

Modeling the Multiple Sclerosis Brain Disease Using

Agents: What Works and What Doesn’t?

Ayesha Muqaddas

Muaz A. Niazi*

*Corresponding author

Department of Computer Science,

COMSATS Institute of IT,

Islamabad, Pakistan

muaz.niazi@ieee.org

Abstract:

The human brain is one of the most complex living structures in the known Universe. It consists of

billions of neurons and synapses. Due to its intrinsic complexity, it can be a formidable task to accurately

depict brain’s structure and functionality. In the past, numerous studies have been conducted on modeling

brain disease, structure, and functionality. Some of these studies have employed Agent-based approaches

including multiagent-based simulation models as well as brain complex networks. While these models

have all been developed using agent-based computing, however, to our best knowledge, none of them

have employed the use of Agent-Oriented Software Engineering (AOSE) methodologies in developing

the brain or disease model. This is a problem because without due process, developed models can miss

out on important requirements. AOSE has the unique capability of merging concepts from multiagent

systems, agent-based modeling, artificial intelligence, besides concepts from distributed systems. AOSE

involves the various tested software engineering principles in various phases of the model development

ranging from analysis, design, implementation, and testing phases. In this paper, we employ the use of

three different AOSE methodologies for modeling the Multiple Sclerosis brain disease – namely GAIA,

TROPOS, and MASE. After developing the models, we further employ the use of Exploratory Agent-

based Modeling (EABM) to develop an actual model replicating previous results as a proof of concept.

The key objective of this study is to demonstrate and explore the viability and effectiveness of AOSE

methodologies in the development of complex brain structure and cognitive process models. Our key

finding include demonstration that AOSE methodologies can be considerably helpful in modeling various

living complex systems, in general, and the human brain, in particular.

1. Introduction:

Cai et al. note that the human brain can be considered as one of the most complex living structures of the

known world [1]. Forstmann and Wagenmakers note the complexity of the brain because of its

composition of billions of neurons, synapsis, blood vessels, glial cells, neural stem cells, and layered

tissues [2]. For many decades, researchers have been attempting to model the human brain. These studies

mailto:muaz.niazi@ieee.org

have been conducted primarily to understand the structure, function, connection, dynamics of neurons and

overall brain at multiple spatial-temporal scales. Understanding and modeling the brain is extremely

important because common brain diseases such as multiple sclerosis, dementia, cancer, Alzheimer, and

epilepsy are often caused by a minor distraction of neurons or severe injury.

Due to the its inherent complexity, it is formidable to effectively model and depict brain’s structure and

functionality at all scales. Numerous studies have previously been conducted on brain disease, structure,

and functionality modeling by applying ABM (Agent-Based Modeling), MAS (Multi-Agent systems) and

Complex Networks (CN). Few of them have modeled the overall brain structure or functions simply

while others have modeled the brain disease. According to researchers’ best knowledge, there is no single

research that could claim that their findings are complete and absolutely flawless. These studies achieved

beneficial results for disease cure and prevention, brain structure and function understanding. However,

these marvelous systems have flaws, as these models are developed by using Agent-Oriented technology,

without following any AO methodology. To our best knowledge, none of them have used AO

methodologies for modeling brain, brain disease, function, and structure.

AOSE (Agent-Oriented Software Engineering) combines MAS, ABM, AI, and distributed systems, and

demands the application of AI and software engineering principles in the analysis, design, and

implementation phases of a software systems development process. AOSE technology has the broad

capability of autonomy, proactivity, reactivity, robustness, and social ability. Due to these capabilities

nowadays, AOSE is becoming popular in the development of the distributed and complex application

(such as e-commerce, healthcare systems, and social systems). Lucena and Nunes and R. Cunha et al,.

state in their study that, AOSE promises to deal with complex and distributed systems[3][4]. For 2000,

researchers are making a great effort to produce AOSE techniques for agent-based systems for the

guidance of design, development and maintenance process. Now at present, this is a mature technology

and has methodologies, architectures, methods, and developmental tools.

As system engineering methodologies focus on technical issues of system development. AOSE

methodologies guide step by step development of agent modeling from system requirement to system

implementation. When developers jump into system development without any guided methodology, then

they ignore the most important aspect of the system to be implemented. Moreover, developers need the

high-level expertise of system development, and they face difficulties throughout the development

process, and the ongoing project takes more time, which ultimately leads to cost exceeding without any

remarkable achievement. To overcome all these mentioned problems we are proposing an idea to follow

AOSE methodologies in brain modeling scenarios. Because of neurons in the brain interact in a

heterogeneous way, that’s why we should use AOSE.

We will model MAS of Multiple Sclerosis disease by following AOSE methodologies GAIA, TROPOS,

and MaSE. After applying these methodologies, we will model exploratory agent based model as a proof

of concept. The Multiple Sclerosis (MS) is considered as an inflammatory, autoimmune and

demyelination disease of central nervous as stated in articles [5] [6] [7] [8]. In this disease myelin sheath

on axonal part of neuron destroys with time. This destruction became an important cause of

neurodegeneration which results in impaired muscular performance [9]. It can significant cause of

physical and mental disabilities, irreversible neurologic deficits, including paralysis, muscle weakness,

ataxia tremor, spasticity, cognitive impairment, body balance disorder, vision loss, double vision, vertigo,

pain, fatigue, and depression [10].The dark side of this disease is it is becoming the main cause of

neurological disability in young adults[11] that’s why intensive research is needed on this disease to save

youngsters life. The autoimmune system plays an important role in the disease progression and the body’s

own immunity assaults the myelin sheath causing injury. However, a satisfactory explanation for the

origins and mechanism for MS is lacking in the literature.

In our work, we are taking MS disease as a case study for simulation system development. This case

study is presented by Pennisi et al in the article [12]. First of all, we will develop the MS disease model

by AOSE methodologies GAIA V.2, TROPOS, MaSE then, we will perform a comparative analysis of

these methodologies to find out which methodology is best in a specific scenario. The purpose of AOSE

methodologies implementation and comparison is to explore, if agent-based modeling with AOSE

methodologies is a suitable paradigm for modeling human brains structure, cognitive process, and disease.

And what kind of data would be needed for the sake of validation without spending a considerable

amount of time on these models. Moreover, we will evaluate does the AOSE technology have worth in

brain modeling. Our findings will prove that the AOSE methodologies are mature enough, that easily can

implement the complex real system of any domain without any remarkable background knowledge.

2. Related Work:

The ever-growing use of agent-oriented technology demonstrates that it is used in almost every field of

science. In this section, we will briefly present the well-known brain models, who have used agent

oriented-technology However, the analysis of literature unveils that, the wide use of agent technology in

modeling the human brain, leads the idea to use AOSE methodologies, that could aid the development

team throughout the system development project. Such as in early requirement analysis phase, design,

development and deployment phases. The AOSE methodologies work same like conventional software

engineering methodologies, which have proved that methodologies are fundamentally needed for

traditional software projects.

Y. Mansury and T. S. Deisboeck have proposed agent-based model for Spatial-temporal progression of

tumor cells, according to environmental heterogeneities in mechanical confinement toxic metabolites.

Results reveal that tumor cells follow each other along preform pathways. However, this model can be

extended to other cancers by incorporating real data[13].

C. A. Athale and T. S. D. Ã, have developed an agent-based system, to simulate progression dynamics of

the tumor. This model integrates Transforming Growth Factor α (TGFα) and induces EGFR gene-protein

interaction network. Results show the progression rate of tumor cells according to Spatio-temporal and

progression speed up when increasing EGFR density per cell [14].

Y.mansuray and .S. Deisboeck have generated a 2D agent-based system, that performs a simulation of

two different gene expression, which are Tenascin C and Proliferating-Cell-Nuclear-Antigen for brain

tumor progression. Moreover, this model investigates the effect of an environmental factor in gene

expression changes. The results reveal that Tenascin C plays a crucial role in the migration of Glioma cell

phenotype, and the expression of Proliferating-Cell-Nuclear-Antigen is responsible for proliferating

behavior of tumor cell [15].

Y.Mansury and T.S.Deisboeck have proposed a 2D agent-based system, to examine the ongoing

progressive performance of multiple tumor cells in human brain. The results demonstrate that these

dangerous tumor cells proliferate and migrate on an adaptive grid lattice. And there is acorrelation among

the progression dimension of the tumor and the velocity of tumor expansion[16].

Zhang et al. have developed a 3D multi-scale agent-based system, to perform a simulation of the cancer

cell decision process. The results reveal that tumor cells do not only oscillate between migration and

proliferation area, besides this these dangerous cells directly disturb the entire SpatioTemporal expansion

patterns of brain area which is affected by cancer[17].

Zhang et al. have proposed a hybrid agent-based model that predict severe cancer areas in the brain. This

model simulates cancer cells, either active or inactive cluster [18].

Germond et al. have proposed a multi-agent model, with remarkable features of deformation and edge

detector. This model performs segmentation on MRI data and clearly shows each dynamic dimension of a

scanned brain. When the results compared with real brain image then a real brain phantom is

reported[19].

Richard et al have advocated multi-agent framework for brain MR image segmentation. That focus on

radiometry tissue interpretation. This framework performs segmentation on a complete volume in less

than 5 min with about 0.84% accuracy[20].

Vital-Lopez et al. have developed a 3D mathematical agent-based system, that performs a simulation of

tumor progression as a collective behavior of individual tumor cells. The simulation results conclude that

vascular network damage is one of the main reasons for tumor growth and invasiveness[21].

Soc,R has proposed an agent-based model for action selection in autonomous systems. He incorporated

biological details in this Agent-Based system, in order to generate a set of predictions for decision

selection. This research concludes that agent-based technology has the broader implication of action

selection mechanism for both natural and artificial sciences related systems[22].

Signaling et al. have expanded their already proposed 3D Agent-Based and multi-scale system to perform

simulation on the brain tumor. Which examine the simplified progression of Glioma pathway. Moreover,

intracranial pressure is introduced to examine the influence of clonal heterogeneity on the human tumor

growth. This research concludes that the brain regions that are near to blood vessels and are affected by

tumor cells, these regions are the best nutrient source for tumor[23].

The scientist of Health Agent project González-Vélez et al have proposed an Agent-Based decision

support model, for the detection and the diagnosis of brain tumor classifications. This study determines

that now prediction of tumor classification is more accurate and optimize because reasoned argument is

performed among intelligent agents[24].

Zhang et al., have developed ABM for cancer simulation according to multiple dynamic scales in space-

time. This model proposes an idea of incorporating macroscopic expression patterns and microscopic cell

behavior with molecular pathway dynamics. The results show that at the same time this 3D model

efficiently model five different cancer cell clones[25].

Zhang et al., have proposed a Multiscale Agent-Based Model system to perform the simulation of

Glioblastoma Multiforme cancer. This simulation model considers the progression and proliferation of

cancer in the real time. The results conclude that this model is 30 times faster than the previous models.

Because this model’s extracellular matrix have large fine grids[26].

Haroun et al., have proposed a simulation model, based on multi-agents for brain MRI segmentation. The

results show a global and local view of te image and these images are more clear than the other

competitive models result. This research also demonstrates that an appropriate quantity of agents in the

simulation is important to improve the segmentation quality of MRI images[27].

Pennisi et al., have proposed an ABM to formulate medication for MS disease and to reveal the

mechanism of distraction and new potential formulation of the blood-brain barrier (BBB). The results

suggest that vitamin D is effective for blood blockage [12].

Koutkias and Jaulent have developed ABM for Pharmacovigilance to detect complete potential signals

associated with drugs and adverse effects. This model enables clinicians to detect timely and accurate

drug signals effect[28].

Leistritz et al. have proposed an agent-based framework for agents, that have Belief, Desire, and Intention

capabilities. As a result, this model satisfies a key integration challenge, of coupling time stepped ABM

with event-based BDI systems[29].

Barrah has developed a MAS for magnetic resonance imaging (MRI) with a median filter to decrease

computational time and save data details. The proposed FRFCM with MAS is fastidious, accurate and

take less computational time[30].

Pennisi et al., have developed ABM for RRMS (Relapsing Remitting Multiple Sclerosis) disease. The

outcome results show that the occurrence of genetic disposition in neurons is one cause of MS disease.

However, the main cause is a breakdown of peripheral tolerance mechanism.[31].

Ref Title Author Year Journal MAS ABM S.E AOSE

[13] “The impact of ‘‘search precision’’ in

an agent-based tumor model”

Mansury and

Deisboeck

2003 Journal of

Theoretical

biology

 ✓

[14] “The effects of EGF-receptor density

on multiscale tumor growth patterns”

Athale and Ã 2006 Journal of

Theoretical

Biology

 ✓

[15] “Simulating the time series of selected

gene expression profile in an agent –

based tumor model”

Mansury and

Deisboeck

2004 Physica D ✓

[16] “Simulating ‘structure-function’

patterns of malignant brain tumors”

Mansury and

Deisboeck

2004 Physica A ✓

[17] “Development of a three-dimensional

multiscale agent-based tumor model:

Simulating gene-protein interaction

profiles, cell phenotypes and

multicellular patterns in brain cancer”

Zhang,

Athale and

Deisboeck

2007 Journal of

Theoretical

Biology

 ✓

[18] “Multi-scale, multi-resolution brain

cancer modeling”

Zhang, Chen

and

Deisboeck

2009 MATHEMATICS

AND

COMPUTERS IN

SIMULATION

 ✓

[19] “A cooperative framework or

segmentation of MRI brain scans”

Germond et

al.,

2000 Artificial

Intelligence in

Medicine

✓

[20] “Automated segmentation of human

brain MR images using a multi-agent

approach”

Richard,

Dojat and

Garbay,

2004 Artificial

Intelligence in

Medicine

✓

[21] “Modeling the Effect of Chemotaxis on

Glioblastoma Tumor Progression”

Vital-lopez,

Armaou and

Hutnik,

2011 American Institute

of Chemical

Engineers

 ✓

[22] “Introduction. Modeling natural action

selection”

Soc,R 2007 The royal society ✓

[23] “Simulating Brain Tumor

Heterogeneity with a Multiscale Agent-

Based Model : Linking molecular

signatures, phenotypes and expansion

rate”

Signaling,

Bias and

Rate

2009 Mathematical and

Computer

Modeling

 ✓

[24] “HealthAgents: distributed multi-agent

brain tumor diagnosis and prognosis”

González-

Vélez et al

2009 Applied

Intelligence

 ✓

[25] “Multiscale agent-based cancer

modeling”

Zhang et al., 2009 Journal of

Mathematical

Biology

 ✓

[26] “Developing a multiscale, multi-

resolution agent-based brain tumor

model by graphic processing”

Zhang et al., 2011 Theoretical

Biology and

Medical

Modelling

 ✓

[27] “A Massive Multi-Agent System for

Brain MRI Segmentation”

Haroun et

al.,

2005 Massively Multi-

Agent Systems
✓

[12] “Agent-based modeling of the effects of

potential treatments over the blood–

brain barrier in multiple sclerosis”

Pennisi,

Marzio, et al

2015 Journal of

immunological

methods

 ✓

[28] “A multi-agent system for integrated

detection of pharmacovigilance signals”

Koutkias, V,

and Jaulent,

M. C

2016 Journal of medical

systems

 ✓

[29] “Time-variant modeling of brain

processes”

Leistritz, L.,

Schiecke, K.,

Astolfi, L.,

and Witte, H.

2016 Proceedings of the

IEEE

 ✓

[30] “MAS based on a Fast and Robust

FCM Algorithm for MR Brain Image

Segmentation”

Barrah, H. et

al.

2016 . International

Journal of

Advanced

Computer Science

& Applications

✓

[31] “Agent based modeling of Treg-Teff

cross regulation in relapsing-remitting

multiple sclerosis”

M. Pennisi et

al.

2013 BMC

Bioinformatics

 ✓

3. Material and Methods

This section describes in detail the case study of multiple sclerosis (MS) disease and the implementation

of the MS model by using AOSE methodologies like Gaia V.2, Tropos, and MASE. According to our

best knowledge that AOSE methodology has never been used in any biological model. First time we tried

to model biological problem, according to well defined agent methodologies. To do this, here we are

copying same rules and regulations that are used to model other systems in engineering field. We

implemented MS model in Net-Logo environment. This model is already implemented by Pennisi et al. in

[12].

3.1. Case study:

MS is one of the central nervous system diseases. In which myelin sheath from the axonal part of the

neurons in the brain and spinal cord is removed and the communication between neurons is

disconnected.In this disease, different factors and cells are involved. The overall mechanism of MS

disease is given below.

The thymus gland is a lymphoid organ that produces T-cells (T-reg and T-eff). The T-reg and T-eff both

cells have two states, “active and resting”. EBV (virus) is an external factor that latent infection. EBV

cause activation of both T-eff and T-reg. The active T-eff (A.T-eff) attacks the myelin of axons and cause

the neural communication damage and in return duplicate itself. A.T-eff produce one cytokine against one

attack. Active T-reg (A.T-reg) try to catch A.T-eff and suppress it. In return, A.t-reg receive a positive

feedback and will duplicate. After the attack of A.T-eff the amount of myelin in BWM will be lowered. If

the damaged portion still has any amount of myelin then it is recoverable. If myelin amount reaches zero,

then it is unrecoverable. A.T-eff produce cytokines after damage myelin. Cytokine attacks BBB and

damages it. The damaged BBB allows other T-cells and virus to enter into the brain. The main purpose of

the BBB is blocked and bounce back to all T-reg, A.T-reg, T-eff, A.T-eff, Virus, Cytokines.

At the start of the simulation, all agents are introduced in the model in the resting state. The agents are

considered as brain cells. All agents have life counter that decrement by one at every step of the agent. If

the life counter of agent reaches to zero, then that agent will be removed from the simulation

automatically. In running simulation, all agents will move randomly in the environment (actually brain)

and new agents will be introduced at random time.

3.2. GAIA V.2:

The original GAIA methodology was presented by Wooldridge in 2000, It was the first complete AOSE

methodology developed for large-scale real-world applications [32]. GAIA V.2 focuses on two main

development phases of a system, analysis phase, and development phase. Moreover, these models are

considered as a guideline for developing the real models of the to-be-developed complex system.

This methodology is applied to ABM and MAS modeling after requirements are gathered and specified.

After adoption of Gaia methodology for complex systems development, researchers realize that it is easy

to use and implement. However, it is not much suitable for complex systems design [33]. Because

modeling notations are poor for expressing complex problems, such as complex and multiphase

interaction protocols. Moreover, Gaia has a deficiency of requirement phase, environment model, and

does not provide an appropriate domain knowledge. To overcome these limitations Zambonelli, Jennings

and Wooldridge proposed Gaia V.2 agent methodology in [34]. In our MS model we are using Gaia V.2,

same like Gaia it has two development phases 1) analysis and 2) design as shown in the following picture.

Figure 1: GAIA V.2 methodology [35]

3.2.1 Analysis Phase:

Generally, the analysis phase emphasizes on understanding what the MAS and ABM system will have to

be as their properties or specifications (without reference to any implementation detail). The output of the

analysis phase became the base input for the design phase. In actual, in this phase analyst decide about the

functional and non-functional characteristics of the to-be-system. The output of this phase is five basic

models such as 1) sub-organizations, 2) environmental model, 3) preliminary role model, 4) preliminary

interaction model, and 5) organizational rules model.

1) System Sub-Organizations

This model tries to identify all the involved organizations, and used a fruitful way to categorize the whole

system into loosely coupled sub-organizations. The identification of sub-organization is easy if

1) The Sub-organizations are already identified through system specifications.

2) The system itself mimics the overall structure of the real world, in which multiple organizations

interact.

3) Apply the modularity technique. This technique splits the overall complexity of the to-be-system

into a set of smaller and more manageable components.

According to our experience, the sub-organizations of the developing system can be found easily, when

we divide the overall system into portions. And each portion exhibit a specific behavior and they interact

with each other to achieve a subgoal. Any portion of the system which performs any task or interacts with

other to perform a specific task, then we can take it as a sub-organization.

Sub-organizations Description

T-eff The goal to achieve is to “become active” by catching the virus. It will interact

with the virus for activation and BBB to enter into the brain.

T-reg The goal to achieve is to “become active” by catching the virus. It will interact

with the virus for activation and BBB to enter into the brain.

Virus The goal to achieve is to “enter into the brain” and make “ T-reg and T-eff

active”. It interacts with T-reg, T-eff to make them active and BBB to enter into

the brain.

A.T-eff The goal to achieve is to “attack on myelin” to damage brain, “duplicate itself”

and “produce cytokines”. It interacts with BBB to enter into the brain.

A.T-reg The goal to achieve is to “attack on ” A.T-eff to kill them and “duplicate itself”.

It interacts with A.T-eff to kill them and interact with BBB to enter into the

brain.

Cytokines The goal to achieve is “attack on BBB” to damage it. It interacts with only BBB.

BWM The goal to achieve is “recover damaged myelin” in the brain to maintain neural

communication.

BBB The goal to achieve is “stop the entrance” of T-eff, T-reg, A.T-eff. A.T-

reg,virus, Cytokine into the Brain.

Table 1: Sub-Organizations and their goals

In our’s MS disease model, we identified eight sub-organizations T-reg, T-eff, virus, A.T-eff, A.T-reg,

Cytokines, BBB and BWM as showed in table 1. After identification of sub-organizations, we divided

them into two main groups by arranging roles into groups with logical or physical similarities as Silva has

done in his work [35]. The first group is brain organs and the second one is neuron cells. The Brain organ

group consist of two types of agents (BBB, and BWM). On the other hand cell group contain EBV ,T-reg,

T-eff, A.T-reg, A.T-eff and Cytokines. According to AOSE term, in general, we would call “agents” to all

neuron cells and brain organs. The agents in the second group (neuron cells) are tightly connected and

they also interact with the second group (brain organ) agents. Although GAIA is lenient with complex

systems development, however, due to the lack of requirement analysis phase, the accurate identification

of sub-organizations is not feasible from GAIA, as it also lacks of established hierarchy model and

organizational structure[35] [36].

2) Environment Model

The environmental model describes the real world in which the system operates with all its variables,

resources, and uncertainties. There is not a single easy way, to provide a general modeling abstraction and

the general modeling techniques for the development of the system environment. Since the environments

of the applications are divergent in nature because in most cases systems suffers from compatibility issues

with the technology. As Passos stated in his study that the development of the environmental model is a

separate one type of agent-oriented methodology [37]. That’s why we can not model complete

environmental model of any system.

Figure 2 Environmental Model of MS disease simulation

 The environment of our model is Netlogo development tool and resources are Netlogo’s buttons, sliders,

plots, switches eg. We divide this model into two environments, static and dynamic according to Gaia

methodology. The static part of our model is buttons, sliders, switches that do not change frequently. And

the dynamic part is disply monitor in which agents move randomly in environment to perform complex

operation and to access resources. The discription of the environmental model of MS disease is given in

below table.

Environment Resources Description

Display Screen The screen shows all the time movement of agents and changing in the

model. It also displays what is going on among agents.

Buttons The buttons stop or start the simulation and initialize special characteristics

of agents, as creation or deletion agents etc.

Sliders Sliders assign special values to agents in the start or during the simulation to

observe effects of changes.

Switches Switches on/off characteristics of agents in simulation.

Plots The Plot shows the behavior of agent interaction.

Agents Agents representative of characters of one type that are involved in the

simulation to perform a specific task.

Patches The patches are also representative of agents of another type that are

involved in the simulation to perform a specific task.

Table 2: Description of Environmental Model

3) Preliminary Role Model

A role model provides an abstraction of the agent with a set of its expected behavior[34]. The final goal of

the analysis phase is not to identify the all involving entities and model them into the real system

organization. The main purpose is to identify the active roles and their interaction with others roles at a

very abstract level. Particularly, the role abstraction leads to the identification of basic specifications for

the developing system, to achieve its main goal. As well as the important interactions that are required for

the completion of system’s specification. However, this type of identification can be performed without

knowing that, what the actual structure of the developing system will be. There is a chance to identify

some characteristics that will remain same independently throughout the organizational structure. This

identification can be more beneficial if the analysis phase carefully models the system specifications in

terms of involved characters and their responsibilities at a very beginning stage. In our model, we

identified 8 roles T-reg, T-eff, A.T-reg, A.T-eff, Virus, BBB, Cytokines and BWM (Brain White Matter)

which are shown in figure 2.

4) Preliminary Interaction or protocol Model

The interaction model identifies all dependencies which show the relationship among roles by defining

the protocol[37]. Protocols are a request for resources or to complete a task, that a role does to interact

with other roles. In protocol development, more focus is on the purpose of interaction and the nature of

interaction, than to the type of message exchange and sequence of execution steps. A standard protocol

model of GAIA V.2 consists of these points:

1) Protocol title/name: The protocol name is a description of the roles interaction nature. For

example, it specifies that a request is for resource share or to assign a task.

2) Initiator: The role who starts the conversation.

3) Partner: that role will be partner which responds to initiator during conversation.

4) Input: The information used by the initiator role as a reason to initiate the protocol.

5) The final action that will take the responder role. It can be an information, resource or a request

for anything.

6) Description: The description explains the whole scenario of protocol processing in detail. e.g

which roles will involve and what will be their intentions and what will be the consequences.

 In MS disease system five protocols are identified. That are Attack, Catch, Produce, MakeActive, and

stop. At the end, the general model of preliminary interaction and role express the overall scenario of

protocols among the roles of MS disease. The interaction model is also called a protocol model. In the

below tables, all protocols are described in detail.

Protocol Name: catch

Initiator:

T-reg

Partner:

Virus

Input:

Information about

virus existence

Description:

When any T-reg knows, that there is virus

around it then, it tries to catch the virus to

become active

Output:

A.T-reg

Table 3: T-reg’s Protocol

Protocol Name: catch

Initiator:

T-eff

Partner:

Virus

Input:

Information about

virus existence

Description:

When any T-eff knows, that there is virus

around it then, it tries to catch the virus to

become active

Output:

A.T-eff

Table 4: T-eff’s Protocol

Protocol Name: makeActive

Initiator:

Virus

Partner:

T-reg, T-eff

Input:

Information about

T-reg, T-eff

existence

Description:

When any virus knows, that there is T-reg, T-

eff around it. Then, virus tries to catch the T-

reg, T-eff to make it active

Output:

A.T-reg

Table 5: Virus’s Protocol

Protocol Name: Attack

Initiator:

A.T-eff

Partner:

BWM

Input:

Information about

myelin existence

Description:

When any A.T-eff finds, that there is myelin

in the brain, then it attacks on myelin and

damage it.

Output:

Damaged myelin

Table 6:A.T-eff’s Protocol

Protocol Name: Attack

Initiator:

A.T-reg

Partner:

A.T-eff

Input:

Information about

A.T-eff existence

Description:

When any A.T-reg finds, that there is A.T-eff

in brain then, it attacks on A.T-eff and kill it.

Output:

A.T-eff killed

Table 7: A.T-reg’s Protocol

Protocol Name: Attack

Initiator:

Cytokine

Partner:

BBB

Input:

Information about

BBB existence

Description:

When any Cytokine finds, that there BBB,

then Cytokine attacks on BBB and damage it.

Output:

Damaged BBB

Table 8: Cytokine's Protocol

Protocol Name: Produce

Initiator:

A.T-reg

Partner:

A.T-eff

Input:

Information about

A.T-eff existence

Description:

When any A.T-reg finds, that there is A.T-eff

in brain then, it kills A.T-eff and produce

itself duplicate.

Output:

A.T-reg

Table 9: A.T-reg's Protocol

Protocol Name: Produce

Initiator:

A.T-eff

Partner:

Cytokine

Input:

Information about

myelin existence

Description:

When any A.T-eff finds, that there is myelin

in the brain, then it attacks on myelin and

duplicate itself.

Output:

A.T-reg

Table 10A.T-eff's Protocol

Protocol Name: Stop

Initiator:

BBB

Partner:

T-reg, T-eff, Virus,

A.T-reg, A.T-eff,

Cytokines,

Input:

Information about

enterance of cells

into brain

Description:

When ever BBB knows that any cell is trying

to enter into brain then BBB stop its

entrance.

Output:

A.T-reg

Table 11:BBB's Protocol

Figure 3: Preliminary Role and Interaction Model of MS

This is a combined figure of the preliminary role and their interaction model of MS disease.

In this figure, there are all identified role and protocols. T-reg and T-eff roles interact with the virus by

using catch protocol. These both roles aim is to become active by catching the virus. In general, the

protocol defines the purpose of communication among agents. In the same way, the virus role interacts

with T-reg and T-eff by using “makeActive” protocol to make them active. A.T-reg (Active T-reg) and

A.T-eff (Active T-eff) are active agents of T-reg and T-eff community. A.T-eff interacts with BWM by

using “attack” protocol. The “attack” protocol is used to damage the BWM. A.T-eff also interact with

Cytokine by using “produce” protocol. A.T-reg role interacts with A.T-eff by using “attack” protocol. The

purpose of this protocol or communication is to kill the A.T-eff role to stop its dangerous activities in the

brain. In the same way, the Cytokine interacts with BBB by using “attack” protocol to damage BBB. The

BBB role interacts with almost all other roles except BWM by using “stop” protocol. The purpose of this

protocol is to stop all other roles, to entering the brain.

5) Organizational Rules

The organizational rules define whether a new agent can be added into the organization. If new agents

added then what would be their position in the organization and which type of behavior would be

expected from the added agents. In simple words, the organizational rule defines the overall responsibility

of the concerned organization in an abstract way. There are two types of organizational rule:

 (1) Liveness: The liveness rules take concern about the evolution of system dynamics according to time.

It also takes concern about that a specific agent will play a specific role and allow the agent to play next

task if it has played the previous role. Same like roles, a specific protocol may execute only after the

execution of the other specific protocol. Moreover, liveness organizational rule decides that which role

would be played by which agent.

(2) Safety: The safety rules consider all unexpected events that can occur during processing of a specific

task. These events are considered as time-independent events. To overcome all the unexpected faults, the

organization rule force to apply the concept that a single role must play by a distinct entity or agent and

two concurrent tasks should not be played by a single entity.

 By following these conditions, in our MS disease system sub-organizations define their rules separately.

Organization Name: T-eff

Liveness: This role would become active if only it catches a virus, or it would transform from T-eff

to A.T-eff if only virus attacks on it.

Safety: Only this agent can transform from T-eff to A.T-eff agent.

Table 12: T-eff Organizational Rules

Organization Name: T-reg

Liveness: This role would become active if only it catches a virus, or it would transform from T-reg

to A.T-reg if only virus attacks on it.

Safety: Only this agent can transform from T-reg to A.T-reg agent.

Table 13: T-reg Organizational Rules

Organization Name: Virus

Liveness: This agent can enter into the brain if BBB is broken.

Safety: Only this agent trigger the MS disease.

Table 14: Virus's Organizational Rules

Organization Name: A.T-eff

Liveness: This agent can damage myelin if the only virus makes it active.

Safety: Only this agent can damage the myelin.

Table 15: A.T-eff Organizational Rules

Organization Name: A.T-reg

Liveness: This agent can kill the A.T-eff if only it is active.

Safety: Only this agent can kill the dangerous agent A.T-eff.

Table 16:A.T-reg Organizational Rules

Organization Name: Cytokine

Liveness: These agents born after myelin damage.

Safety: Only these agents can damage BBB.

Table 17: Cytokine's Organizational Rules

Organization Name: BBB

Liveness: This agent stops the other agent who tries to enter into the brain.

Safety: This agent stops all agents to enter into the brain and recover damaged BBB.

Table 18: BBB Organizational Rules

Organization Name: BWM

Liveness: This agent recovers myelin after myelin damage occurs.

Safety: This agent recovers myelin for neural communication.

Table 19: BWM's Organizational Rules

3.2.2. Design Phase

The design phase is a much important phase in system engineering, where the final decisions take about

what will be the specifications of the developed system, what will be the operational environment. The

main purpose of this phase is to transform the analysis models into low-level design models. Low-level

design models are abstract level models which can be easily implemented in the development phase.

This phase is also important in this way that, it identifies missing and conflicting requirements and helps

developers when system specifications should be considered mature to develop a complex system. The

design phase of Gaia V.2 is divided into two sub design phases, first one is architectural design and the

second one is detailed design.

1. Architectural Design

1.1 Organizational structure

The selection of organizational structure of a system is a very crucial decision in ABM and MAS

development since, it affects all subsequent phases. The one important benefit of an organizational

structure is, it organizes roles as a topology, which is easily understandable by inexperienced persons.

And the other main objective of this structure is to explicate the inter-role relationship type among

roles/agents. In general, there are three types of relationships:

I. In the control relationship, one role has authority over the other role, in this relationship a role

can partially or fully control the action of the other role.

II. The peer relationship defines that, in the organization, the involved roles have equal status.

III. In the dependency relationship, one role depends on the other role for resources or

knowledge, which is compulsory for its accomplishment.

However, the organizational structure same like sub-organizations model does not accurately be

implemented, because there is no fixed hierarchical structure exists. The MS disease system is

implementing the generic architectural model by considering whole MS circumstances as a hierarchy, and

dependency between agents as a control structure. In our model the organizational structure manifest

roles, sub-organizations and the relations and association between them.

Figure 4: GAIA’s Organizational Structure

The MS model defines brain organs (BBB, BWM), T-cells, Cytokines, and virus as sub-organizations.

The arrows show organization’s communication with other organizations. This communication can be

direct organizations' communication or with the role of other organizations. One organization can

communicate with the roles of other organizations.

IN MS model T-cells, Virus, BWM, and BBB are sub-organizations because they all are different in

structure and nature. T-reg and T-eff cells belong to the same cell category because they are produced by

the same body organ. That’s why they belong to the same sub-organization. However, after activation,

they behave differently according to their builtin nature. In the same way, BBB organization

communicates with all others organizations’ agents to stop their entrance into the brain. Further, A.T-reg

develops hierarchy structure. In this structure, A.T-reg is organized according to its goals. A.T-eff also

develops a hierarchy structure. Which, is organized according to roles.

1.2 Role and interaction model

The design phase transforms the preliminary role model and the role interaction model into absolute

detailed role and interaction model to form an organizational structure. Which clearly defines the roles of

each agent and interaction type among them. To construct detailed role and interaction model a developer

should consider these mentioned instructions:

I. Identify the new roles and organizations which was not identified by analysis phase.

II. Developers should identify all the possible activities in which a role can be involved, as

well as classify role’s safety and liveness responsibilities contribute to overall

organizational rules.

III. Identify all the possible protocols, needed by the developing system. As well as classify

which roles will be involved in the relationship to complete the protocol execution.

IV. Moreover, developers should identify the protocols for the organizational level

relationship.

In short, for absolute role model, we identify the complete role’s activities and services. And for the

absolute interaction model, we identify and model interaction of all roles involved.

Figure 5: Role and Iteraction Model

In this model, we defined roles with their responsibilities, services, and protocols. The difference between

preliminary phase models and detailed design models is, in the design phase, we identify all possible and

complete information about the roles characteristics and protocols.

As already defined that 8 MS disease roles and two types of agents are identified. BBB and myelin belong

to brain organ type and virus, T-cells belong to cells agent type. T-cells (T-reg and T-eff) belong to the

same community of cells, but they react to brain according to their built-in nature. In other words, some

of T-cells became dangerous as T-eff and some became part of immune system T-reg. The T-reg role is

responsible to catch viruses to get active. The active T-reg (A.T-reg) support immune system by killing

dangerous Active T-eff (A.Teff) cells and it produce duplicate A.Treg cell. The duplicate T-cell perform

functionality same like original T-cell. Virus role is responsible for T-reg and T-eff cells activation. The

virus searches T-cells and try to attack them after that it died. A.T-eff role is responsible to attack myelin

and damage it. It also duplicates A.T-eff and produces cytokines. Cytokine roles, responsibility is to

attack the BBB to damage it and allow viruses and all other agents to move toward the brain. BBB role

belongs to brain organ agent type and is responsible to block unwanted molecules and cells to enter into

the brain. It also manages to allow wanted molecules (water, glucose, and water) and cells, T-reg to enter

into the brain to protect the brain. BWM or myelin is responsible to maintain communication between

neuron cells and if any damage occurs, then regrow myelin to maintain communication.

In this MS model, there are five types of protocols “stop, catch, attack, produce, and makeActive”. BBB

initiates stop protocol to stop the virus, T-reg, T-eff, A.T-reg, A.T-eff, Cytokine, to enter the brain. Virus

initiates “makeActive” protocol with T-reg, T-eff to make them active. T-reg and T-eff agents initiate

catch protocol with a virus to get active. A.T-reg agent initiates “attack” protocol with A.T-eff agent to

stop their unhealthy activities. On the other side, A.T-eff initiate “attack” protocol for demyelinate BWM.

Cytokines initiate “attack” protocol with BBB to destroy the BBB. Moreover, “produce” protocol is

initiated by A.T-reg, A.T-eff to produce their duplicates. The “produce” protocol is also initiated by BBB

and BWM to recover themselves.

2. Detailed Design Phase

2.1 Agent Model

In the detailed design phase, developers are more experienced about the developing system. This phase

helps developers to identify the actual role model and the actual interaction model which in return will

assist the developers in the implementation phase. The Agent model captures all agent types and agent’s

roles that will be implemented in the system. This phase implements agent model same like class model

in UML. As Castro and Oliveira state that GAIA does not provide modeling notations for agent modeling.

It simply suggests to adopting UML class diagram in article[38]. Zambonelli, Jennings and Wooldridge

states in article [34], according to GAIA “An agent is a software that plays a set of roles of a certain

type”. Thus the agent model carefully identifies, what type of agent classes should be involved to play the

specific roles and how many instances should be in each class of the actual system.

2.2 Service Model

The service model identifies all the possible services associated with each agent class and consistently

with the roles. The service model can be applied in both cases: 1) the static assignment of roles to agent

classes, 2) the assignment of dynamic roles to agent classes[34]. The service is a function of the

considered agent, and it is derived from the agent’s protocols, liveness and responsibilities, and the

activities of the role that each agent implements. This fig is representing service and agent model.

Services express what agents are contributing for the beneficial of the overall models working.

In our MS disease model, we are combining agent and role model in a single model.

Figure 6: Agent and Service Model

In the MS disease model, there are two types of agents patches and turtles. The patches represent to brain

organ (BBB, BWM) and turtles represent to T-Cells (T-eff, T-reg, A.T-reg, A.T-eff), Virus, Cytokines. In

figure 6, all agents are defined with precise services.

3.3 TROPOS

The TROPOS is an agent-oriented software engineering methodology, which was proposed by Castro et

al. in 2002. The name was derived from a Greek word “trope” which means that it is easily adaptable and

modifiable[39]. The complete methodology and its implementation proposed for Media shop in the article

[40]. The principle aims to propose this methodology was to overcome the semantic gap between the

operational environment and the developed system. Since the structured and object-oriented software

development methodologies only have the programming concepts, not organizational ones [40].

Basically, this methodology was founded on two features [41]:

1. This methodology was developed according to the agent’s concept and the mentalistic notions of

the agent such as goal, plan, and resource. Then these notions help the developers throughout the

development process of the system.

2. This methodology introduces legitimate requirement specifications to give a crucial role to

requirement analysis phase.

 This methodology adopts ⅈ* model, which was proposed by Yu in [42]. The i* model explicitly describes

to the actor(can be role, position, and agent), actor dependencies and goals as primitive concepts for all

models which will be developed in different phases of software development. Tropos more specifically

covers four phases of software development 1) Early Requirement Analysis, 2) LateRequirement

Analysis, 3) Architectural Design and 4) Detailed design. And in somehow way it also supports

implementation phase [43][44][39].

3.3.1 Early Requirements

In the early requirement analysis phase, the developers focus on the identification of the problem domain.

After the identification of problem, they study the existing organizational setting where the system to-be

operated. The Study reveals that the core intention of requirement analysis phase is, derive a set of

functional and nonfunctional requirements for the system to-be[40][43]. Both the early and late

requirement phases share the same methodological and conceptual approach. The early requirement

analysis phase analyzes and identifies the involved stakeholders and their intentions The stakeholders of

the system to-be is modeled as social actors or agents, that depend on one another for plans to be

performed, goals to be achieved, and resources to be shared. In MS disease model the stakeholders are

cells who participate in disease cause. And the agent’s intentions are modeled as the goals to be achieved.

In this phase, we will implement i* model, that consist of 1) strategic dependency model as actor diagram

and 2) strategic rationale model. The rational model supports and describes the reason to fulfill its goals

and to make a relationship with the other agents. The outcome of this phase is an organizational model. The

organizational model includes all the involving actors, their dependency relationship with other actors and

their particular goals[40]. However, the ultimate goal of this phase is to clearly understand the

environment and context of the organization, where the system to-be will perform[41].

In the depth of modeling, Tropos depend on ⅈ* notations as described in below.

Figure 7: Notation Diagram

Actor: An actor is a representative of physical entity or position in the organization, a software entity, a

social role. Who is responsible for goals to be achieved, resources to be shared, and tasks to be performed.

Goal: Dam and Winikoff states that goals represent actor’s strategic interest in [45]. There are two types

of goal: hard goal and soft goal. The hard goal represents functional requirement or specification of the

system. However, soft goal have no clear definition for deciding whether they are achieved or not.

Plan: A strategy that is adopted to fulfill a specific goal or soft goal.

Resource: Resources are something such as physical or informational entity, which required for agent to

fulfill specific tasks.

AND/OR Decomposition: The AND decomposition divides the main goal or task into more than one

sub goal. In this case, all sub goals must be achieved to fulfill the root goal. In the OR decomposition, the

main goal is divided into other alternative ways. In this case, the root goal can be achieved by any sub

goal’s completion.

Mean-end Analysis: In mean-end relationship a mean (in term of goal, resource, and plan) completely

satisfy the root goal.

Social Dependency: The social dependency is an agreement between two actors: the depender and the

dependee, to achieve their common goal. Their common goal is called the dependum.

In TROPOS implementation, we are considering each neural cell and brain organ as an agent.

Figure 8: Actor Diagram

In the early requirement analysis phase of TROPOS, we identified 8 actors T-reg,T-eff, Virus, A.T-reg

(active T-reg), A.T-eff (active T-eff), BBB (Blood Brain Barrier), BWM (Brain White Matter or myelin)

and cytokine. Each role has its own goals, soft goals, resources, and plans. Actor T-reg has a goal “catch

virus” and “get active” to perform its responsibility such as protect myelin by killing A.T-eff cells. To

achieve goals T-reg depends on the virus. If it detects any virus in the brain, then it became active. As

actors can depend on other actors by soft goals, resources and plans. The T-eff also depend on virus to

complete its goal which is “catch the virus” and “become active”. The Virus agent depends on T-eff and

T-reg agents to make them active without knowledge that T-ref will slow down damage rate. A.T-reg has

goals attack injurious agents as A.T-eff and kill them and in return produce A.T-reg. To fulfill its goals, it

depends on A.T-eff agent. And the soft goal is to increase the amount of T-reg agents to slow down

damage rate. A.T-eff’s goals are “attack on myelin” to damage brain as well as “produce A.T-eff and

cytokines”. To achieve its all goals it depends on BWM. After the attack on myelin then, it is able to

produce A.T-eff and Cytokines. Its soft goal is increase brain damage rate by producing more A.T-eff and

Cytokines. In fact, these agents play injurious activities in the brain. The BBB’s goals are “stop agents

entering into brain” and “repair damage part of the BBB”. The intention and goal of BBB is to protect the

brain by blocking all minacious agents.To fulfill goal this agent depends on all agents except BWM. The

BWM agents’ goal is to repair damaged brain by regrowing myelin. Its soft goal is cover axons to

maintain neural communication between neurons. The Cytokine agents have a threatening behavior for

BBB. It depends on BBB to achieve goal, its goals are “damage BBB” and “allow all minacious agents to

enter into brain”.

Rational models

The strategic rational model is a balloon like circle contain on four types of nodes task, goal, resource,

soft goal, and two types of links task decomposition link and mean-end link. The rational model captures

how an agent makes plan to fulfill its root goal and how it makes relation with other agents to fulfill the

system’s goal.

Figure 9: T-eff Rationale model Figure 10:T-eff Rationale model

The goal of T-eff agent is to become active to perform its fundamental activities. For this, it plans either

active by catching a virus or be exposed to the virus. OR decomposition represent to an option to fulfill a

single aim and these options positively effect the plan. As a consequence plan positively supports the

main goal. This is the same scenario in the case of T-reg agent.

 Figure 11 Virus Rationale Model Figure 12: A.T-reg Rationale Model

In Rationale model virus have goals made T-cells active and damage brain. To achieve damage the brain

goal, it has two options, either make more T-eff active or make less T-reg active. These options provide

alternative ways to fulfill a single goal. The Active T-Reg goal has a negative effect on soft goal and plan.

In A.T-Reg Rationale Model the soft goal of the agent is to support the immune system. This goal is

achieved by OR decomposition of killing A.T-eff or producing A.T-reg agents. The plan to kill A.T-eff

can succeed by producing more A.T-reg agents or by searching more A.T-eff agents.

Figure 13: T-eff Rationale Model

The overall objective of A.T-eff is to damage the brain. To achieve this goal A.T-eff agent set a hard goal

attack on myelin (BWM). For this goal this agent plans for increase damage rate by producing more

A.T-eff and cytokine agents. The Plan is decomposed into two goals. These goals have a positive effect

on the plan.

Figure 14: BBB Rationale Model

The main objective of the BBB is to protect brain from minacious molecules and cells. To achieve this

goal this agent set a hard goal to stop entrance of minacious cells into the brain. To fulfill this goal, it

plans to enter only T-helper cells T-reg and block T-eff, virus and dangerous molecules.

Figure 15: BWM (Myelin) Rationale Model

BWM or myelin maintains neural communication between neurons that would be its soft goal. To fulfill

its duty It regrows myelin if any damage occurs.

Figure 16: Cytokine Rationale Model

Cytokines are produced from A.T-eff agents. So they have the same goal as T-eff have “damage brain”.

But they achieve this goal from another way by damage BBB. To achieve this goal cytokine try to reach

at BBB and hit it.

3.3.2 Late Requirements

In this phase, the developers identify all possible specifications of the system to-be and its operational

environment. The output of this phase is the final specifications of the system, in the form of functional

and nonfunctional requirement. This phase introduces the operational view of the system as an actor

model. To iterate, the conceptual model of the system to-be is extended by introducing system actor in the

overall system model and shows the dependency relationship between system actor and the other involved

actors. These dependencies show the main reason of interaction of system agent with the other involved

agents[43].

As Bertolini et al. state that, the system actor has the same features, which the other social actors have, in

terms of social dependency and goals to analyze[46]. The addition of system actor helps the developers to

recheck and conform that all involved actors and their dependencies are identified and the system actor

can be more than one actor. To summarize that, the actual system actor comes into a picture of one or

more actors, who helps the other actors to fulfill their goals.

 In MS disease case MS is the system actor which describes the overall phenomena, how this disease

appear and how other actors contribute to proliferate this disease.

Figure 17: System Rationale Diagram

The system model controls overall system’s environment and the involvement of actors. To iterate,

system actor is responsible for the entire behavior of the system. The behavior of system actor is, how it

responds and fulfill the requirements of other actors and the users of the system. In MS model the user

actor will be, who will run the simulation against particular factors or agents attributes. The hard goal of

the MS system actor is to show an accurate simulation of MS disease. This simulation shows, the varying

behavior of agents, for example, it shows at which point, which agents interact, how they interact, the

reason of agent’s interaction and what was the effect of their interaction. To achieve this goal MS actor

plan for behavior space and plot. This plan uses behavior space as a resource. Actually, system actor

shows how and why other actors depend on it. The other hard goal of this system actor is to show a

simulation of varying scenario. Many other sub-goals (like show myelin recovery, show agent’s

interaction, show agent’s movement, show interaction b/w agents and BBB, show interaction b/w agents

and BWM) participate to complete this goal. System actor also plans for this goal and plan succeed by

Buttons, sliders, and switches. The soft goals are increasing understandability and usability.

Understandability support users to operate the whole system easily understand the output results of the

simulation.

3.3.3 Architectural Design

The architectural design phase expresses the overall architecture of the developing system. In architecture

sub-system or agents are connected by data flow, control flow, or other dependencies[40]. In actual, this

phase is an extended version of the actor diagram. In which each actor is introduced in detail according to

its dependencies with the other actors.

Moreover, the architectural design phase performs a mapping on the system actors, and the outcome is a

set of software agents. And each agent is characterized according to its specific abilities[43]. The system

architecture helps the designers to understand how system components work together and how to

constitute a relatively small, intellectually manageable model of system structure. The main objective of

this phase is, to make a check that either all involved agents are identified? If new agent is identify then it

should be incorporated in the system and also identify its control interconnections in the form of

dependencies.

In MS disease model, new actors are not identified in architectural design phase; however the overall

organizational structure is presented. This model includes rational diagram of each actor and the

dependency between actors through goal, soft goal, plans, and resources.

Create rationale diagram of each agent and link them to show architectural design.

3.3.4 Detailed design

The detailed design phase further elaborates the architectural design and the behavior of its interconnected

components[40]. The main concern of this phase is, actively deals the requirement specification

document, and all the involved agents at micro and macro level. Bresciani and Perini suggest that mostly

we use AUML activity diagram during detailed design for representing capabilities, plans and interaction

of agents in the article [43].

Activity diagram captures the dynamic process of the overall system and each involving agent. The agent

dynamics are the behavior of participating agents in the protocol and internal plans to achieve a specific

goal. For capability modeling, the UML’s activity diagram assist to model the capability from the stand

point of a specific agent. For this purpose, the external events stars up the starting state of the activity

diagram, action state models plan, transition arcs model finishing condition of action state and interaction,

and the beliefs are models as object. Furthermore, for the plan and interaction modeling, the AUML’s

sequence diagram can be exploited.

Figure 18: Activity Diagram

The activity diagram shows the general scenario of the MS disease model. In our developed model the

start button is “go” button which act as external event to start the simulation. When users, press start

button, then simulation starts. Go button checks the condition either BBB is broken, then agents are

allowed to go into the brain. In brain T-cells (T-reg, and T-eff) search for viruses. If they find a virus in

their radius, then they change their state from inactive to active else they search for viruses. In the same

way, virus search for T-cells to make them active and die. In the case of A.T-reg, it searches for A.T-eff.

If it finds any A.T-eff agents in its radius, then it kills them and produces a duplicate of A.T-reg agent.

The A.T-eff agents search for BWM, if they find BWM then, they damage BWM and produce duplicate

of A.T-eff, Cytokines and at the end they die . The cytokine agent moves randomly and if it finds BBB

then it damages BBB and die. The BBB agent checks a condition that if it is damaged, then allow agents

to move towards brain otherwise block them. And with time BBB try to recover from damage. The BWM

checks a condition if any A.T-eff attacks on myelin then it became damaged and checks another condition

if the damaged portion is recoverable then recovered otherwise remain damaged. The damaged portion

shows the severity of MS in the model.

3.4 MaSE

At the very first time, MaSE methodology was proposed by Deloach in 1999 in the article [47] and after

that, the improved version of MaSE methodology was proposed by Deloach, Matson and Li in 2003 for

the development of a team of rescue robots which are autonomous, heterogeneous searcher, and rescuer

[48]. Several attempts have been made at creating methodologies and their tools for building autonomous,

heterogeneous, distributed and complex dynamic systems. However, mostly the proposed methodologies

and their tools have focused on either the agent architecture, or the methodology lack of sufficient details

to adequately support the designing of complex systems[49].

The significant purpose of the development of this methodology was, MaSE should be independent of

any particular agent-based system architecture, specific agent architecture, programming language, and

precise agent communication framework. Then the developed methodology proved that, the MaSE

seemed a good fit for the cooperative robotic systems[48].

The main objective of this methodology is, guide a system developer throughout the system development

process, by following the set of interrelated system model[48][50]. The previous research on intelligent

agent has focused, on the structure and the capabilities development of an individual agent. Now,

researchers have realized that to solve the complex system’s problems, agents coordination is mandatory

for the heterogeneous environment.

The one another constructive aspect of this methodology is, it has its own developmental tool

“agentTool”. Same as the MaSE methodology, the agentTool is also independet of the particular agent

architecture, the agent’s programming language, and the agent communication language. The analysis and

design phases perform a transformation that shows how to derive new models from the existing models.

The MaSE is implemented after gathering requirements, which further divided into sub-goals as defined

in the article[49][51][50].

Figure 19: MaSE Methodology Models [49].

3.4.1 Analysis Phase:

The analysis phase is further divided into three precise phases, such as

1. Capturing Goals:

This phase develops a goal hierarchy of the system to-be, in which each goal has system level objectives.

The developers take system requirements and organize them into a sequential set of system goals. Simply,

The developers collect all the requirement and set them into hierarchy of basic goals of the system to-be.

We developed the goal hierarchy model of MS disease case study, as researchers implemented MaSE in

different scenarios. [48][49]. Goals must be identified through initial system context, which gives a

starting point to the analyst for system analysis.

Figure 20: Goal Diagram

The figure 20 shows that, the main goal of the MS disease model is to simulate the severity of disease.

This cental goal is further decomposed into sub-goals. However, each goal should always be defined as a

system level goal.

2. Applying Use Cases:

This phase develops Use Cases and sequence diagram. The use cases of a developing system explain the

complete scenario that a system would perform in the real operating environment. To put it simply, a use

case of a system explains the sequence of all working events that must be performed by the developed

system, these events may be its failure and hanging events. For the development of a flawless system, the

analyst should develop enough use case which covers every possible event that can occur in the system by

using different data and event scenario.

The sequence diagram helps the developer to understand the overall system scenario and find out all

involved agents with their communication paths. Moreover, the sequence diagrams provide assistance in

capturing the use cases of the system. Furthermore, these use cases would use later in the analysis phase,

in which a particular role would be assigned to a specific goal. In general, a single sequence diagram is

considered as a representative of each use case.

Figure 21: Sequence Diagram

In the sequence diagram, normally roles are represented by rectangular boxes which are placed at the top

place of the diagram and the connecting arrows of the roles represent to ongoing events among the roles.

And the time is assumed as a sequence of events from the top of the sequence diagram to the bottom.

In MS disease’ sequence diagram we identified nine agents. To precisely represent the sequence, we used

BBB two time as an agent. If the BBB is broken then, it informs to T-Cells and virus. When virus finds T-

cells around then it makes them active. An A.T-eff damage the BWM and in return produce Cytokine and

duplicate A.T-eff. When A.T-reg finds an A.T-eff in around then it attacks and kills. In return A.T-reg

duplicate itself. In the case of damage, BWM and BBB recover themselves. Cytokine search BBB and

damage it.

3. Refining Roles:

The main objective of refining role model is, transform the structured goals and sequence diagram into

the final rules of the system to-be. Furthermore, these roles provide a foundation the agent class model

and became system goals during the design phase. Refining role is one of the important steps of the MaE

methodology because, the system goals would be satisfied with the only one way, if every single goal is

considered as an identical role, and every role is played by an identical agent class. This phase develops

concurrent tasks and goal hierarchy models. In general, the transformation of goals to roles is a one-to-

one mapping. However, a single role may have multiple goals.

Figure 22: Refined Role Model

In the MS disease model we identified eight roles, which are shown in rectangle boxes. According to

Agent definition we select those entities as an agent who have some responsibilities or activities to fulfill

the system requirement. All selected roles have multiple goals as shown in figure 22.

3.4.2 Design Phase:

1. Creating Agent Classes:

This phase develops agent class diagram, which consists of agent classes and the conversation between

them. The agent class model clearly depicts the overall organization of agents. Additionally, the agent is

an actual instance of an agent class, and class is a template for a single type of agent in the system.

Additionally, the agent is an actual instance of the agent class, and class is just a template for a single type

of active role in the system to-be. In this phase, the agent classes are developed in terms of the roles, that

must be played. And the conversation is developed as protocols, in which they must participate.

Figure 23: Agent classes Interaction

2. Constructing Conversation:

This phase develops conversation diagram of each software agent. The MaSE conversation model defines

the conversation of two software agents as a coordination protocol[1][2]. In a conversational event, two

agent classes participate, one is an initiator and the second is the responder. The actual purpose of the

conversational model is to define the purpose and the detail of the conversation. When a software agent

wants to communicate with the other agent then it sends the initiator message to the partner agent to start

the communication.

When the responder agent received a conversation request, then it compares it with all its permitted

conversations. If it finds a match, then it performs the required task that can be a request of resource, data

share, or a coordination request. Otherwise, the responder agent assumes that the conversation message is

a request to start a new conversation. In this case, the responder compares the request with all its possible

conversations in which this agent can participate and all the agents’ with whom it can make the

conversation. If it finds a match, it begins a new conversation.

Figure 24: T-reg Conversation model. This conversation take place between T-reg and Virus.

Figure 25: T-eff conversational model with Virus.

Figure 26: A-T-eff Conversational Model

Figure 27:A.T-reg Conersational Model

Figure 28: Virus makes conversation with T-cells to make them active.

Figure 29: BWM makes conversation with itself.

Figure 30: BBB's conversational Model.

Figure 31: Cytokines Conversational Model.

3. Assembling Agent Classes:

This phase develops the architecture diagram of agent software by integrating different agent classes

into a single model. This development phase is accomplished by accomplishing two sub-steps: 1) by

defining the agent architecture, 2) by defining the all components that makeup the agent architecture

Figure 32: Assembling agent classes.

4. System Design:

Generally, this phase develops the deployment diagrams. This phase receives the agent classes of each

involved agents and introduces them as actual agents of the system to-be. And go through a data flow

diagram to demonstrate the location and control flow of each agent.

Moreover, this final step of MaSE performs the configuration on the involved agents and their

responsibilities by developing deployment diagrams. Which shows, the total numbers of agents, their

location and agent’s type within the system.

4. Comparative Analysis

As biological researchers have no clear idea about engineering methodologies. And the other problem is,

at present, more than two dozen AOSE methodologies exist. Therefore, the process of choosing the right

methodology for their specific problem agonize them. To escape from this tension they just model their

problem without any guided methodology. So this hastens development create some serious problems

such as missing essential information about the problem, the wrong decision of choosing development

tool, the doubt on systems authenticity. To overcome all these mentioned nervousness, in this work, we

applied three well known AOSE methodologies: GIA, TROPOS, and MASE on MS brain model. In this

work we performed a comparative analysis of these methodologies to analyze that, which methodology is

more suitable for biological models development.

For comparative analysis, we used a framework that focuses on four major facets of methodologies: 1)

notations and modeling techniques, 2) concept and properties, 3) development process and 4) pragmatics.

To be very clear, that our work would not attempt to state that which the right methodology is. Rather, it

examines the existing methodologies to advise researchers to choose right methodology according to their

specific scenario. A lot of comparative analysis has been done in literature as shown in the below table.

Ref Paper Title Author Journal Year
I.F

2017

Compared

methodologies

[52]
“Multi-agent approach for cancer

automated registration”

Sanislav et

al

Control Engineering and

Applied Informatics
2010 0.695

1. GAIA

2. PASSI

3. INGENIAS

4. MASE

[53]

“A Methodology to Evaluate Agent

Oriented Software Engineering

Techniques”

Lin et al.

Proceedings of the 40th

Hawaii International

Conference on System

Sciences

2007

1. Tropos

2. GAIA

3. MASE

[54]
“A framework for the evaluation of

agent-oriented methodologies”

Abdelaziz,

Elammari

and

Unland

Innovations'07: 4th

International Conference

on Innovations in

Information Technology,

IIT

2008

1. GAIA

2. MASE

3. HLIM

[55]
“A comparative analysis of i* agent-

oriented modelling techniques”
Grau et al.

In Proceedings of The

Eighteenth International

Conference on Software

Engineering and

Knowledge Engineering

(SEKE'06)

2006

1. Tropos

2. GBM

3. ATM

4. BPD

5. RiSD

6. PriM

[56]
“Agent-Oriented Methodologies -

Towards a Challenge Exemplar”

Yu and

Cysneiros

Proceedings

of the International Bi-

Conference Workshop on

Agent-Oriented

Information Systems

2002

They just proposed

question to evaluate

methodology

[57]
“On the evaluation of agent oriented

modeling methods”
[56]

Proceedings of Agent

Oriented Methodology

Workshop

2002

They just proposed terms

for methodology

evaluation

[58]

“ASPECS: An agent-oriented

software process for engineering

complex systems”

Cossentin

o et al

Autonomous Agents and

Multi-Agent Systems
2010 2.103

1. PASSI

2. INGENIAS

3. ANEMONA

4. GAIA

5. ROADMAP

6. TROPOS

7. PROMETHEUS

8. ADELFE

9. ASPECS

[33]

“A COMPARISON OF THREE

AGENT-ORIENTED SOFTWARE

DEVELOPMENT

METHODOLOGIES : MASE , GAIA

, AND TROPOS”

Jia et al.

In Information,

Computing, and

Telecommunication,

2009. YC-ICT’09. IEEE

Youth Conference on

2009.

2009

1. GAIA

2. TROPOS

3. MASE

[59]

“Evaluating how agent methodologies

support the specification of the

normative environment through the

development process”

Garcia et

al.

Autonomous Agents and

Multi-Agent Systems
2015 2.103

1. OMASE

2. OPERA

3. TROPOS

4. GORMAS

[60] “METHODOLOGIES AND F. Springer Science \& 2009 1. GAIA

4.1 The Proposed Evaluation framework

The structure of the proposed analysis framework is taken from the study [60] however, the evaluation

attributes are taken from different literature. The framework is divided into four subparts. 1) concept and

properties, 2) Notations and Modeling Techniques, 3) Development Process, 4) Pragmatics. The proposed

evaluation framework is based on feature analysis attributes. These attributes evaluate feature of each

examined methodology from different aspects. Before implementing the evaluation framework on

methodologies, first of all, we will discuss in brief the main objective of each section of the framework.

4.1.1 Concepts and properties

The “Concepts and Properties” evaluation criteria are important for agent-oriented methodology

evaluation. “A concept is an abstraction or a notion derived from a specific instance within a problem

domain”. And the property represents a special characteristic or capability of an agent. This facet is

concerned with the question whether a methodology addresses the basic notions such as concepts and

properties of agents in MAS or ABM. In the following, there are concepts and properties according to

which methodologies should be evaluated.

SOFTWARE ENGINEERING FOR

AGENT SYSTEMS”

Bergenti,

Federico

and

Gleizes,

Marie-

Pierre and

Zambonell

i

Business Media

2. TROPOS

3. MaSE

[52] [53] [54] [55] [56] [57] [58] [33] [59] [60] Gaia V.2 TROPOS MaSE
Concepts and

properties

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Autonomy

✓ ✓ ✓ ✓ ✓ Adaptability

 ✓ ✓ ✓ ✓ Agent Abstraction

 ✓ ✓ ✓ ✓ ✓ ✓ Belief

✓ ✓ ✓ ✓ ✓ ✓ ✓ Communication

 ✓ ✓ ✓ ✓ Concurrency

 ✓ ✓ ✓ ✓ Collaboration

✓ ✓ ✓ ✓ ✓ Cooperation

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Desire

 ✓ ✓ ✓ ✓ ✓
Problem

Decomposition

 ✓ ✓ ✓ Events

 ✓ ✓

Multiple Interest

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Intention

 ✓ ✓ ✓ ✓
System Interface

Guidance

✓ ✓ ✓ ✓ ✓ ✓ ✓ Pro-activity

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Protocol

✓ ✓ ✓ ✓ ✓ ✓ Organization

 ✓ ✓ ✓ ✓ Message

 ✓ ✓ ✓ ✓ ✓ ✓ Reactivity

 ✓ ✓ ✓ ✓ ✓ Role

 ✓ ✓ ✓ ✓ ✓ Tasks

✓ ✓ ✓ ✓ ✓ ✓ Norms

 ✓ ✓ ✓ Society

 ✓ ✓ ✓ ✓ ✓ ✓ Soci-ality

 ✓ ✓ Service

 ✓ ✓ ✓ ✓ Agent- Oriented

5. Results and Discussion

In this section we present ……

1. Autonomy: The ability of an agent to perform its tasks without any supervision.

In GAIA analysis phase, each role has some responsibilities, and they are independent to perform their

responsibilities. In the design phase roles are replaced with agents. So autonomy is expressed in the way

that roles encapsulate its functionality.

The requirement analysis phase of TROPOS defines the autonomy through actor’s individual goals, the

association between agents, and their plans. In the requirement analysis phase, the agent’s autonomy is

expressed by its goal and plan to achieve goals. In the architectural design, the autonomy is stated by

elaborating actors agenda for achieving the system goal. In the detail design phase, the activity diagram,

which expresses autonomy.

 In the analysis phase of MaSE, autonomy is expressed by tasks. And agents are responsible to execute

their tasks on its own responsibility. In the design phase autonomy is expressed through agent classes, in

which roles encapsulate their functionality. And this functionality is internal states of agents that not

affected by the environment. The autonomy is followed by each phase of each methodology, therefore;

we can say that autonomy is high in these three methodologies.

2. Adaptability: The ability of an agent or methodology to deal with the variety of computing

environments, and adjust itself according to changing settings.

In GAIA the adaptability is expressed by environmental model. That deal with its internal states and

expresses how other agents and environment effect on it. In TROPOS, activity diagram express the

adaptability and deals with the variety of computing environments, and changing settings. The MaSE

methodology does not support adaptability. The environmental model of GAIA does not explicitly define

the negative or alternate responses to change, however, the activity diagram in TROPOS explicitly

explains both worse and better responses to change. In that way, adaptation is stronger in TROPOS as

compare to GAIA.

3. Agent Abstraction: The ability of a methodology to describe agents using high-level abstraction.

In GAIA, the preliminary role model support agent abstraction by extraction roles from requirement

specification document. And In the design phase the agent model expresses the agent abstraction

property. In TROPOS the actor model in the early requirement analysis phase and the architectural design

phase define the actor abstraction property. In MaSE the role model in the analysis phase and, agent

classes in the design phase expresses the agent abstraction property. Almost all phases of each

methodology support to agent abstraction, therefore agent abstraction is strong in these three

methodologies.

4. Belief: The belief is a faith of an agent, which believes that it is always true about the world.

GAIA does not have a belief. The goals of the actor in TROPOS express the belief concept. In MaSE

methodology, belief is expressed by goals, tasks, and states. MaSE strongly support belief property as

compare to TROPOS and GAIA.

5. Communication:

The interaction model in the analysis and design phase of GAIA defines communication. The activity

diagram explicitly expresses the communication in TROPOS. In MaSE methodology conversation model

defines communication. Due to activity diagram and conversation model the communication is strong in

TROPOS and MASE as compared to GAIA.

6. Concurrency:

In GAIA the service model, in the detailed design phase support concurrency. The activity diagram in the

detailed design phase of TROPOS defines concurrency. In MaSE the role model in the refining role

model explicitly explains concurrency.

7. Collaboration: An agent has methods to cooperate with other agents to achieve goals.

In GAIA’s analysis and design phase, the interaction model expresses collaboration between agents. In

the detailed design phase of the TROPOS sequence diagram defines collaboration between agents. The

sequence diagram in the analysis phase and a conversation model in the design phase of MaSE express

collaboration between agents. Due to sequence diagram, collaboration is more precise and strong in

TROPOS and MaSE as compare to GAIA.

8. Cooperation: The cooperation is a collaborative activity with one objective, but it is distributed

among several actors. In cooperation, each agent performs actions according to the shared objectives.

The organizational structure of GAIA expresses the cooperation of agents. The architectural design in

TROPOS expresses cooperation of agents to perform a specific task. The agent class model in the design

phase of MaSE expresses the cooperation of agents. Due to the class diagram, cooperation is strongest in

MaSE as compared to GAIA and TROPOS.

9. Desire: A goal of an agent to be achieved.

GAIA does not support Desire property of the agents. The goal of the agent in TROPOS expresses the

desire of the agent. The goal, task models and state in the conversation model of MaSE express the desire

of agents. Desire is much stronger in the MaSE methodology after that TROPOS have strong desire

property. And GAIA does not have desire property.

10. Problem Decomposition: The ability of a methodology to divide the large problem into smaller and

more manageable parts. Basically, this property tackle complexity.

The analysis phase, architectural design, and detailed design phases of GAIA support problem

decomposition property. The earlier requirement, late requirement, architectural design and detailed

design phases of TROPOS support problem decomposition property. The analysis and design phases of

MaSE support problem decomposition property. The problem decomposition is stronger in these three

methodologies since each phase of these methodologies is divided into subparts. The division of phases

helps to decompose and understand complex problems.

11. Events: The ability of a methodology to control event triggering. The events trigger the interaction

and agents become responsible for a new goal.

In GAIA the analysis phase, the sub-organization model interacts with the environmental model, role

model, and interaction model. And these models interact with the organizational rules model. The

interaction generates events in models to interact with other models to perform a required task. The same

event phenomena happen in the design phase. In this way, GAIA expresses event generation property. In

TROPOS early requirement or any other phase does not interact with late requirement phase and with

others phases. Since TROPOS phases do not generate events or interaction, that’s why this methodology

does not express an event concept. MaSE methodology’s phases interact with other phases and models in

a phase interact with each other, this interaction expresses an event concept. Only TROPOS does not

support to event concept.

12. Multiple Interests: At a time, an agent may have multiple tasks such as co-operate with other agents,

be independent, or help the other agents to achieve a goal in the environment.

GAIA does not support this concept. TROPOS express this concept through goals, plans, and resources.

Since, TROPOS agents interact with other agents through goals, plans, and resources. Since they have

multiple interests to achieve their goals or to interact with other agents. The MaSE methodology does not

support multiple interests concept. Only TROPOS have a strong concept of multiple interests.

13. Intention: A fact that represents the way of realizing a desire, sometimes referred to as a plan.

The GAIA does not support intention concept. The agents of TROPOS express intention through its

plans. The goals, task, and states in a conversation model of MaSE express the intention concept. The

Intention is stronger in MaSE since three different models of MaSE express this concept. After the MaSE

intention is strong in TROPOS.

14. System Interface Guidance:

The GAIA does not support interface to the external world. The TROPOS methodology does not offer an

interface for the external world. The MaSE methodology does not support or offer an interface for the

external world. These three methodologies lack an interface to the external world. This flaw should

improve in all these methodologies.

15. Pro-activity: The ability of an agent and methodology to pursue new goals.

The service model in the detailed design phase of GAIA expresses pro-activeness. The plans of an agent

to achieve a goal express the pro-activeness in TROPOS. Any phase of MaSE methodology does not

support pro-activeness. The pro-activity is high in GAIA and TROPOS and MaSE lack of this property.

16. Protocol: A set of messages that defines the purpose and detail of a particular interaction among the

agents.

The role and interaction model in the architectural design phase and agent and service model in the detail

design phase of GAIA explicitly define protocol concept. The sequence diagram in the detailed design

phase of TROPOS somehow defines protocols, however; this methodology does not clearly define this

concept. The conversation model in the analysis phase and a conversation model in the design phase of

MaSE explicitly expresses protocol concept. GAIA and MaSE methodologies strongly support protocol

concept. On the other side, TROPOS does not express this concept explicitly. TROPOS lack conversation

model.

17. Organization: A group of agents working together to achieve a common purpose. An organization

consists of roles that characterize the agents, which are members of the organization.

The Sub-organization model in the analysis phase and the organizational structure model in the design

phase of GAIA express organization concept. The architectural design phase of TROPOS expresses

organization concept. The agent architecture model in the detailed design phase of MaSE expresses

organization concept. GAIA strongly expresses an organization model as compared to TROPOS and

MaSE.

18. MESSAGE: The message is a request for making conversation between agents for resources and task

completion.

The protocols in the interaction model, agent model and services model of GAIA express this concept.

The activity diagram in TROPOS expresses message concept explicitly. The conversation model in the

MaSE defines message concept. The message concept is defined by all these methodologies.

19. Reactivity: The ability of an agent and methodology to respond to changes in environment on time.

The responsibilities of a role in the role model and agent model show liveness. This liveness expresses

reactivity in GAIA. The state change in activity diagram and sequence diagram of TROPOS methodology

expresses reactivity. The conversation model and sequence diagram in MaSE express reactivity. All these

methodologies somehow meet the requirement of reactivity. There is no explicit or clear model to support

reactivity.

20. Role: An abstract level description of the agent’s function, its services or its specific identification

within a group.

The role models in the analysis and design phases of GAIA define the role concept explicitly. TROPOS

does not express role concept. The role model in the analysis phase of MaSE expresses the role concept.

The role concept is strong in the GAIA methodology as compared to MASE. In TROPOS role abstraction

concept is weak.

21. Task: A precise piece of work that is assigned to the agent of the system to be in the form of its

function.

Task represents to agent responsibilities. In GAIA the role model and service model express task concept.

In TROPOS methodology the task concept represents to a capability of the agent. And capability is

expressed by activity diagram. The concurrent task model in MaSE expresses a task concept explicitly. In

MaSE the task concept is stronger as compared to TROPOS and GAIA.

22. Norms: A set of rules that characterize a society and the agents of this society are bound to follow all

the mentioned norms.

GAIA: The norms defined by the organizational rules model in the analysis phase of GAIA. The norms

are defined by the organizational structure in TROPOS. The agent architecture in the design phase

expresses norm concept in MaSE. In GAIA norm concept is stronger as compared to TROPOSE and

MaSE methodology.

23. Society: A collection of agents and organizations that collaborates to promote their individual goals.

The organizational rules and organizational structure models define society in GAIA. The organizational

structure in TROPOS somehow way defines society. The agent architecture in MaSE somehow defines

society. GAIA methodology has a strong society’s concept as compared to TROPOS and MaSE.

24. Sociality: The capability of an agent to communicate with the other agents of the system by sending

and receiving messages and cooperate with them to perform a specific task.

In GAIA the sociality is expressed within the interaction model that defines the communication links

among agent types. In TROPOS the sociality is expressed by the system model in the late requirement

phase. The sociality is somehow expressed by agent architecture in MaSE. All methodologies weakly

support sociality concept.

25. Service: The service is a “knowledge level analogue” of an agent’s operation to achieve a specific

goal.

The service is expressed by service model in the detailed design phase of GAIA. The TROPOS

methodology does not support service concept. The MaSE methodology does not support service concept.

Only GAIA methodology explicitly expresses service feature.

26. Agent-Oriented: The agent-oriented features focus on whether the methodology addresses Agent-

based features during the analysis and design.

GAIA methodology somehow defines all attributes of an agent such as pro-activity, autonomy, reactivity,

and sociality so, it is an agent-oriented methodology. The TROPOS methodology somehow defines all

attributes of an agent such as pro-activity, autonomy, reactivity, and sociality so, it is an agent-oriented

methodology. The MaSE methodology somehow defines all attributes of an agent such as pro-activity,

autonomy, reactivity, and sociality so, it is an agent oriented methodology. All these methodologies are

agent-oriented.

4.1.2 Notations and modeling techniques

Notations are a set of symbols that technically represent agents and their functional goal in a system to-be.

These modeling techniques collectively build a precise model that represents developing system at

different levels of abstraction and express their different facets such as structural and behavioral sides.

This section deals with the properties of notions which a modeling methodology should have. The list of

properties is given below:

[52] [53] [54] [55] [56] [57] [58] [33] [59] [60] GAIA V.2 TROPOS MaSE

Notation and

Mdeling

Technique

 ✓ ✓ ✓ ✓ Agent Attributes

 ✓ ✓ ✓ ✓ ✓ Accessibility

 ✓ ✓ ✓ ✓ Analyze-ability

✓ ✓ ✓ ✓ ✓ ✓ ✓
Complexity

Management

 ✓ ✓ Dynamic Structure

 ✓ ✓ ✓ ✓ ✓ ✓ Expressiveness

 ✓ ✓ ✓ Consistency

✓ ✓ ✓ Open system

 ✓ ✓ ✓ Execute-ability

 ✓ ✓ ✓ Unambiguity

 ✓ ✓ ✓ Consistency

 ✓ ✓ ✓ ✓ ✓ ✓ Trace-ability

 ✓ ✓ ✓ ✓ ✓ Preciseness

 ✓ ✓ ✓ System View

 ✓ ✓ ✓ ✓ ✓ ✓ Modularity

1. Agent Attributes: The ability of a methodology that concern about the description of the agent’s parts

that make up the internal structure.

The internal structure of the agent is strong in the GAIA as the role model of the analysis phase

transforms to agent model in the design phase. This strength is due to that every agent plays a specific

role and is independent in making decisions. In TROPOS the actor diagram of the requirement phase

transforms to the activity diagram in the design phase. So in this sense, the internal structure of an agent is

strong in TROPOS. In MaSE the role model transforms to agent model in the design phase. All these

methodologies explicitly manifest agent attribute for system development.

2. Accessibility: The ability of a methodology that assist the developers to easily adapt it, understand it

and implement it.

All GAIA models and the phase distribution are simple and understandable. Engineers can use easily

these models and can develop complex systems. Gaia does not support accessibility when developers

transform its models to the overall system model. The notation understandability and modeling in

TROPOS is easy. However, the transformation of models from rational models to activity diagram and

sequence diagram is difficult. Same like GAIA, MaSE methodology has simple models that can be

understood by developers easily, but the transformation of these models into the overall system model is a

difficult task. All these methodologies in some way are accessible; however, some improvement is

required in this area.

3. Analyze-ability: The capability of a methodology to check the internal consistency of each agent. And

also point out the unclear aspects of models and agents.

GAIA does not deal with the analyze-ability. TROPOS check analyze-ability of models through the agent

plan, resource, and goals. However, the analyze-ability compromise between rational models and

architectural structure. The MaSE methodology provides analyze-ability within models through the

transformation of models from the analysis phase to design phase. However, analyze-ability compromise

when transforms activity diagram into a sequence diagram. All these methodologies need a development

in this area.

4. Complexity Management: An ability of the agent-oriented methodology to deal with the different

levels of complexity. For example, sometimes only high-level requirements are needed while in the

other situation more details are required. In this case, the agent oriented methodology should provide

all level information.

GAIA gives somehow favor to manage complexity by giving different levels of abstraction by different

models. However, it does not have a hierarchical structure to manage system’s complexity. The TROPOS

controls complexity by goal model in the early requirement phase, but it cannot control the details within

it. The hierarchical structure somehow controls complexity. The MaSE methodology provides an

abstraction of almost every concept of the goal, agent, conversation model, in this way it controls a

limited extent of complexity. However, it does not have any hierarchy model to control complexity and

detail of complex tasks. Generally, GAIA and MaSE are suffering from this deficiency. TROPOS is

somehow better on this property.

5. Dynamic Structure: The ability of a methodology to provide support for the dynamic structural

reconfiguration of the system.

The GAIA does not deal with a dynamic structure. The TROPOS somehow deal with the dynamic

structure of activity diagram. The MaSE does not deal with the dynamic structure. The future work should

be done on the dynamic structure feature of all methodologies.

6. Expressiveness: The ability of a methodology of presenting system concepts such as system structure,

encapsulated knowledge of models, ontology structure, data flow, control flow, and concurrent

activities of the involving agents.

Due to the generic structure, GAIA can handle and model a large variety of systems. However, the system

structure of the system to-be is not presented explicitly. Usually, TROPOS helps to develop BDI (Belief,

Desire, and Interaction) systems. However, the system structure of the system to-be is not presented

explicitly. The MaSE methodology explicitly describes the system structure by using an agent

architecture and system design diagrams. However, the encapsulated knowledge of the system is not

presented explicitly. All methodologies express expressiveness in a limited way.

7. Consistency: The ability of methodology to maintain the quality of a system throughout the

development process.

Each model in the GAIA explicitly defines each concept clearly, means that agent model, role model,

environmental model, service model. There is no chance of ambiguity between models. In TROPOS the

rational model and the architectural design confuse the developers due to ambiguity. However, in detail

design phase it controls this lack through activity diagram. The MaSE explicitly express consistency

within each model through control flow and data flow. Moreover, each model clearly defines a single

concept such as goal model, role model, and agent model, etc. Each methodology tries to be consistent in

some way. However, MaSE strongly expresses the consistency as compared to GAIA and TROPOS. On

the second number, GAIA is stronger in consistency than TROPOS.

8. Open System: The ability of a methodology to add or remove new agents in the development system.

The GAIA methodology completely supports open system property because this methodology has

separate models for each concept. New agents, roles, and protocols, etc easily can be removed or add into

the system. TROPOS methodology does not support to open system property due to activity and sequence

diagrams. Same like GAIA, MaSE explicitly supports to open system property. GAIA and MaSE are

strong, according to this aspect.

9. Execute-ability: The ability of the agent-oriented methodology, to provide the facility of performing a

simulation to validate the system specification. Or at least generate a prototype of the overall system

to-be.

GAIA does not deal with the execute-ability issue. TROPOS dealt with the execute-ability by using

JACK. The MaSE methodology has a developmental tool “agentTool” which support partially to code

generation. MaSE methodology is stronger as compared to the GAIA, and TROPOS, according to this

aspect.

10. Unambiguity:

As GAIA has clear models for each concept, so in this way, it tries to overcome this issue. In TROPOS

the architectural design and rationale models lead to ambiguity and create confusion for developer’s

understanding. Same like GAIA, MaSE has clear models for each concept. MaSE and GAIA

methodologies have less ambiguity as compared to TROPOS.

11. Trace-ability: The ability of a methodology to handle the main concept of the system to-be throughout

the system development.

The models in GAIA’s analysis phase become input for models in the design phase. In this way we can

say it maintain trace-ability throughout the development phases. Same like GAIA, the TRPOS

methodology also maintains trace-ability. The models in the analysis phase of MaSE become the base for

the design phase models. Each mode can be traced by its base model. All these methodologies in

somehow way fulfill the trace-ability aspect.

12. Preciseness: The ability of the methodology to handle the ambiguity throughout the system

development. It assists the developers in avoiding the misinterpretation in system development.

Each model has a clear meaning and interpretation in GAIA methodology. This edge makes GAIA

accurate. As the TROPOS base on i* model that has clear notation and meaning of each symbol. Thus, it

prevents users from misinterpretation. Same like GAIA, MaSE model, symbols, and notations have a

clear meaning and interpretation. This advantage makes the MaSE accurate and prevent the developers

from misinterpretation. All these methodologies are precise.

13. System View: The ability of a methodology to provide a microscopic system oriented model, to

understand the whole working scenario of the developing system.

GAIA does not promote system view feature. Since, this methodology has a deficiency of hierarchical

model and overall system model. In TROPOS the activity diagram demonstrates the general view of the

system model. In MaSE, agent classes depict a vague concept of system view. Only TROPOS has

somehow clear abstraction of system view.

14. Modularity: The ability of a methodology to develop a system in an iterative way. That allows adding

new requirements without affecting the existing specifications.

GAIA is modular, due to its models (agent, service and, role). The changing in the role does not affect the

whole system. This change only influences the internal structure of an agent or role. Within the TROPOS

modularity is fully supported. Same like GAIA, MaSE support modularity because of models (task, agent,

goal). TROPOS strongly support modularity as compared to GAIA and MaSE.

4.1.3 Development Process

A development process is a step by step guideline for developing a system from scratch. This process

consists of a series of actions, functions, and models, that when performed, then the outcome is an

operational computerized system. Basically, this section of evaluation framework deals with the different

facets of system development process. The terminologies for checking the developing process are given

in the below table:

[52] [53] [54] [55] [56] [57] [58] [33] [59] [60] GAIA V.2 TROPOS MaSE
Development

Process

 ✓ ✓ ✓ ✓
Architecture

Design

 ✓
Requirement

Norms

 ✓ ✓ ✓ ✓ ✓ ✓ Legal Document

 ✓ ✓ ✓ System Design

✓ ✓ ✓ ✓ ✓ ✓ ✓
Development Life

Cycle

 ✓ ✓ ✓ ✓ ✓ ✓
Development

Context

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Implementation

 ✓ ✓ ✓ ✓ ✓ ✓ SDLC coverage

 ✓ ✓ ✓ ✓ ✓
Development

Approach

 ✓ ✓ ✓ ✓ ✓ ✓
System

Specification

 ✓ ✓ ✓

Project

Management

guideline

 ✓ ✓ ✓ ✓ ✓ ✓
Verification and

Validation

 ✓ ✓ ✓ Quality Assurance

1. Architecture Design: The ability of a methodology to facilitate design by using patterns or modules.

GAIA provides almost all modules of a system such as interaction, role, environmental, service, agent

models and also provides an architectural design of developing system. The architectural design phase of

TROPOS explicates the overall system’s global architecture in terms of sub-systems, interconnected

through data and control flow. The MaSE have all architectural bricksin the orm of models such as agent

model, goal model, role model, conversation model and task model. The agent architecture model

represents the architectural design of the whole system. All these methodologies have architecture design

property for system development.

2. Requirement Norm: The ability of a methodology to identify organization’s norm during

requirement analysis.

GAIA does not support the system requirement. This methodology performs development process after

requirement specification. During early and late requirement analysis phases of TROPOS, this

methodology identifies and formalize norms for the system to be developed. Same like GAIA, the MaSE

methodology have analysis and design phase. It does not support system requirement analysis phase.

Only TROPOS has a strong feature of building system norms.

3. System Design: The ability of a methodology to introduce the normative environment of the system

as an integral part of the development phase.

GAIA does not support system design. TROPOS does not support system design. MaSE expresses

system design through deployment diagrams. More work is required in the system design phase of all

methodologies.

4. SDLS Coverage: The ability of an agent-oriented methodology to include elements of software

development.

GAIA covers only two main phases of the development process such as analysis and design phase. This

coverage is not sufficient for developing an outstanding system. The TROPOS methodology covers

almost all phases of the development cycle. However, it does not deal with the testing stage. MaSE covers

development cycle from analysis to implementation phase. However, its goal model, use cases and

sequence diagrams in somehow manners support requirement phase. MaSE does not support only to

testing phase. Only GAIA methodology has a deficiency of DLC coverage.

5. Development Context: The ability of a methodology to be remolded according to users need such as

creating new software, reverse engineering, re-engineering systems by using reusability or creating

new system property.

GAIA has the ability of creating new software, designing and re-engineering systems by using reusability

propert or creating from scratch. It does not address implementation phase and does not support classical

reverse engineering . The TROPOS methodology can be used for creating software systems from scratch

and for prototyping, re-engineering and designing systems by using reusability property. However,

TROPOS does not support reverse engineering. Because when going from one stage to the next stage,

then several concepts undergo significant changes. The MaSE can be used in creating new systems,

designing systems from scratch and re-engineering with reuseability property. However, MaSE does not

support reverse engineering. All methodologies are incapable of reverse engineering.

6. Implementation Guidance: The capability of a methodology to deal with coding issues, quality,

performance, libraries and debugging.

GAIA does not support implementation phase. TROPOS has implementation guidance property as it

suggests to use JACK toolkit since it easily maps a BDI architecture. The MaSE methodology has a

graphical agentTool, which is a fully human-interactive tool and guides each step of MaSE development.

The agentTool have the ability for automatic verification of inter-agent communication, semi-automated

design, and code generation for multiple MAS framework. These all methodologies are strong in

implementation guidance property except GAIA.

7. Development Approach: The attribute of a methodology to guide system development in a specific

way, such as top-down, bottom-up, mix.

GAIA follows a top-down development approach. TROPOS follows a top-down development approach.

MaSE follows a top-down development approach. All these three methodologies follow a top-down

approach.

8. System Specification: The ability of a methodology to accurately interpret the problem from

specification document. And confirm that this is the right problem to be solved.

The analysis phase of GAIA, manifest the requirement specification of the system in the form of sub-

organizations, role model, interaction model, and organizational rules. The actor model in the early

requirement analysis phase of TROPOS embodies the requirement of the system. In the analysis phase

the MaSE express system specification in the form of goal model, use cases, sequence diagram, roles and

task model. All these methodologies identify and specify system specifications.

9. Project Management guideline: The ability of a methodology to effectively and efficiently guide all

aspects of a project from conception through completion.

This issue is not dealt with in the GAIA. The TROPOS has lack to deal with project management issues.

This issue is not dealt with in the MaSE. ALL these methodologies are unable to deal with the project

management issues.

10. Verification and Validation: The ability of a methodology to provide a way for formal verification

and validation.

GAIA performs verification and validation during the transformation of preliminary roles to role model.

In TROPOS, there is no coverage checking with respect to the initial requirement. However, TROPOS

extension “formal TROPOS” can be used for verification and validation. MaSE performs verification

over its models by checking consistency, deadlocks and unused elements between the stages. ALL these

methodologies have no specific verification and validation method. However, TROPOS overcome this

lack by TROPOS formal method. GAIA and MaSE overcome this lack of transformation of models.

11. Quality Assurance: The ability of a methodology that ensures that the developed software meets

and compiles with defined or standardize quality specifications.

This issue is not dealt with GAIA. This issue is not dealt with TROPOS. This issue is not dealt with

MaSE. All methodologies have lack quality assurance property.

4.1.4 Pragmatics

The pragmatics of a methodology, determine the industrial success of a methodology. Pragmatics

determine that a methodology is applicable in the industry for developing complex and distributed

systems. Moreover, this section determines that is the considered methodology have the ability of project

management and determine that the considered methodology can be adapted within the organization

according to the organizational budget and experience. The pragmatics checking terminologies are given

below in the table.

[52] [53] [54] [55] [56] [57] [58] [33] [59] [60] GAIA V.2 TROPOS MaSE Pragmatics

 ✓ ✓ ✓ ✓ Tools Available

 ✓ ✓ ✓ ✓ ✓ Required Expetries

 ✓ ✓ ✓
Modeling

suitability

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Domain

Applicability

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Scalability

 ✓ ✓ ✓ ✓ ✓ ✓ Resources

 ✓ ✓ ✓ ✓ ✓
Language

Suitability

1. Tools available: The ability of a methodology to guide about available tools and tools ready to use.

The GAIA methodology does not provide any automated Tool. TROPOS provides several automated

tools for animation, model checking, and reasoning. The famous one is JACK tool. The MaSE

methodology has agentTool, which represents the behavior of internal components of agents and

protocols. All these methodologies are somehow strong on this property except GAIA.

2. Required expertise: The ability of a methodology, be as simple as possible that users don’t require

any background knowledge.

The GAIA required a strong background knowledge of logic and temporal logic. These logics reduce its

accessibility. Since many developers do not know or do not want to get familiar with logic. TROPOS

does not require strong background knowledge. Since, its modeling notations are very simple. Same like

GAIA, the MaSE methodology requires a strong background knowledge of logic and temporal logic.

TROPOS is easy to develop at the first time as compared to MaSE and TROPOS.

3. Modeling Suitability: The ability of a methodology, consisting of a specific architecture.

The GAIA methodology has no specific modeling architecture. So, designers have no need of

architectural information for development. TROPOS has BDI architecture, So designers have to explicitly

describe beliefs, desires, and intentions. MaSE has no specific architecture, So designers have no need of

architectural information for development. Only TROPOS methodology has architecture, and developers

need to search if their system has BDI properties then they use this methodology.

4. Domain Applicability: The ability of a methodology to be suitable for a variety of domains.

GAIA is suitable for dynamic-open (where the agents are not known) and dynamic-close (where the

agents are known) systems. However, this methodology is not suitable for developing applications with

dynamic characteristics such as goals generation. Generally, TROPOS is suitable for developing

componentized systems like e-business applications and BDI based systems. MaSE can be used for

various types of agents and systems. Only TROPOS and MaSE support to dynamic characteristics in

complex system development.

5. Scalability: The ability of a methodology to be adjusted to dealt with various application sizes.

GAIA has a simple structure, that’s why it can be fitted in different sizes of applications. TROPOS does

not provide information for subsets and supersets. So, developers have no idea of exact size must be to

avoid complexity. MaSE also does not provide information for subsets and supersets. Thus, developers

have no idea of exact size must be to avoid complexity. GAIA has strong scalability characteristics as

compared to TROPOS and MaSE.

6. Resources: The ability of a methodology to be mature enough that, publish material, tools and

training groups are easy to find.

The GAIA methodology does not provide any automated Tool. However, published papers describe the

implementation of this methodology in detail. The TROPOS’s Tools and published material are available.

It fully supports system development from scratch. The MaSE Tools, web site, and various published

studies are available. It fully supports system development from scratch. MaSE and TROPOS are well

built in resources as compared to GAIA.

7. Language Suitability: The ability of a methodology to be coupled with a particular implementation

language or a specific architecture.

As GAIA does not have any specific architecture and language. And it does not refer to the

implementation issues. Thus, the specifications made using GAIA can be implemented in any language.

As TROPOS based on the BDI concept, so its implementation will be biased towards BDI direction.

MaSe does not target to any specific architecture, language, and a specific framework. MaSE and GAIA

are more independent from any language suitability than the TROPOS.

Exploratory Agent Based Modeling (EABM):

Cognitive Agent-Based Computing (CABC) is a unified framework, proposed by Niazi and Hussain in

the article [61] for modeling the complex systems of agents. This framework has four levels for

developing complex systems. Exploratory Agent-Based Modeling (EABM) is the second level of CABC

framework. The EABM guides the researchers to develop a proof of concept model of the developed

system with the goal of performing multiple simulations for improving understanding about a particular

real-world complex system [62].

Breeds:

There are two types of breed.

1. T-Cells of immune system

a) Regulatory T-Cells (T-reg)

b) Effectors T-Cells (T-eff)

c) Active Regulatory T-Cells (A.T-reg)

d) Active Effectory T-Cells (A.T-eff)

e) External environmental virus (virus)

f) Cytokines

2. Brain organs

a. Blood Brain Barrier BBB

b. Brain White Matter (Myelin)

a) T-reg

This agent search for the virus, if virus found, then it changes its state from inactive T-reg to active A.T-

reg.

1. Move randomly

2. Search virus

3. Transform from T-reg to A.T-reg

b) T-eff

This agent search for the virus, if virus found, then it changes its state from inactive T-eff to Active A.T-

eff.

1. Move randomly

2. Search virus

3. Transform from T-eff to A.T-eff

c) A.T-reg

When a virus attacks any inactive regulatory cell or inactive regulatory cell became successful to catch

the virus , then T-reg regulatory cell changes its state from inactive to active A.T-reg and its color turns

from black to blue. When A.T-reg blue agent finds any active Effector A.T-eff in radius, then it kills

effector cell and does these jobs.

1. Move randomly

2. Kills active Effector T-cells

3. Gain energy

4. Duplicate A.T-reg

d) Effector T-Cells

When a virus attacks any Inactive Effector T-Cell T-eff or T-eff cell became successful to catch the virus,

then effector cell changes its state from resting T-eff to active A.-eff and color turns from white to red.

Active effector T-cell perform these tasks;

1. Move randomly

2. Search Myelin

3. Eat myelin

4. Gain energy

5. Duplicate A.T-eff

6. Produce Cytokines

e) Virus

The virus agent search for T-Cells T-reg and T-eff. If the virus finds any T-cell in its radius, then it makes

them active. It performs the following tasks.

1. Move randomly

2. Search T-Cells

3. Make T-Cells active

f) Cytokines

Cytokines search for BBB. If they become successful to find the BBB then they attack BBB and damage

it. After the attack, it died. It performs the following tasks.

1. Move randomly

2. Search BBB

3. Damage BBB

4. Die

2. Brain organs

a) Blood Brain Barrier BBB

BBB is a brain organ that stops all unwanted minerals, molecules, and cells to enter into the brain. If any

cell tries to enter the brain, then it bounces back that cell. If the BBB is damaged, then it repairs BBB. It

performs the following tasks:

1. Stop cells’ entrance into the brain

2. Repair damaged BBB

b) Brain White Matter (Myelin)

Myelin covers the axonal part of the neuron cells and maintains communication between two neurons. If

any damaged occur due to effectory cells attack, then it repairs the myelin to maintain communication. It

performs the following tasks:

1. Maintain communication

2. Repair myelin

Global Variables:

Global variables are accessible anywhere in the simulation code and store particular value for agents

during the one continued simulation experiment. There are four preferred global variables.

1. The recoverable brain patches (recoverable)

2. The unrecoverable brain patches (unrecoverable)

3. The total myelin in each brain patch (initmyelin)

4. The total energy of each agent (total)

Besides these variables, there are many other input variables in the user interface which can be adjusted

by the user manually or else by using behavior space.

Procedures:

1. Setup

2. Setup-world

3. Reproduce-Tregs

4. reproduce-effectors

5. grow-myelin

6. eat-myelin

7. go

8. move

9. death

10. count-virus

11. count-Tegg

12. count-effectors

13. bounce

14. display-labels

15. catch-effectors

16. count unrecoverable

17. display label

18. do-ploting

Figure 33: These are various configurable values for the simulation

1. Setup:

First of all setup functions clears all variable, agents and environment of the simulation. This is important

because we need to run multiple simulations on a specific hypothesis. This procedure divides simulation

environment into three types of patches 1) Blood / LYMPHATIC system, 2) Brain axonal area and 3)

Blood Brain Barrier. After creating patches, the next step is to create three types of agents (regulatory,

effectors, viruses).

Create-Tregs:

This function creates regulatory T-cells T-reg according to its input variable and sets its attributes. The

input variable is adjustable from 1 to 2000 numbers. Finally, this procedure adjusts regulatory cells xy-

coordinate in simulation environment.

Create-effectors:

This function creates effectors T-cells T-eff according to its input variable and sets its attributes. The

input variable is adjustable from 1 to 2000 numbers. Finally, this setup procedure adjusts effector cells

xy-coordinate in simulation environment.

Create-viruses:

This function creates an external environmental virus, according to its input variable and sets its

attributes. The input variable is adjustable from 1 to 100 numbers. Finally, setup procedure adjusts virus

cells xy-coordinate on simulation environment.

At the end, setup function calls the display-labels function. The detailed description of each function

follows along with their function.

2. Setup-world:

This function divides 51*51 grid into patches of size 9. 0 to 13 y-coordinate patches are declared as blood

portion and from 13 to 15 y-coordinate are declared as BBB portion. 15 to 35 y-coordinates represent

brains white portion. 35 to 37 again represent BBB and 38 to 50 represent a blood portion of the brain.

Figure 34: model view after pressing the setup button

3. Reproduce-Tregs:

This procedure reproduces regulatory T-cell according to probability. If random float of 100 is less than

reg-reproduce the input variable, then it checks a condition. If the number of turtles on a single patch is

less than the patch density, then it cuts down turtle energy by half and produces another regulatory T-cell.

Otherwise, move forward according to move function.

4. Reproduce-effectors:

This procedure calculates the probability of reproduction of effector T-cells. If an effector successfully

eats myelin and causes axonal damage then, it will be simulated to duplicate. And the duplication is

modeled as a stochastic Bernoulli process. The duplication probability p is calculated for every

duplication process according to the following law:

P = effector-dupl × myelin2
 / init-mye2 × mean-Tregs / Treg-here + mean-Treg

Where myelin indicates the quantity of myelin in the current patch, effector-dupl is a duplication constant

representing the maximum duplication rate of Teff, mean-Treg is a given threshold and Treg-here is the

number of Tregs in a given radius Treg-radius. The term myelin2
 / init-mye2 gives higher probabilities to

duplicate if the patch has higher quantities of myelin, where the term mean-Tregs / Treg-here + mean-

Treg is used to model the down-regulation of Teff duplication rates by Treg actions.

5. Grow-myelin:

Each patch with color gray shows myelin amount. Initially, this procedure sets each patch myelin to 100.

For each time when an active effector eats myelin then, that’s patched myelin amount decreased by -5 and

then this procedure again check condition if the myelin amount reaches to zero then, that patch color turns

to black. After each attack, the patch color turns from gray to black. After that, this black patch recovers

myelin according to rec-mye input variable.

6. Eat-myelin:

This procedure sets a condition that if any active A.T-eff is on any patch with color gray and the patch

myelin amount is greater than the eat-myelin input variable then minus -5 from that’s patched myelin

amount. If myelin amount reaches zero then turn patch color from gray to red.

7. Go:

First of all, this procedure calculates the total number of unrecoverable brain patches. Unrecoverable

patches are those whose myelin amount reaches to 0 and their color turn from gray to black. After that, it

calculates myelin of each patch and subtract it from the total myelin amount and assign the total myelin

amount to each patch, which amount it has at this simulation time. This procedure also calculates the total

number of recoverable patches. If any patch has some amount of myelin then it can recover from multiple

sclerosis. Recoverable patches are calculated by subtracting unrecoverable patches from the total number

of patches.

I. Create regulatory: This procedure creates regulatory T-cells according to a specific probability.

The probability to create a regulatory T-Cells is, if random float of 1 is less than 10/365 then

create a regulatory T-Cells according to the slider value.

II. Create effectors: This procedure calculates specific probability to create an effector T-cells. If

random float of 1 is less than 10/365 then create an effector T-cells according to the slider value.

III. Create viruses: This procedure also creates external environmental viruses, according to a specific

probability. The probability to create viruses is if random float of 1 is less than 10/365 then create

regulatory T-cells according to the slider value.

After creation agents, this procedure asks effectors call bounce and move function. After that, this

procedure asks active effectors eat myelin and produce 1 cytokine against one myelin attack. It also

instructs inactive effectors that try for activation. If any virus is in radius, then they change their state to

active else move forward and try to catch the virus.

After creation cytokines, this procedure instructs cytokines that if they are at patch with color green they

change the patch color to red. Means if any cytokine collides with the blood brain barrier then barrier

destroy and that patch start countdown. When the countdown reaches 0 then they again became a barrier.

Go function ask regulatory T-cells call to move and bounce function. They also instruct that if regulatory

cells are active then catch effectors and produce one another regulatory cell or else try to catch virus to

make himself active.

At the end, his function asks viruses call move, bounce and death function. And instruct patches call

grow-myelin function.

8. Move:

This procedure decreases turtle’s energy at every single step and sets turtle heading random 360. After

that it forces turtle to take the next random step.

9. Death:

This procedure order to each turtle if its energy level is zero, then it must be die at any place in the

simulation environment.

10. Count-virus:

This procedure reports total number of virus for every moment in the running simulation.

11. Count-Teg:

This procedure reports a total number of active regulatory T-cells with the color blue for every moment in

the running simulation.

12. Count-effectors:

This procedure reports the total number of active effector T-cells with the color red for every moment in

the running simulation.

13. Bounce:

This procedure ask all turtles if the next move patch’s color is green, then bounce back and set heading

random 360. This green patch is a blood Brain Barrier which blocks turtle’s movement.

14. Display-labels:

This procedure asks turtles if the energy level switch is on then, they display their current energy level

during the current simulation experiment.

15. Catch-effectors:

This procedure asks active regulatory T-cell if any active effector T-cell in its radius, then kill him and

breed one regulatory T-cell. If there is no one effector in radius, then try to catch effectors with the color

red.

16. Count unrecoverable

This procedure counts all patches with color black. These black color patches show to damaged brain that

is unrecoverable from multiple sclerosis disease.

17. Display label

This procedure displays the current value of each patch and agent during running a simulation.

Figure 35: model view during simulation

Parameters Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6

Init-Treg-n 100 50 100 100 50 100

Treg-life 60 30 60 60 30 60

Treg-repro 25% 12 % 25% 25% 12 25%

Treg-radius 3 2 3 3 2 3

Init-Teff-n 100 100 50 100 100 100

Teff-life 60 60 30 60 60 60

Teff-repro 25% 25% 12% 25% 25% 25%

Init-virus-n 100 100 100 100 100 50

V-energy 20 20 20 20 20 10

v-radius 3 3 3 3 3 2

Mimicry 1.0 1.0 1.0 1.0 1.0 1.0

Myseed 100 100 100 100 100 100

Show-enegy off off off off off off

Disable-Treg off off off off off off

Init-mye 100 100 100 100 100 100

Ate-mye 2 2 2 5 5 2

Rec-mye 1.5 1.5 1.5 1.5 1.5 1.5

Mye-rgrow-

time

2 2 2 0 0 2

BBB-coun-

down

50 50 50 50 50 50

Cytokine-

energy

25 25 25 25 25 12

Cytokine-n 1 1 1 1 1 1

Hill1 2 2 2 2 2 2

Hill2 1 1 1 1 1 1

Patch-

density

3 3 3 3 3 1

Table 20: values of all variables during simulation

First simulation:

In this simulation the T-regulatory and T-effectors production and the initial birth ratio are same. In this

case brain, axonal damage and brain recovery time are almost same. Sometimes T-effectors strongly

attack brain axonal, at this time brains immune system gives quick response to damage and regulatory

cells control T-effectors progression.

2nd simulation:

In this simulation, T-effectors cell production. Reproduction and initial number rate are strong. Less T-

regulatory strength shows weak immune system. In which recovery cells and immune cells are weak or

they are in very small amount. In this case, T-effectors strongly attack brain axonal area and cause severe

brain damage. Most of the time this damage is unrecoverable and growing with time.

3rd simulation:

This simulation is adjusted according to the strong immune system. In which T-regulatory cells are more

active than T-effector cells ant they give a quick response to external and internal disease attack. In this

simulation, T-regulatory sells swiftly controls T-effectors activity without any significant brain damage.

4th simulation (slow recovery time)

This simulation shows very slow healing power in patients. This simulation is adjusted as T-regulatory

and T-effector cells production and reproduction ratio are same. When an effector attack on axonal then

this damage goes to severe damage because of very slow recovery time. This type of brain is an easy

target for disease. The brain damage rate increase, alternatively recovery process leads to slow.

5th simulation (weak immune system)

This simulation is adjusted as when an active T-effector attack on axonal it would be a severe damage and

the production and reproduction of regulatory cells is half of the effector cells. This simulation shows a

rapid damage rate and rapid decline in brain recovery time. At the end, most of the brain damage and

became unrecoverable. This sign is a high severity of the disease.

6th simulation ()

This simulation is adjusted as low virus attack on the immune system and the immune system have low

cytokine energy. Cytokines support the immune system by decreasing activity of opposing cells. When T-

effector cells attack axonal then T-effector cells give quick a response to effectors by controlling their

activities. But alternatively, their produced cytokines have low energy. This case leads to increasing

damage rate and decreasing recovery time.

6. Conclusion:

In this study, we developed a simulation model for MS disease by using AOSE methodologies. The

novelty of our work is proposing an idea that, develop biological models with the help of AOSE

methodologies, that provide developer support in the analysis, design, and implementation phase. After

development, we have evaluated AOSE methodologies utilizing a framework that examines the various

facets of a methodology. The proposed framework consists of four phases. The analysis of methodologies

shows that although methodologies are mature, that can be used to develop biological or any other

complex system, however, there are still open issues because methodologies do not provide a solid rule

for agent identification from the requirement document and do not guide the transformation of roles to

agents. In general, some software engineering issues such as quality assurance, cost estimation, and

project management guidelines are not supported by any of the methodology. Besides all these

limitations, AOSE methodologies have shown the potential for the development of the MS disease model.

Moreover, this framework and comparison results can be utilized for selecting a methodology for

developing an agent-based application.

Reference

[1] S. Cai, W. Chen, D. Liu, M. Tang, and X. Chen, “Complex network analysis of brain functional

connectivity under a multi-step cognitive task,” Physica A, vol. 466, pp. 663–671, 2017.

[2] B. U. Forstmann and E. J. Wagenmakers, “An introduction to model-based cognitive

neuroscience,” An Introd. to Model. Cogn. Neurosci., no. August, pp. 1–354, 2015.

[3] R. Cunha, D. Adamatti, and C. Billa, “Agent Oriented Software Engineering: A Comparative

Study between methodologies that support the Development of Multi-Agent Systems,” Proc. 7th

Int. Conf. Manag. Comput. Collect. Intell. Digit. Ecosyst., pp. 48–52, 2015.

[4] C. Lucena and I. Nunes, “Contributions to the emergence and consolidation of Agent-oriented

Software Engineering,” J. Syst. Softw., vol. 86, no. 4, pp. 890–904, 2013.

[5] V. Kannan, N. A. Kiani, F. Piehl, and J. Tegner, “A minimal unified model of disease trajectories

captures hallmarks of multiple sclerosis,” Math. Biosci., vol. 289, pp. 1504–1514, 2017.

[6] J. Komatsu, K. Sakai, M. Nakada, K. Iwasa, and M. Yamada, “A long spinal cord lesion in a

patient with biopsy proven multiple sclerosis,” Neuropathology, vol. 32, no. 3, p. 338, 2012.

[7] S. Afraei et al., “Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis,” J.

Food Drug Anal., vol. 25, no. 3, pp. 699–708, 2017.

[8] T. Zrzavy, S. Hametner, I. Wimmer, O. Butovsky, H. L. Weiner, and H. Lassmann, “Loss of

‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis,” Brain, vol.

140, no. 7, pp. 1900–1913, 2017.

[9] D. J. Arpin, E. Heinrichs-Graham, J. E. Gehringer, R. Zabad, T. W. Wilson, and M. J. Kurz,

“Altered sensorimotor cortical oscillations in individuals with multiple sclerosis suggests a faulty

internal model,” Hum. Brain Mapp., vol. 38, no. 8, pp. 4009–4018, 2017.

[10] F. Halabchi, Z. Alizadeh, M. A. Sahraian, and M. Abolhasani, “Exercise prescription for patients

with multiple sclerosis; potential benefits and practical recommendations,” BMC Neurol., vol. 17,

pp. 1–11, 2017.

[11] P. Sowa, G. O. Nygaard, A. Bjørnerud, E. G. Celius, H. F. Harbo, and M. K. Beyer, “Magnetic

resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis,”

Neuroradiology, vol. 59, no. 7, pp. 655–664, 2017.

[12] M. Pennisi, G. Russo, S. Motta, and F. Pappalardo, “Agent based modeling of the effects of

potential treatments over the blood-brain barrier in multiple sclerosis,” J. Immunol. Methods, vol.

427, pp. 6–12, 2015.

[13] Y. Mansury and T. S. Deisboeck, “The impact of ‘“ search precision ”’ in an agent-based tumor

model,” J. Theoratical bBology, vol. 224, pp. 325–337, 2003.

[14] C. A. Athale and T. S. D. Ã, “The effects of EGF-receptor density on multiscale tumor growth

patterns,” J. Theoratical Biol., vol. 238, pp. 771–779, 2006.

[15] Y. Mansury and T. S. Deisboeck, “Simulating the time series of a selected gene expression profile

in an agent-based tumor model,” Phys. D, vol. 196, pp. 193–204, 2004.

[16] Y. Mansury and T. S. Deisboeck, “Simulating ‘ structure – function ’ patterns of malignant brain

tumors,” Physica A, vol. 331, pp. 219–232, 2004.

[17] L. Zhang, C. A. Athale, and T. S. Deisboeck, “Development of a three-dimensional multiscale

agent-based tumor model : Simulating gene-protein interaction profiles , cell phenotypes and

multicellular patterns in brain cancer,” J. Theoratical Biol., vol. 244, pp. 96–107, 2007.

[18] L. Zhang, L. L. Chen, and T. S. Deisboeck, “Multi-scale, multi-resolution brain cancer modeling,”

Math. Comput. Simul., vol. 79, pp. 2021–2035, 2009.

[19] L. Germond, M. Dojat, C. Taylor, and C. Garbay, “A cooperative framework for segmentation of

MRI brain scans,” Artif. Intell. Med., vol. 20, no. 1, pp. 77–93, 2000.

[20] N. Richard, M. Dojat, and C. Garbay, “Automated segmentation of human brain MR images using

a multi-agent approach,” Artif. Intell. Med., vol. 30, pp. 153–175, 2004.

[21] F. G. Vital-lopez, A. Armaou, and M. Hutnik, “Modeling the Effect of Chemotaxis on

Glioblastoma Tumor Progression,” Am. Inst. Chem. Eng., vol. 57, no. 3, 2011.

[22] R. Soc, “Introduction . Modelling natural action selection,” R. Soc., no. April, pp. 1521–1529,

2007.

[23] L. C. Signaling, M. Bias, and E. Rate, “Simulating Brain Tumor Heterogeneity with a Multiscale

Agent-Based Model :Linking molecular signatures, phenotypes and expansion rate,” Math.

Comput. Model., vol. 49, no. 1–2, pp. 307–319, 2009.

[24] H. González-Vélez et al., “HealthAgents: Distributed multi-agent brain tumor diagnosis and

prognosis,” Appl. Intell., vol. 30, no. 3, pp. 191–202, 2009.

[25] L. Zhang, Z. Wang, J. A. Sagotsky, and T. S. Deisboeck, “Multiscale agent-based cancer

modeling,” J. Math. Biol., vol. 58, no. 4–5, pp. 545–559, 2009.

[26] L. Zhang et al., “Developing a multiscale , multi-resolution agent- based brain tumor model by

graphics processing units,” Theor. Biol. Med. Model., vol. 8, no. 1, p. 46, 2011.

[27] R. Haroun, F. Boumghar, S. Hassas, L. Hamami, and C. B. University-lyon, “A Massive Multi- A

gent System for Brain MRI Segmentation,” Massively Multi-Agent Syst., vol. 3446, pp. 174–186,

2005.

[28] V. Koutkias and M. C. Jaulent, “A Multiagent System for Integrated Detection of

Pharmacovigilance Signals,” J. Med. Syst., vol. 40, no. 2, p. 37, 2016.

[29] L. Leistritz, K. Schiecke, L. Astolfi, and H. Witte, “Time-Variant Modelling of Brain Processes,”

Proc. IEEE, vol. 104, no. 2, pp. 262–281, 2016.

[30] H. Barrah, “MAS based on a Fast and Robust FCM Algorithm for MR Brain Image

Segmentation,” vol. 7, no. 7, pp. 191–196, 2016.

[31] M. Pennisi, A.-M. Rajput, L. Toldo, and F. Pappalardo, “Agent based modeling of Treg-Teff cross

regulation in relapsing-remitting multiple sclerosis,” BMC Bioinformatics, vol. 14, no. Suppl 16, p.

S9, 2013.

[32] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for AgentOriented

Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3): 285–312,” pp. 285–

312, 2000.

[33] Y. C. H. H. C. Jia, “A COMPARISON OF THREE AGENT-ORIENTED SOFTWARE

DEVELOPMENT METHODOLOGIES : MASE , GAIA , AND TROPOS Yubo Jia , Chengwei

Huang , Hao Cai School of Information and Electronics , Zhejiang Sci-Tech University ,

Hangzhou Zhejiang 310018 , China , software_wei@1,” pp. 106–109, 2009.

[34] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing Multiagent Systems: The Gaia

Methodology,” ACM Trans. Softw. Eng. Methodol., vol. 12, no. 3, pp. 317–370, 2003.

[35] D. C. Silva, R. A. M. Braga, L. P. Reis, and E. Oliveira, “Designing a meta-model for a generic

robotic agent system using Gaia methodology,” Inf. Sci. (Ny)., vol. 195, pp. 190–210, 2012.

[36] D. C. Silva, R. A. M. Braga, L. P. Reis, and E. Oliveira, “A generic model for a robotic agent

system using GAIA methodology: Two distinct implementations,” 2010 IEEE Conf. Robot.

Autom. Mechatronics, RAM 2010, pp. 280–285, 2010.

[37] L. S. Passos, R. J. F. Rossetti, and J. Gabriel, “An Agent Methodology for Processes, the

Environment, and Services,” Adv. Artif. Transp. Syst. Simul., pp. 37–53, 2014.

[38] A. Castro and E. Oliveira, “The rationale behind the development of an airline operations control

centre using Gaia-based methodology,” Int. J. Agent-Oriented Softw. Eng., vol. 2, no. 3, p. 350,

2008.

[39] J. Vilela, R. Ramos, and J. Castro, “Mastem: A mathematics tutoring multi-agent system,” CEUR

Workshop Proc., vol. 1005, 2013.

[40] J. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-driven information systems

engineering: The Tropos project,” Inf. Syst., vol. 27, no. 6, pp. 365–389, 2002.

[41] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented requirements analysis and reasoning

in the Tropos methodology,” Eng. Appl. Artif. Intell., vol. 18, no. 2, pp. 159–171, 2005.

[42] E. S. K. Yu, “Towards modelling and reasoning support for early-phase\nrequirements

engineering,” Proc. ISRE ’97 3rd IEEE Int. Symp. Requir. Eng., pp. 226–235, 1997.

[43] P. Bresciani and A. Perini, “Tropos : An Agent-Oriented Software Development Methodology,”

pp. 203–236, 2004.

[44] S. A. DeLoach, L. Padgham, A. Perini, A. Susi, and J. Thangarajah, “Using three AOSE toolkits to

develop a sample design,” Int. J. Agent-Oriented Softw. Eng., vol. 3, no. 4, pp. 416–476, 2009.

[45] H. K. Dam and M. Winikoff, “Towards a next-generation AOSE methodology,” Sci. Comput.

Program., vol. 78, no. 6, pp. 684–694, 2013.

[46] D. Bertolini, A. Perini, A. Susi, and H. Mouratidis, “The Tropos visual modeling language. A

MOF 1.4 compliant meta-model.,” Second Agentlink Iii Tech. Forum, no. January, 2005.

[47] S. A. Deloach, “Multiagent Systems Engineering: A Methodology and Language for Designing

Agent Systems,” Aois’99, 1999.

[48] S. A. Deloach, E. T. Matson, and Y. Li, “EXPLOITING AGENT ORIENTED SOFTWARE

ENGINEERING IN COOPERATIVE ROBOTICS SEARCH AND RESCUE,” Syst. Eng., vol. 17,

no. 5, pp. 1–19, 2003.

[49] S. DeLoach, “Analysis and Design using MaSE and agentTool,” Proc. 12 Midwest Artif. Intell.

Cogn. Sci. Conf. (MAICS 2001), Miami Univ. Oxford, Ohio, no. Maics, pp. 1–7, 2001.

[50] DELOACH et al., “MULTIAGENT SYSTEM ENGINEERING,” Int. J. Softw. Eng. Knowl. Eng.,

vol. 11, no. 3, pp. 231–258, 2001.

[51] A. K. Pandey and R. Pandey, “Role of Multi Agent System Methodology in,” 2015 2nd Int. Conf.

Comput. Sustain. Glob. Dev., pp. 438–441, 2015.

[52] T. Sanislav, D. Cǎpǎţnǎ, A. Stoian, and I. Stoian, “Multiagent approach for cancer automated

registration,” Control Eng. Appl. Informatics, vol. 12, no. 3, pp. 41–46, 2010.

[53] C. Lin, K. M. Kavi, F. T. Sheldon, K. M. Daley, and R. K. Abercrombie, “A Methodology to

Evaluate Agent Oriented Software Engineering Techniques University of North Texas,” pp. 1–10,

2007.

[54] T. Abdelaziz, M. Elammari, and R. Unland, “A framework for the evaluation of agent-oriented

methodologies,” Innov. 4th Int. Conf. Innov. Inf. Technol. IIT, pp. 491–495, 2008.

[55] G. Grau, C. Cares, and X. Franch, “A Comparative Analysis of i*Agent-Oriented Modelling

Techniques,” 18th Int. Conf. Softw. Eng. Knowl. Eng., pp. 657–663, 2006.

[56] E. Yu and L. M. Cysneiros, “Agent-Oriented Methodologies - Towards a Challenge Exemplar,”

pp. 1–13, 2002.

[57] L. Cernuzzi, G. Rossi, and L. Plata, “On the evaluation of agent oriented modeling methods,”

Proc. Agent Oriented Methodol. Work., pp. 21–30, 2002.

[58] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam, “ASPECS: An agent-oriented

software process for engineering complex systems,” Auton. Agent. Multi. Agent. Syst., vol. 20, no.

2, pp. 260–304, 2010.

[59] E. Garcia, S. Miles, M. Luck, and A. Giret, “Evaluating how agent methodologies support the

specification of the normative environment through the development process,” Auton. Agent.

Multi. Agent. Syst., vol. 29, no. 6, pp. 1041–1060, 2015.

[60] F. Bergenti, Federico and Gleizes, Marie-Pierre and Zambonelli, METHODOLOGIES AND

SOFTWARE ENGINEERING FOR AGENT SYSTEMS. 2009.

[61] M. A. Niazi, “Towards A Novel Unified Framework for Developing Formal, Network and

Validated Agent-Based Simulation Models of Complex Adaptive Systems,” 2017.

[62] M. A. Niazi, “Emergence of a snake-like structure in mobile distributed agents: An exploratory

agent-based modeling approach,” Sci. World J., vol. 2014, 2014.

