

 vol. 4, n. 1, Dezembro/2017

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 23

A half-century perspective on Computational
Thinking1

Ken Kahn (University of Oxford)2

Abstract
For more than fifty years people have been exploring how computers might enhance learning
and teaching. The malleable nature of computers has enabled suggestions that a computer
can act like flash cards, personal tutors, textbooks, reference books, virtual laboratories,
quizzes, virtual spaces, lecture halls, and study groups. Perhaps the most radical suggestion
has been to see the computer as something learners can creatively mold into something
personally meaningful that is dynamic, interactive, and shared. And that the process of
constructing such computational artefacts is rich in learning opportunities. These range from
a deeper understanding of the subject matter of the constructions to high-level skills in
thinking and problem solving. In 2006, Jeanette Wing published an essay on computational
thinking that led to over a dozen books and over a thousand articles. It has strongly
influenced the national curriculum of many countries. This article addresses the question of
how the concepts underlying computational thinking fit into over fifty years of explorations of
the role of computers in learning.

Keywords. Computational thinking; Constructionism; Technology-enhanced learning;
Seymour Papert; History of computers; Education.

Resumo
Há mais de cinquenta anos que as pessoas exploram como os computadores podem
melhorar a aprendizagem e o ensino. A natureza maleável dos computadores permitiu que
ele funcione como cartão de memória, tutor pessoal, livro didático, livro de referência,
laboratório virtual, questionário, espaço virtual, sala de conferências e grupos de estudo.
Talvez a sugestão mais radical seja conceber o computador como algo que aprendizes
podem moldar de forma criativa resultando em algo realmente significativo, dinâmico,
interativo e compartilhado. E, ainda, que o processo de construção desses artefatos
computacionais seja rico em oportunidades de aprendizagem. Estas oportunidades variam
desde ganhar uma compreensão mais profunda do assunto até a construir habilidades de
alto nível de pensamento e de resolução de problemas. Em 2006, Jeanette Wing publicou
um ensaio sobre o pensamento computacional que instigou a publicação de mais de uma

1 This paper is an extended and revised version of Ken Kahn, A half-century perspective on the role of computers in learning

and teaching in Music Learning with Massive Open Online Courses edited by Luc Steels

2 Contact: Kenneth.kahn@it.ox.ac.uk

KAHN, K. A half-century perspective on Computational Thinking. Tecnologias Sociedade e Conhecimento, Campinas, v. 4,

Dez. 2017. Disponível em: <http://www.nied.unicamp.br/ojs/>.

artigos

KAHN

24
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

dúzia de livros e mais de mil artigos. Esse ensaio influenciou fortemente o currículo nacional
de muitos países. Este artigo aborda a questão de como os conceitos subjacentes ao
pensamento computacional se encaixam em mais de cinquenta anos de exploração a
respeito do papel dos computadores na aprendizagem.

Palavras-chave. Pensamento computacional; Construcionismo; Aprendizagem aprimorada
pela tecnológica; Seymour Papert; História dos computadores; Educação.

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 25

1. Introduction

The idea that computers can play an important role in learning and teaching is over

fifty years old. This paper describes the history of attempts to use computers to support and

enhance learning from a personal perspective. Instead of a complete history it attempts to

highlight groundbreaking and significant ideas and computer systems that have led to today’s

efforts to provide technology-enhanced learning. Some systems use the computer to emulate

older paper-based technologies. Others attempt to give the computer the role of teacher or

tutor. The systems that are described in the most detail here are those that attempt to use

the computer to provide novel learning experiences that were impossible or impractical

before.

The 1950s through the 1970s were dominated by “computer-aided instruction”

systems that attempted to teach in a very didactic and mechanical manner. These were

based upon behaviorist theories of learning. Research laboratories at MIT, Xerox PARC, and

the University of Edinburgh were exploring a very different approach. Instead of the computer

programming the student, the student was given tools for programming the computer.

Creativity and exploration were emphasized. Early attempts at computer tutoring systems

were made. Programming languages designed specifically for learners were developed.

The 1980s saw the wide-spread dissemination of personal computers and

programming languages for children. There were efforts to enhance these languages with

new ideas from computer science. Media creation was combined with program creation.

Intelligent tutoring systems were demonstrated to work well for a limited number of topics.

The 1990s saw the wide-spread use of “multi-media” to enhance education.

Programming languages for children expanded into new territories. Learners were supported

in building computer games and programming robots.

The 2000s saw the integration of the web into educational software. Learners were

connected by the World Wide Web and able to easily share their constructions. Multi-user

three-dimensional virtual spaces became popular places to explore their potential to enhance

learning. Many explored the benefits of each learner having their own personal computer.

The 2010s saw the introduction of MOOCs (massive open online courses) and web-

based programming environments. Programming environments have been developed data

support students making apps or robots that integrate large online databases. Others are

integrating AI cloud services and machine learning in student programming tools. This

artigos

KAHN

26
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

decade also sees educational software being adapted for tablets and smartphones with

touch interfaces.

2. 1950s and 60s

Alan Perlis saw the potential of computer programming for learning by science,

mathematics, and engineering students in the mid-1950s. He began teaching the first

freshman course on computer programming in 1958. In 1961 in a lecture at MIT he said “The

purpose of a course in programming is to teach people how to construct and analyze

processes” (Greenberger, 1962). J.C.R. Licklider commented “... I see computer

programming as a way into the structure of ideas and into the understanding of intellectual

processes that is just a new thing in this world”.

In 1964 Kemeny and Kurtz introduced the Basic programming language, the first

programming language designed for learners and beginners (Dartmouth College

Computation Center, 1964). It contained many comprises due to the hardware limitations of

the day. Variable names, for example, were limited to one letter followed by digits. While

initially limited to use in universities, Basic became very popular with schools and hobbyists

in the 1970s and 80s.

In 1967 Seymour Papert, Wally Feurzeig, Cynthia Solomon, and Danny Bobrow

developed the Logo programming language. Unlike Basic, which was designed to provide

the minimal language that can support student programming, Logo was designed to be a rich

and powerful language. Logo is the result of “child-engineering” (in other words redesign to

improve usability by children) the best ideas in computer science at the time. It borrowed

very heavily from the Lisp programming language which was being used by artificial

intelligence researchers. Logo was conceived of as both a tool for learners to use to express

themselves creatively and an “object to think with” (Papert,1980). Initially the projects created

using Logo focused upon word and list processing and mathematics. For example, children

constructed programs that generated poetry. By 1969 Logo was enhanced to control “floor

turtles”, robots that could be commanded to move forward or turn. This became the basis of

the very successful turtle graphics when “screen turtles” were introduced in 1972.

A very different trend that began in 1960 is “computer-aided instruction”. This was

pioneered by the Plato system (Plato History, 2017). The Plato system initially focused on

presenting multiple-choice or numeric questions and automated responses. Its initial

innovations were in computer graphics and display terminals that it pioneered. The Plato

system grew with time to include interactive simulations, educational games, and discussion

forums. But unlike the efforts around Basic and Logo, Plato was based upon a didactic

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 27

teaching method instead of a programming languages’ support of learner-centered problem

solving and creativity.

Figure 1 - The PLATO system

Source: Author

The idea of using computers in education was very radical in a period where

computers were few and very expensive. As Hal Abelson, one of the earlier pioneers of Logo

programming, said “You really have to try hard to get into the mindset of that time, because a

computer in those days was something that cost several million dollars. And the idea that you

would take the most advanced computing research equipment around anywhere, and you

would let fifth graders … start playing with it, it was just mind boggling. For the first 10 years

of that, people just thought we were nuts” (Hardesty, 2010).

3. 1970s

The next decade saw substantial progress in efforts around the Logo programming

language. Since the center of this research was the MIT Artificial Intelligence Laboratory it is

perhaps not surprising that many efforts attempted to connect Logo and AI. Gerry Sussman

(1973) and Ira Goldstein (1974) produced systems that helped debug and teach Logo.

Danny Hillis wrote about AI projects that children could do in Logo. Radia Perlman developed

artigos

KAHN

28
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

special hardware to provide interfaces appropriate for very young children to construct Logo-

like programs (Morgado; Cruz; Kahn, 2006).

Figure 2 - Radia Perlman's Button Box for Preschoolers

Source: Author

This was the decade when the concept of object-oriented programming was

incorporated into programming languages for children. Smalltalk 72 and 76 were designed

for children and inspired by Logo. (Smalltalk 80, however, was developed as a tool for

professional programmers.) Director was another object-oriented language for children that

was designed to support the programming of animation (Kahn, 1979).

During the 1970s some versions of Logo were created to support the programming of

music, color graphics, three-dimensional graphics, and animations. Implementations of Logo

appeared on computers inexpensive enough for schools to acquire and the use of Logo by

students expanded beyond the laboratory by the end of the decade.

Researchers on intelligent tutoring systems made substantial progress this decade. A

notable example is Buggy (Brown; VanLehn, 1980), which was able to diagnosis students’

arithmetic mistakes and respond appropriately.

Research on the use of computer games for learning began in this decade as well.

Games were developed for educational purposes and researchers explored the educational

value of games designed for entertainment purposes (White, 1981; Malone, 1981). The first

computer game, MIT Space War, created in 1961, attempted to have accurate positioning of

stars and simulation of gravity and hence could be argued to be “educational”. Seymour

Papert later argued that more serious learning can result from challenging entertainment

games than with many “edutainment” games that attempt to be both educational and

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 29

entertaining (Papert,1998). Educational games and educational uses of commercial games

has continued to be an active area of development and research for nearly fifty years.

4. 1980s

With the spread of relatively inexpensive personal computers, programming

languages for children became widespread in schools and the home. This, combined with

Seymour Papert’s very influential 1980 book, Mindstorms: Children, Computers, and

Powerful Ideas, led to an explosion of activities around Logo. Many schools in the US

required its teaching. It became part of the UK National Curriculum in 1988. Far too often,

however, the spirit of Logo was lost, and children were taught Logo in a way that was far

from the creative, exploratory, reflective style it was designed for.

Figure 3 - Logo becomes mainstream

Source: Author

Abelson and diSessa wrote Turtle Geometry: The Computer as a Medium for

Exploring Mathematics, a book that explores how advanced mathematics could be explored

and taught building upon the turtle geometry of Logo (Abelson; DiSessa, 1981). While this

undoubtedly helped counter the misconception that Logo was only for primary school

children, it was commonly held that Logo was too childish for use by older students. A three-

volume book, Computer Science Logo Style by Brian Harvey (1997), was aimed at high

school teaching and was partially successful in countering this. The misconception that Logo

artigos

KAHN

30
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

is childish is ironic given that Logo was based upon Lisp, an advanced AI programming

language with very powerful primitives for dealing with symbolic information.

This decade saw a flourishing of experimental variants of Logo and other rogramming

languages for children. Object Logo (Drescher, 1986) was an object-oriented programming

language that contained classical Logo as a sub-language. Multi-Logo (Resnick, 1990)

explored Logo running in multiple processes. Boxer (DiSessa, 1997) tightly integrated a

powerful Logo dialect with a sophisticated user interface. Efforts were made to take other

artificial intelligence languages and adapt them for use by school children (Kahn, 1984;

Ennal, 1982).

Intelligent tutoring systems made strong advances but only in a few select subjects

such as teaching algebra, geometry, or computer programming (Anderson, et al. 1990).

5. 1990s

The 1990s saw a good deal of activity around adding concurrency and visual

syntaxes to programming languages for children. One of the drivers towards concurrency

was agent-based modeling. The idea is that one can learn about complex systems by

constructing, observing, and experimenting with simulations of interacting entities. This

began with StarLogo (Resnick,1994) to be followed by NetLogo (Wilensky, 1999) and

Agentsheets (Repenning, 1991). These efforts to introduce agent-based modeling to school

children were described in Mitchel Resnick’s book Turtles, Termites, and Traffic Jams

(Resnick, 1994). By using these tools, students could acquire a deeper understanding of the

underlying processes in scientific phenomena. Topics include those in the physical,

biological, and social sciences as well as the humanities including history, philosophy, and

language. The educational value of computer programming expanded by providing new ways

of learning most school subjects.

Concurrency appeared in other programming languages for children. Stagecast

Creator (Smith; Cypher; Spohrer, 1994) was based upon concurrent rewrite rules. ToonTalk

(Kahn,1995) followed the design philosophy of Logo to child-engineer the best computer

science programming language ideas. Three decades after Logo’s design borrowed from

Lisp, ToonTalk’s design built upon the ideas of concurrent constraint programming

(Saraswat, 1993). All of these languages supported programs with multiple simultaneous

activities, but only ToonTalk provides general mechanisms for communication and

coordination between multiple processes.

The other major trend in the 1990s was to explore graphical syntaxes for

programming languages. Agentsheets and Stagecast Creator (at first called KidSim)

supported expressing programs as graphical rewrite rules. For example, here is how one

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 31

expressed in KidSim that a character should jump over obstacles (Smith; Cypher; Spohrer,

1994):

Figure 4 - A KidSim rule for jumping over fences

Source: Author

These graphical rewrite rules are intuitive and surprisingly expressive but support

abstract rules poorly. Agentsheets addresses this by combining graphical rewrite rules with a

spreadsheet metaphor and a scripting language for advanced users.

Agentsheets and Stagecast Creator/KidSim also supported program construction by

demonstration. ToonTalk took this to the extreme: the only way to construct programs was

via demonstration followed by removal of details to obtain abstraction (Kahn, 2000).

ToonTalk has no static syntax; programs are created and viewed as animations in a game-

like environment. Programming by demonstration in ToonTalk can be successfully performed

by preschoolers (Morgado; Cruz; Kahn, 2003). The lack of a static syntax does interfere with

scanning and editing programs however. Unlike other programming languages for children,

ToonTalk programs can be completely text-free, making them particularly suitable for pre-

literate children and internationalization.

In 1996 LogoBlocks (Begel, 1996) pioneered a graphical syntax that subsequently

became hugely popular. It introduced shaped blocks that can be dragged and dropped to

assemble programs. These blocks correspond to program commands, expressions, data,

and control structures. Palettes of blocks enable users to construct programs by selecting the

needed parts. Most importantly, these blocks snapped together only when the parts fit

together like a jigsaw puzzle. Syntax mistakes are not expressible in such a system. Unlike

textual programming languages, the user doesn’t need to remember what primitives are

artigos

KAHN

32
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

available, but instead can select them from palettes. In the next decade the syntactic ideas of

LogoBlocks were integrated with StarLogo TNG (Klopfer et al., 2009), Scratch (Resnick, et

al., 2009) Snap! (Harvey; Mönig, 2010), MIT App Inventor (Wolber et al., 2011) and many

more (Blockly, 2017).

Another programming language trend of the 1990s was to support robot construction

kits. A pioneering example of this was LEGO/Logo (Resnick; Ocko; Papert, 1988).

Idit Harel (1991) and later Yasmin Kafai (1995) explored the idea of children

programming educational games for younger children. Children using the Logo programming

language designed and implemented games to teach concepts about fractions to younger

children. Kafai created a sustainable school culture consisting of three grade levels. The

oldest children built the games for the youngest children with assistance from middle children

who the next year became the game makers. Studies demonstrated that the children who

designed and constructed educational games learned the subject matter of their games very

well even if the games themselves were not particularly pedagogically effective for the

younger students.

The 1990s also saw the rise of multi-media CD-ROMs. For example, Microsoft’s

Encarta encyclopedia included much that paper alternatives lacked, including audio,

animations, videos, and interactive applications. Subjects could be connected by hyperlinks.

Novel interactive books on CD-ROMs where illustrations were animated and reacted to clicks

became very popular (Wikipedia, 2017a). So-called “edutainment” games appeared on many

CD-ROMs in the 90s.

6. 2000s

The most interesting developments in the first decade of the 21st century were creative

and game-changing uses of the Internet. Two early examples of this were the Playground

Project (Hoyles; Noss; Adamson, 2002) and WebLabs project (Mor et al.,2004) both large-

scale multi-country European projects. Playground was focused on very young children

authoring and sharing computer games. The games were exchanged by students in different

countries via email enhanced by video conferences. Games were constructed that enabled

players in different countries to play together. WebLabs supported children in exploring

mathematics and science computationally and sharing and discussing their discoveries in web

reports. This added extra dimensions to their learning. In publishing on the web students

reflected deeply about what they discovered and worked hard to communicate it effectively.

The discussions attached to each report often contained constructive criticism and

suggestions. The students were not only doing science and exploring mathematics by

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 33

constructing computer programs, but were also engaged in the process of academic

publication to peers.

The web and increasingly capable web browsers enabled the Modelling4All project

(Kahn; Noble, 2010) to build a web-based tool (the Behaviour Composer) to support

teaching, research, and public engagement with agent-based modelling (ABM). By building

on the popular open-source NetLogo agent-based modelling system, the project was able to

focus upon higher-level issues of enabling a range of users, including those with no

programming experience, to produce open, modular, transparent, sharable models. The

Behaviour Composer is web-based both in the sense that one can construct and run models

from a modern web browser as well as in supporting sharing models, model components,

and interactive tutorials as public web pages.

A major event of this decade was the emergence of the Scratch programming

language from MIT. It became very popular after launching its website in 2007. Ten years

later, almost 25 million projects have been shared on the website, over 20 million users

registered, and over 125 million comments posted. Users, mostly between 8 and 14 years

old, support and learn from each other. About 30% of projects are “remixes” where someone

makes a variant of another’s project (with attribution maintained) (Kahn; Noble, 2010). As

discussed earlier, Scratch’s syntax contributes significantly to its popularity. The website

provides support, motivation, millions of sample projects, and a sense of community that

accounts for the popularity of Scratch (MIT Media Lab, 2017).

A different trend in the 2000s is exemplified by Second Life, a communal three-

dimensional virtual world, that became very popular. Thousands of avatars controlled by their

“owners” interact in this virtual world. “Residents” of Second Life can earn virtual money,

build virtual objects, buildings and spaces, and communicate with other residents. A teen-

only Teen Second Life was launched in 2005. Educators saw this as potentially a new and

effective place for teaching and learning. Many museums opened up Second Life “branches”

that exploited the unique capabilities of this virtual world. For example, the US Air and Space

Museum built replicas of rockets that visitors could enter and launch. Schools and

universities also opened locations. Some uses were recreations of ordinary lecture-oriented

teaching while others explored new possibilities. For example, Dr. Peter Yellowlees created

virtual hallucinations based upon the experiences of schizophrenia patients. Visitors could

experience first-hand what it’s like to have schizophrenia (BBC News, 2016).

artigos

KAHN

34
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

Figure 5 - The US Air and Space Museum in Second Life.

Source: Author

Due to the appearance of inexpensive micro-controllers in the beginning of the

century, educational robotics kits evolved from being cabled to a controlling personal

computer to running programs inside the robot itself. Lego’s Mindstorms (inspired by

Seymour Papert’s book of the same name from 1980) became popular. Robot behaviors

were still programmed on personal computers, but once downloaded into a micro-controller,

they became autonomous. Students used these kits to make a wide range of interactive

gadgets. The Lego Group offered RoboLab, a graphical dataflow language, to schools using

Mindstorms. Researchers implemented dozens of other languages for controlling Mindstorms

bricks.

2006 saw the launch of the One Laptop per Child project by MIT Professor Nicholas

Negroponte (One Laptop per Child, 2017). The dream was to support the dissemination of

inexpensive laptops to every child in the developing world. Special hardware and software

was developed. The laptops were designed to have very low power requirements so that

electricity could be provided by other means if electrical power wasn’t available. The laptops

can easily be connected in a network to share resources and support multi-user applications.

Over two million laptops were produced and in a few countries, there were enough to provide

a laptop to each child (Uruguay for example). Two million is a significant number, but many

fewer than the hundreds of millions initially expected.

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 35

Figure 6 - One Laptop per Child laptops in West Papua

Source: Author

7. 2010s

By 2010 web-based technology (JavaScript, CSS, and HTML5) began to be mature

enough that serious programming environments could be built to run in any modern browser,

including those on tablets and smartphones. Implementations of Logo, ToonTalk, and

dialects of Scratch appeared that ran immediately in a browser without any installation or

plugins. Programs could be stored seamlessly to cloud storage so that students could move

easily between school, home, and libraries as they constructed computational artefacts.

An example is Snap!, a more powerful variant of Scratch, implemented as a web

application (Harvey; Mönig, 2010). It contains new primitives for supporting first-class

functions (functions that can create or use other functions) and lists. Unlike Scratch, it is

suitable for an advanced high school or beginning university computer science course. It

illustrates a tension between programming languages designed to be easy to learn, such as

Scratch, and those designed to support more advanced computational concepts and the

construction of larger, more complex programs. A curriculum called the Beauty and Joy of

Computing (Kahn, 2014) which includes text books, MOOCs, and lesson plans is based

upon Snap!.

ToonTalk was built as a Microsoft Windows application. ToonTalk Reborn is a

reimplementation and redesign for the web (University of California, 2017). ToonTalk

programs can be associated with any browser element, giving them interactivity. Widgets

artigos

KAHN

36
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

constructed in ToonTalk can be embedded inside web pages. Programs and widgets can be

dragged between browsers. Programs can be published as automatically generated web

pages surrounded by editable rich text.

The Khan Academy (2017a) began in 2009 as an online mathematics learning site

relying heavily on short videos. It has delivered over 600 million lessons in many school

subjects to over 55 million students. It delivers 4 million exercise problems daily. Many

teachers use it to “flip the classroom” where watching videos as homework replaces

classroom lectures. This frees up classroom time for personal support of students as they

attempt to do exercises.

This decade has also seen the rise in online tutorials and puzzles designed to teach

programming. Code.org has promoted the “Hour of Code” which has reached more than 400

million people. 600,000 teachers use the online programming courses on the web site. A

very impressive online programming tutorial is from the Khan Academy (2017b). Each

programming lesson replays the actions of an expert with audio commentary. The web page

is split between the coding area and an area displaying the result of running the code. Edits

of the code are immediately reflected in the output/visualization area. Students can at any

time pause the playback and experiment with their own edits or additions to the code area

and receive instant feedback.

Another trend of this decade is the programming of smart phones. The MIT App

Inventor (Wolber et al., 2011) enables learners to build Android apps in a web browser that

can be run either on a phone or in a phone emulator in the browser. It relies upon a variant of

the block syntax made popular by Scratch. Pocket Code (Slany, 2014) enables learners to

build phone apps on their phones. Its block syntax and interface were designed to work on

small screens and touch sensitive devices.

The Internet, large open online databases, and powerful computers has led the

possibility that students can incorporate “big data” into the apps they create. NetsBlox (2017)

is a Snap! extension that provides easy-to-use access to a wide range of databases.

Mathematica is also being used by high school students to programmatically explore a wide

variety of real-world datasets (Wolfram, 2016).

Machine learning has become a very hot topic in research and industry in the 2010s.

Recent efforts have attempted to use machine learning to provide personalized tutoring

(Coughlan, 2016). Researchers are now exploring how school students might use speech

recognition, image recognition, and machine learning to construct “intelligent” apps and

robots (Wolfram, 2017; Kahn; Winters, 2017; Machine Learning for Children, 2017). Students

using these systems learn to use and understand an increasingly important new technology.

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 37

And perhaps in the process the students reflect upon their own thinking thereby acquiring a

deeper understanding of their own problem solving, learning, and thought processes.

Massive open online courses (MOOCs) became a hot topic in computer-supported

learning when in 2011 Stanford University offered a free course Introduction to AI. Its

enrolment quickly reached 160,000. Since then courses have been offered at hundreds of

universities world-wide with total enrolment of many millions (Wikipedia, 2017b). Because of

the large numbers of students, MOOCs generate “big data”. This data can be mined to

continually improve courses based upon solid evidence.

8. How does “Computational Thinking” fit?

In 2006, Jeanette Wing published an essay on computational thinking where she

wrote “Computational thinking involves solving problems, designing systems, and

understanding human behavior, by drawing on the concepts fundamental to computer

science” (Wing, 2006). Her article has been followed by over a dozen books and over a

thousand articles that use the expression “computational thinking” in their titles.

Computational thinking has recently been incorporated in the national curriculum of many

countries.

Tedre and Denning (2016) published a paper describing the sixty-year history of the

ideas underlying computational thinking. It often went with other names such as algorithmic

thinking but many as early as the late 1950s and the 1960s were writing about ideas

remarkably similar to those in Wing’s essay. The article also reviews the emergence in the

last few decades of computational thinking in various scientific disciplines, for example,

computational biology. They document many different definitions of computational thinking

but all are much narrower than the ideas that Seymour Papert first started writing about fifty

years ago.

The good news is that a consequence of the recent excitement about computational

thinking is that millions of children have been introduced to programming with an intent that

they learn more than just programming. The goal of the better computational thinking

curricula, websites, and learning resources is that the students learn a way of thinking that

computer scientists use to solve problems, design systems, and understand the world.

The bad news is that the set of computational thinking concepts is a small subset of

those that Seymour Papert and colleagues have been for decades have been claiming could

fundamentally change learning and teaching. Papert’s concept of powerful ideas is a much

broader and older than computational thinking. One can read about this broader view of

computational thinking as early as 1971 when Papert wrote “Teaching Children Thinking”

artigos

KAHN

38
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

(Papert, 1971). A section is entitled “Computer Science as a Grade School Subject” reads

like a modern description of computational thinking. The paper focused on the powerful idea

that thinking about thinking (with the right conceptual tools) can lead to many meta-cognitive

improvements.

Powerful ideas as described in Papert’s 1980 Mindstorms book includes a long list of

ideas beyond those connected with computational thinking including debugging, microworlds,

reflection, and the idea of powerful ideas.

Papert and colleagues have been promoting a pedagogic framework called

constructionism for over twenty-five years (Papert; Harel, 1991). It emphasizes the deep

learning often follows from students publicly sharing the results of their substantial personally

meaningful projects. Projects involving computer programs are not the only kind of

constructionist projects but are particularly well-suited for students effectively constructing

knowledge. In contrast, too many computational thinking learning resources lack an

emphasis on creativity and student-directed projects.

9. Looking back and forward

The best way to predict the future is to invent it. – Alan Kay (Wikipedia, 2017c)

In the last fifty years great inventions in using computers to support learning have

been made. These include programming languages designed for children, intelligent tutoring

systems, online courses, shared virtual spaces, robotics kits, and thousands of games. And

learning doesn’t stop with software specifically designed for education but includes use of

mainstream developments such as Wikipedia, Google Earth and Maps, social media,

computer graphics and animation authoring systems, photo and video editing, 3D printing,

spreadsheets, presentation tools, and collaborative document editors.

As computational technology becomes widespread and matures and as the price of

computational hardware decreases, we may finally see the fulfilment of the dreams of

Seymour Papert, Nicholas Negroponte, and many others that learning by every child on the

planet can change dramatically for the better. Children increasingly have devices that enable

them to creatively express themselves in a medium that brings their ideas and creations to

life. The hope is that children worldwide will thereby acquire powerful ideas changing them

into better problem solvers, thinkers, and learners.

10. References

ABELSON, H.; DISESSA, A. A. Turtle Geometry: The Computer as a Medium for Exploring
Mathematics. Cambridge: MIT Press, 1981.

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 39

ANDERSON, J. R. et al. Cognitive Modelling and Intelligent Tutoring. Artificial Intelligence,
Vol 42, pages 7-49, 1990.

BBC NEWS What it's like to have schizophrenia. Available in:
<http://news.bbc.co.uk/1/hi/health/6453241.stm>. Accessed in oct. 12, 2017.

BEGEL, A. LogoBlocks: A Graphical Programming Language for Interacting with the World,
MIT Advanced Undergraduate Project. May 1996. Available in:
<http://research.microsoft.com/en-us/um/people/abegel/mit/begel-aup.pdf>. Accessed in oct.
12, 2017.

BLOCKLY Try Blockly. Available in: <https://developers.google.com/blockly/>. Accessed in
oct. 10, 2017.

BROWN J. S; VANLEHN, K. Repair Theory: A Generative Theory of Bugs in Procedural
Skills, Cognitive Science, vol. 4, no. 4, pp. 379-426, 1980.

COUGHLAN, S. Could robots be marking your homework?, BBC News, December 14,
2016. Available in: <http://www.bbc.com/news/business-38289079>. Accessed in oct. 10,
2017.

DARTMOUTH COLLEGE COMPUTATION CENTER. A Manual for BASIC, the elementary
algebraic language designed for use with the Dartmouth Time Sharing System. 1964.
Archived from the original on 2012-07-16. Available in:
<http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf>. Accessed in oct. 10, 2017.

DISESSA, A. Twenty reasons why you should use Boxer (instead of Logo). In: SZABÓ, M. T.
(Ed.) Learning & Exploring with Logo: Proceedings of the Sixth European Logo
Conference. Budapest Hungary, 7-27, 1997.

DRESCHER, G, L. Genetic AI: Translating Piaget into LISP. Instructional Science, Volume
14, Issue 3-4, pp 357-380, May 1986.

ENNAL, R. Teaching logic as a computer language in schools. Proceedings of the First
International Logic Programming Conference, Marseille, France, September 1982.

GOLDSTEIN, I. Understanding simple picture programs, 1974 Thesis (doctoral in Artificial
Intelligence) Massachusetts Institute of Technology, 1974.

GREENBERGER, M. Computers in the World of the Future, Cambridge, MA: MIT Press,
1962.

HARDESTY, L. The MIT roots of Google’s new software. MIT News Office, August 19,
2010. Available in: <http://newsoffice.mit.edu/2010/android-abelson-0819>. Accessed in oct.
13, 2017.

HAREL, I. Children Designers: Interdisciplinary Constructions for Learning and Knowing
Mathematics in a Computer-rich School. New Jersey: Ablex Publishing, 1991.

HARVEY, B. Computer Science Logo Style, Volumes 1, 2 and 3, Cambridge, MA: MIT
Press, Second edition, 1997.

artigos

KAHN

40
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

HARVEY, B; MÖNIG, J. Bringing ‘No Ceiling’ to Scratch: Can One Language Serve Kids and
Computer Scientists?, Constructionism 2010 Proceedings, Paris, 2010.

HOYLES, C; NOSS, R; ADAMSON, R. Rethinking the Microworld Idea, Journal of
Educational Computing Research, Volume: 27 issue: 1, p. 29-53, 2002.

KAFAI, Y. B. Minds in Play: Computer Game Design as a Context for Children's Learning,
Mahwah, NJ, Lawrence Erlbaum, 1995.

KAHN, K. Director Guide, Technical Report 482B, MIT AI Lab, December 1979.

KAHN, K. A grammar kit in Prolog. In: YAZDANI, M. editor, New Horizons in Educational
Computing. Ellis Horwood Ltd., 1984. Also in Instructional Science and Proceedings of
the AISB Easter Conference on AI and Education, Exeter, England, April 1983.

KAHN, K ToonTalk -- An Animated Programming Environment for Children. Proceedings of
the National Educational Computing Conference, Baltimore, Maryland, June 1995.
Extended version in the Journal of Visual Languages and Computing, June 1996.

KAHN, K. Generalizing by Removing Detail. Communications of the ACM, 43(3), March
2000. Extended version in LIEBERMAN, H., editor, Your Wish Is My Command:
Programming by Example. Massachusetts, MA: Morgan Kaufmann, 2001.

KAHN, K. ToonTalk Reborn, Re-implementing and re-conceptualising ToonTalk for the Web.
Proceedings of Constructionism 2014, Vienna, August 2014.

KAHN, K; NOBLE, H. The Modelling4All Project -- A web-based modelling tool embedded in
Web 2.0. Proceedings of Constructionism 2010, Paris, August 2010.

KAHN, K; WINTERS, N. Child-friendly Programming Interfaces to AI Cloud Services,
Proceedings of the EC-TEL 2017 Conference, Tallinn, Estonia, September 2017.

KHAN ACADEMY Khan Academy site. Available in: <https://www.khanacademy.org/>.
Accessed in oct. 10, 2017a.

KHAN ACADEMY, Computer programming. Available in:
<https://www.khanacademy.org/computing/computer-programming>. Accessed in oct. 12,
2017b.

KLOPFER, E. et al. “The Simulation Cycle: combining games, simulations, engineering and
science using StarLogo TNG”, E-Learning and Digital Media, Volume 6 Number 1, 2009.

MACHINE LEARNING FOR CHILDREN. Teach a computer to play a game. Available in:
<https://machinelearningforkids.co.uk>. Accessed in oct. 12, 2017.

MALONE, T. Toward a theory of intrinsically motivating instruction. Cognitive science 5.4,
p. 333-369, 1981.

MIT MEDIA LAB, Scratch statistics. Available in: <http://scratch.mit.edu/statistics/>.
Accessed in oct. 10, 2017.

MOR, Y. ET AL. Thinking in Progress. Micromath, The Association of Teachers of
Mathematics, 20(2), pp.17-23, 2004.

A half-century perspective on Computational Thinking

tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017 41

MORGADO, L; CRUZ, M; KAHN, K. Working in ToonTalk with 4-and 5-year olds.
Proceedings of the IADIS International Conference, e-Society, Vol. II, IADIS, 2003.
NETSBLOX. Available in: <https://netsblox.org>. Accessed in oct. 12, 2017.

MORGADO, L; CRUZ, M; KAHN, K. Radia Perlman – A pioneer of young children computer
programming. Current developments in technology-assisted education, Proceedings of m-
ICTE, 2006.

ONE LAPTOP PER CHILD. Site one laptop per child. Available in: <http://one.laptop.org/>.
Accessed in oct. 12, 2017.

PAPERT, S. Teaching Children Thinking. MIT AI Memo 247, 1971.

PAPERT, S. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic
Books, 1980.

PAPERT, S. “Does Easy Do It? Children, Games, and Learning”, Game Developer, June
1998.

PAPERT, S; HAREL, I. Constructionism. New Jersey: Ablex Publishing Corporation, 1991.

REPENNING, A. Creating User Interfaces with Agentsheets. 1991 Symposium on Applied
Computing, Kansas City, MO, IEEE Computer Society Press, Los Alamitos, pp. 190-196,
1991.

PLATO HISTORY Plato History: remembering the future. Available in:
<http://www.platohistory.org/blog/timeline/>. Accessed in oct. 12, 2017.

RESNICK, M. MultiLogo: A Study of Children and Concurrent Programming. Interactive
Learning Environments, 1:3, 153-170, 1990, DOI: 10.1080/104948290010301.

RESNICK, M. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel
Microworlds. Cambridge, MA: MIT Press, 1994.

RESNICK, M. et al. Scratch: Programming for All. Communications of the ACM, Vol. 52
No. 11, Pages 60-67, 2009.

RESNICK, M; OCKO, S; PAPERT, S. LEGO, Logo, and Design. Children's Environments
Quarterly, vol. 5, no. 4, 1988.

SARASWAT, V. Concurrent Constraint Programming. Cambridge, MA: MIT Press, 1993.

SLANY, W. Tinkering with Pocket Code, a Scratch-like programming app for your
smartphone. Proceedings of Constructionism 2014, Vienna, August 2014.

SMITH, D, C; CYPHER, A; SPOHRER, J. KidSim: Programming Agents without a
Programming Language. Communications of the ACM, 37(7), pp. 54 – 67, July 1994.

SUSSMAN, G. HACKER: A model of skill acquisition. Thesis, 1973 (PhD in Artificial
Intelligence), MIT, 1973.

artigos

KAHN

42
tecnologias, sociedade e conhecimento
vol. 4, n. 1, Dezembro/2017

TEDRE, M; DENNING, P. J. The Long Quest for Computational Thinking. Proceedings of
the 16th Koli Calling Conference on Computing Education Research, November 24-27,
2016, Koli, Finland: pp. 120-129.

UNIVERSITY OF CALIFORNIA, Berkeley. Available in: <http://bjc.berkeley.edu/>. Accessed
in oct. 12, 2017.

WHITE, B. Designing Computer Games to Facilitate Learning. Thesis, 1981 (PhD in
Artificial Intelligence) MIT, 1981.

WIKIPEDIA Living Books series. 2017a. Available in:
<https://en.wikipedia.org/wiki/Living_Books_series>. Accessed in oct. 13, 2017.

WIKIPEDIA Massive Open Online Course. 2017b. Available in:
<https://en.wikipedia.org/wiki/Massive_open_online_course>. Accessed in oct. 12, 2017.

WIKIPEDIA Alan Kay. 2017c. Available in: <https://en.wikipedia.org/wiki/Alan_Kay>.
Accessed in oct. 12, 2017.

WILENSKY, U. NetLogo, Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL, 1999. Available in:
<http://ccl.northwestern.edu/netlogo>. Accessed in oct. 12, 2017.

WING, J. M. Computational Thinking. CACM Viewpoint, March 2006, pp. 33-35.

WOLBER, D. et al. App Inventor. California: O'Reilly Media, 2011.

WOLFRAM, S. How to Teach Computational Thinking, September 7, 2016 blog post.
Available in: <http://blog.wolfram.com/2016/09/07/how-to-teach-computational-thinking/>.
Accessed in oct. 12, 2017.

WOLFRAM, S. Machine Learning for Middle Schoolers, May 11, 2017 blog post. Available
in: <http://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/>.
Accessed in oct. 12, 2017.

