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ABSTRACT 
The importance of Computational Thinking (CT) as a goal 
of science education is increasingly acknowledged. This 
study investigates the effect of computationally-enriched 
science curriculum on students’ development of CT 
practices. Over the course of one school year, biology 
lessons featuring the exploration of NetLogo models were 
implemented in the classrooms of three 9th grade biology 
teachers at an urban public secondary school in the United 
States. One-hundred thirty-three biology students took both 
pre- and post-tests that were administered at the beginning 
and end of the school year. The students’ responses to 
relevant assessment items were coded and scored using 
rubrics designed to evaluate their mastery of two learning 
objectives relating to modeling and simulation practices. 
The first learning objective was to explore the relationship 
between a system’s parameters and its behavior. The 
second learning objective was to identify the simplifications 
made by a model. Each item’s pre- and post-test scores 
were compared using a Wilcoxon signed-rank test. Results 
indicate a statistically significant improvement with respect 
to the second of the two learning objectives, suggesting that 
the computationally-enriched biology curriculum enhanced 
students’ ability to identify the simplifications made by a 
model. 

KEYWORDS 
Computational Thinking, STEM Education, Learning 
Objectives, Curriculum, Assessment.  

1. INTRODUCTION 
The importance of Computational Thinking (CT) as a goal 
of science education is increasingly acknowledged (Quinn, 
Schweingruber, Keller, 2012; Wilensky, Brady & Horn, 
2014). Teaching CT in the context of science not only 
presents students with a more authentic image of science as 
it is practiced today, it also increases access to powerful 
modes of thinking and marketable skills for many careers 
(Levy & Murname, 2004). It is estimated that by 2020, one 
out of every two STEM jobs will be in computing (ACM 
Pathways Report 2013). However, students from groups 
that have been historically underrepresented in STEM 
fields (such as women and racial minorities) are less likely 
to enroll in computer science classes (Margolis, 2008; 
Margolis & Fisher, 2003) and thus are not traditionally 
exposed to CT practices. We believe we can improve 
access for all students, especially those underrepresented in 
CS, by embedding CT practices in subjects such as 
biology, chemistry, and physics, which all high school 

students are expected to take. While this does not ensure 
that these students will be personally motivated to engage 
in our CT curriculum, it ensures that they will at least be 
exposed to CT practices and given the opportunity to learn 
about them.  
 
 

For the reasons given above, we believe that developing 
CT practices in the context of science subjects is a 
productive endeavor. However, the character of CT 
practices in the science disciplines is not yet well 
understood, nor is how to create curriculum and 
assessments that develop and measure these practices 
(Grover & Pea, 2013). To address this gap, our group has 
worked to explicitly characterize core CT practices as 
specific learning objectives and used these to guide our 
development of science curriculum and assessment. We 
developed our learning objectives upon a theoretical 
taxonomy of CT in STEM that our group previously 
proposed (Weintrop et al., 2016). The taxonomy consists of 
four strands of CT practices: Data Practices, Modeling and 
Simulation Practices, Computational Problem Solving 
Practices, and Systems Thinking Practices. We translated 
elements from each strand of the taxonomy into learning 
objectives through a process involving interviews with 
computational scientists and feedback from high school 
science teachers.  
 

The general aim of our larger research agenda is to address 
the question: “Can engaging in computationally-enriched 
science curriculum help students develop CT practices?” In 
the present study, we address a more focused version of 
this question and investigate whether engaging in three 
computationally-enriched biology units over the course of 
the school year helped participant students develop CT 
practices, specifically two practices within the Modeling 
and Simulations strand of our taxonomy. Below, we 
describe our study design and analytical approach, then 
present results from a comparison of students’ scores for 
pre- and post-assessments. Our results provide support for 
our claim that computationally-enriched science curriculum 
can foster students’ development of particular CT practices. 

2. STUDY DESIGN 
We investigated our research question by analyzing data 
from the fourth iteration of a design-based research cycle 
(Collins, Joseph, Bielaczyc, 2004). The implementation 
spanned the 2015-2016 school year and was tested in three 
9th grade biology classrooms at our partner school. Students 
were given a CT practices pre-test at the beginning of the 
school year and a CT practices post-test at the end of the 
school year. Over the course of the school year they 
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participated in three CT science units, each unit 
approximately four days long. We investigated the role of 
the CT science units in students’ development of particular 
CT practices by looking for statistically significant gains in 
scores for particular items from pre- to post-test. 

2.1. Participants 
We partnered with a public secondary school (serving 
grades 7 – 12) in an economically depressed neighborhood 
in a large city in the Midwestern region of the United 
States. The school was selected on the basis of the 
willingness of its teachers and students to participate in our 
study. The size of the school was typical for an urban 
public secondary school, with approximately twelve 
hundred students enrolled. The majority of the students at 
the school are considered to be of racial minority within the 
United States (71.1% Black, 24.5% Hispanic, 1.6% Asian, 
.3% American Indian, .2% Pacific Islander, .9% Bi-Racial, 
1.4% White), with sixty-two percent from low income 
households. The school is characterized as selective-
enrollment, meaning that the student population is 
academically advanced and highly motivated. We 
addressed our research questions by analyzing a selection 
of the pre- and post-test responses given by participating 9th 
grade biology students. A total of 133 of these students, 
distributed across three biology teachers, took both tests. 
Due to time constraints, a number of these students did not 
complete the entire assessment. Ten students did not 
complete the assessment item measuring learning objective 
1 and 24 did not complete the assessment item measuring 
learning objective 2; these students’ responses were 
therefore not included in the analyzed datasets.  

2.2. CT Science Lessons 
The biology students participated in three computationally-
enriched biology units over the course of the school year. 
Each unit took approximately four school days and 
emphasized the exploration and manipulation of 
computational models of scientific phenomena or concepts. 
The first unit was on predator-prey dynamics and 
ecosystem stability. For this unit, students explored 
population dynamics in a simulation of an ecosystem 
consisting of three organisms (grass, sheep, and wolves) 
(Wilensky, 1997b). Students investigated the population-
level effects of parameters for individual organisms (such 
as initial population and reproduction rate) by running the 
simulation with different values for each organism. 
Through their exploration, the students learned about the 
complex population dynamics that emerge from the 
interactions between individual organisms.  The second 
unit was on AIDS. For this unit, students explored a model 
that simulated the diffusion of the infectious disease 
through a population (Wilensky, 1997c). Students 
investigated the effects of parameters for individual 
interactions (such as the probability of individuals to form 
a couple, and the probability of the disease transfer 
between partners) on the rate of spread of the disease. The 
third unit was on genetics. For this unit students explored a 

model that allowed them to change mating rules in a 
population of fish. Students investigated how changing 
parameters such as life span and mating choice could bring 
about changes in the overall allele frequencies in a 
population of fish. All units were meant to help students 
develop expertise regarding learning objectives for 
Modeling and Simulations Practices by engaging in 
science content through the exploration of NetLogo 
(Wilensky, 1999) simulations. NetLogo simulations were 
chosen because the agent-based modeling environments 
make complex systems phenomena (such as those featured 
in the biology lessons) more intuitively accessible 
(Wilensky, 2001). Additionally, the NetLogo user interface 
makes transparent the relationship between a model’s code 
and the phenomenon it simulates. This makes NetLogo a 
powerful tool for scaffolding students’ transition from 
consumers, to designers and builders of computational 
models. In order to help students develop a flexible set of 
CT practices, other CT-STEM units feature simulations 
built in modeling environments such as Molecular 
Workbench (Concord Consortium, 2010) and PhET 
(Perkins et al., 2006) and introduce students to a range of 
computational tools for data analysis and problem solving.  

2.3. CT Assessments 
The pre- and post-tests were designed to evaluate students’ 
mastery of CT practices. In this report, we present results 
concerned with two particular learning objectives within 
our Modeling and Simulations Practices strand. The first 
learning objective falls under the sub-strand element Using 
Computational Models and states that a student should be 
able to “explore a model by changing parameters in the 
interface or code.” This is a very basic skill but it plays an 
important role in students’ (and scientists’) abilities to learn 
about the relationship between particular parameters and 
system behavior at the macro-level. The second learning 
objective falls under the sub-strand element Assessing 
Computational Models and states that a student should be 
able to “identify the simplifications made by a model.” 
This learning objective is important to students’ 
epistemological development, as it relates to their 
understanding of a computational model as a tool that is 
both powerful and limited with regards to the construction 
of new knowledge. 
Both pre- and post-tests required students to interact with 
computational simulations. For the pre-test, students 
interacted with a simulation (shown in Figure 1, below) 
that modeled climate change and showed the relationship 
between temperature and amount of CO2 in the atmosphere 
(Tinker & Wilensky, 2007). For the post-test, students 
explored a simulation (shown in Figure 2, below) that 
modeled the relationship between the pressure of a gas and 
its volume and number of particles in a sealed environment 
(Wilensky, 1997a; 2005). 
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Figure 1. Screenshot of pre-test simulation modeling the 
relationship between temperature and atmospheric CO2 

levels. 

 
Figure 2. Screenshot of post-test simulation modeling the 
relationship between the pressure of a gas and its volume 

and number of particles. 
To assess students’ abilities to explore a model by 
changing parameters in the interface or code, we analyzed 
their responses to test items (quoted below) that asked them 
to attend to the relationships between adjustable parameters 
and system-level characteristics. In order to assess 
students’ abilities to identify simplifications made by a 
model, we analyzed their responses to test items that asked 
them for the ways in which the simulations differed from 
the real-world. These assessment items were selected to 
investigate students’ mastery of the same learning 
objectives across two very different computationally 
modeled phenomena. 

2.4. Data Analysis 
We used a combined top-down (learning objective driven) 
bottom-up (data driven) approach to create rubrics for 
evaluating students’ responses to pre- and post-test 
questions and characterizing their mastery of both learning 
objectives.  

2.4.1. Learning Objective 1 
For the pre-test, in the context of the greenhouse gas 
simulation, students were asked to explore the relationship 
between a system’s parameters and its behavior by 
changing a particular parameter and reporting on the 
resulting system-level behavior. In particular, they 
responded to the prompt: “Set cloud coverage to 0%. Take 
some time to experiment with different settings for the 
‘CO2-amount’ slider. What happens to the temperature if 
you increase the amount of the CO2 in the model?” For the 
post-test, in the context of the gas-law simulation, students 
were asked to explore the relationship between a system’s 
parameters and behavior by changing parameters to get a 
specific result. In particular, they responded to the 
question: “What values for container size and number of 
particles will result in the lowest pressure in the container? 
What steps did you take to come up with these values?”i  
We examined students’ pre- and post-test responses, 
sorting responses into categories based on similarities that 
were relevant to our focal learning objective. Four 
categories emerged that characterized response types across 
both pre- and post-test responses. These categories are 
Noticing Parameter-System Relationships, Including 
Explanatory Factors, Comparing Across Trials, and 
Correctness.  
These categories are outlined, described and illustrated 
with examples from the data in Table 1, below. We scored 
students’ responses by awarding one point for each 
category included in their response and taking the sum of 
these points. This resulted in scores ranging from 0-3. 

Table 1. Pre- and post-test rubric for analyzing students’ 
responses and characterizing their ability to explore a 

model by changing parameters in the interface or code. 

 Student Example  

Relationships 
Response describes relationship between system 
parameters and macro-level patterns.   

Pre-Test “The temperature increases.” 

Post-Test “I slid the wall-position to its maximum and 
the number of particles to its minimum.” 

Explanatory Factors 
Response provides some explanation for relationship 
between system parameters and macro-level patterns. 

Pre-Test “IR light does not get a chance to go into the 
sky because it is blocked by CO2.” 

Post-Test 
“A bigger area and less particles shouldn't 
produce a large amount of pressure since it’s 
a lot of space for the particles.” 
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Comparison 
Response compares data across multiple simulation trials.  

Pre-Test 

“When I increase the CO2 amount there 
seem to be IR light flying all over the place. 
But when there are smaller amounts of CO2 
molecules the IR light have a better chance 
of going straight into the sky.” 

Post-Test 

“To come up with these values I first tried 
putting the number of particles and the 
container size at its max. After that, I tried 
the number of particles at its minimum and 
the container size at its maximum.” 

Correctness 
Response correctly addresses the assessment prompt.  

Pre-Test “The temperature increases.” 

Post-Test “Number of particles: 25 Wall position: 96” 

 

2.4.2. Learning Objective 2 
As part of the pre-test, students were asked to identify the 
simplifications made by the greenhouse simulation. As part 
of the post-test, students were asked to identify the 
simplifications made by the gas-law simulation. For both 
tests, they responded to the question: “All computational 
simulations are only approximations of reality. What are 
some of the simplifications of this simulation that make it 
different from the real world?” 
We examined students’ pre- and post-test responses, 
sorting responses into categories based on similarities that 
were relevant to the learning objective we were analyzing. 
Six categories emerged that characterized response types 
across both pre- and post-test responses. These categories 
are General Issues, Representational Issues, Controllability, 
Completeness, Procedural Limitations, and Off-Task. They 
are arranged in order of increasing sophisticationii, 
described and illustrated with examples from the data in 
Table 2, below. We scored students’ responses by awarding 
them the point-value of the highest category included. 
“Off-Task” (of point-value zero) was given to responses 
that did not address the assessment item, or consisted of “I 
don’t know.” Scores ranged from 0-3. 
Two researchers analyzed students’ responses to the two 
assessment items for both pre-and post-tests. They coded 
responses (identifying the categories presented in the 
rubrics) and then scored them. The researchers’ inter-rater 
reliability for the pre-test was at 97% for the item 
measuring the first learning objective and 90% for the item 
measuring the second learning objective. Inter-rater 
reliability for the post-test was at 95% and 80%, 
respectively. 

Table 2. Pre- and post-test rubric for analyzing students’ 
responses and characterizing their ability to identify 

simplifications made by a model. 

 Student Example  

General Issues – Score: 1 
Response refers to general, as opposed to specific, 
inaccuracies or missing factors.   

Pre-Test “In reality, other factors could come into 
play rather than just CO2 and clouds.” 

Post-Test “Inaccuracy in particles and wall position 
can make it different from the real world.” 

Representation Issues – Score: 1 
Response refers to representational limitations of the 
model. 

Pre-Test “Obviously, sunlight is not a bunch of little 
sticks raining down.” 

Post-Test “It’s not actually life size.” 

Controllability – Score: 2 
Response refers to the existence of control over factors 
in the model that one does not have control over in real 
life.  

Pre-Test “Because you can control how much CO2 
and cloud coverage there is.” 

Post-Test 
“In real life, you cannot add or subtract 
molecules nor can you adjust the wall 
positioning.” 

Completeness – Score: 2 
Response refers to specific elements or factors that are 
missing from, or extraneous to, the model.  

Pre-Test “There are humans on earth and humans 
also can add to the amount of heat.” 

Post-Test 
“The real world, does not have this many 
boundaries and an infinite number of 
particles.” 

Procedural Limitations – Score: 3 
Response refers to interactions, behaviors, or 
relationships within the model that differ from real life.  

Pre-Test CO2 might not speed up that much when it 
absorbs IR light. 

Post-Test Particles don’t travel in and out of room in 
this simulation, when in real life they do. 
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To test whether the intervention played a role in their 
development of CT practices, students’ scores for each 
item on both pre- and post-tests were compared using a 
Wilcoxon signed-rank test. The findings of this analysis are 
reported below. 

3. Findings 
3.1. Learning Objective 1 
Students’ average score for the pre-test item measuring 
their ability to explore a model by changing parameters in 
the interface or code was 2.03. Their average post-test 
score was 2.19. The p-value obtained using the Wilcoxon 
signed-rank test was 0.23 (V = 1486). The difference in 
student scores is therefore not statistically significant and 
we cannot make the claim that engagement in our 
curriculum helped students improve their CT skills with 
regard to this learning objective.  

In addition to comparing students’ pre- and post-test scores 
for this learning objective, we compared the frequencies of 
categories of ideas that appeared in students’ pre- and post-
test responses. Examination of the bar chart below reveals 
that during the pre-test, many students were concerned with 
macro-level effects of changing parameters, while at the 
time of the post-test, many more students referred to 
explanatory factors in their responses. This suggests they 
looked more closely at the model and tried to understand 
the interactions at the micro-level that explained the macro-
level phenomenon. While the comparison of pre- and post-
test scores indicates that students are not necessarily 
developing sophistication regarding their ability to explore 
a model, the changing frequency of categories gives us 
insight into one specific way students may in fact be 
developing expertise. 

 
Figure 3. Frequencies of categories included in students’ 
responses to the pre- and post-test items assessing their 

mastery of learning objective 1. 

3.2. Learning Objective 2 
Students’ average score for the pre-test item measuring 
their ability to identify simplifications made by a model 
was 1.39. Their average post-test score was 1.63. The p-
value obtained using the Wilcoxon signed-rank test was 
0.02 (V = 647.5). The difference in student scores is 
therefore statistically significant (at the 5% significance 

level) and this supports our claim that engagement in our 
curriculum helped students improve their CT skills with 
regard to this learning objective.  

In addition to comparing students’ pre- and post-test scores 
for this learning objective, we compared the frequencies of 
categories of ideas that appeared in students’ pre- and post-
test responses. For ease of coding, we combined categories 
of the same score. This is reflected in the categories shown 
in the bar chart below. Examination of this bar chart 
reveals that during the pre-test, many students reported 
general or representational simplifications, whereas at the 
time of the post-test, this number decreased and the number 
of students reporting controllability or completeness as a 
limitation increased.iii The number of students reporting 
procedural simplifications also increased. While the 
comparison of pre- and post-test scores indicates that 
students are developing sophistication regarding their 
ability to identify simplifications within a model, the 
changing frequency of categories gives us insight into the 
specific ways in which students are becoming more 
sophisticated. 

 
Figure 4. Frequencies of categories included in students’ 
responses to the pre- and post-test items assessing their 

mastery of learning objective 2. 

4. Discussion 
This study extends our group’s previous work by 
translating our theoretical taxonomy into learning 
objectives that can be used to guide the design of 
curriculum and assessment. The study makes an empirical 
contribution by presenting evidence that engagement in our 
CT-STEM curriculum helped participating students 
develop their ability to identify simplifications made by 
computational models. Our data also gives us insight into 
how students might develop their ability to explore a 
computational model. Toward this, we will conduct 
qualitative analysis of particular students and examine 
individual developmental trajectories. Our next steps also 
include refining our pre- and post- assessment items so that 
they are more closely aligned with each other, and with our 
learning objectives. As well, we are refining our curriculum 
(across the science subjects) so that it is more closely 
aligned with our learning objectives and assessment items. 
This refinement includes creating more opportunities for 
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students to explicitly reflect on and discuss their individual 
ways of exploring models, as well as the simplifications 
they notice in different models. 
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i It is important to note that while both items are concerned 
with students’ abilities to learn about a parameter’s 
influence on a system’s behavior, they are inversely 
structured. While the pre-test item instructs students to 
change a parameter and report its effect on the system, the 
post-test item instructs students to change parameters until 
they achieve a specified system behavior. We argue that 
while they are different in this way, both items are 
concerned with the causal relationship between parameter 
values and system-level behavior and are therefore 
comparable assessments of students’ abilities to explore a 
model by changing parameters in the interface or code. 
ii General comments about accuracy and representational 
limitations seemed to be the easiest to make with attention 
to mere surface-features. These simplifications were 
therefore awarded the lowest score (one point). The 
completeness of the model and control given to its various 
parameters seemed to require more careful consideration of 
the interface and comparison with the real-world. These 
simplifications were therefore awarded a slightly higher 
score (two points). Finally, comments about the procedural 
correctness of behavior and interactions within the model 
required students to run the model and track cause and 
effect relationships between elements at the micro-level 
and comparison of this with scientific laws or theories. 
These simplifications were therefore awarded the highest 
score (three points). 
iii This point is especially interesting given that the gas-law 
simulation is just as unrealistic, regarding the visual 
representation of the system, as the greenhouse effect 
model. 


