cells when they are moving.

3.1. How mobility induces dynamic social networking

Social networks are structures gathering individuals (nodes) connected by one or more specific kinds

of dependencies (links) with strong social meaning. Interdependencies can be of various natures such as

friendships, common interest, sexual relationships, or relationships of beliefs, knowledge or prestige. In

the ER Model, agents can be assimilated as nodes and their social links are generated by spatial proximity.

This kind of interactions, based on geographical proximity of individuals takes on much interest since it

is an abstract generalization of multiple effective contacts such as physical contact, exchange of words,

participation in the same event or attendance at the same place. In epidemiology proximity networks have

been most extensively studied to understand how various patterns of human contacts, induced by underlying

social behaviors such as mobility, facilitate or not spreading process in a population.

Mobility is a core parameter in spatial agent-based models, because it sets the agent neighborhood

configuration and so the ability for an agent to establish a contact with another agent. In the ER model,

mobility allows agents to explore areas more or less important of their geographical environment and a
fortiori to generate more or less proximity contacts as shown in the following section. Indeed, we suppose

that two agents come into contact when they are geographically close enough, i.e. the proximity distance

between them is less than or equal to 1. Mobility results in a network of contacts, which dynamics is a very

significant feature, since each time agents are in motion, new contacts are created while others are deleted.

(a) (b) (c)

Fig. 2. The underlying network obtained with density = 15% for (a) f T L = 3 (b) f T L = 10 (c) f T L = 20. All nodes linked by the

same color belong to the same component.

By the way, a new network is built as being the network of all distinct contacts between agents. It rep-

resents the maximum proximity contact network in which each individual is linked with all other he met

during the simulation. Thus, at every instant, the instantaneous graphs of proximity contacts are sets of dis-

connected small graph clusters of the underlying network that represent current agents contacts. Obviously,

this network is much denser than the instantaneous proximity contact graphs.

On Figure 2, three examples of this network obtained with density = 15% and f T L constant are de-

picted. All nodes linked by the same color belong to the same component. As expected, we can observe that

mobility has a direct impact on the overall number of contacts, since the density of the network increases

with f T L. In some extend, this network summarizes the dynamics since its properties give insight on the

process of information spread. For example, we can observe (see Figure 2(a)) that too low mobilities may

not guarantee its connectivity and indeed we will show that this gives a clue to the inability to percolate.

3.2. How many visitors per cell?

In the case of no-mobility when each agent stays forever in the same place, and if we assume no-

superposition of agents, the number of visitors for a cell is either zero or one. Since agent distribution is

random as stated in section 2, the mean number of visitors per cell is the density δ of agents in the world. In

the case of mobility, when the agents move in the spatio-temporal space, the situation gets more complex.

In such a case, the total number of agent-visitors for a cell may be obviously greater than zero and more, the
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no-superposition hypothesis does not match. For each cell ci, let’s note Vi the set of agents ak that visit ci,

i.e. Vi = {ai
k} ; #Vi is the number of polygon-trajectories that intersect the cell ci ; some cells may have no

visitor whereas others have a lot.

In the particular case where mobility is identical for all the agents, data obtained by simulation allow

to establish that, #Vi follows approximately a Poissonal distribution. The number of visiting agents #V on

geographical areas follows a Poissonal distribution with a fast decaying tail: it is strongly peaked at #V=〈V〉
and it decays exponentially with #V . The curve flattens when mobility increases: the peak value decays with

mobility while 〈V〉 increases. For instance, if agents are sedentary ( f T L = 20), numerous cells have few

visitors while in the case of travelers ( f T L = 360) much less cells have lots of visitors. This result provides

a valuable argument to check the ER mobility model. Indeed, it was proved in geographic researches that

data obtained as counts over geographic regions can be described by Poisson random distribution when

individuals are independent with the same probability to occur and each region has the same probability to

be attended [6].

We have conducted simulations in order to get the mean of the number of visitors per cell, mean
i

#Vi,

versus the density for a given value of the f ullTurnLength ( f T L = 360, 180, 90, 45 and 3). Each couple of

result is averaged over 100 runs. We have observed a linear correlation between the two variables: the more

the density of agents, the more the number of visitors. Experimental data have led to the following equation

suggesting that the mean
i

#Vi over all the cells is proportional to the product of the f ullTurnLength by the

density.

mean
i

#Vi ≈ 0.95 × f T L × δ (3)

Thus, if δ = k
0.95× f T L , the mean number of visitors is on average closed to k.

This last result provides an additional evidence of conformance for the ER model. The linear dependency

between mean
i

#Vi and both density and mobility is indeed expected since with a constant fTL for all agents,

each agent visits fTL cells, thus the number of visitors on a cell should be equal to f T L × δ. The 5% gap

experimentally observed should be explained by co-occurrences of agents on cells. In the same way one can

establish than standard-deviation is approximated by the square root:
√

0.95 × f T L × δ.
Finally, we obtain:

P(#V = k) ≈ (−0.95 × f T L × δ)k × e−0.95× f T L×δ

k!
(4)

4. Mobility and Percolation process

The ER model and proximity contacts have been defined and built in order to understand how an in-

formation can be broadcast on the grid network when agents are in motion. The grid structure induces

proximity and the agent mobility is a decisive parameter. The minimum limit case where all the agents have

the smaller mobility, i.e. each one moves on a tiny triangle, is closed to the classical static case as each agent

stays stuck in a very small region of the space.

For experiment relevance, one crucial condition on the grid structure is its ability to allow spreading for

which the minimum agent density has to be determined. For that purpose, we have used the percolation

theory to study the impact of mobility on spreading according to two kinds of parameters: (i) agent density
(δ) on the grid and (ii) agent mobility ( f T L). The rumor spreading context serves as a reference since it

provides a concrete case in which the transmission is generally achieved between two persons in contact

and it stays generic enough to be extended to other ones. We show the existence of a connectivity threshold

needed to guarantee the communications in the network. This section details the simulations conducted and

the experimental results obtained.

The percolation paradigm is widely used in spatially dissemination models. For instance, it allows to

identifying epidemic thresholds for invasion, separating non-invasive regimes from invasive regimes. Inva-

sion thresholds for host-parasite systems show marked transitions towards invasion. They define parameters

values beyond which a given vertex belongs to an infinite open cluster. The phenomenon of percolation

can be modelled as transforming a regular lattice into a random network by randomly ”occupying” vertices
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with a statistically independent probability δ. Beyond a critical threshold δc, large clusters are built and the

system is connected from one side to another: δc is called the percolation threshold. This critical value of

the process on a square lattice was shown to be near 0.59.

However, this result is mainly limited to static agents. When mobility is introduced, the dissemination

threshold is not proved. In the static case, the probability of invasion is controlled by a single parameter, the

transmissibility of information between neighboring hosts that depends on the density of agents only. With

the ER mobility model, the critical threshold, if any, depends on both density and mobility.

In our experiments, we assume that all agents have the same mobility and we examine how thresholds

for invasion are influenced by the density of agents together with the effect of mobility. Thus we show that

the percolation paradigm can be extended to the case of mobile agents. We assume that each individual can

be in two discrete states, such as no-yet-informed or informed: all agents are initially in the no-yet-informed
state except one randomly selected agent that is informed.

4.1. Percolation via spatio-temporal proximity
In this work, the strong assumption on proximity relies on its correlation with transmission. Indeed we

consider proximity as the only condition allowing transmission. The rumor is spread thanks to proximity:

an informed agent transmits the rumor to his nearest neighbors only. We have conducted experiments

to determine the percolation threshold δc according to given values for mobility. We have deduced the

value of the critical threshold δc as corresponding to a proportion of 50% infected agents. As expected, δc
monotonously decreases from 60% to asymptomatically reach zero as mobility increases as shown on Figure

3. Let’s note that this decrease is drastic as it falls from 60% for no-mobility to 5% for a yet small mobility

with f T L = 30. As a consequence, we observe that the impact of mobility on the ability to propagate the

rumor is tough. In this way, mobility magnifies the effect of local actions at global level. One intriguing

finding is that the threshold δc follows an approximate power-law decrease according to the mobility. More

precisely, the δc function of f ullTurnLength approximately obeys the form:

δc( f T L) ≈ 1.624 × f T L−1.043 (5)

This relation allows either to approximate the threshold of percolation knowing mobility or, conversely,

for a given density, to compute the required mobility for percolation (see Figure 4). Intuitively, with mixed

f T L, we may think that only few travellers should be necessary for the information percolates.
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Fig. 3. Proportion of infected agents vs. density

From right to left: no-mobility and f T L = 3, 6, 10, 20, 30, 40

4.2. Percolation threshold versus Number of visitors per cell
Let’s remember that the value k

0.95× f T L for density corresponds to the case of k visitors by cell on average

(see eq. 3). Whatever mobility is, the threshold of percolation δc is greater than 1
0.95× f T L and smaller than

2
0.95× f T L as illustrated by Figure 4). This means that the network percolates when the mean number of

visitors per cell is a number between one and two.
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5. Conclusion and future works

In this paper, we have addressed the problem of information dissemination on dynamic social networks.

As a first stage in this study, we have focused on a percolation mechanism and the network dynamics has

been induces by a synthetic model of mobility.

(i) We have proposed the ER model, a mobility model implemented as a multiagent system that allows

agents to explore areas of their space according to individual rules. As a proof of validity, studies conducted

on the ER model have shown that it reproduces real world patterns.

(ii) Then, we have shown how the ER model induces locally proximity contacts and results in a dynamic

human contact network that can support various kinds of spreading phenomena such as information dissem-

ination. In a first approach, we have shown how agent mobility has a direct impact on network connectivity.

(iii) Finally, we have extended the notion of percolation threshold to the mobility case. Extensive ex-

periments have been conducted to understand how the dissemination process behaves according to agent

mobility. The relationship highlighted between percolation threshold and agent mobility factor allows to

deduce the minimum mobility for diffusion when density is fixed and vice versa.

The results obtained have practical implications for the analysis of information dissemination in general

and in particular for the disease control strategies in more realistic systems.

As perspectives in a short term, we plan to investigate the impact of mobility on network features and

explain whether mobility leads to topological patterns. A second track is the study of diffusion on the

underlying network. In a long term, we hope our model will stimulate empirical and theoretical work,

and provide a framework for analyzing the influence of all aspects of spatial human behaviors on diffusion

processes.
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Théo Quant’05., 2005.

[4] D. Pham. From Agent-Based Computational Economics towards Cognitive Economics. in Bourgine P., Nadal J.P eds : Cognitive

Economics : An Interdisciplinary Approach. Springer verlag, 2004.

[5] Erick Stattner, Martine Collard, and Nicolas Vidot. Diffusion in dynamic social networks: Application in epidemiology. 22nd
International Conference on Database and Expert Systems Applications, 2011.

[6] J. Vaillant, G. Puggioni, L. Waller, and J.-H. Daugrois. A spatio-temporal analysis of the spread of sugar cane yellow leaf virus.

Journal of Time Series Analysis, 32:396–406., 2011.

[7] U. Wilensky. Center for connected learning and computer-based modeling, 1999. http://ccl.northwestern.edu/netlogo/.


