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Abstract—This work presents a multi-agent-based computa-
tional model of an artificial fractional reserve banking system.
The model is implemented in NetLogo. The computational ex-
periments and simulations we performed to analyse the proposed
model show that different scenarios can lead to bank insolvency.
We show that both the minimum reserve rate and the loss of
confidence have large contributions to the insolvency of a bank,
suggesting them as likely destabilizing economic forces driving
the dynamics of the model.

Index Terms—agent-based model, agent-based simulation, BDI
agents, fractional reserve banking, NetLogo.

I. INTRODUCTION

A
GENT-BASED models (ABMs) are computational mod-

els consisting of a set of autonomous, self-driven agents

that exhibit complex behaviours emerging from their inter-

actions rather than from the complexity of the individual

agents. ABMs are usually simulated in frameworks specially

developed for these purposes [1]. They have already been

applied to the study of emergent phenomena in a variety of

domains that include social, political, and economic sciences.

ABMs have several interesting properties. Among them are

the following: they are relatively easy to implement, are very

practical for analysing the evolution of the simulations step by

step, and can show emergent properties that could be difficult

to predict. By stepping the simulations, it is possible to analyse

the emergence of stylised facts and new equilibrium states, as

well as the conditions under which they occur. For example,

it is possible to analyse the emergence of pernicious domino

effects, which may be achieved by increasing the degree of

interdependence between the agents. The domino effects are

of special interest to the analysis of financial fragility, in

particular bankruptcies cascades, due to the intricate structures

of liabilities among heterogeneous agents.

One of the goals of the ABM we present in this paper is

to describe a methodological tool that can reproduce some of

the stylised facts in fractional reserve banking (FRB) systems.

Fractional reserve banking1 is a banking system “in which

banks hold only a fraction of their deposits in reserves, so that

the reserve-deposit ratio is less than 1” [2]. In other words,

some of the deposits are further used by the banks to be

loaned out at interest-earning rates to other parties. Yet FRB

1Also known as fractional deposit lending.

has received a lot of criticism. For example, there are studies

that show the viability of ending fractional reserve banking,

as is the case of the FRB in Iceland [3].

Why then a computational agent-based model to simulate

FRB? We believe that understanding FRB better could be one

of the most important outcomes. Simulating artificial scenarios

could help suggesting possible improvements or new policies.

This is especially important for scenarios that could eventually

be avoided if anticipated by a computational economic model

for FRB. The FRB agent-based model presented in this paper

can then be used to analyse possible scenarios that arise from

evaluating different initial parameter settings of the model. The

major purpose of the model is to provide artificial ways to

represent and to simulate the impact of the fractional reserve

banking system on a time period. It defines a very simple

modern banking world that is, by no means, an example of

real bank operations or of federal restrictions or monetary

exchanges. Instead, it could serve as a basic playground

setting, for example, to drive the policies and behaviours of

banks before testing their validity in the real world. It could

also be useful to find out the sufficient conditions for a banking

system to become fragile and unstable.

II. RELATED WORK

Traditional simulation approaches mainly use historical data

[4] to analyse the interbank payment interactions. For example,

Bedford, Millard, and Yang apply some stochasticity to test

different bank behaviours under different hypotheses on the

operational rules [5]. They propose a simulation-based frame-

work to analyse large-value payment systems for a variety of

worst-case scenarios. The framework shows many similarities

to the stress-testing methods that are used to evaluate the

robustness of banking systems to financial shocks.

Other researchers have used computer simulations to anal-

yse interbank lending for scenarios with homogeneous and

heterogeneous agents. Iori, Jafarey, and Padilla [6] show that,

if the banks are homogeneous in size and risk exposure, then

the interbank market has strong effects to avoid cascades and

stabilise the system. However, if the agents are heterogeneous,

then the system may present some cascade effects.

Modern simulation approaches like ABM have also been

used to study economic and social systems, where the main
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idea is to describe the behaviour of the agents in the system

and to reconstruct the aggregate behaviour by simulating their

interactions. Also, some works allow behaviour adaptation

based on changes in the different scenarios [7]. By this means,

ABM is a methodology bringing together verbal descriptions

of component systems and equation-based models [8]. In

particular for our investigations, we are interested in ABM

for analysing the credit, liquidity, and operational risks of

settlement systems. In this type of system, banks are modelled

as software agents that follow some behavioural rules and act

independently, which leads to stylised facts that result from

their interactions in the simulated world.

Simulation tools like StartLogo have also been used to

simulate behavioural rules for banks in Real Time Gross

Settlement systems. Arciero and co-authors present a model

with a money market [9] which, after a critical event, either

blocks or limits the activity of the bank. In their model,

banks are perfectly informed on all payment requests. Thus,

when delays in payments start accumulating, some banks start

adjusting their expectations accordingly until the turbulence

spills over in the market, needing the intervention of the central

bank.

III. AN AGENT-BASED COMPUTATIONAL MODEL FOR

FRACTIONAL RESERVE BANKING

A computational model that describes an FRB system using

ABM was introduced in a previous work [10]. The model

basically consists of three main groups of artificial entities

that are simulated by three types of agents, i.e., depositors

or investors, debtors or borrowers, and banks, which interact

through communication in a multi-agent system. When com-

pared to the approach of Mallet of simply managing a list of

accounts with deposits and loans [11], our model differs in

that it simulates not only the bank behaviour, but also other

parties and the interactions involved. In this paper, we focus

on initial experiments with our model rather on extending it.

Each agent in our model pursues different interests. They are

modelled in NetLogo,2 a multi-agent programmable modelling

environment [12], by following the BDI paradigm [13]. In

other words, they are artificial agents with beliefs (B), desires

(D), and intentions (I) that are defined using the NetLogo BDI

add-on [14].

All agents follow a deliberation process that determines

their subsequent actions and interactions with other agents. For

example, depositors aim to create as much capital as possible

without running the risk of losing their assets due to insolvency

of the bank. They can retrieve the entire deposit or a specific,

lower amount. They can also deposit money or do nothing.

Figure 1 shows the deliberation process of a depositor agent.

After updating her knowledge about the world and depending

on both her preferences and trust in the bank, a depositor

decides on whether to deposit money or to retrieve it, partially

or totally.

2Jonathan Wiens implemented the first version of the NetLogo model. Eric
Faustmann and Damian Rhein extended it.

Fig. 1. Deliberation process of the depositor agent. PVS: personal value
scale.

Depositors act depending on their own personal value scale.

It would not be reasonable for a depositor to deposit 80% of

her on-hand cash into a bank she has 10% of trust in, for

instance. Other variables influence the decision process, too,

like the time preference p, the current capital C, the deposit

interest rate β, and the trust t in the bank. Algorithm 1 shows

the pseudo-code that drives the depositors’ actions, where D

is the amount to deposit, W is the amount to withdraw, and

S is the current deposits or savings in the bank. If confidence

in the bank is lost, i.e., the trust in the bank is less than 30%,

then a depositor might withdraw her entire deposits. She might

deposit money, however, if the trust has a greater value and

depending on both the time preference (a random parameter

to simulate the possibly non-deterministic character of each

agent’s operations) and the interest rate.

Debtors or borrowers behave similarly, only that they have

other local variables as well as actions in their repertoire,

like borrowing a specific amount of money from the bank.

The bank agent serves as a contact partner for depositors

and debtors. It accepts or rejects requests from the agents

depending on its own state. For example, a bank would award

no credit to debtors if its reserves fall below the minimum

permissible reserve amount because otherwise it could lead to

insolvency. All agents update their information and knowledge

about the world, i.e., their beliefs, iteratively, which determines

the construction of new desires and intentions that are trans-

formed in later actions.

IV. EXPERIMENTAL SETTINGS

We are interested in finding which parameter values lead

to either bank insolvency or to a stationary scenario with no

insolvency of the bank, over iterations.
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input : Incoming messages IM

output: Action a

1 begin

2 process messages IM ;

3 update beliefs;

4 update desires;

5 if 0.5 ≤ t ≤ 1 then

6 D = C · (p+ β);
7 else if 0.3 ≤ t < 0.5 then

8 W = S · (1− p);
9 else

10 W = S;

11 end

12 update intentions;

13 a = selectBestOption();
14 return a;

15 end

Algorithm 1: Depositor agent: Pseudo-code of the deliberation

process at every iteration.

A bank becomes insolvent when its reserves are lower than

the money one or more depositors want to withdraw back

from their deposits. Such illiquid state scenarios are reached

when both the trust of the depositors decreases, leading to

withdrawals, and the reserves of the bank are lower than the

withdrawals. Intuitively, the following three scenarios could

lead to an illiquid state: (i) the bank does not invest at least

some part of the deposits and converts them into profits from

the loan interests to at least cover the deposit interests; (ii) the

trust of the debtors decreases so that they do not want to get

a loan. Thus, the profits of the bank would decrease and the

bank will not be able to pay the deposit interests back; (iii)

the bank uses a large part of the reserves but even a small

withdrawal from a depositor can lead to an insolvency of the

bank.

In order to analyse these scenarios, we first perform three

computer experiments, i.e., E1, E2, and E3, where we change

the values of both the minimum reserve rate and the average

loss of confidence rate parameters, while leaving the rest of the

parameter fixed, which are: number of depositors (5), number

of debtors (5), average income (2000), start capital (5000),

starting loan (credit) interest (10%), starting deposit interest

(0.2%), and average win of confidence rate (30%). See Table

I for those parameter values that differ among the experiments.

TABLE I
PARAMETER VALUES DIFFERING IN ALL EXPERIMENTS E1, E2, AND E3.

minimum average loss

Experiment reserve rate of confidence rate

E1 1% 30%
E2 1% 50%
E3 5% 30%

V. RESULTS AND DISCUSSION

Different experimental results lead to the insolvency of the

bank because of the scenarios mentioned in Section IV. We

start by investigating the role of the average loss of confidence

rate in the dynamics of the model. Figures 2 and 3 show an

example of the evolution of the money warehouse receipts

and the reserves over some iterations for an average loss of

confidence rate of 30% and 50%, respectively. Note that in

Figure 2 both the average loss of confidence rate and the

average win of confidence rate are equal, whereas in Figure

3 the average loss of confidence rate is greater than the one

depicted in Figure 2.
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Fig. 2. Experiment E1 with an average loss of confidence rate of 30% and
a minimum reserve rate of 1%.
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Fig. 3. Experiment E2 with an average loss of confidence rate of 50% and
a minimum reserve rate of 1%.

It can be seen that an insolvency is more probable when

the loss of confidence increases, leading to a lesser number of

iterations needed for a bank to become insolvent. Thus, when

the average loss of confidence is greater than the average win

of confidence, then both the depositors and the debtors lose

their trust in the bank. Furthermore, if the reserves are low

because of a large loan and the bank is not able to pay a

deposit back, then all depositors start trying to withdraw their

deposits, leading to an insolvency of the bank. This can be
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seen in Figures 2 and 3 at the end of the simulations starting

at iteration 220 and 50, respectively.

Furthermore, the larger the difference between the average

loss and the win of confidence, the faster the depositors start to

withdraw their deposits and the faster the debtors stop asking

for loans from the bank. Note also that if the average loss

of confidence is too great, then the difference between the

deposits and the reserves can be so small that the bank may

reach a state in which it does not become insolvent but neither

does it have any depositors or debtors any more.

Figure 4 shows an example of the evolution of both the

money warehouse receipts and the reserves for some iterations

for the computer experiment E3 with a minimum reserve rate

of 5%. When comparing this result with the one from the

computer experiment shown in Figure 2 where the minimum

reserve rate is 1%, we can observe that the amount in Euros

is greater in the computer experiment with higher minimum

reserves (i.e., the one from Figure 4). It can be seen that the

reason for the bank insolvency was the loss of confidence of

a single depositor, which led to a cascade of confidence loss

and withdrawals from all other depositors.
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Fig. 4. Experiment E3 with minimum reserve rate of 5% and an average
loss of confidence rate of 30%.

We performed more computer experiments with larger

minimum reserve values leading to fewer bank insolvency

scenarios. The larger the minimum reserves are, the fewer

the cases where the bank is not able to pay the withdrawals

of the depositors. Therefore, it is not probable that a bank

becomes insolvent unless a large number of depositors decide

to withdraw their deposits at the same time.

These computer experiments also show that the minimum

reserves do not have a great influence in the model. The

reason for this is that there are not so many depositors.

Thus, each agent has a large influence in the dynamics of

the model. In this context, the loss of confidence of a single

depositor can only lead to a withdrawal of 10 to 20% of the

deposits in the bank. Furthermore, it was observed that the

bank rarely becomes insolvent when the confidence loss has

values between 30 and 60% and the re-utilised percentage of

money is between 10 and 40%. It was also observed that, for

a confidence loss between 30 and 40%, the bank becomes

insolvent when a depositor withdraws her deposits just after a

loan was granted.

VI. CONCLUSIONS

The results of the computer experiments show that the

variable that has the greatest influence in the dynamics of the

model is the average loss of confidence. This variable is deter-

mined randomly in the current version of the model. Further

work is to consider different trust reputation mechanisms to

make it adaptable, together with the average win of confidence,

according to the number of deposits and loans over time.

Moreover, it would be of interest to further investigate the

influence of the number of depositor and debtor agents in the

model, i.e., whether the dynamics of the model scale in size

or not. With respect to the bank agent, it would be interesting

to analyse the impact of excluding external sources that would

help a bank to pay to the depositors and keep it solvent.
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