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In this paper an agent-based simulation is developed in order to evaluate an Ambient Intelligence scenario based on agents.
Many AmI applications are implemented through agents but they are not compared with any other existing alternative in order to
evaluate the relative benefits of using them. The proposed simulation environment analyses such benefits using two evaluation
criteria: First, measuring agent satisfaction of different types of desires along the execution. Second, measuring time savings
obtained through a correct use of context information. In this paper an existing agent architecture, an ontology and a 12-steps
protocol to provide AmI services in airports, is evaluated using the NetLogo simulation environment. In our NetLogo model we are
considering scalability issues of this application domain but using FIPA and BDI extensions to be coherent with our previous works
and our previous JADE implementation of them. The NetLogo model simulates an airport with agent ‘passengers’ passing through
several zones located in a specific order in a map: passport controls, check-in counters of airline companies, boarding gates, different
types of shopping. Although the initial data in each simulation is generated randomly, and the model is just an approximation
of real-world airports, the definition of this case of use of AmI through NetLogo agents opens an interesting way to evaluate the
benefits of using AmI, which is a significant contribution to the final development of AmI systems.
Journal of Simulation advance online publication, 24 June 2016; doi:10.1057/jos.2016.10

Keywords: agents; Ambient Intelligence; context-aware; ubiquitous techniques; software simulations

1. Introduction

Virtual simulations frameworks, such as (Serrano et al, 2014),
have been widely used to evaluate evacuation plans in indoor
environments. But there are also other scenarios that are very
complex to evaluate and this is the case of Internet of Things
scenarios. Electronic sensors, which act as autonomous computa-
tional devices (smartphones, cameras, i-watches, thermical, infra-
red sensors, drones, etc), are rapidly becoming ubiquitous
capturing daily life activities in all kinds of environments (at home,
at the office, and even on a larger scale, such as in the so-called
smart cities). The ubiquity of sensors makes possible the idea
envisioned by Weiser in 1991, which presents a world where
computers are embedded in everyday life where people could
communicate with these devices providing customized services in
a way where the network infrastructure would be transparent to the
user itself (Weiser, 1991). This idea is mostly known as Ambient
Intelligence (in advance AmI). AmI emphasizes greater user-
friendliness, more efficient service support, user-empowerment,
and support for human interactions. In this vision, people are
surrounded by intelligent and intuitive software entities embedded
in everyday sensors around us, recognizing and responding to the
particular needs of individuals in an invisible way (Kovács and
Kopácsi, 2006).

AmI represents, in other words, a new generation of user-
centered computing environments aiming to find new ways
to obtain a better integration of the information technology
in everyday life activities obtained by ubiquitous sensors.
Ideally, people in an AmI environment do not notice these
sensors, but they will benefit from the services they are able to
provide. Such sensors are aware of people’s presence in those
environments and react to their gestures, actions, and context
(Aarts et al, 2001). AmI environments are then integrated by
several autonomous computational devices of modern life
ranging from consumer electronics to mobile phones. AmI
has several spheres of application such as: transportation (for
instance, providing adaptive bus routes or adaptive traffic
lights), health (predicting heart attacks, providing faster ambu-
lance calls, etc), home (providing more efficient energy-uses),
and so on. Recently the interest in AmI Environments has also
been focused on demanding highly innovative services in
critical areas, such as airports and train stations in order to
increase security, reduce the length of lines and to better
provide updated travel information.

In order to work efficiently, software running on these sensors
may have some knowledge about the user. This means that they
need to cooperate with other sensors sharing knowledge about the
user without interfering with user’s daily life activities. Owing to
the highly dynamic properties of the above-mentioned environ-
ments, the software system running on sensors faces problems
such as: user mobility, service failure, resources, and goal
changes which may happen in any moment. To cope with these
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problems, this system must sense the environment, and act on it
over time in pursuit of its own benefit.

That is why there is a need for a special kind of software that
should combine ubiquity, context-awareness, intelligence, and
natural interaction in an AmI environment. The system has also
to adapt not only to changes in the environment to be autonomous
and self-managed but also adapt to user requirements and needs.
The kind of software that meets such requirements is Agent
technology. Agents aim to reproduce human behavior through
abilities such as autonomy, proactivity, adaptability, planning,
and so on (Wooldridge and Jennings, 1994). Agents adapt not
only to changes in the environment, to be autonomous and self-
managed they also adapt to user requirements and needs. This is
the underlying foundation of the concept of agent, computer
systems capable of independent actions on behalf of their users
(Durfee and Rosenschein, 1994).

We have been working in the confluence of both research
areas for many years. Specifically we have developed a distributed
agent-based platform to provide AmI services to users in an airport
domain (Sanchez-Pi et al, 2008, 2010). But we found out that
evaluation of AmI systems is a difficult problem and seldom
tackled in literature because of the privacy issues, hardware costs,
and the open and dynamic nature of this kind of system. Then,
instead of universal real-life evaluations, the most popular way to
evaluate them is to observe their performance in particular applica-
tion scenarios through virtual simulations like Serrano et al (2014),
in which a complex and complete framework to evaluate emer-
gency plans in indoor environments is defined. This is also our case.

This paper presents a twofold criteria evaluation of the benefits of
using AmI in a particular domain application we have previously
worked in: an airport. We use NetLogo to simulate particular and
collective behaviors in an airport. This NetLogo simulation has the
objective of comparing user satisfaction because of the delays of
agents in rows with and without AmI. We try to find out how AmI
could help when a high number of agents are accessing different
services through rows, and through the use of location indications
as happens in real-life airports. Specifically, we use simulations to
compare extra time savings and the level of satisfaction of agent’s
goals when provided with AmI and without it. Such goals are, for
instance, avoiding missing a plane (this provides major satisfac-
tion), meeting shopping interests (this provides minor satisfaction)
and reducing time spent waiting in line (this also provides minor
satisfaction). The rest of the paper is structured as followed:
Section 2 presents contextualized related work; Section 3 is where
we summarize our previously defined ontology, protocols, agent
architecture and airport scenario; Section 4 describes the main
contribution of this paper: the coherent adaptation of the elements
presented in Section 3 to a NetLogo model and the simulation
experiments results. At last, conclusions are presented.

2. Foundations

In the literature, there are several approaches to developing plat-
forms, frameworks and applications for offering context-aware

services where agent technology has been applied (as we do) in
order to provide the right information at the right time to its users.
These applications also include location-based services, as our
work uses Aruba technology to perform such a task providing
information and events to the user (Poslad et al, 2001).

Application domains of this combination of the three elements:
AmI, Agents and Location Technology, they are: TeleCARE
project for supporting virtual elderly assistance communities
(Afsarmanesh et al, 2004); a planning agent AGALZ using
case-based reasoning to respond to events and to monitor
Alzheimer patients’ health care in execution time (Corchado
et al, 2008); SMAUG (Nieto-Carvajal et al, 2004) is a multi-
agent context-aware system that allows tutors and pupils of a
university to fully manage their activities; AmbieAgents (Lech
and Wienhofen, 2005) proposes an agent-based infrastructure for
context-based information delivery for mobile users; there is also
a case study that consists of solving the automation of the internal
mail management of a department that is physically distributed in
a single floor of a building plant (a restricted and well-known test
environment) using ARTIS agent architecture Bajo et al (2008);
and an AmI architecture to provide an agent-based surveillance
system applying an agent-orientated methodology (Pavón et al,
2007). None of them, however, has been applied to an airport
domain as we have been doing during the past years.

On the other hand, as agents seem to be the appropriate solu-
tion for AmI environments since they provide autonomy and
proactivity. O’Hare et al (2004) advocate the use of agents (as do
we) as key enablers in the delivery of AmI. It could be assumed
that agents are abstractions for the interaction within an AmI
environment, and the single aspect that agents need to ensure is
that their behavior is coordinated. This assumption leads to
the use of very simple reactive agents without any cognitive
capability (Brooks, 1986). But depending on the domain, agents
reproducing intelligent behaviors need decision rules that take
into consideration complex context information (location, user
profile, type of device, etc) in which these interactions take place
and which has to be interpreted. Complex knowledge processing
is required in order to offer, provide and consume services on
behalf of humans. We need agents to help humans in their
knowledge-related tasks; agents that can somehow understand
people’s emotions and rational behavior, or that can at least
attempt to process complex information on our behalf. In this
regard, the so-called cognitive architecture accomplishes not only
the task of regulating the interaction, but also of managing
complex decision-making. The most extended and promising
cognitive architecture is based on the Belief-Desire-Intention
paradigm. These three levels of knowledge allow agents to cope
with complex decisions supposedly as humans do, following a
particular reasoning algorithm (Rao and Georgeff, 1995). Com-
munications between agents also attempt to emulate human
dialogs through the use of predefined sequences of linguistic
performatives as IEEE-accepted FIPA communication standards
define them (Huget, 1997).

BDI-based agent platforms, such as JADEX (Pokahr
et al, 2003) or JASON (Bordini and Hübner, 2005), and
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FIPA-compliant platforms, such as JADE, (Bellifemine et al,
2000) produce agents that are often conceptually heavy models
and intensive CPU consuming implementations. This makes
them difficult to use as simulation tools when a relatively high
number of agents are involved, as we observed with our JADE
implementation of the airport AmI application.

Therefore, an alternative is the use of the lightweight-agent
paradigm extended in the simulation research area, known as
Multi-Agent based Social (MABS) Simulation, which is largely
used in economics, traffic flow, and so on. It allows analysis of
complex interactions with heterogeneous individuals (Sichman
et al, 1998), and typically represents agents in a very simplistic or
atomistic approach. This simplification is needed to avoid the
complexity of BDI-based, FIPA-compliant agents. These kinds
of simple agents are produced by platforms such as MASON
(http://cs.gmu.edu/~eclab/projects/mason/), RePast (repast.source-
forge.net), SMNP (www.monfox.com/dsnmpsim.html), and
NetLogo (ccl.northwestern.edu/netlogo). Some approaches try to
address this limitation through the inclusion of cognitive skills in
MABS platforms as (Caballero et al, 2011) did with the integration
of MASON and JASON, and like the proposed FIPA and BDI
extensions (Sakellariou et al, 2008) NetLogo do in our work.

Specifically, NetLogo is a programmable modeling environ-
ment for simulating natural and social phenomena. It is particu-
larly well-suited for modeling complex systems that develop over
time. Developers can give instructions to hundreds or thousands
of independent agents all operating concurrently. This makes it
possible to explore the connection between the micro-level
behavior of individuals and the collective behavior that emerge
from the interaction of many individuals. Two approaches very
close to ours that use NelLogo models to aid crowd evacuation
in emergency situations are Wagner and Agrawal (2014), and
Dawson et al (2011).

A wide variety of computational approaches have been
proposed for simulation of collective behavior (Pan et al, 2007).
In this work, the authors define three classification categories
(1) fluid or particle systems, (2) matrix-based systems, and
(3) emergent systems, but there are also specific AmI simulators
designed to evaluate general AmI systems such as UbiWise
(Barton and Vijayaraghavan, 2002), Tatus (O’Neill et al, 2005),
and UbiReal (Nishikawa et al, 2006). However, they are focused
on the interaction of a real user with the system and are not
designed to develop and run fully automated executions of a
particular AmI scenario as we do.

3. Problem definition

In this work, the scenario is defined by a 2D grid of pixels, where
special rooms are represented by a pixel accessible from any
neighbor pixel. Each individual is represented by an autonomous
entity, an agent, whose main goals are either taking the plane
or recovering baggage and leaving the airport . Many individuals
can be located in the same pixel but in each iteration just
one of them is interacting with the services/information provided

by the room. Several agents are defined with cognitive capacity
based on BDI model. This means that each agent has a set of
beliefs that include the relevant locations (pixels) the agent has
visited, personal beliefs about itself, and beliefs based on
information/services received from other agents. This belief sets
changes while it moves through the grid and when new informa-
tion/services arrive from other agents.

3.1. AmI in an airport

AmI has applications for different sectors in daily life.
One important sector is transportation, specifically airports. AmI
intelligence can be presented in this domain as an information
system to offer customized services to different types of users
(agent roles): passengers, crew, and airline staff. We are familiar
with this specific problem because we have been working for
years with this application domain (Sánchez-Pi et al, 2007).
We previously developed a centralized system using Appear
Networks Platform (www.appearnetworks.com) and Aruba
Wi-Fi Location System (www.arubanetworks.com) and later
we developed a distributed agent-based platform using the same
technology (Sanchez-Pi et al, 2008, 2010). In both approaches,
we assume an initial minimal known profile of the user: name
(identifier), agent role, passport data (nationality, physical
aspect), suitcases carried, shopping interests and travel info (flight
numbers, companies, origin, and destination) in order to suggest
the best-fitting services.

Knowledge involved to provide context-awareness in an air-
port was also defined in an ontology. To build the ontology, we
have followed Noy and McGuiness’s proposal which consists in
an iterative process based on the methodology proposed by
Grninger and Fox (1995), who defined the competency questions
used in the scope and goal step, and the development of the
classes hierarchy based on top-down and bottom-up strategies. In
our previous works (Fuentes et al, 2006), we defined the problem
of context definition in ubiquitous applications. The high-level
ontology definition that we have described follows the categor-
ization defined by Schilit et al (1994), which divided contextual
information into a computing context (network, devices, etc),
user context (preferences, location, etc), and physical context
(temperature, traffic, etc). The ontology definition gathers these
concepts and their properties and relationships to accomplish this
contextual definition. Important contextual information about the
user to take into account is the location. In order to acquire
location information we use Aruba Networks which is a location-
tracking solution that uses an enterprise-wide WLAN deploy-
ment to provide precise location tracking of any Wi-Fi device in
the research facility. The RF Locate application can track and
locate any Wi-Fi device within range of the Aruba mobility
infrastructure. Using accurate deployment, layouts and triangula-
tion algorithms devices can be easily located including PDAs,
rogue APs/Clients, VoWLAN phones, laptops, Wi-Fi asset
management tags. Although many alternatives exist, most suc-
cessful indoor location techniques are based on the RSSI
triangulation method. But basic RSSI triangulation does not
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provide sufficient accuracy of location information for many of
the users. While techniques such as analysis of building material
and walk around calibration can improve the accuracy of RSSI
measurements, they add considerable expense and complexity to
the network installation. Furthermore, the improvement in accu-
racy erodes over time as the environment changes. WLANs are
cellular, where neighboring APs operate on different RF frequen-
cies (channels) to avoid interference. The Wi-Fi medium access
control layer allows any station in a basic service set to transmit at
any time. Therefore, all stations (including the AP) should be
listening on the cells RF channel all the time, to avoid missing
transmissions. The aforementioned explained the use of time-
stealing APs to monitor other channels while nominally providing
coverage of their own cell. An alternative technique is to deploy
dedicated RFmonitors called Air Monitors (AMs). Such monitors
are identical to APs (the same hardware and software), but they
are configured permanently in the listening mode. This is a very
useful capability, because the AMs contribute not only to location
accuracy, but they also improve security coverage by detecting
RF sources that may be security risks or interferers. The drawback
of using dedicated AMs is that they add to the capital costs of the
network. When a wireless device enters the network, the position
of the client device is immediately established . Once the client is
localized, he can negotiate the set of applications depending on
his physical position. In our distributed approach based on agents,
entities are in charge of distributing contextual information in
order to access the information in a more efficient way.

3.2. Agent system architecture

The proposed agent-based architecture manages context informa-
tion to provide personalized services to users. As it can be
observed in Figure 1, it consists of five different types of agents
that cooperate to provide an adapted service. User agents are

configured into mobile devices or PDAs. Provider Agents supply
the different services in the system. A Facilitator Agent links the
different positions to the providers and services defined in the
system. A Positioning Agent communicates with the Aruba
positioning system (Sánchez-Pi et al, 2007) to extract and
transmit positioning information to other agents in the system.
Finally, an Evaluator Agent stores log file in order to acquire a
future evaluation criteria of the MAS system developed for AmI
scenarios.

Eight concepts have been defined for the ontology of the
system. The definition is: Position (XCoordinate int, YCoordi-
nate int), Place (Building int, Floor int), Service (Name String),
Product (Name String, Characteristics: List of Feature), Feature
(Name String, Value String), Context (Name String, Character-
istics: List of Features), Profile (Name: String, Characteristics:
List of Features). Our ontology also includes six predicates with
the following arguments:

Our ontology also includes five predicates and an action with
the following arguments: HasLocation (place, Position, AID),
HasServices (Place, Position, List of Services), isProvider (Place,
Position, AID, Service), HasContext (What, Who), HasProfile
(Profile, AID), and Provide (Product, AID).

The interaction with the different agents follows a process,
which is comprised of the following phases:

1. The ARUBA positioning system is used to extract informa-
tion about the positions of the different agents in the system.
This way, it is possible to know the positions of the different
User Agents and thus extract information about the different
Providers Agents that are available for this location.

2. The Positioning Agent reads the information about position
(coordinates x and y) and place (building and floor) provided
by the Aruba Positioning Agent by reading it from a file, or
by processing manually introduced data.

Figure 1 Schema of the multi-agent architecture.
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3. The Positioning Agent (Positioning Agent.Send Location)
communicates the position and place information to the
User Agent.

4. Once a User Agent is aware of its own location, it commu-
nicates this information to the Facilitator Agent in order to
find out the different services available in that location.

5. The Facilitator Agent informs the User Agent about the
services available in this position.

6. The User Agent decides the services in which it is interested.
7. Once the User Agent has selected a specific service, it

communicates its decision to the Facilitator Agent and
queries it about the service providers that are available.

8. The Facilitator Agent informs the User Agent about the
identifier of the Provider Agent that supplies the required
service in the current location.

9. The User Agent asks the Provider Agent for the required
service through the Facilitator Agent.

10. Once the interaction with the Provider Agent is finished, the
User Agent provides the evaluation information to the
Evaluator Agent.

11. The Evaluator Agent updates the contents of the user profile
with the evaluation information and sends this information to
the Evaluator Agent.

12. The Evaluator Agent stores this user profile for future further
analysis.

The corresponding number of each phase is shown in Figure 1 to
facilitate the understanding of the communication flow between
agents to request a particular service. So with this agent defini-
tion, ontology and protocols, we have completely defined the
AmI agent-based application domain which we will evaluate
using a simulated model of an airport.

4. Agent simulation with NetLogo

In this section we define (using NetLogo) a simulated scenario
where the architecture described in Section 3 MAS for context-
aware problems can be applied. This scenario would allow us to
consider two evaluation criteria that would become more dis-
criminant when there are many agents in the system: First,
satisfaction provided by AmI, which is linked to the accomplish-
ment of agent’s goals through an appropriate use of time. This
concept is computed according to three satisfaction evaluation
criteria: whether we achieved the main goal (to avoid missing the
plane) or not, how much we met desired activities (shopping),
and how much we avoided undesired activities (time spent in
queues/lines). For instance, an agent nor satisfied at all would
have missed the plane, and an agent would be mostly not satisfied
if it did not buy any gift according to his shopping interests or if
he spent a lot of time in lines. The second is time saving obtained
through the use of context information. A correct use of
information in our domain stands for avoiding going to the
information panels of the airport, and avoiding going around
while shopping (through the use of location indications). For
instance, an agent would not have saved any time if he had

walked to the flight information panel and to the boarding
information panel; furthermore it would have taken a detour
(instead following a straight course) to reach the provider that fits
its shopping interests. These time savings can be obtained using
information provided by AmI. The corresponding difference in
the steps followed by ingoing agents with and without AmI in
Figures 2a and 2b are:

1. Request the service from Boarding Info.
2. Request the service from Checkin Counter.
3. Request the service from Passport Control.
4. Request the service from Shops (until finding the one that

matched with the shopping interest of the agent).
5. Request the service from Boarding Gates.

The corresponding steps followed by outgoing agents with and
without AmI in Figures 3a and 3b are:

1. Request the service from Baggage Info.
2. Request the service from Baggage Belt.
3. Request the service from Shops (until finding the one that

matched with the shopping interest of the agent).
4. Request the service from Passport Control.
5. Go outside.

Thus, this NetLogo model of an airport includes several types of
User and Provider Agents (besides the aforementioned Position-
ing, Facilitator and Evaluator agents of our MAS architecture for
context-aware problems). User agents may be passengers, crew
and staff, but additionally they may be of two types (outgoing and
ingoing), passing through several services located in a specific
order on a map:

● Outgoing agents go through main entrance, flight information

panel, check-in counter, passport control, shops, boarding
information panel, and boarding gates

● Ingoing agents go through boarding gate, go to baggage

information panel, baggage belt, shops, passport control, and
main entrance

The eight concepts and six predicates that formed the ontology of
the system were used in the FIPA communications in NetLogo.
The equivalent OWL ontology can be obtained using the OWL-
API (3.1.0) (Polhill, 2015) that extracts state and structure
ontologies from an existing NetLogo model. We can observe
how the elements of the ontology were used in the next couple of
FIPA communications examples of our model:

(turtle 51):
[‘inform’ ‘sender:0’ ‘receiver:51’ ‘content:’
‘isProvider (Place (Building Airport ; Floor
0); Position: Belt (patch 18 6) ; AID: 51 ;
Service (Name: Baggage-Delivery) )’]
(turtle 2):
[‘request’ ‘sender:51’ ‘receiver:2’ ‘content:’
‘Provide (Product (Name: Baggage-Delivery ;
Characteristics: Baggage-Number 1 ) ; AID: 51 )’]
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We assume that each of the user agents has defined a particular
predefined profile (traveling profile and personal profile), corre-
sponding to the features of the profile concept of our ontology,
which gives values to the following attributes:
● How much interest the agent has in each type of shop

● How much baggage he is carrying (number of suitcases)

● How much estimated danger perception may be produced for

external observers (due to his physical aspect, nationality, etc)

● Flight number

User Agents go shopping if they have enough (estimated) time
to do so. We use randomly generated initial data of passenger

Figure 3 Followed steps by outgoing agents with AmI. (a) Outgoing 1; (b) Outgoing 2.

Figure 2 Followed steps by ingoing agents with AmI. (a) Ingoing 1; (b) Ingoing 2.
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profiles, so the model is just an approximation of real-world
airports.

The concept Service is instantiated with Airport services that
are provided by Agent Providers:

● Check-in counter

● Passport control

● Shops

● Baggage belt

● Boarding gate

Furthermore queues are formed in services (check-in counters,
passport controls, shops, baggage belts, and boarding gates),
and User Agents have to wait until the Agent Provider is not
busy. We assume that information panels do not consume time
and do not produce any lines. In order to evaluate the benefits of
using context with our MAS architecture, there will be some User
Agents that use AmI and others who do not. Information panels
are Facilitator agents for the agents using Am and Provider agents
for the agents not using AmI. Each of these agents using AmI
would be executing the communications with Positioning and
Facilitator agents (included in the 12-steps protocol described in
Section 3), and we assume that such communications also
involve a relatively short-elapsed time and also form lines to
attend User Agents. But on the other hand, for instance, User
Agents using context do not require passing through information
panels, and they know the exact location of the most interesting
shops (for that particular agent) thanks to communication with
Facilitator agents, avoiding a random walk through the shops that
users not using AmI have to take. We also assume that moving
through the map requires time (agents move 1 position per
iteration) and providing services has an estimated time (random
distribution of different types that depends on profile features :
more baggage, more time in the check-in counter, more percep-
tion of danger, more time in passport control). As the same
instance of our user agents do not repeat model executions, the
evaluator agent makes no sense in this simulation. Otherwise,
the evaluator agent would allow agents using AmI to know
a priori what check-in counter to use (because the user always
travels with the same company) or the boarding gate (because the
user always travels to the same destination) or the shops to
purchase in (since it knows the shopping preference) without the
participation of the Facilitator agent. We can observe these
differences in the sequence of intentions (coded in reversed
order) that the four types of agents execute. For instance, ingoing
agents that do not use AmI have to execute intentions for moving
to the baggage info screen in order to know the belt number
corresponding to their flight, and move through different shops
until they find the most interesting shop they are looking for.

add-intention ‘move-to-output’ ‘in-output’
add-intention ‘pass-control’ ‘past-control’
add-intention ‘move-to-control’ ‘in-control’
add-intention ‘shopping’ ‘shopped’
add-intention ‘move-to-shops’ ‘in-shops’

add-intention ‘collect-baggage’ ‘baggage-
collected’
add-intention ‘move-to-belt’ ‘in-belt’
add-intention ‘ask-baggage-info’ ‘informed-
belt-baggage’
add-intention ‘move-to-baggage-info’
‘in-baggage-info’

On the other hand, agents that use AmI do not require moving to
the baggage info screen, and they move directly to the most
interesting shop as the next NetLogo code shows:

add-intention ‘move-to-output’ ‘in-output’
add-intention ‘pass-control’ ‘past-control’
add-intention ‘move-to-control’ ‘in-control’
add-intention ‘shopping’ ‘shopped’
add-intention ‘move-to-interestingshop’
‘in-interestingshop’;;
add-intention ‘collect-baggage’
‘baggage-collected’
add-intention ‘move-to-belt’ ‘in-belt’
add-intention ‘ask-baggage-info’ ‘informed-
belt-baggage’

Outgoing agents show similar differences according to the use/not
use of AmI. Outgoing agents that do not use AmI require NetLogo
moving intentions toward check-in and gate info screens in order
to know the assigned check-in counter and boarding gates.
In addition, these agents would move around shops until they find
out the most interesting shop they were looking for.

add-intention ‘move-to-gate’ ‘in-gate’
add-intention ‘query-gate’ ‘informed-gate’
add-intention ‘move-to-gate-info’ ‘in-gate-info’
add-intention ‘shopping’ ‘shopped’
add-intention ‘move-to-shops’ ‘in-shops’
add-intention ‘pass-control’ ‘past-control’
add-intention ‘move-to-control’ ‘in-control’
add-intention ‘request-checkin’ ‘done-checkin’
add-intention ‘move-to-checkin’ ‘in-checkin’
add-intention ‘query-checkin’ ‘informed-
checkin’
add-intention ‘move-to-checkin-info’
‘in-checkin-info’

While outgoing agents that use AmI would not require going to
the info screens, and they move directly to the most interesting
shop as it shows the next code corresponding to their NetLogo
intentions to be executed in reversed order:

add-intention ‘move-to-gate’ ‘in-gate’
add-intention ‘query-gate’ ‘informed-gate’
add-intention ‘shopping’ ‘shopped’
add-intention ‘move-to-interestingshop’
‘in-interestingshop’
add-intention ‘pass-control’ ‘past-control’
add-intention ‘move-to-control’ ‘in-control’
add-intention ‘request-checkin’ ‘done-checkin’
add-intention ‘move-to-checkin’ ‘in-checkin’
add-intention ‘query-checkin’ ‘informed-
checkin’

J Carbo et al—Agent-based simulation with NetLogo to evaluate AmI 7



The definition of this model allows us to simulate several
runnings of high-populated agent systems moving from the
airport main entrance to boarding gates and the opposite. The
first evaluation criteria consists in comparing satisfaction pro-
vided by the activities carried out by agents in the airport;
although it is subjective, we quantified it assigning satisfaction
values to the next circumstances as follows:

● Avoiding missing the flight (high positive value)

● Shopping pleasure (low positive value)

● Time spent in lines (low negative value)

On the other hand, the second criterion is measured with the
average time spent in the airport.

Initial setup parameters of each simulation running are:

● Number of ingoing agents who do not use AmI.

● Number of ingoing agents who use AmI.

● Number of outgoing agents who do not use AmI.

● Number of outgoing agents who use AmI.

● Number of iterations required to avoid missing the flight.

● Number of passport controls.

● Number of check-in counters.

● Number of shops of different types.

● Number of boarding gates.

● Number of baggage belts.

Different values of these initial parameters would setup models of
different types of (small and big) airports.

Further details of the implementation can be observed since the
code can be downloaded at sourceforge: sourceforge.net/projects/
netlogo-bdi-fipa-airport-model/.

In addition, we have already uploaded our NetLogo model into
the official NetLogo library at: ccl.northwestern.edu/netlogo/
models/index.cgi.

4.1. Results

Figure 4 shows a caption of the NetLogo agent simulation that
describes the elements representing rooms of the airport, where
red points represent check-in counters, the cyan point represents
flight information panels, the yellow points represent pass-
port controls, the black line represents a wall, the green points
represent shops, the brown point represents both boarding
information panel and baggage belt information panel, and
finally, the pink points represent boarding gates.

The Figure 4 generated by NetLogo shows the definition of
the initial parameter setup that would define the scale of each
execution of the model, while Figure 5 shows the relevant
output variables that a NetLogo execution shows: total satis-
faction of agents not using AmI, total satisfaction of agents

using AmI, the average time spent in the airport of AmI agents,
and average time spent in the airport of nonAmI agents. These
are the values we were trying to obtain in order to evaluate the
benefits of using AmI in a context-aware scenario. Finally,
a curve of the evolution of both total satisfaction values
can also be observed in Figure 6. These curves show how
satisfaction is very similar in the beginning of each simulation
run, but as service lines increase and user agents miss their
flights, satisfaction is reduced, but always more so for non-
AmI agents. Values of average time also worsen when a
very high number of agents are included in the simulation.
Therefore both evaluation criteria (time savings and agent
satisfaction) show the potential benefits of using AmI when
there is a sufficiently high number of agents. According to ccl.
northwestern.edu/netlogo/docs/faq.html, the FAQ section
of the official website, we have tried 30 runs with the initial
parameter setup shown in NetLogo version 5, which runs
models in a scientifically reproducible way. Table 1 shows
a time-saving improvement of approximately 18%, and an
approximately 40% improvement in agent satisfaction for
agents using AmI. Other simulations with different initial
parameter setup fit approximately these patterns, while the

Figure 4 Description of elements in our NetLogo Model and
initial parameter setup.

Table 1 Results of 30 NetLogo executions of airport model

Name Average Standard Deviation

Total satisfaction − 21858.51 1415.67
Total-satisfaction AmI − 13596.34 1937.87
Average time 145.31 7.26
Average time AmI 122.87 4.93
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same number of AmI and non-Ami agents (50% each) parti-
cipate in the simulation (Figures 5 and 6).

5. Conclusions

In this contribution we looked forward to estimate the potential
benefits of using an AmI application of agents already defined by
us in an airport domain. Since we have previously suggested an
agent architecture, an ontology and a 12-step protocol to provide
AmI services in such a domain, we were interested in transform-
ing such issues into a simulation that could easily visualize
and compute such benefits when the number of agents is high
enough. Although we had a JADE implementation of this model
(Sanchez-Pi et al, 2008, 2010), we observed that a NetLogo
model could achieve these goals. Since our initial proposal
included FIPA messages and BDI reasoning agents, we used
both NetLogo extensions to satisfy both requirements. We also,
for simplicity sake, re-introduce an equivalent of our (small-
sized) ontology into NetLogo instead of using an external already
defined protege ontology. Although initial data in simulations are
generated randomly, and the model is just an approximation of
real-world airports, initial parameters allow representation of both
small and large airports through different values in the number of
boarding gates, shops, check-in counters, baggage belts, and so
on. The definition of this case of use opens up an interesting way

to evaluate agent approaches dedicated to AmI, which is a
significant contribution to the final development of AmI. In spite
of the interaction complexity (12 step protocol
to provide services in AmI), we use a very limited number of
options, so the internal reasoning of agents is very straightfor-
ward, which is a limitation imposed by NetLogo simplicity. But
this platform allows testing the consequences of using different
interaction protocols when the number of involved agents is high,
ignoring or simplifying the computational overhead that BDI
reasoning and FIPA protocols impose over other alternative agent
implementations. Our proposal addresses the three most common
shortcomings of AmI simulations according to (Serrano et al,
2014):

● simulations are closed, and can not be parameterized

● experiments are not reproducible

● source code is rarely given

These simulation results help us to establish and quantify the
potential benefits of using AmI. It also provides us with an estimate
for an airport scenario, where we should put the effort depending
on if it is useful to use AmI for in this kind of scenario.
Experiments and graphics resulting from computing multiple runs
with equal numbers of each agent type could lead us to conclusions
about the possible relevance of using the AmI facilities in this
environment. Therefore, through a context-specific model we have
measured the benefits of using AmI; this evaluation task is
innovative, particularly because it is done without oversimplifica-
tion, which would require removing BDI or FIPA in our model. As
future work, we would like to include experiments with different
agent system architectures, and a very different population compo-
sition (the proportion of AmI versus NonAmI agents) for this
airport scenario. In addition, we plan to characterize agents in a
richer way by including such features as: excitement, anxiety,
urgency, and fatigue, together with types of agents different from
ingoing/outgoing passengers: staff, tourists, business people,
groups, and so on. Finally, more complex airport maps based on
real airports could increase the realism of the simulations.
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