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Abstract 
Programming is traditionally considered to be an activity which aims only to produce a software 
artefact as its primary goal. With this view programming languages are simply the notations which 
define these artefacts. This paper examines the relationships between internal representations (mental 
models) and external representations (notations and other forms) arguing that program code behaves 
as an external representation in a similar way to mathematical or logical notations but with the added 
property that code can be executed and its notational consequences observed. 

Furthermore some environments allow program operation to be manipulated at run-time; we propose 
that these systems also operate as external representations and that programming language statements 
and their run-time environments can thereby be utilised as reasoning systems to promote the 
exploration and discovery of new understandings. In this context we consider NetLogo as a 
framework for reasoning about complex and emergent systems, evaluating its suitability from a 
representational perspective. 

Introduction 
This work was originally motivated by the desire to find a notation suitable for representing and 
reasoning about complex and emergent systems. We require this representational framework to be 
capable of describing executable computer models of these complex systems. The target audience for 
using this framework is broad, ranging from senior secondary school pupils to postgraduates. While 
we assume basic numeracy and some ability to reason logically, we do not rely on prior exposure to 
specific programming concepts from our users. 

The application area, which forms the focus of our investigation, is in describing natural and/or 
ecological systems, e.g. interaction between bacteria and their environments; predator-prey 
relationships; flocking; genetic drift. We use the term "complexity" in its common usage to describe 
systems with many parts or interactions. Reasoning about these complex systems is challenging 
because, although we may be able to predict the next system state given some current state, it 
becomes increasingly difficult as we attempt to predict states further into the future. Our meaning of 
complexity may sometimes partially correlate with algorithmic complexity and “Big O” notation but 
we are not fundamentally concerned with the performance of algorithms here. 

In this paper we consider emergent systems to be a subset of complex systems. Emergent systems are 
those that exhibit some "radical novelty" (Goldstein 1999, p. 50) or whose macroscopic behaviours 
are not predictably defined by the behaviours of their parts. In preliminary discussions with target 
users we found a tendency to assume that emergence (and to a lesser extent complexity) can only be 
exhibited by large-scale and/or non-deterministic systems. However, we will later illustrate that this 
may not be the case (see the "Vants" example below). 

We do not enter a philosophical debate about determinism, choosing instead to consider determinism 
from an observational perspective – so if a normal observer could not be expected to have the level of 
information required to accurately predict all future states/events then a system is observationally non-
deterministic. In terms of the notations and reasoning presented in this paper, we consider systems to 
be non-deterministic if the descriptions of them (formal or verbal) draw on probabilistic behaviour. 
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Representations and Reasoning 
For the purpose of this investigation, we view our representational framework from two different 
perspectives; as a notation suitable for specifying computer models and also as an “external 
representation” to support reasoning. Discussion about internal and external representations has 
described internal representations as the “knowledge and structure in individuals’ minds” and external 
representations as those in the external environment (Zhang & Patel 2006, p. 334). In our case this 
external representation is the notation used to describe systems, i.e. the program code (though we 
form a less restricted view as we develop the ideas in this paper). Traditional approaches to cognition 
consider external representations as “peripheral aids” typically operating as notations used only to aid 
memory (Wang, Johnson, Sun & Zhang 2005; Zhang & Wang 2009) and in computing, code is 
regarded as a product – the result of some problem solving activity – but this presents too narrow a 
view of the potential value of external representations. 

Cox (1999) and Lehrer (2006) argue that external representations, models in particular, enable 
students to map the natural world to the representational world. It is this externalisation, where the 
demands of reasoning are distributed across the external representations (forming a distributed 
cognition system) which enables students to work with their ideas and to engage in reasoning (Zhang 
& Norman 1994; Zhang 1997a, 1997b; Zhang 1998; Xu, Tytler, Clarke & Rodriguez 2012) – the 
external and internal representations interact to enable reasoning and exploration. Prain and Tytler 
(2012) suggest that external representations can be considered as affordances; they provide 
individuals with opportunities to achieve certain reasoning or problem solving outcomes. Consider, 
for example, the mathematical system for writing numbers as an external representation and the 
meaning of numbers and symbols as an internal representation. Some tasks only become possible 
(long division is an example for most people) when both representations are used. Moreover, many 
mathematical proofs and formulas have only been discovered with the aid of such external 
representations. Thus representations are not only products of inquiry that reflect current 
understanding, but the use of representations is a process that promotes the development of new 
understanding (Carolan, Prain, Waldrip 2008; Tytler & Prain 2010). Representations afford reasoning. 

Following other research (Lemke 2003, 2004; Waldrip, Prain & Carolan 2010; Prain & Tytler 2012), 
we use Peirce’s (1998a; 1998b) novel conceptualisation of representations and reasoning to explore 
software models as external representations that afford reasoning. Peirce proposes a specific 
relationship between representations and reasoning, encapsulated in his notion of logic as semiotic. 
Peirce (1998b) argues that “logic is the art of reasoning” (p. 11) and that reasoning is the process “to 
find out, from the consideration of what we already know, something else which we do not know” 
(1992a, p. 111). Peirce (1992c, 260) describes semiotic as “the science of the general law of signs” 
with a sign consisting of the triad of the object (the thing being represented), the representamen (the 
thing doing the representing), and the interpretant (the effect of the relationship between the object 
and the representamen on those involved in the communicative act) (1998a). The maxim "logic as 
semiotic" thus defines reasoning as: "the process by which representations operate to make meaning" 
and reasoning becomes a representational process; one cannot reason without using representations. 

Peirce (1992a) delineates a number of different ways by which inquiry can be conducted, identifying 
the scientific method (with its direct reference to an external reality) as the approach which supports 
the most effective types of reasoning. Peirce argues that reasoning can be in the form of deduction, 
induction or abduction (1992b) and considers deduction to be the least productive as it is only 
analytical in nature, while induction and abduction can synthesize new inference and are thus more 
productive. Abduction (the process through which hypotheses about reality are generated and then 
tested through scientific means) is most highly valued, for while induction tends to be classificatory in 
nature, abduction is explanatory resulting in the production of truly new understanding for the 
individual. For this reason, representations that afford abduction are the most valuable in developing 
understandings of complexity. 

For our work we are interested in finding an existing representation that will enhance users’ mental 
models (internal representations) and reasoning processes as much as possible. So it is important to 
find a representation that aids exploration and understanding of the phenomena we wish to study but 
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which also provides a basis for developing computer models. That is: we want some written, external 
representation to complement users' internal representations and form a partially distributed 
framework for cognition, producing an external cognitive artefact which facilitates exploration and 
discovery (i.e. abductive reasoning) while also offering the ability to be executed/interpreted by some 
kind of computational system. Consequently our representation will behave in a similar way to 
mathematical/logical representations but will also have the added property that it can be executed, its 
results observed and that this observation will further enhance its utility as a reasoning system. 

In order to evaluate suitable representations we examined the nature of user-constructed 
representations, since we accept the findings of Prain and Tytler (2012) which indicate "strong 
conceptual gains and a high level of ... engagement" (p. 2752) for students using self-constructed 
representations. It is through constructing their own representations, and in so doing making 
abstractions about scientific observations, as well as engaging with the canonical representations of 
science that students undertake meaningful learning. In our case we cannot simply adopt any user 
constructed representation, no matter how semantically valid, because we require a formal 
representation which can be executed to investigate system properties and to produce observable 
results. Nonetheless we support a representation-construction pedagogy for teaching and learning 
science. This is a form of guided inquiry in which tutors support representational development by 
presenting challenges to students, while also constraining the production of representations to that 
which is both semantically unambiguous and in fine enough detail to describe the relevant features of 
a system (Tytler, Haslam, Prain & Hubber 2009; Hubber, Tytler & Haslam 2010). The tutor then 
channels users towards constructing representations that appropriately model specific phenomena and 
which begin to approach the efficacy of canonical representations. It is also important for tutors to 
guide students in the discussion of the adequacy of both user-constructed representations and existing 
representations and to promote discussion about which representations are suitable for which purposes 
(diSessa & Sherin 2000; diSessa 2004; Ainsworth, Prain & Tytler 2011). The choice of representation 
is important; different representations make different features explicit and facilitate different 
reasoning. Consequently, students are also encouraged to switch between representations and in doing 
so re-represent their understandings to experience the value of different representations and to further 
develop their knowledge (Ainsworth 1999; Prain & Waldrip 2006; Prain, Tytler & Peterson 2009). 

We adopted a similar approach to the development of tutor-led, user-constructed representations while 
also requiring our tutors to steer students towards existing representations if this was possible within 
the context of their problem solving. While we recognise that there is some potential conflict of 
interest here (the tutor aims to facilitate free construction of representations while also hoping to steer 
users towards some exiting system) the process is highly informative to the final choice of 
representation. We also notice that users have a feeling of ownership in the choice of representation 
by participating in this process. And additionally, as argued by Prain and Tytler (2012), when students 
engage in the process of building their representations they carry out "authentic scientific knowledge-
building" (p.2753) and discover new phenomena of the systems they intend to model. In this way their 
process of engagement has genuine benefit in addition to any product they may develop. 

NetLogo as a Candidate Representation 
We evaluated various notations and programming languages as candidate representations, these 
included Java and Netlogo as well as mathematical and logic based notations. NetLogo was included 
in the study because of the volume of research reporting its successful use in conceptualising complex 
systems, natural systems in particular (Jacobson & Wilensky 2006; Wilensky & Reisman 2006; 
Wilenksy & Novak 2010; Levy & Wilensky 2011; Dickes & Sengupta 2013). Our findings concur 
with this research but we approach the study from a new perspective, that of external representations. 

In this paper we concentrate more on the evaluation of the suitability of NetLogo as a representation 
than a thorough assessment of the relative merits of different representations. We nevertheless make 
comparisons where appropriate. We assume readers are familiar with the features of Java and 
mathematical notations, but provide a brief outline of NetLogo since this is less widely used. 
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NetLogo is an agent-based modelling and programming environment based on M.I.T.'s StarLogo 
system. Designed for a wide range of audiences, it aims to present a low learning threshold for new 
users but a high ceiling for advanced experimentation. Specifically it aims to be accessible for novice 
programmers and users who are not necessarily from a scientific background. NetLogo programs are 
called "models." 

NetLogo provides a programming language where concepts are expressed in terms of agents and their 
environments (2-dimensional worlds of tiles/patches) and presents an animated graphics panel, the 
world, which shows the actions of agents and their states at run-time. It provides tools for producing 
control panels (buttons, scrollbars, etc.) and graphs (see Fig 1). Typically, some controls allow the 
operation of models to be manipulated at run-time thereby modifying the behaviour of running 
systems and providing an additional level of experimentation. Standard controls allow models to be 
paused or to have their running speed slowed or increased. 

 

 
Fig. 1. A NetLogo model showing malaria transmission between humans and mosquitoes. 

The figure below (see Fig 2) shows example code for a predator / prey model containing "foxes" and 
"rabbits". The code shown defines the set-up and activity of rabbits. Code for the foxes is similar. In 
this model both species start with a low preference for activity (a random percentage between 0% and 
10%). The model runs multiple decision-action cycles for foxes and rabbits. When a fox "lands on" a 
rabbit, the rabbit dies and a new rabbit is cloned. The clone inherits its preference for activity from its 
parent but randomly adjusts this by +/- 5%. A similar approach is taken with foxes – those who "eat" 
the fewest rabbits are replaced by the clones of other foxes and these clones also randomly adjust their 
activity levels when they are created. The model shows how the populations become increasingly 
active over time as rabbit and fox populations “co-evolve” larger values for their "active%" variables. 
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breed [rabbits rabbit]      ;; rabbits are one type of agent... 

rabbits-own [active%]       ;; ...they have a probability of being active  

 

to setup-rabbits            ;; this procedure creates a population of rabbits 

  create-rabbits 70                    ;; create 70 rabbits 

  ask rabbits 

  [ set shape "rabbit"                 ;; set their appearance 

    set color white 

    setxy random-xcor random-ycor      ;; set random x,y coordinates... 

    set active% (random 10)            ;; and a 0%-10% activity probability 

  ] 

end 

 

to move-rabbits                        ;; this procedure describes the behaviour 

  ask rabbits                          ;; of rabbits for each cycle. 

  [ if (trigger-probability active%)   ;; if this rabbit is active 

    [ face nearest-of foxes            ;; find the nearest fox 

      right 180                        ;; turn around 180 deg 

      wiggle                           ;; randomly turn a bit left or right 

      forward 0.5                      ;; move forward 1/2 step 

    ] 

  ] 

end 

 

to clone-a-rabbit 

  ask one-of rabbits      ;; ask a rabbit to clone itself... 

  [ hatch 1               ;; ...then mutate the activity of the clone 

    [ set active% (randomly-adjust active%) ] 

  ] 

end 

Fig 2. Sample code for a co-evolving predator / prey model. 

Evaluating NetLogo as an External Representation – Users’ Experiences 
We evaluate the use of NetLogo as an external representation in two ways. First we examine 
examples of NetLogo models, how they are specified, how they illustrate complexity and the response 
of user groups. Secondly (see later section "addressing key criteria") we consider how NetLogo meets 
the properties of external representations summarised by Zhang & Patel (2006). 

Example 1 – Vants 
The first example we use here serves to illustrate how complexity and emergence can exist in, and 
arise from, systems that are deterministic and simple to specify. This example also highlights the use 
of the NetLogo world as an external representation, which both informs and supports reasoning. The 
example is a simplified version of Langton's virtual ants (Langton 1986) and based on a similar 
NetLogo model from Wilensky (2005). 

The virtual ant world consists of a 2-dimensional grid of tiles (patches), these (logically) have a black 
side and a white side and are initialised to be white-side up (they have their colour set to white). In our 
simplified version there is only one ant. This ant repeatedly flips the tile it is standing on, moves 
forward one tile, then turns right or left depending on the colour of the new tile it is on. In NetLogo 
the behaviour of this ant is specified below. 

 

ask ants 

[ flip-tile 

  forward 1 

  ifelse (pcolor = white) 

  [ right 90 ] 

  [ left 90  ] 

] 
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The ant starts in a world of white tiles but after 5 moves starts to encounter tiles that it has flipped to 
black. As the model progresses, the ant wanders chaotically, flipping and re-flipping tiles. After 
10,000 cycles the ant has created a figure of tiles with no visibly discernible pattern (see Fig. 3). The 
virtual ant model is deterministic and its complexity is unnoticed by many users who assume complex 
systems require multiple agents (or causative entities) and that these agents must interact. In fact the 
ant world behaves like a 2-dimensional Turing Machine with the colours of the tiles defining a set of 
binary-encoded instructions. In a generalised model, or models containing multiple ants, various 
patterns of self-organised, emergent behaviour may occur. Even with our simple model we can 
observe organised structures emerging after 10,500 cycles (see Fig. 4) and witness other larger scale 
behaviour patterns (our ant can sometimes be seen "running" up prebuilt columns or "undoing" – 
reversing patterns of tiles created earlier). 

 

 

 

 
Fig. 3. Vant at 10,000 cycles.  Fig. 4. Vant at 11,500 cycles. 

From the perspective of our examination of NetLogo as an external representation there are a number 
of points of interest: 

 the first evidence of emergence, self-organisation and, by implication, complexity arises after 
10,000 cycles and is only evident by visual observation, with the NetLogo world providing a 
conceptualisation of a top-down view of a physical/geographical environment. The evidence of 
emergence is explicit and self-evident, no analysis is required and the structures are clearly 
perceived; 

 before examining the system using NetLogo as a reasoning tool we found no students 
(including those who are experienced programmers or mathematicians) to correctly predict the 
emergent properties of this system from its rules; 

 the NetLogo code describing activity of the ant(s) is understood by the youngest and least 
experienced of our user group who are able (i) to act out the ant behaviour (and other 
behaviours coded in a similar style) and (ii) to understand (and then explain) the cause of the 
emergent behaviour when it is investigated using the NetLogo agent inspector; 

 before exposure to the NetLogo Vants model, a group of programming students were given the 
system's rules and asked to code the ant behaviour using a programming language of their 
choice and report on their findings. Of the 12 respondents, none identified any complex or 
emergent behaviour, primarily because they either (i) terminated the testing too soon, 
(ii) failed to visualise behaviour at all or (iii) failed to visualise behaviour from the perspective 
of the world. 

Example 2 – Genetic Drift 

Genetic drift describes the process where, over time, random effects cause changes in the frequency of 
gene variations within a population. In small populations genetic drift can cause some gene types to 
die out completely, though in the absence of other evolutionary pressures gene frequencies will tend 
to remain approximately constant in larger populations. Genetic drift is considered to be one of the 



  7 

PPIG 2014   Lynch & Ferguson 

processes which can influence speciation. It can be modelled mathematically (see later comments) or 
by using various types of algorithm (Hartl & Clark 2007; Wilensky 1997; Tian 2008). In our 
implementation (developed independently of Wilensky (1997) but resulting in a similar specification) 
we model genetic variations using colour on a population of static individuals. At each cycle, one 
individual has its genetic type replaced by the type of one of its neighbours – this is achieved simply 
by setting its colour to that of one of its neighbours. 

The NetLogo code is specified as follows (note that in this case the agents are named "bugs"):  
 

to go 

  ask one-of bugs 

  [ set color [color] of one-of neighbors ] 

end 

 

Modelling genetic drift in this way is of interest for various reasons: (i) it operates like a type of 
cellular automata; (ii) the model can be extended to investigate types of speciation; (iii) of relevance 
here, the model involves a high level of simple agent-agent interaction which causes it to exhibit 
emergent properties. See Fig. 5 and Fig. 6 for initial and later states of low population models and 
Fig. 7 for a later state of a large population model where the visual effect is similar to that of cloud 
formation. 

 

   
Fig. 5. Drift – initial Fig. 6. Drift – later Fig. 7. Drift – large scale 

Note that an important attribute for external representations is that they facilitate experimentation 
(i.e. abduction). As an example of this consider adapting the model to extend the neighbourhood for 
selection. Two steps are required: (i) adding a slider/scrollbar to the interface controlling a numeric 
variable neighbourhood; and (ii) making a small change to the code used earlier, as shown below. 

 

to go 

  ask one-of bugs 

  [ set color [color] of one-of bugs in-radius neighbourhood ] 

end 

The genetic drift model appears deceptively simple in NetLogo suggesting that genetic drift may be 
fundamentally simple, however this is not supported by our investigation. One of our advanced user 
groups (final year computing undergraduates) was shown two alternative mathematical equations 
(Fig. 8) describing the probabilistic behaviour of a simple genetic drift process (in which selection 
occurs globally rather than with near neighbours). They were unable to recognise the equations as 
relating to genetic drift or reason with them to predict systems behaviour. 

 

(i) 
 

 

(ii) 
 

Fig. 8. Two probabilistic equations describing aspects of genetic drift. 
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Our advanced group were split into 8 development teams (of 3-4 students in each) and tasked to 
produce their own models of genetic drift using Java, C# or C++. Some teams failed to produce 
working models or incorrectly specified their models; in one model, for example, a “bug” would reset 
itself to the most commonly occurring type/colour rather than to a random choice of its neighbouring 
types, causing a significant change in the emergent behaviour. Of those teams who had correctly 
specified their models some still failed to observe aspects of behaviour including: (i) localised 
convergence (clustering) of types; and (ii) extinction of types with smaller populations. Only 3 of the 
8 teams correctly observed behaviour, this contrasts with the level of success of teams using NetLogo 
(who all made relevant observations). 

Evaluating NetLogo as an External Representation – Addressing Key Criteria  
An external representation acts as no more than a memory aid, having limited utility, if it simply 
mirrors an internal representation. In order to form a distributed cognitive environment, external 
representations need to augment and expand the capacity of internal representations (Ainsworth 1999, 
2006; Cox 1999). It is important that there is a conceptual correspondence between the internal and 
external representations otherwise the burden of translating between them outweighs any benefit 
offered. 

Our observations show that NetLogo functions well as an external representation with users in our 
problem domain; its different facets (code, world and UI controls) allow it to interact with users' 
internal representations in a variety of ways (see Fig. 9). 

 

NetLogo
code

NetLogo
world

theoretical 
foundation

observational
modification

NetLogo
UI

experimentation

observation

representational
construction

internal external

 

Fig. 9. Interaction between internal representation and NetLogo. 

Zhang & Patel (2006) summarise properties of external representations, specifically that they provide 
the following (list edited from Zhang & Patel): 

1 memory aids (to reduce memory load); 

2 directly perceived information; 

3 knowledge/skills unavailable internally; 

4 support for easy recognition & direct inference; 

5 effortless support for cognitive behaviour; 

6 generation of more efficient action sequences; 

7 facilities to stop time, supporting perceptual rehearsal with visible & sustainable information; 

8 reduced need for abstractions; 

9 aids to decision making (accuracy & effort). 

We observe that the process of producing NetLogo code is itself constructive for reasoning and the 
development of understanding. Though more investigation is required in this area of study, initial 
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findings suggest that this effect is more prevalent with NetLogo code than with other programming 
languages. We propose possible reasons for this: 

 tutors emphasise the importance of the process of code production rather than the model as an 
artefact. The primary criterion for success is identified as understanding a system; the 
production of a robust, fully functioning model is a secondary goal. Clearly this approach can 
also be taken with other languages, but the mind-set of our students tends to consider the use 
of other languages as an exercise in program specification not learning; 

 NetLogo code describes activity in terms of the actions of individual agents, this produces a 
subtle shift in the conceptualisation of code elements from "objects having things done to 
them" to "agents interacting in their world". This influences the way students discuss their 
code, causing them to personalise (or anthropomorphise) their agents' behaviour and to more 
easily rationalise the macroscopic behaviours of their systems as resulting from the collective 
actions of a population of individuals; 

 for the types of population-based multi-agent systems we have used in our study, the level of 
abstraction provided by NetLogo code matches the style of students' verbal description of 
agent activity. Its primitives and constructs lend themselves to these types of system, limiting 
the need for students to create additional abstractions. This is in contrast to development in 
languages like Java, C#, etc. where programmers need to specify the lower-level mechanics of 
interactions between agents and the worlds they inhabit; 

 NetLogo code production is closely coupled with model experimentation, so phases of code 
production are shorter and more informed by model observation (the details of our data 
collection and analysis are beyond the scope of this paper). 

The animated NetLogo world (the graphics panel) showing the movement, birth and death of agents, 
with facilities for pausing behaviour and slow-motion, addresses most of the representational facets 
identified by Zhang and Patel (2006) and listed earlier. In contrast to program code and other 
notation-based representations, the changing system state is directly perceivable in NetLogo and may 
be cross-referenced with graphs included in models. Agents of different types/breeds are easily 
recognised as they are typically represented using icons of different shapes and colours. Additionally 
agent-agent interaction is made observable and explicit with the use of other graphical tools. 

NetLogo control panels allow running models to be changed dynamically, altering models as they run. 
This enhances experimentation by allowing users to immediately visualise the consequences of 
modifying the attributes and behaviours of agents – the agents’ new behaviour will be immediately 
observed. In this way NetLogo clearly affords opportunities for abduction. These controls work in 
conjunction with other (default) controls that allow agents to be paused, their worlds to be 
increased/decreased in size, etc. and an agent "inspector" which provides facilities to examine the 
internal states of agents and "follow" their individual movements in the graphics world. 

By following the discussions of student groups, using an ethnographic approach, we observe trends in 
the behaviour of students developing NetLogo models: 

1 students engage in phases of observation and experimentation, which directly inform code 
modification and structure plans for further experimentation. We notice that experimentation 
tends to focus more on system behaviour than testing code (in contrast to the use of other 
languages) and a greater tendency to push experiments to the point at which behaviour 
“breaks” revealing the thresholds of system dynamics; 

2 a continued tendency to anthropomorphise agents when discussing activity seen in the 
graphics world; 

3 an ability to discuss modelling abstractions with increased clarity and understanding. In 
assessing this we used various models, which used either one-to-one or one-to-many 
relationships between NetLogo agents and their natural analogs. 
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The part of our study discussed above involved study teams of student programmers. These students 
were at intermediate or advanced levels of competence with Java, C# or C++ and had some additional 
competence with other languages. They were given a one-hour overview of NetLogo, which included 
the use of models and building control panels as well as NetLogo code. They were then asked to 
experiment with some pre-constructed models and were later asked to build software to investigate 
other systems. Most of our findings here have concentrated on this, but it is also interesting to note 
that subsequently: 

 16 groups investigated swarm dynamics (including bacterial activity, altruistic and parasitic 
behaviour, disease pandemics, etc.), all 16 groups chose to use NetLogo, self-learning the 
platform to the necessary level; 

 14 of 16 groups chose NetLogo to model evolution; 

 6 of 8 groups used NetLogo as an exploratory tool for designing agent deliberation for a 
collaborative problem solving system (the others described the system at a more abstract level 
using BDI style plans); 

 the quality of student models as well as their investigations compared favourably with work 
they undertook in other languages (based on results for assessed work). 

Conclusions 
NetLogo has been successfully used by various researchers from education and science to model 
complex systems and teach programming. For our work, the models themselves are less important 
than the investigation into complex systems that modelling may afford. With this approach we are less 
interested in programmed computer models as artefacts and more interested in the processes that are 
used to formulate them. Consequently, while other work has examined NetLogo as a modelling tool 
or as a system to teach programming to novices, we have evaluated NetLogo from an alternative 
perspective: that of an external representation that affords reasoning. 

Specifically, we have examined how well NetLogo serves to support the perception and analysis of 
complex systems, particularly those exhibiting some emergent property, and how it functions to 
provide opportunities for reasoning about complex systems. We have achieved this by following 
groups of students when they experimented with pre-constructed NetLogo models and also when they 
built their own models. We have also considered how NetLogo addresses the features of external 
representations identified by Zhang and Patel (2006) among others. 

Our findings strongly support the use of NetLogo as a reasoning system to improve understanding of 
complexity with both novice and advanced users. We have observed that the different facets of 
NetLogo (code, control panel and graphics environment) interact with users’ internal representations, 
serving to inform their experimentation and complement their understanding. In this way Netlogo 
operates as an external representation which facilitates cycles of hypothesis and test, thereby 
promoting abductive enquiry and exploration. We find that this compares favourably to using other 
languages and notations that typically offer different types of language semantics and more restricted 
representational forms. In addition, we find that NetLogo fulfils the criteria for external 
representations as they are defined in related work, supporting users’ reasoning with tools to animate 
system behaviours, which makes the interaction of system entities explicit and the emergent 
properties of systems visually observable. 
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