
swarmFSTaxis: Borrowing a Swarm
Communication Mechanism from Fireflies and

Slime Mold

Joshua Cherian Varughese1,2, Daniel Moser1, Ronald Thenius1,
Franz Wotawa2, and Thomas Schmickl1

1 Institut für Zoologie, Karl Franzens Universität Graz, Austria
2 Institut für Software Technologie, Technische Universität Graz, Austria

Abstract. One main motivation for studying swarm intelligence comes
from observing the resilience of living systems in nature. Swarm intelli-
gence has provided important inspirations for the engineering of technical
systems. The swarmtaxis algorithm and the FSTaxis algorithm are such
swarm intelligent algorithms that aim to move a group of agents from a
starting point to a predefined goal. The swarmtaxis algorithm bases its
state transition on a voting like mechanism in which the agents count
the number of “pings” they get from their surroundings. In contrast, the
FSTaxis algorithm uses a scroll wave based communication mechanism
inspired by slime mold and fireflies. The scroll wave based communi-
cation is expected to be more resilient than the voting like mechanism
of the swarmtaxis algorithm. In this paper, we borrow the communica-
tion mechanism used in FSTaxis algorithm to improve the swarmtaxis
algorithm. We will also discuss how this modified algorithm performs in
comparison to the parent algorithm.

Keywords: swarm intelligence, bio-inspiration, signaling, taxis

1 Introduction

Nature has been a perpetual source of inspiration in scientific research and en-
gineering. Swarm intelligence is one of the fields that relies heavily on nature as
its main source of inspiration. Task allocation [12], flocking [3], navigation [2],
communication [8] are few examples of the areas swarm intelligence has drawn
inspiration from nature. The FSTaxis algorithm [8] implements a combination of
the communication mechanisms of fireflies and slime mold for gradient ascent of
a group of mobile autonomous agents. In this paper we present an improved algo-
rithm, borrowing from this communication mechanism used by fireflies and slime
mold as well as an existing swarm intelligent algorithm known as swarmtaxis [1].
This paper intends to demonstrate how resilient communication methods such
as that of slime mold and fireflies can substantially improve existing algorithms.

This study is part of project subCULTron [6,7] which aims to develop a swarm
of autonomous underwater robots, which perform measurements and monitoring



of the underwater environment. In contrast to traditional underwater communi-
cation using acoustics, project subCULTron uses a local communication method,
blue-light communications [7], where the robots exchange small packets of mod-
ulated blue-light signals. The range of blue-light communication is around one
meter under water [7]. Considering the cost and complexity of underwater swarm
communication, the swarmtaxis and the FSTaxis algorithms are suitable candi-
dates among other considered algorithms [4,9,2] for swarm navigation. During
our recent study on resilience (which is under review for publication), we estab-
lished that the communication mechanism of both FSTaxis and swarmtaxis al-
gorithm have non-zero resilience to agent-to-agent communication failures while
the FSTaxis algorithm exhibited a significantly higher resilience. In this paper,
we will present a modified version of swarmtaxis algorithm which borrows the
resilient communication behavior of the FSTaxis algorithm. Such a work aims to
make the swarmtaxis algorithm more resilient to agent-to-agent communication
failures.

In the following sections of the paper, we will describe briefly the algorithms
that we draw inspiration from in Section 2. After which in Section 3, we will
describe our approach by which we test our algorithm in simulation and present
the simulation results. Subsequently, discuss the results and briefly compare it
with the original swarmtaxis algorithm in Section 4 before concluding the paper.

2 Algorithms

In this section, we will briefly describe the swarmtaxis algorithm and then define
the modified swarmtaxis algorithm.

2.1 The swarmtaxis Algorithm

In [1], the authors present the algorithm to move a group of robots from a starting
point to a predefined goal. Each agent executing the swarmtaxis algorithm is
required to have the ability to move, communicate with other robots within
a communication range, sense other robots in its immediate surroundings and
also the distance to a nearby robot. Apart from these capabilities, each robot is
equipped with a long range sensor with which the robot perceive the direction
of the goal. In the swarmtaxis scenario, the goal can be occluded from an agent
if another agent positions itself in between the goal and the agent. If an agent
is occluded from the goal, it is said to be “shadowed” and otherwise the agents
are said to be “illuminated”. Each agent broadcasts a single bit ping to its
surroundings and every agent receiving this ping will use a polling mechanism to
add it to the number of pings previously received. We will refer to this mechanism
as a poll based mechanism henceforth. Depending on the pings received, the
agents may assume one of the following states:“forward”, “coherence”, “avoid”
and “random”. By default, all agents are in “forward” state in which the agents
moves forward at a preset velocity. If the number of pings received increases
beyond a preset threshold α, the agents senses that it is at the center of the



swarm and executes a random turn and then transitions back into the “forward”
state. If an agent detects the number of pings it received to be lower than α, then
the agent detects that it is moving away from the swarm. In this case, the agent
transitions into “coherence” state in which it takes a U-turn and transitions back
into the “forward” state. The states of the algorithm explained till now will only
keep the agents together and not produce any net movement towards the goal.
The net movement towards the goal is caused by the “avoid” states. When the
robot detects another robot within its “avoidance radius”, it transitions into the
avoid state in which the agent takes a turn away from the detected neighbor. All
the illuminated robots sets its avoidance radius slightly higher than the shadowed
robots, i.e, avoidillum > avoidshadow. This enables the illuminated agents to
see the shadowed agents before the latter sees the former and move away from
the shadowed agents. Thus, illuminated agents moving away from the shadowed
agents (but towards the goal) and in effect produces a net movement of the
swarm towards the goal.

2.2 The swarmFSTaxis Algorithm

In the swarmFSTaxis algorithm, additional to all capabilities described in Sec-
tion 2.1, each agent is assumed to have internal timers and local directional
communication. The goal can be occluded from an agent similar to the case of
the the swarmtaxis scenario. If an agent is occluded from the goal, it is said to be
“shadowed” and otherwise the agents are said to be “illuminated”. The behavior
of the agents differ depending on whether they are “illuminated” or “shadowed”.
Figures 1 and 2 shows the state machine of the swarmFSTaxis algorithm.

There are two types of behaviors in the swarmFSTaxis algorithm: the “ping”
behavior and the “motion” behavior just as in the case of the FSTaxis algorithm
[8]. The ping behavior describes the agent-to-agent communication during the
execution of the algorithm. In ping behavior, as shown in Figure 1, the agents
may assume three states: “pinging”, “refractory” and “inactive”. Initially, all
agents are set to inactive state. In the inactive state, the agent monitors its
receivers for incoming single bit local communication (pings). In the event of an
incoming ping the agent broadcasts a ping for a certain duration tping. At the end
of a ping, the agent enters the refractory state. During refractory time, trefrac,
the agent is insensitive to all incoming pings. At the end of the refractory time,
the agent transitions back to inactive state. Apart from the above ping behavior,
the “illuminated” agents have internal timers that are constantly counting down.
When the timer counts down to zero, the agent broadcasts a ping. This means
that an “illuminated” agent produces a ping either when the agent receives
another ping or when its internal timer counts down to zero. The difference
between the ping behaviors of shadowed and illuminated agents are illustrated
in Figure 3.

In addition to the ping behavior described above, the agents also have a
“motion” behavior. Unlike the ping behavior, the motion behavior is same for
all agents regardless of whether they are “illuminated” or “shadowed”. There
are two kinds of motion behavior: “general motion behavior” and “avoid motion



behavior” as shown in Figure 2. In “General motion behavior”, an agent at the
event of an incoming ping, moves towards the incoming ping. In case there are
multiple incoming pings, the agent moves towards the mean of the directions of
all incoming pings.

During “avoid motion behavior”, an agent move away from a detected neigh-
bor. As in the case of the swarmtaxis algorithm, the swarmFSTaxis algorithm
also implements dissimilar avoidance radii for “illuminated” and “shadowed”
agents: avoidillum and avoidshadow. The sensor range of the illuminated agents
are set to a higher value which in effect, enables the agents to move away from an
approaching shadowed agent. The pseudo-code for the swarmFSTaxis algorithm
can be found in Algorithm 2.2.

The above explained behavior will result in “scroll waves” like in the case
of slime mold [5] propagating through the swarm. Since the illuminated agents
trigger pings when their internal timer counts down to zero, the waves will
originate at the “illuminated” agents and propagate through the “shadowed”
agents as they relay the pings. The “general motion behavior” ensures that the
swarm stays together with the agents moving towards incoming ping while the
“avoid motion behavior” ensures that the illuminated agents move away from
the shadowed agents and in effect, move towards the goal.

Fig. 1. A state transition diagram of the ping behavior of the swarmFSTaxis algorithm
is shown in the figure. Illuminated and shadowed agents differ in ping behavior in that
the shadowed agents only relay pings while the illuminated agents both produce and
relay pings.

3 Methods and Results

The simulation environment used for testing the algorithms is Netlogo 4.3.1
[10]. In Netlogo, the simulation arena is divided into spatial units known as
“patches” , the simulation time is measured in “ticks”. The sensor radius, sr,
of the agents is measured in coordinate distances measured from the position
of the agent of interest. It is taken to be 2.5 patches since this corresponds to
a reasonable underwater local communication range using blue-light in project



Fig. 2. A state transition diagram of the motion behavior of the swarmFSTaxis algo-
rithm is shown in the figure. Illuminated and shadowed agents have the same motion
behavior triggered by either an incoming ping or a neighbor.

Fig. 3. The ping mechanism of the swarmFSTaxis algorithm is illustrated in the
figure. The “illuminated” agents has a low internal timer value and hence will hijack
the pinging frequency of the system by pinging frequently. The shadowed agents will
keep relaying the pings produced by the illuminated agents.



Algorithm 1 The swarmFSTaxis algorithm
repeat

for all agents do
Ping behavior(tping, trefrac, counter, main counter)
avoid motion behavior(move agent, heading of detected agent)

end for
until forever
procedure Ping behavior(tping, trefrac, counter, main counter)

set main counter ← main counter + 1
if pingmode ! = ”inactive” then

set counter ← counter + 1
end if
if pingmode = ”active” AND counter = tping then

set pingmode← ”refractory”
end if
if pingmode = ”refractory” AND counter = tping + trefrac then

set pingmode← ”inactive”
set counter ← 0

end if
if pingmode = ”inactive” then

if any ping received? then
set state ← active mode
general motion behavior(agentname)
for i← 1, no : ofpingsreceived do

append list l ← heading of incoming ping
end for

end if
end if
if main counter ≥ internal timer value then

if is illuminated? then
set state ← active mode

end if
set main counter ← 0
set counter ← 0
Create empty list, l

end if
end procedure
procedure general motion behavior(move agent)

calculate hmean of list, l
set agent heading ha ← hmean

move agent for distance β
end procedure
procedure avoid motion behavior(move agent, heading of detected agent)

if agents in sensing range? then
set agent heading ha ← oppositetoagentinsensingrange”
move agent for distance β

end if
end procedure



subCULTon [7]. At the beginning of a typical run, the agents are distributed
uniformly around a starting point and then the algorithm is executed. The center
of mass of the swarm is used as a collective position estimate of the swarm. Once
the center of mass of the swarm reaches the goal as shown in Figure 4(b), the
run is terminated. During the entire run, the position of the center of mass of the
swarm is tracked in order to produce a representative trajectory for the motion
of the swarm as a whole in each run. The constants used for simulation are shown
in Table 1.

Table 1. Table showing all constants used in the modified swarmtaxis algorithm.

Constants

tping trefac sr β swarm size avoidillum avoidshadow
Value 1 3 2.5 0.1 21 0.7 0.4
Units ticks ticks p1 p1 - p1 p1

In order to compare the swarmFSTaxis algorithm with the swarmtaxis algo-
rithm, we have performed 100 runs of each each algorithm. To make the runs
comparable, all runs were started from the same point, had the same swarm
size, had the same parameters as shown in Table 1 and had the same goal. Also,
the parameters used such as sensor ranges of illuminated and shadowed agents,
range of directional communication and distance moved during motion behavior
were kept the same for all 100 runs. Since the most intuitive comparison param-
eter is the time taken by each of these algorithms to converge to the goal, we
have recorded and plotted this parameter in Figure 5 for the swarmFSTaxis al-
gorithm and the swarmtaxis algorithm. Later, in Section 4, Figure 5 is discussed
in detail.

4 Discussion and Conclusion

In the swarmtaxis algorithm [1], if an agent detects that it is connected to a
number of agents lesser than the connectivity threshold α, the agent transitions
into the “coherence” state in which it attempts to reconnect to the swarm by
turning towards the swarm and away from the goal. The disadvantage of such
an approach is that it makes the algorithm dependent on the success of commu-
nication of all the agents in the swarm. If a ping from some of the agents fail to
be sent, transmitted or received, the algorithm executes sub-optimal transitions
into the coherence state as it assumes that the swarm connectivity is wither-
ing. Evidently, this slows down the convergence of the swarmtaxis algorithm.
In a later publication [11], the swarmtaxis algorithm was improved and made
more resilient to such failures, however, the state transitions were still based on
a poll based count. In contrast to this approach, the swarmFSTaxis algorithm

1 unit p in Table 1 represents distance unit in Netlogo



(a) (b)

Fig. 4. The starting condition of a typical simulation run of the swarmFSTaxis is
shown in Figure 4(a). Figure 4(b) shows a converged run. The green patch (occluded
by the white circle in Figure 4(a)) shows the starting point, the white circle shows
the center of mass of the swarm and the yellow patch shows the predefined goal. The
white trace in Figure 4(b) shows the trajectory of the center of mass of the swarm. The
yellow agents are the illuminated agents and the blue ones are the shadowed agents.

uses the direction of the incoming ping instead of a poll based count to keep
the swarm coherent. In Figure 5, we see that that out of 100 runs of both algo-
rithms, swarmFSTaxis algorithm is consistently faster than the swarmFSTaxis
algorithm. From Figure 5, the mean of the number of iterations to convergence
for the swarmFSTaxis and the swarmtaxis algorithms are 6597 and 9540 respec-
tively. Therefore, the swarmFSTaxis algorithm has become about 30% faster
than the swarmtaxis algorithm.

In the future, the communication mechanism inspired by slime mold and
fireflies may have the potential to replace poll based counts that are common
in engineered systems. Further research in this direction can ensure that the
full capacity of such a communication mechanism is utilized. Apart from using
merely the direction of incoming pings more statistical measures can also be
developed according to the needs of the task to be accomplished.

Acknowledgments. This work was supported by EU-H2020 Project no.
640967, subCULTron, funded by the European Unions Horizon 2020 research
and innovation programmer under grant agreement No 640967.

References

1. Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a wire-
less connected swarm of mobile robots. In: IEEE Swarm Intelligence Symposium.
pp. 45–52. IEEE Press, Los Alamitos, CA (2007)

2. Hoff, N.R., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot
swarms using only local communication. In: Robotics and Biomimetics (ROBIO),
2010 IEEE International Conference on. pp. 123–130. IEEE (2010)



Fig. 5. The box plot shows the number of iterations each algorithm took to converge
to the goal. The data from 100 runs of each algorithm is shown in the plot.

3. Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end
swarm robots. In: Dorigo, M., Birattari, M., Di Caro, G., Doursat, R., Engelbrecht,
A., Floreano, D., Gambardella, L., Gro, R., Sahin, E., Sayama, H., Sttzle, T. (eds.)
Swarm Intelligence, pp. 424–431. Lecture Notes in Computer Science, Springer
Berlin / Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-15461-4_40

4. Schmickl, T., Crailsheim, K.: Trophallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm. Autonomous Robots 25(1-2), 171–188
(aug 2008), http://link.springer.com/10.1007/s10514-007-9073-4

5. Siegert, F., Weijer, C.J.: Three-dimensional scroll waves organize Dictyostelium
slugs. PNAS 89(14), 6433–6437 (1992)

6. subCULTron: Submarine cultures perform long-term robotic exploration of uncon-
ventional environmental niches (2015), http://www.subcultron.eu/

7. Thenius, R., Moser, D., Cherian Varughese, J., Kernbach, S., Kuksin, I., Kern-
bach, O., Kuksina, E., Mǐskovi, N., Bogdan, S., Petrovi, T., Babi, A., Boyer, F.,
Lebastard, V., Bazeille, S., William Ferrari, G., Donati, E., Pelliccia, R., Romano,
D., Jansen Van Vuuren, G., Stefanini, C., Morgantin, M., Campo, A., Schmickl,
T.: subCULTron -Cultural Development as a Tool in Underwater Robotics Consor-
tium for coordination of research activities concerning the Venice lagoon system.
In: Artificial Life and Intelligent Agents. Springer (2016), in print

8. Varughese, J.C., Thenius, R., Wotawa, F., Schmickl, T.: Fstaxis algorithm: Bio-
inspired emergent gradient taxis. In: Proceedings of the Fifteenth International
Conference on the Synthesis and Simulation of Living Systems. MIT Press (2016)

9. Werger, B.B., Mataric, M.J.: Robotic “food” chains: Externalization of state and
program for minimal-agent foraging. In: Proceedings, From Animals to Animats
4, Fourth International Conference on Simulation of Adaptive Behavior (SAB-96).
pp. 625–634. MIT Press (1996)

10. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University. Evanston, IL (1999), http://ccl.northwestern.
edu/netlogo/

http://dx.doi.org/10.1007/978-3-642-15461-4_40
http://link.springer.com/10.1007/s10514-007-9073-4
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/


11. Winfield, A.F., Nembrini, J.: Emergent swarm morphology control of wireless
networked mobile robots. In: Morphogenetic Engineering, pp. 239–271. Springer
(2012)

12. Zahadat, P., Schmickl, T.: Division of labor in a swarm of autonomous underwater
robots by improved partitioning social inhibition. Adaptive Behavior 24(2), 87–101
(2016)


	swarmFSTaxis: Borrowing a Swarm Communication Mechanism from Fireflies and Slime Mold

