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This paper reports on the status of on-going research 

regarding the development of a Spatio-Temporal Socio-

Technical Risk Analysis (ST-SoTeRiA) methodology for 

Emergency Response (ER) modeling. ST-SoTeRiA is an 

approach to explicitly incorporate spatial and temporal 

dimensions, while connected with Probabilistic Risk 

Assessment (PRA) logic, into the simulation of socio-

technical failure mechanisms. The probabilities required 

for executing PRA are estimated by running a spatio-

temporal platform that integrates deterministic simulation 

methods with probabilistic techniques. In this paper, a case 

study for fire ER demonstrates one of the building blocks 

of the ST-SoTeRiA methodology in which Agent-Based 

Modeling (ABM) technique is combined with physical 

hazard progression simulation in a shared Geographic 

Information System (GIS)-based spatial platform, as an 

input to PRA scenarios. A multi-method coupling between 

physical progression models and human response models 

in a spatio-temporal platform is essential to: (i) better 

characterize dynamic behaviors in ER, given location-

specific hazards, (ii) better account for uncertainty, and 

(iii) better inform decision making in ER contexts. 

 

 

I. INTRODUCTION 

 

PRA is a systematic risk methodology and a key pillar 

of safety policy setting and regulation for the U.S. Nuclear 

Regulatory Commission (NRC), under the title of Risk-

Informed Regulatory Framework.1 PRA results, as part of 

the regulatory framework, provide a risk-importance 

ranking to more efficiently allocate resources for 

inspections, maintenance, operation, design and 

regulation.2 For a nuclear power plant (NPP), PRA 

provides three levels of risk information including system 

risk (Level 1 PRA), containment risk (Level 2 PRA), and 

population and environmental risk (Level 3 PRA). Recent 

research and applications of PRA have mainly focused on 

Levels 1 and 2. Meanwhile, in Level 3 analysis, risk-

informed ER is one area that has not been adequately 

addressed and where progress has been slow.3, 4 Currently, 

ER oversight is performance-based (not risk-informed), 

which means that the standards and requirements for ER 

are prescribed without sufficient empirical data, 

comprehensive theory or methodologies that can justify the 

risk importance of one factor over another. This approach 

may not only create costly requirements to maintain all 

elements of ER for industry and the regulator, but also may 

eliminate the opportunity to implement highly-localized 

safety performance goals, thereby limiting progress in ER 

policy making.4 The lack of explicit incorporation of 

location-specific social, political, and community 

information in PRA models restricts the realism in risk 

estimates associated with highly complex socio-technical 

systems. To overcome these challenges, ER models should 

be advanced to: (i) explicitly account for risk-contributing 

socio-technical factors; and (ii) explicitly account for 

spatial and temporal variations of those important socio-

technical factors, which consequently affect the evolution 

of risk. To achieve these two goals, recent efforts by the 

authors have been focused on the development of (A) a 

macro-level Socio-Technical Risk Analysis (SoTeRiA) 

theoretical causal framework5 and (B) an associated 

methodology6 (i.e., ST-SoTeRiA) to operationalize and 

quantify the theoretical framework for ER modeling and 

applications. Reporting the current status of the ST-

SoTeRiA methodology is the focus of this paper.  

Nuclear disasters, such as Fukushima7, 8 and 

Chernobyl,9, 10 emerged from the dynamic interactions of 

social and technical contributing factors,11-15 making it 

clear that integrating physical and social causes of failure 

into a cohesive modeling framework is critical to prevent 

undesirable consequences of large-scale technological 

accidents. Organizational factors such as organizational 

culture, climate, leadership, structure, and human resource 

practices are widely recognized as key contributors to some 

of the world’s worst accidents.16-18 Over the past decade, to 

incorporate underlying social and organizational 

mechanisms into the PRA of complex technological 

systems,19-24 the SoTeRiA theoretical causal framework 

has been developed and is constantly being enhanced. 

SoTeRiA is a theoretical causal framework that explicitly 

integrates both the social aspects (e.g., safety culture) and 

the structural features (e.g., safety practices) of 

organizations into a technical system PRA model.5, 22 

SoTeRiA was developed mainly for the scope of one 

organization (e.g., an NPP) and its system-level physical 

consequences (e.g., core damage). In ER contexts, 

however, multiple organizations (e.g., the plant, offsite 

organizations and regulatory agencies) and the offsite 
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population are all involved in a dynamic, macro-scale 

environment. It is, therefore, important to capture the 

dynamic interactions among these regional system 

components. Recently, the authors of this paper have been 

expanding the scope of the SoTeRiA causal framework 

(Fig. 1) to a macro level to include the interrelated high-

level theoretical dimensions of Population Evacuation, 

Offsite Response Organizations (e.g., first responders/fire 

and police departments), and Critical Public Infrastructure 

(e.g., medical facilities, transportation networks) involved 

in ER scenarios. For additional details on the macro-level 

constructs being added to the original SoTeRiA, readers 

are referred to Pence et al.5, as the explanation of this 

theoretical framework is not the focus of the current paper.  

 
ER phenomena not only have characteristics of a 

socio-technical system; they are also spatially and 

temporally dependent. At the macro  (i.e., regional) level, 

time and space associated with social actions and inter-

organizational performance are critical in providing more 

accurate risk estimations in population response 

modeling.25, 26 The current inclusion of social and 

organizational factors in the existing Level 3 PRA tool 

used by the U.S. Nuclear Regulatory Commission (U.S. 

NRC), namely MELCOR Accident Consequence Code 

System, Version 2 (MACCS2)27 is not location-specific, 

explicit or dynamic.28 In an effort to depict the socio-

technical phenomena associated with time and space and to 

quantify the expanded SoTeRiA framework (Fig. 1), the 

authors have been developing an ST-SoTeRiA 

methodology (Fig. 2) that is capable of explicitly 

incorporating location- and time-specific socio-technical 

factors into PRA logic. Section II summarizes the 

foundations of the ST-SoTeRiA methodology and the 

status in the development of this methodology, specifically 

addressing the integration of Agent Based Modeling 

(ABM) –Geographic Information System (GIS) and 

physical progression models in ST-SoTeRiA; Section III 

introduces a case study for fire ER to demonstrate this 

integration in ST-SoTeRiA; Section IV provides 

conclusions and discusses future work. 

 

II. CURRENT PROGRESS ON DEVELOPING ST-

SOTERIA METHODOLOGY  

 

In PRA, the temporal dimension has been improved 

and is being explicitly considered in simulation-based 

techniques.29-31 The spatial dimension, however, is still 

implicitly considered. Though the consideration of space 

has very recently been expanded to be explicit for physical 

phenomena,32-37 it has not yet been developed for socio-

technical mechanisms. ST-SoTeRiA is the first approach to 

explicitly incorporate, while being connected to PRA logic, 

the spatial dimension (in addition to the temporal aspect) 

into socio-technical risk analysis. The original 

quantification methodology of SoTeRiA was developed for 

the scope of one organization by integrating System 

Dynamics (SD) and the Bayesian Belief Network (BBN) in 

PRA logic.20, 23 This integrated methodology was temporal 

but not spatial.  

 

II.A. The ST-SoTeRiA Methodology  

 

In general, PRA has two fundamental dimensions: (A) 

generation of the sequence of events (i.e., accident 

scenarios) and (B) estimation of failure probabilities 

associated with those events. Current PRA practice in the 

nuclear industry utilizes the static Event Tree/Fault Tree 

(ET/FT) approach with reliability data to address these two 

dimensions. This static approach has disadvantages, 

however, such as (i) the exact timing/sequence of events is 

not explicitly accounted for in the structure of the ET, and 

(ii) the status and behavior of the system lack influence on 

the likelihood of the top events. To overcome these 

limitations, a series of Dynamic PRA methodologies (also 

referred to as Simulation-based PRA) that employ time-

dependent simulation for modeling system elements (e.g., 

hardware, software, human actions) have been developed 

over the last three decades.38 As the static ET/FT approach 

has been widely used in the nuclear industry for forty years, 

the transition to fully-dynamic PRA requires a significant 

amount of effort and resources, making it impractical in the 

short term. Recently, the authors have made efforts toward 

the development of an integrated PRA (I-PRA) that can 

combine classical PRA with the dynamic progression of 

physical failure mechanisms32, 34, 39-41 while utilizing the 

existing plant-specific PRA at NPPs. 

In the I-PRA methodology, simulation-based methods 

have been used to estimate the probability of basic events 

in the plant-specific PRA. The ST-SoTeRiA methodology 

has been built upon the I-PRA framework and is advanced 

 
Fig. 1. Expanded macro-level SoTeRiA framework for 

Emergency Response 
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to allow for an explicit incorporation of time and space in 

the underlying phenomena of PRA basic events as well as 

for an explicit incorporation of time in PRA scenarios.  The 

estimation of probabilities associated with the basic and/or 

top events in PRA has been advanced from an “implicit” to 

“explicit” modeling of underlying failure mechanisms.6 As 

these models (i.e., models for hardware failure, human 

error or software fault) advance from implicit to explicit, 

the spatial and temporal dimensions are those which are 

being enhanced.6 With an increased use of advanced 

simulation models in PRA, the temporal and spatial 

insights gained from simulation results help provide more 

realistic probabilities of basic events, and consequently, 

provide a more accurate estimate of risk as a function of 

time and space. Therefore, a multi-level integration of 

simulation environments with PRA has been advanced in 

the ST-SoTeRiA methodology. Fig. 2 shows a schematic 

structure of the ST-SoTeRiA methodology tailored for an 

ER modeling application.6  

 
In this methodology, with respect to the “generation of 

sequence of events”, the Discrete-time Dynamic Event 

Tree (DDET) is selected to develop event sequences for ER 

scenarios at each point of time and location, given the 

occurrence of an Initiating Event (IE), such as radiation 

release from a severe accident at an NPP. With respect to 

the “estimation of failure probabilities” associated with the 

events in the risk scenarios (i.e., in DDET), the spatio-

temporal probabilistic simulation of underlying 

phenomena is integrated with PRA logic. Time-dependent 

conditional probabilities required for executing the 

temporal PRA logic are estimated by running the spatio-

temporal probabilistic simulations module, which is a GIS-

based platform integrating the deterministic simulation 

methods (e.g., SD, ABM) with probabilistic techniques 

(e.g., BBN) in a spatial environment. Uncertainty 

propagation is essential for making the deterministic 

elements of the ST-SoTeRiA platform probabilistic and for 

generating probabilities to be passed to the PRA logic. In 

order to estimate risk at each location and at each point in 

time, DDET quantification logic is used to estimate the 

frequency of failure of all potential scenarios associated 

with each point in time and space.6  

Due to the nature of socio-technical performance 

models, the integration of SD and BBN (SD-BBN)42 is 

necessary for ST-SoTeRiA. Mohaghegh has demonstrated 

this integrated modeling approach in applications for 

aviation maintenance performance.42 BBN can establish 

explicit probabilistic relations among elements of the 

model when objective data are lacking and the use of expert 

opinion is necessary. This, of course, is very important for 

the quantification of ER models that deal with the soft 

nature of human and organizational factors. However, 

BBN alone is inadequate for representing dynamic aspects 

such as feedback loops and delays. Therefore, the 

combination of SD with BBN empowers BBN with 

dynamic features.42 

The commonality among all ER elements is the shared 

spatial dimension. In the ST-SoTeRiA methodology, GIS 

will be the spatial platform for combining SD-BBN, ABM, 

and PRA logic. Agent-based models can be directly linked 

with GIS and have been used for modeling socio-technical 

systems,43 organizational mechanisms,44 individual 

decision making,45 urban dynamics,46 critical 

infrastructure,47 emergency response,48 and 

transportation.49 Although spatial dependencies are 

important for risk analysis,50 and GIS tools have been 

considered for determining the effects of multi-hazards 

(e.g., using seismic loss estimates from FEMA HAZUS-

MH51), the combination of GIS and ABM has not yet been 

integrated with PRA logic. More details on the ST-

SoTeRiA methodology and its quantification algorithm can 

be found in Bui et al.6 Sub-section II.B elaborates on the 

incorporation of ABM-GIS and the integration of ABM-

GIS with physical progression models into ST-SoTeRiA. 

Section III explains this integration using a fire emergency 

response case study. Future work will expand the case 

study to implement and demonstrate the entire structure of 

the ST-SoTeRiA methodology for ER modeling.    

 

 

 

 

Fig. 2. Schematic Representation of Spatio-Temporal 

SoTeRiA Methodology for Emergency Response 
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II.B. Incorporation of ABM-GIS and Physical 

Progression Models in ST-SoTeRiA 

 

ABM is a bottom-up modeling approach that 

originated in the late 1940s from the domain of Complex 

Adaptive Systems.52 Due to limitations in computational 

resources, it did not receive much attention among 

academic researchers until the 1990s. Some examples of 

agent-based models that became popular are Conway’s 

“Game of Life” model,53 and Thomas Schelling’s model of 

segregation.54 Applications of ABM in industry started 

since early 2000s and then became popular in various 

fields, e.g., ecology, biology, economics, social sciences, 

human behavior and movement. The purpose of this paper 

is not to include a comprehensive review of agent-based 

models across the wide spectrum of disciplines, but rather 

to explore the benefits of incorporating ABM-GIS and 

physical progression models in PRA, and specifically, in 

the ST-SoTeRiA methodology. 

A model is an abstracted description of a process, an 

object, or an event that exaggerates certain aspects at the 

expense of others.52 Based on the level of abstraction (e.g., 

low, medium, high) a model can be developed to represent 

a socio-technical system at micro level (e.g., operational 

level), meso level (e.g., tactical level), or macro level (e.g., 

strategic level). The combination of models with various 

levels of abstractions, utilizing diverse modeling methods 

(e.g., DDET, SD, ABM) in a unified platform (e.g., ST-

SoTeRiA), can be referred to as a multi-method, multi-

level modeling technique. In a socio-technical system, 

DDET and SD can be used at system level (e.g., 

organizational and multi-organizational levels) while 

ABM is an individual-level (or individual-centric) 

modeling method. ABM starts with an element of the 

system (i.e., an individual), then describes individual 

(agent) behaviors, timing, decisions, and interactions with 

other agents in the system and the surrounding 

environment. An agent can be defined by its states and 

behaviors and normally possesses extended capabilities 

such as rules for decision making, autonomy, cooperation 

(e.g., communication, perception, action, etc.), memory, 

learning, vision, sensing, mobility, etc. While basic 

decision rules enable agents to interact with other agents 

and with the environment, additional higher-order/ global 

rules are needed (i.e., for changing the basic rule 

assumptions) if the agents are required to learn and adapt 

their behaviors accordingly. With set rules and simulation 

runs, global system behaviors emerge out of the concurrent 

behaviors of the individuals. 

The main principle of ABM is to create an artificial 

population of agents and let them interact with each other 

and with the environment.55 With that, it is possible to 

explore a landscape of outcomes that are more likely to 

emerge and others that are less likely to emerge, but are 

still possible. This type of outcome is referred to as the 

emergent behavior, adaptive behavior or “surprise 

behavior” of the socio-technical system since it was not 

expected. In agent-based models, this type of phenomena 

is also seen at the level of aggregate stocks and flows (as 

in SD models). By running many simulations, emergent 

behaviors can be explored in terms of patterns over time, 

patterns over space, and patterns over networks, etc. From 

that perspective, ABM allows for experimenting to 

understand how a socio-technical system can transition to 

a certain end state, or how influencing factors can be 

controlled to keep the system away from undesirable 

outcomes. Agent-based models are typically stochastic 

(this contrasts with SD models) to capture the nature of 

those interactions (e.g., social influences between human 

agents in the system) that are modeled. Stochasticity in 

socio-technical modeling provides a way to observe 

variability in simulation results to gain insight into the 

variability seen (or expected) in real-world data. The 

degree of uncertainty associated with the simulation results 

can be investigated by running many simulations; however, 

there is a high computational demand tradeoff.  

In risk analysis, the use of ABM-GIS has increased in 

the last decade, but its connection with PRA logic and 

Human Reliability Analysis (HRA) has been limited. Even 

integrating ABM with GIS is no trivial task, especially 

when the amount of agents increases and GIS data become 

more complicated.56, 57 In the early 2000s, there were 

studies that tried to couple both GIS and ABM in a single 

framework;58-61 however, most of them considered only 

static geographic data (i.e., landscape of the environment), 

not the dynamic geographic data (i.e., temporal changes in 

the environment). Instead, these models focused more on 

behaviors of the agents and their interactions with each 

other. In the last decade, with advancements in GIS, several 

studies57, 62-64 have been made to boost the communication 

of temporal information between agent-based models and 

geospatial modules. These studies relied on a temporal 

series of spatially-registered “snapshots” for visualization 

of agent-based models within GIS.57 Moreover, none of 

these studies connected ABM-GIS with PRA. 

In modeling ER, however, the authors believe that an 

ABM-GIS approach can combine PRA logic with human 

and organizational performance dynamics and HRA to 

establish a powerful tool for socio-technical risk analysis. 

Additionally, in dealing with emergency situations where 

the physical environment rapidly changes and significantly 

affects the system (e.g., the evolution of a disaster and its 

influence on a large-scale socio-technical system), it is 

required to have a separate physical model connected to 

ABM and GIS to account for the spatio-temporal evolution 

of a hazard. For instance, in the context of ER, the 

progression of hazard is dynamic, and the performance of 

first responders plays a significant role in disaster 

management, e.g., in preventing and mitigating the 

progression of hazard and reducing the magnitude of 

damage to human and property. Because only limited data 

is available from real accidents, computer simulation has 
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been used as an effective approach for understanding the 

performance of first responders during emergency 

situations48, 62, 63 and for assessing how complicated 

interactions, i.e., interactions among the responders and 

between the responders and the environment that is 

continually changing over the course of the disaster, would 

affect their performance. The combination of ABM with 

GIS can capture the behavior of spatially-aware agents and 

the temporal agent-to-agent interactions, but requires 

additional models for agent-to-environment interactions. 

This requires a physical progression model (e.g., 

Consolidated Model of Fire and Smoke Transport 

(CFAST),65 MACCS2), which captures the spatio-

temporal evolution of the hazard (e.g., fire, radiological 

release), and prepares it for integration with the ABM-GIS 

so that the influence of hazard progression on agent 

behavior (e.g., performance of first responders, movement 

of evacuees, etc.) can be captured. In fact, most of the 

phenomena in ER, as well as the behaviors among 

individuals, groups, organizations and inter-organizational 

entities (e.g., population, first responders, organizations, 

etc.) are spatially and temporally dependent on the 

evolution of the disaster. Therefore, the combination of 

GIS-ABM with a physical progression model is essential 

for ER modeling.  

There are three types of connections between the 

ABM and the physical progression model57: location-

based, time-based, and entity-based. The most practical 

approach for large-scale applications is the location-based 

approach,57 which relies on a temporal series of spatially-

registered “snapshots” to capture space-time information 

within a GIS model. The ST-SoTeRiA methodology adopts 

this approach and utilizes a temporal-raster (grid) to store 

multiple values of the changing environment for each 

“cell”. The simulation data from this combined model (i.e., 

ABM-GIS and physical progression model) can be used for 

estimating several quantities in PRA, such as the 

probabilities of basic events in the PRA model and human 

error probabilities in HRA). More details on this will be 

discussed in the following sections. 

 

III. CASE STUDY: FIRE EMERGENCY RESPONSE 

 

To demonstrate the concept of incorporating ABM-

GIS and physical progression of the disaster for the ST-

SoTeRiA methodology, a case study of fire brigade ER at 

an NPP was developed. Some of the authors of this paper 

have developed an I-PRA framework for Fire PRA at NPPs 

in which an interface of fire brigade action and fire 

progression is modeled using a data-driven approach.66, 67 

This case study further advances the spatio-temporal 

modeling of fire brigade behaviors by using ABM-GIS, 

interfaced with the outputs of CFAST (i.e., the fire 

progression model).  

One of the ultimate goals of this ST-SoTeRiA research 

is to model ER scenarios given the occurrence of, for 

example, a radiation release from a severe accident at an 

NPP (as illustrated in Fig. 2). This task would require the 

model to encompass various spatial scales (i.e., micro, 

meso, and macro). The case study developed in this paper, 

however, is the first step in developing that multi-scale 

model, and therefore, starts with the micro-scale context. 

Specifically, in this micro-scale model, the fire is assumed 

to occur in a switchgear room inside an Electrical Auxiliary 

Building in a referenced NPP. We assumed this unusual 

event would not lead to an alert level requiring the Offsite 

Emergency Response Organization to be activated. Meso-

scale (e.g., entire-site level) and macro-scale (e.g., regional 

level) case studies will be addressed in future work. Safety-

related equipment in the room (e.g., relay panels, switch 

panels, cables, etc.) could be damaged by the fire, which 

would have the potential to negatively influence the safe 

shutdown of the plant. It is assumed that automatic fire 

suppression systems are not available and that the situation 

requires the onsite fire brigade to take action. Fig. 3 

demonstrates the phases involved in the fire brigade ER 

actions that are developed utilizing the procedures at a 

referenced plant68 (with a zoomed-in view showing the 

search algorithm for the fire search phase).   

 

Fig. 3. Typical Fire Brigade Emergency Response Phases 

at a Referenced NPP 

III.A. Model Structure 

 

CFAST software,65 a two-zone fire model developed 

by the National Institute of Standards and Technology 

(NIST) to solve physical governing equations (i.e., mass 

balance, energy conservation) numerically and to predict 

time evolution of gaseous species concentration (e.g., CO, 

CO2), smoke spread, and hot gas layer temperature, is used 

to model the fire progression inside the room. 

An agent-based model is developed in the NetLogo 

toolkit69 to model the fire search performed by the fire 

brigade. In this context, ‘fire search’ is the process of the 

fire brigade locating the fire source in the fire 

compartment. NetLogo is capable of building large, 

complex, and multi-level agent-based models for 

simulating complex socio-technical systems. Commonly 
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used GIS data formats from ESRI (i.e., shape files for 

vector-based data and .asc files for raster-based data) are 

directly supported in NetLogo, creating a compatible 

integration of GIS and ABM. 
Fig. 4 provides a schematic overview showing how 

ABM, GIS and CFAST are connected in this case study. 

Simulated spatio-temporal data on fire-induced conditions 

(e.g., hot gas layer temperature, smoke density) are 

captured with CFAST and fed into the agent-based model 

to represent the dynamically changing environment in the 

room. The agent-based model is designed to study the 

performance of the fire brigade in locating the fire source, 

considering the dynamic interactions between the fire 

brigade and the changing environment. GIS provides a 

shared geographic map of the room and facilitates the 

connection between the CFAST outputs and adaptive 

agent-based models. Ideally, the connection between the 

fire progression model and the ABM model as shown in 

this figure should be two-way, i.e., performance of the fire 

brigade does influence the fire progression and this 

influence needs to be captured. However, in this case study, 

we did not consider this aspect as the fire search operation 

itself is less likely to affect the fire progression captured in 

the CFAST outputs. Other collaborators of the authors’ 

research team have preliminarily explored this angle when 

the study involves fire suppression activities.70 

 
Fig. 4. Schematic Interrelations among CFAST, GIS, and 

ABM Models 

Direct output from this combined model may include 

more realistic estimates of time to locate the fire 

(performed by the fire brigade) and explicitly estimated 

relationships between time to locate the fire and fire 

brigade starting time. This simulation data can be used for 

estimating several elements of the PRA model while 

providing meaningful insights on performance shaping 

factors (e.g., time available, time pressure, etc.), which are 

important for HRA.  Indirect output from this combined 

model includes insights that can also be used in improving 

current ER practices. The Monte Carlo method is used to 

study the uncertainty associated with the simulation results. 

Details are discussed in Section IV. 

 

III.B. Model Settings 

 

For simplicity, while maintaining the important 

characteristics that are required to demonstrate ST-

SoTeRiA concepts, the following assumptions have been 

made when constructing this case study: 

 The Fire Brigade is called out by the Shift Manager (in 

the Main Control Room) at the beginning of the pre-

staging phase.  

 The fire brigade is available and well-equipped. 

 The agent-based model focuses only on the Fire Search 

phase, i.e., starting when the fire brigade enters the 

room and ending when the fire location is identified. 

 Responding time window for the fire brigade (i.e., until 

the fire brigade enters the room and begins its activity) 

is between 5 minutes and 25 minutes. 

 There are no evacuees in this emergency. 

 Only one firefighter is included in the NetLogo model. 

This type of situation would require two firefighters to 

enter the room, and together, attempt (with proper 

equipment) to locate the fire. Interactions between them 

are quite limited (each carrying different equipment), so 

this can be simplified and reduced to one agent in the 

NetLogo model. 

 Temperature and smoke profiles are updated into the 

NetLogo model every 5 seconds. 

 The fire is assumed to have ignited from one of the 4 

cabinets located inside the 15×15 (m×m) room.  

Fig. 5 shows the profile of the fire input to CFAST. 

 

Fig. 5. Heat Release Rate Curve of the Input Fire 

Regarding the NetLogo model, there are multiple 

decisions to be made by the firefighter (agent) during the 

search for the fire location. The decisions are affected by 

the variables as summarized in Table I.  

Table I. Decision Making Points and Affecting Variables 

Decisions Variables Value 

Initiate fire 

search 
Start time 300 – 1500 (s) 

Locate fire 
Visibility in smoke Visibility (m) 

Sensing heat Temperature (oC) 

Select route 
Room familiarity Yes/No 

Updated memory Memory list 

Avoid obstacles Visibility in smoke Visibility (m) 

Change speed 
Visibility in smoke Visibility (m) 

Movement ability 0.3 – 1.4 (m/s) 

Time (s) 
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In this case study, the visibility in smoke changes due 

to smoke density (optical density). An empirical 

correlation71 is used for estimating the visibility, V (m) 

based on the smoke (optical) density, Cs (1/m): 

𝑉 = 𝑘
1

𝐶𝑠
 

In this empirical correlation, k is almost constant and 

ranges from 5 – 10 for a light-emitting sign.71 We chose k 

= 8 for this case study. 

There have been studies to address the impacts of 

smoke density on walking speed in evacuation.71 These 

studies relied heavily on empirical data though there was 

an apparent lack of data for building this correlation.72 

Within the scope of this case study, however, and with 

regards to the firefighter’s walking speed in smoke, we 

adopted the following empirical correlation71 with an 

assumption that minimum and maximum walking speeds 

are 0.3 m/s and 1.4 m/s, respectively. 
𝑊𝑠𝑚𝑜𝑘𝑒 (𝑚 𝑠⁄ ) = −0.1364 × ln(𝐶𝑠) + 0.6423 

where Wsmoke is the walking speed in smoke-filled 

environment. 

Another dynamic value that can affect the 

performance of the agent in this case study is the familiarity 

with the room. For simplicity, this case study assumes that 

the agent is either fully aware or completely unaware of the 

ventilation setting inside the room. Fig. 6 shows an 

example of the NetLogo simulation environment. 

 

Fig. 6. Example of Simulation Execution 

 

III.C. Simulation Results 

 

The effects of changes in the fire brigade starting time 

on the time to locate the fire are tested based on the model 

settings discussed in the previous sub-section and are shown 

in Fig. 7. 

In both cases, the agent starts the search from the 

entrance door that is located at the upper left corner of the 

room, as shown in Fig. 6. First, the agent is asked to perform 

an overall check for each cabinet row (separated by the 4 

lines of cabinets), observing density - storing the 

information in ‘memory’. As the agent reaches the far end 

of the room, a decision is made to go back to the row with 

the highest smoke density. This is determined based on the 

information in the updateable. After arriving at the row with 

the highest smoke density, a thorough check is performed 

by walking along the row. If the agent does not find the fire 

in that row, a decision must be made as to whether to go left 

or right at the end of the row. If the agent is familiar with 

the room setting (i.e., the ventilation system setting), the 

best decision would be to go against the direction of air 

movement (as smoke travels downwind) to look for the fire. 

But, if the agent is not familiar with the room setting, the 

agent will randomly pick another row to continue with the 

thorough search. This process continues until the agent 

locates the fire. 

 

Fig. 7. Simulation Results 

When the agent is completely unaware of the 

ventilation system setting inside the room, the time to locate 

the fire slightly increases when the start-time is less than 

900 seconds, then almost doubles when the start-time is 960 

seconds. The time to locate the fire then fluctuates to around 

180 seconds even though the agent begins the search later 

than 960 seconds into the fire. This is because, when the 

agent is able to start the search early, the smoke density is 

still low during the overall check. Hence, visibility is good 

and the agent is able to see the fire from a greater distance. 

When the agent begins the search at a later time, the smoke 

has already filled the room and has reduced visibility. In this 

case, the agent has to move very close to the fire source in 

order to locate it. The fluctuation observed seems to emerge 

from the stochasticity in decision-making - whether to turn 

left or right after the first thorough check. 

When the agent is fully aware of the room setting, the 

pattern in the relationship between time to locate the fire 

and start-time is similar to the previous case. When the start-

time is less than 900 seconds, the time to locate the fire is 

the same as in the case of being unaware. However, in the 

interval where the start-time is between 960 seconds and 

1440 seconds, the time to locate the fire remains stable at 

about 125 seconds, which is about two thirds of what is 

observed in the unaware case. This stability is due to the 

lack of stochasticity in the agent’s decision-making process 

since the agent in this case has more knowledge of the 
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current situation. It is worth emphasizing that in both cases, 

the patterns are similar. These patterns can be considered as 

emergent behavior of the system that results from the 

interactions between the agent and the spatio-temporal 

evolution of the fire hazard. When more complexities are 

added to the model (e.g., increasing the number of agents, 

considering multiple fire locations, etc.), it is expected that 

new phenomena will be observed. 

 

IV. CONCLUSION AND FUTURE WORK 

 

The ST-SoTeRiA methodology is developed to 

quantify the macro-level SoTeRiA theoretical causal 

framework (Fig. 1), which allows for explicit consideration 

of social and organizational factors that significantly affect 

the evolution of the socio-technical phenomena in 

Emergency Response (ER). This paper reports on the status 

of ST-SoTeRiA, more specifically, on the development of 

one of its building blocks, i.e., the integration of an Agent-

Based Modeling (ABM) - Geographic Information System 

(GIS) module with a physical hazard progression model. 

With this integration, the ST-SoTeRiA methodology can 

change the paradigm of conventional responder models in 

ER modeling by increasing the behavioral realism of 

responder action.  This integration is essential for ER 

modeling as it explicitly accounts for: (i) risk-contributing 

socio-technical factors; and (ii) spatial and temporal 

variations of those important socio-technical factors, which 

consequently affect the spatio-temporal socio-technical 

system risk.  

The integration of ABM-GIS with a physical hazard 

progression model has been demonstrated in this paper by a 

case study that provides a limited-scope demonstration of 

micro-spatial emergency responder performance in a fire 

scenario. In the case study, the Consolidated Model of Fire 

and Smoke Transport (CFAST) is utilized to depict the fire 

progression phenomena. The simulation results in the case 

study emphasize the importance of communicating spatio-

temporal information between the agent-based model and 

the hazard progression model in obtaining emergent 

behavior estimations for the complex socio-technical 

system. The ABM environment provides the opportunity to 

vary many model parameters to observe how the parameters 

may influence the outcomes of the simulation.  

Simulation data can also help improve the current 

PRA techniques in several ways. In the current Fire PRA,73 

manual fire detection and suppression are addressed by 

data-driven approaches, where the human error rates and 

times to action are estimated based on empirical data, 

including historical fire records and fire drill reports. In 

existing Fire PRA, the interactions of the plant crew with 

fire progression are addressed in an “implicit” way, by 

using the competition between two separately computed 

time quantities for “time to target damage” and “time to 

fire suppression”. The authors of this paper are working on 

utilizing simulation data from such ABM-GIS-CFAST 

approach to provide more realistic estimates of the time to 

manual detection. The case study in this work demonstrates 

the importance of training, drills, and familiarization with 

fire compartments to improve performance and reduce fire 

search time. This approach provides opportunities for 

enhancing decision making strategies for locating hazards 

in industrial settings, and improving firefighter training 

through cost-effective simulation-based training methods. 

This modeling approach, when successfully connected to a 

thermal-hydraulic code, can also help improve success 

criteria (e.g., time window for operator action, firefighter 

action, etc.) used in PRA. In the Integrated-PRA and ST-

SoTeRiA methodologies, simulation results produce a key 

performance measure of interest (i.e., time to detection) 

that, when compared with threshold criteria, results in a 

failure probability of a basic event (e.g., human fails to 

detect the hazard) in the PRA logic. 

Future work will also expand the implementation of the 

ST-SoTeRiA methodology for integrating multi-scale 

simulations of complex ER phenomena following severe 

accidents. Three types of modules will be developed: (1) 

Micro, (2) Meso, and (3) Macro, which will be nested into 

one framework capable of generating multi-faceted risk 

criteria for key performance measures of interest (e.g., time 

to evacuation, health consequences, etc.).  

1. Micro-spatial models will include site-specific 

emergency responder performance, given the type of hazard 

and built environment through HRA approaches (e.g., fire 

brigade at an industrial site) that can be generically applied 

across multiple sites.  

2. Meso-spatial modules will consider entire-site 

models for inter-organizational cooperation for larger 

hazards, including dispatch logistics, communication 

networks, and staging location availability. 

3. Macro-spatial modules will serve as regional 

network models for sequencing and scheduling micro and 

meso models, while also providing urban dynamics of 

population movement through transportation networks and 

the tracking of hazard evolution across modules (e.g., plume 

dispersion). 

 Outputs from the ST-SoTeRiA methodology can be 

utilized in the multi-faceted risk-informed decision making 

method, proposed in previous work,5 to improve the ER 

regulation in several ways, including: identifying potential 

deficiencies in programmatic features of ER, providing 

valuable information for risk management, training, 

resource allocation for preparedness, and real-time 

response efforts, in order to protect workers, the public and 

the environment from undesirable consequences. 
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