
The impact of individual collaborative activities
on knowledge creation and transmission

Nuha Zamzami1,2 • Andrea Schiffauerova1,3

Received: 18 May 2016 / Published online: 18 March 2017
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Abstract Collaboration is a major factor in the knowledge and innovation creation in

emerging science-driven industries where the technology is rapidly changing and con-

stantly evolving, such as nanotechnology. The objective of this work is to investigate the

role of individual scientists and their collaborations in enhancing the knowledge flows, and

consequently the scientific production. The methodology involves two main phases. First,

the data on all the nanotechnology journal publications in Canada was extracted from the

SCOPUS database to create the co-authorship network, and then employ statistical data

mining techniques to analyze the scientists’ research performance and partnership history.

Also, a questionnaire was sent directly to the researchers selected from our database

seeking the predominant properties that make a scientist sufficiently attractive to be

selected as a research partner. In the second phase, an agent-based model using Netlogo

has been developed to study the network in its dynamic context where several factors could

be controlled. It was found that scientists in centralized positions in such networks have a

considerable positive impact on the knowledge flows, while loyalty and strong connections

within a dense local research group negatively affect the knowledge transmission. Star

scientists appear to play a substitutive role in the network and are selected when the usual

collaborators, i.e., most famous, and trustable partners are scarce or missing.
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Introduction and overview

In today’s rapidly growing technological fields the sources of knowledge are widely dis-

tributed. Solving new rising issues and answering many complex and multidisciplinary

research questions requires higher level of skills and comprehensive knowledge. This leads

to the need for collaborative knowledge sharing whose ability to address more complex

and critical research problems has already been demonstrated in the literature (Sonnenwald

2007). Moreover, a significant increase in research productivity as result of scientific

collaboration has been suggested by several scholars (e.g. Price and Beaver 1966; Zuck-

erman 1967; Glänzel and Winterhager 1992; Landry et al. 1996)

The collaborative activities can be mapped as a complex network, where its nodes

represent the collaborators and their partnerships form the links. In such networks, the

knowledge is created and transmitted by socially connected individuals whose collabora-

tions shape the links of the networks. In this work, it is the individual researchers who are

the network nodes and their co-authorship of journal articles are the partnership linkages

between these nodes, i.e., partners co-creating knowledge through their scientific

collaboration.

The knowledge creation network is a dynamic social network where the behavior of

collaborators is influenced by their interactions with others over an interval of time.

Scholars have analyzed the performance of such networks in the last decades in order to

derive policy implications, and to enhance the institutional and governmental decision-

making in the area of innovation policy. The existing research studies based on the

dynamic social networks approach mainly focused on the firm level analysis, for example

analyzing different categories of firms, such as firm leaders or startups (Nagpaul 2002), or

studying the roles of various institutions such as academic, industry and governmental ones

(Scholz et al. 2010; Triulzi et al. 2011), but much less of the research has been carried out

at individual level (Wang 2013; Tajaddod Alizadeh et al. 2015).

As the overall productivity of the network depends on the performance of its actors, the

quantity and speed of knowledge diffusion is greatly affected by the individual collabo-

rative activities (Pyka et al. 2002). That is, individuals with certain characteristics would

facilitate the network’s productivity while the behavior of others might have more negative

effects on the knowledge creation and transmission within the network. For example, star

scientists, researchers with high impact on innovation and knowledge development

reflected by their considerably higher productivity comparing to their colleagues and

competitors, are important in the process of technology transfer. The importance of star

scientists is not only because of their outstanding scientific knowledge and performance

that contribute significantly to the success of firms (Zucker and Darby 2005) but also

because they actually act as knowledge circulation improvers in the scientific networks

(Schiffauerova and Beaudry 2012). Moreover, gatekeepers, the nodes with highest

betweenness centrality, are the influential individuals who are responsible for the knowl-

edge transfer in the network where they interconnect different individuals or bridge sep-

arate research groups, and help this way in merging various existing ideas (Gould and

Fernandez 1989).

Furthermore, popular researchers, those who are connected to a greater number of

collaborators, are critically important for sharing the knowledge considering their ability to

access a significant amount of fresh and new knowledge and to bring that knowledge to

their colleagues for further collaborative activities which will positively affect the pro-

ductivity (Henderson and Cockburn 1996). Besides, a better performance for scientist can
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be detected in the case of maintaining strong ties with previous partners, i.e. loyal sci-

entists, rather than having several co-authorship relationships with multiple ones (Abbasi

and Altmann 2011). On the other hand, scientists who are much willing to collaborate with

the neighbors of their neighbors, i.e. embedded scientists, are more likely to be deeply

involved in a local network of collaboration (his/her own research group) which will

discourage the knowledge transmission within the network (Breschi and Lissoni 2006).

The presence of star scientists, gatekeepers, loyal scientists or popular scientists seems

to have an impact on the knowledge flows within the network and, consequently, it can be

assumed that they also influence the scientific productivity of the other network actors and

of the network as a whole. This work therefore aims to first analyze and understand the

collaborative knowledge sharing behavior in the real world, and then to simulate the

Canadian nanotechnology knowledge-based network and evaluate its dynamics. Our

concern is to study the impact of specific groups of researchers on the collaborative

behavior of others within the network as well as on the structure, productivity and effi-

ciency of the whole network. We have created the network at individual level based on the

co-authorship relationships between Canadian scientists publishing in the field of nan-

otechnology. The network is then studied in a dynamic context using an agent-based

modeling approach. The contribution of this work is twofold: First; It provides a detailed

examination of the distinguished individual scientists’ roles which invloves the study of

their impact on the productivity, on the network structure and also on the perfromance of

other sceintists in the network. Second; There is also a methodological contribution,

because this work takes a dynamic perspective while basing the whole study on the real

data on the scientists collected by the authors using various methods (such as statistical

analysis, data mining and survey).

The paper is organized as follows. ‘‘Review of the literature’’ section reviews the

literature on the networks of collaborators and their research performance. ‘‘Research

methods’’ section describes the data upon which our analyses are based and presents the

methodology used. ‘‘Results’’ section discusses the analysis performed and reports the

results. ‘‘Discussion and concluding remarks’’ section concludes the findings and proposes

some new research opportunities.

Review of the literature

Scientific performance of individuals

Several studies on collaboration suggested significant increase in research productivity

related to the collaborative activity (e.g. Price and Beaver 1966; Zuckerman 1967; Glänzel

and Winterhager 1992; Landry et al. 1996). Analyzing scientific papers over an interval of

time while considering the percentage of articles written by co-authors showed a positive

relationship between collaboration and higher productivity, which shows that collaborative

knowledge creation played an essential positive role in the scientific performance (Beaver

and Rosen 1979; Allen 1983; Drejer and Vinding 2006; Manley et al. 2009).

Most of the scientific output is typically produced by the top 1% or 2% of scientists

working in a specific area. These most productive scientists are generally called star

scientists. According to Zucker and Darby (1996) the most productive bio-scientists

(‘‘stars’’) have extraordinary value due to the union of still scarce knowledge of the new

research techniques and genius and vision to apply them in novel, valuable ways. Their
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productivity is almost 22 times higher than that of the average GenBank scientist, as they

are the authors of 17.3% of the published articles. Hess and Rothaermel (2011) empirically

tracked the innovative performance of 108 global pharmaceutical firms over three decades

(1974–2003) and found that the top 1% of productive and cited authors; star scientists;

account for almost 40% of all publications.

Various definitions, frameworks and contexts of gatekeepers can be found in the lit-

erature. For example, Keller (1991) points out the role of gatekeepers by introducing the

following characteristics based on an empirical study in U.S. and Mexican organizations:

concentration and proximity of gatekeepers in strong organizations, higher performance

than usual employees (i.e., higher number of patents and publications), and similarity of

action in various industries. According to Sosa and Gero (2005), gatekeeper can be defined

as an opinion leader who manages the process of innovation by controlling the selection,

feedback and assessment of the new ideas. They believe that in societies with strong ties,

only a small group of experts is always playing the gatekeeper role, while in weakly-tied

societies the gatekeeper role is rather distributed among the agents and does not represent a

consistent behavior. Hence, the effective power of gatekeepers, and consequently the

sensitivity of the network to their presence can be determined by its ties and links. Graf

(2011), on the other hand, stresses the fact that gatekeepers are the actors that generate

novelty by drawing on local and external knowledge, and it is the existence of the gate-

keepers which characterizes successful sub-networks.

Some researchers were interested in assessing the strength of the ties, i.e., keeping the

same collaborating partners. For example, Van Segbroeck et al. (2009) studied a dynamic

graph where they could adjust the behavior and the social ties, and observed that the

scientists prefer to keep collaborating with the same partner even in the case when an

alternative is available. The authors however suggested that being committed to limited

social ties could negatively affect the scientific evolution, which corresponds to the results

of Beaudry and Schiffauerova (2011) who found that repeated collaborations with the same

partners negatively affect the quality of the inventions they create. In contrast, the study of

Abbasi and Altmann (2011) showed that maintaining a strong tie with a previous partner

leads to a better performance than having several co-authorship relationships with multiple

ones.

Knowledge-based networks

A number of studies assessed the impact of the individuals’ network positions and their

collaboration patterns on the performance of the researchers within static co-authorship or

co-invention networks. From the more recent studies, for example, Yan and Ding (2009)

examined authors in the co-authorship network in the library and information science field

while focusing on four centrality measures (betweenness centrality, degree centrality,

closeness centrality and eigenvector). They concluded that there was a positive relation

between these centrality measures and the number of citations of the articles. Similarly,

Abbasi et al. (2011) found a positive relation between both eigenvector and degree cen-

tralities and the performance of the scholars in the field of information systems using

citation based performance indicators. Kumar and Jan (2014) later evaluated the impact of

the network variables on performance of researchers in the field of energy fuels in Turkey

and Malaysia. They observed that popularity, position and prestige of the researchers

assessed through the network centrality indicators have a positive impact on their research

performance, where eigenvector was found to be the most influential centrality measure.

More recently, the international knowledge diffusion structure and its evolution have been
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investigated using patent citation networks with the help of measures from social network

analysis (Chen and Guan 2016; Guan and Yan 2016).

The impact of the network measures has been intensively studied in Canada focusing on

nanotechnology (Beaudry and Schiffauerova 2011; Beaudry and Allaoui 2012; Beaudry

and Kananian 2013; Tahmooresnejad et al. 2015), biotechnology (Eslami et al. 2013;

Beaudry and Kananian 2013) or health sciences (Contandriopoulos et al. 2016). These

studies most often found positive relations between the centrality measures and perfor-

mance. For example, (Beaudry and Schiffauerova 2011) have shown that the presence of

star scientists and other central nodes, i.e. the ones with high betweenness centrality, in the

research team has a positive influence on patents quality, while the results for the

betweenness centrality of researchers show its significant positive impact on scientific

performance in terms of the number of publications, article quality or researchers’ h-index

(Abbasi et al. 2012; Beaudry and Allaoui 2012; Tahmooresnejad et al. 2015; Contandri-

opoulos et al. 2016; Guan et al. 2016).

In contrast, Eslami et al. (2013) have found no significant effect of betweenness on the

scientific performance and even a negative influence in their patents model where its effect

on the technological productivity was estimated. The cliquishness, or clustering coefficient,

has also been reported to have an influence on scientific output, although the results vary

considerably. In some studies, cliquish networks are found to augment scientific produc-

tivity and efficiency of scientists (Tahmooresnejad et al. 2015; Guan et al. 2016) or

inventors (Beaudry and Kananian 2013). However, the results of Eslami et al. (2013)

suggest that high level of cliquishness, on one hand, hinders the knowledge productivity in

scientific communities, while on the other hand, it facilitates the efforts of scientists

leading to patenting of their inventions. Moreover, Beaudry and Allaoui (2012) observe

that the relationship between cliquishness and scientific productivity exhibits diminishing

returns, and some level of fragmentation in the immediate surrounding network of a

scientist is hence desirable.

The literature has also discussed the impact of the network connections of the indi-

viduals, especially the importance of being connected to distinguished, central or highly

performing nodes in the network. For example, Moody (2004) suggests that new

researchers tend to get connected to highly reputable authors and with many collaborators.

The results of Abbasi et al. (2012) who investigated how new researchers search for

collaborators confirm this finding. They highlight the importance of betweenness and

degree centrality of an existing researcher in attracting new researchers entering the net-

work. Some studies indicate that researchers who get connected to central or high per-

forming nodes may in fact directly improve their own research productivity (Abbasi et al.

2011; Eslami et al. 2013; Guan et al. 2016). At firms level, the direct ties showed to have

an inverted U-shaped effect on the organization’s exploitative innovation (Guan and Liu

2016). Moreover, it was suggested that getting connected to productive researchers with a

good control over the collaboration network and the flow of information will not only

enhance the scientific performance of the connected researcher (Ebadi and Schiffauerova

2015b), but it can also improve the chances of obtaining higher funding for that researcher

in future (Ebadi and Schiffauerova 2015a). The importance of the researchers’ involvement

in large research teams in order to increase the size of the scientific output or to produce

high quality publications is also highlighted in some works (e.g. Ebadi and Schiffauerova

2015a, 2016). All of this underscores the role of structural network positions and con-

nections in scientific networks.
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Dynamic approach to collaboration networks

Considering that the network of collaborators is a dynamic system where a collection of

interacting entities produces some form of behavior that can be observed over an interval

of time, modeling and simulation are essential tools to gain a deeper understanding of the

system or to provide a root for managerial decision making in order to improve its per-

formance (Bonabeau 2002; Glahn and Ruth 2003). Computer simulation has been pri-

marily recognized as a crucial tool for analyzing complex systems as the most accurate

manner to describe what is actually happening in the real world (Banks 1998; Bonabeau

2002; Hao et al. 2008). There are few studies that tried to understand the structure of the

system and the behavior of the nodes in large-scale networks under a variety of conditions,

as well as, to contribute in predicting the influence of various assumptions and initial

conditions to the current behavior (Axelrod 1997; Pyka et al. 2002; Fujimoto et al. 2003;

Hao et al. 2008).

The use of simulation approach in studying the complex innovation networks has been

started when Gilbert and Troitzsch (1999) developed a simulation platform in The Self-

organizing Innovation Networks (SEIN) project to investigate the structure and dynamics

of technological collaborations using computational experiments. Pyka et al. (2004) later

developed a multi-agent model for Simulating Knowledge Dynamics in Innovation Net-

works (SKIN) containing heterogeneous innovative firms in a complex environment. The

SKIN is modeling the market and the firms’ behavior in exchanging knowledge, cooper-

ating and networking with others in order to improve their innovation performance and

sales. SKIN allows the investigation of different industries where different strategies have

an impact on the firms’ productivity with altering several parameters and describing an

industry’s cooperative behavior. Several experiments have been conducted on SKIN trying

to illustrate the impact of different learning activities and emphasize the significance of

innovation and learning (Pyka et al. 2007).

These simulation experiments were the start that shows the possibility of investigating

the complex relationships between firm and sector success and organizational learning

through carrying out experiments on a model that would be impossible to perform in the

real world. Several simulation attempts to evaluate the performance of the collaborators’

networks have been carried out later for analyzing the network at the firm level, where

different categories of firms or the organization type such as academic, industry and

government relationships are examined (Scholz et al. 2010; Triulzi et al. 2011; Schrempf

et al. 2013 and others).

Nevertheless, there are few recent studies that explored the dynamics of innovation

networks at individual level. Wang (2013) for example, constructed an agent dynamics

agent-based model that simulates and explains the knowledge transfer activities of indi-

viduals. Moreover, Tajaddod Alizadeh et al. (2015) studied the role of the star scientists

and gatekeepers in the innovation network, as well as the impact of loyalty based on the

link age. Both were only initial explorative studies with many real world issues simplified

and with no exactly defined researchers’ roles and with a limited study of the data behind

the researchers’ collaboration.

Given the novelty of this research avenue, several research gaps could be recognized.

Although various simulation attempts have been carried out recently to analyze the per-

formance of the innovation networks at the firm level, the individual level has not been

much explored in the literature yet. There is also a lack of research on the dynamics of

combination of various factors in such networks at individual level, especially with the use
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of real data. In fact, the major novelty of this work stems from the fact that the developed

simulation model is fully based on the real data and on the observed behavior pattern of the

scientists in knowledge-based network, which should make it more realistic than any

existing simulation model.

Research methods

Field of study and data source

This paper presents the results of a dynamic study of Canadian nanotechnology co-au-

thorship network. The main approach is the exploitation of the large amount of information

related to articles, authors and collaboration activities history in the field of nanotech-

nology. Based on the comparison of different digital libraries and online databases,

SCOPUS has been found to be the most reliable and comprehensive source of data in terms

of the diversity of fields, the completeness of authors’ and address information, and number

of articles that can be retrieved. Nanotechnology is very multidisciplinary field, which

covers a wide range of nanotechnology disciplines, materials and systems. Meanwhile,

there is no formal categorization for nanotechnology in the databases of scientific articles.

For these reasons, some sets of specialized keywords have been used by the scholars to

distinguish the nano-related articles (Fitzgibbons and McNiven 2006; Zucker and Darby

2005; Porter et al. 2008).

The used combined collection of keywords (see ‘‘Appendix’’) has been created based on

seven different sources and was then consulted with nanotechnology experts (Moazami

et al. 2015). In order to get benefits from the additional information that Scopus provides,

and to still be able to search the full text of the articles, they develop a new data extraction

methodology which involves a combined use of Google Scholar and Scopus. The main

idea is to use the full text available search in Google Scholar with the help of software

called ‘‘Publish or Perish1’’ and then to search these results in the Scopus database. A total

of 81,727 records contain information about articles published between 1996 and 2011

have been extracted from the database using the automated extraction program.

The present work is based on the nanotechnology database created by Moazami et al.

(2015). Each article in our data set contains one or more of the specialized keywords

related only to nanotechnology and has at least one of the coauthors affiliated to a

Canadian institution. The total number of coauthors is 21,498 including those from outside

Canada who are collaborating with Canadian scientists. Research activities information

about each co-author, such as his/her publications count, co-authorships count and h-index

as in 2012, are then used as inputs for data mining procedure to detect the patterns of

different group of actors’ behavior.

Network representation and structural analysis

In co-authorship network, the knowledge is created and transmitted by socially connected

scientists whose collaborations shape the links of the network. Although there are other

forms of collaborations between scientists taking place for various purposes, our main

focus is on these co-authorship links, because they are the means of the knowledge

transmission in the network. They create a complex net of knowledge-based relationships

1 Publish or Perish is a software program that retrieves and analyzes academic citations.
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and thereby greatly contribute to the production of scientific publications. In such net-

works, each node of the graph represents a researcher and the links between any node i and

node j indicate the collaboration relationships between nodes and represent the co-au-

thorships of researchers on publications.

To visualize the Canadian nanotechnology innovation network and represent the co-

authorship relationships among scientists we have implemented social network analysis

using Pajek software. Social network analysis is a diagnostic method based on graph theory

for studying the mechanisms of communication and collaboration between members in

different groups (Racherla and Hu 2010). The value of analyzing social networks consists

in its ability to assist with understanding of how to share professional and scientific

knowledge efficiently and with evaluating the performance of individuals, groups, or the

entire social network (Abbasi et al. 2010).

The method used is to categorize the scientists into groups characterized by their

position (centrality) in the networks in order to understand the value, importance, and

influence of each group of actors. Betweenness centrality, for example, is an indicator of an

actor’s potential control of communication within the network. The betweenness of a node

x within an undirected graph is computed as follows:

Bx ¼
X

i 6¼j 6¼x

rij xð Þ
rij

where rij represents all the shortest paths from i to j, and rij xð Þ is the number of those paths

that pass through the node x. The highest betweenness centrality suggests the most central

vertices who are expected to be responsible for the knowledge transfer (gatekeepers).

Gatekeepers symbolize those individuals who are bridging the information flows between

two or more geographically separate clusters by making connections between them. Since

there is no exact definition of gatekeepers percentage in the literature, we have assumed

that the top 5% of all scientists in our network with the highest betweenness centrality to

represent the gatekeepers.

Similarly, we used the degree centrality of each vertex (author) as an indicator for their

number of connections, and have considered the top 5% of scientists with the highest degree

centrality as popular scientists who are sought-after collaborators and probably also very well

known in the field of nanotechnology. Degree centrality indicates the number of connections

within the network and thus reflects an actor’s communication activity (Chung and Hossain

2009; Abbasi and Altmann 2011). The degree centrality di of node i is given as:

di ¼
X

j

aij

where aij indicates the existence or none-existence of a link between node i and node j. If

there is any link between node i and node j, aij = 1 and otherwise, aij = 0. The more links

a scientist has to outside sources of knowledge, the more extensive amount of fresh and

new knowledge he/she can access and bring to his/her colleagues for further collaborative

activities. Those researchers who are connected to a greater number of collaborators

(popular scientists) are critically important for sharing the knowledge, which leads to better

scientific performance (Henderson and Cockburn 1996).

Moreover, according to the theory of the ‘Strength of Ties’ introduced by Granovetter

(1973) we defined the strength of a tie (link) between node i and node j (i.e., the number of

co-authorships between two scholars), as the weight of the link wij between those nodes.

Therefore, we indicate the loyalty of a node (researcher) by its weighted degree centrality
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calculated as the average of weights of an actor’s co-authorships (links). The degree

centrality for the weighted graph (weighted degree centrality) d0
i is expressed as follows:

d0
i ¼

P
j

wij

n

where wij represents the weights of the links between node i and node j, and n represents

the number of nodes. In other words, the loyalty of a researcher is represented by dividing

the sum of links’ weights (total number of co-authorships) by the number of co-authors.

Scholars with a strong relationship (frequent co-authorship with the same partner repre-

sented by high weighted degree centrality) are considered as loyal ones (Abbasi and

Altmann 2011). As for the previously defined groups, we have considered the top 5% with

the highest weighted degree as the most loyal scientists among our database.

Furthermore, we suggest that scientists with the highest clustering coefficient are the

most willing collaborators to work within their cluster and thus create more cliques and act

as embedded scientists in our study. The clustering coefficient (CC) of a vertex (node) in a

network graph quantifies how close its neighbors are to being a clique2 (complete graph).

Here, clustering coefficient is defined as the fraction of connections that are realized

between the neighbors of a node i, as follows:

CCi ¼
2ni

ki ki � 1ð Þ

where ni denotes the number of links connecting the ki neighbors of node i. This measure

shows how related each scientist is to his/her neighbors, and the probability that they

become a closed research group. In other words, the clustering coefficient of an actor

indicates how much they are willing to collaborate with the neighbors of their neighbors.

Embedded scientists are characterized by their high clustering coefficient which means that

they are more likely to be deeply involved in a local network of collaboration (their

research group) (Breschi and Lissoni 2006).

Historical data analysis

An extensive analysis of the real world has been conducted in order to understand the

behavior of scientists in real world and to detect a pattern for each group of scientists in our

database in terms of research performance and collaboration activities. This analysis

assisted us to set some assumptions that agents will share regarding their collaboration

behavior for building the conceptual model. Statistical data mining was performed through

exploratory data analysis, extreme value, hypothesis testing and statistical distribution. The

maximum number of potential partners, for example, has been determined referring to the

degree probability analysis of the database. Based on the probability density function, we

have found that the highest likelihood is to have no more than 10 partners. Accordingly, we

have assigned 10 as the maximum allowable candidates that an author will search for,

while each will have an actual partnership with the preferable number the model learned

from the collaboration history. Moreover, giving the change rate in the publications and

patents volume over the study period, the model represents the evolving trend by

increasing the number of starters by a random percentage between 1.34 and 2.54 every

2 Based on the graph theory; a clique in an undirected graph is a subset of its vertices such that every two
vertices in the subset are connected by an edge.
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year, thus the outcome will be increased by a ratio corresponding to reality. Furthermore,

average H-index for the researchers with the highest academic standings and best scientific

performance is greater than or equal 17. In our model, the active agents are usually

gatekeepers, star scientists and those who have H-index value comparable to this result. On

the other hand, as a complementary data collection approach we ran a survey sent to active

researchers identified in our database as having scientific collaborations. The main

objective was to elucidate the personal preferences to be considered while seeking

potential collaborators for conducting a research project. The questions included 18 factors

regarding the potential partner’s affiliation, research attitude, collaboration history and

personal/cultural background.

Within the nanotechnology peer-reviewed papers of authors and coauthors that are

affiliated to Canadian institutions, 1500 researchers were randomly selected to be surveyed.

This sample contains researchers from different provinces, from both firms and universities

while having various research performance. Participants were recruited on a voluntary

basis through email and the response rate for this survey was 20% which was unexpectedly

high. The findings show that the most critical factors to be considered while selecting the

partners are: their academic reputation, their experience in a complementary field, the

resources and funding accessibility, the previous collaboration relation with them and its

strength.

Simulation model building

We have designed and developed a simulation model using NetLogo (v. 5.0.4), a multi-

agent programmable modeling environment (Wilensky 1999). Our model simulates the

knowledge creation and exchange interactions among a set of agents that act in a complex

and changing environment, given some rules and initial conditions. Its agents are the

scientists identified in our database as the ones who have published in nanotechnology at

least once with a Canadian affiliation during our study period. The scientists try to interact

with others who are also seeking partners to conduct collaborative research projects and

publish new articles. Both the behaviors of agents and their software implementations have

been verified and validated (internally and externally) to ensure that the program code

faithfully reflects the behavior of the conceptual model.

There are two phases in each model, namely SETUP and GO. In the SETUP phase, the

initial values for a set of agents’ parameters will be loaded into the model through reading

text files. In the GO phase, the model will assign a random number of nodes that will be

acting as starters who will initiate the partnership process by searching for candidates to

collaborate with. An agent can be involved in more than one collaboration activity at the

same time with a maximum number of partners for each involvement. In the next sections,

the elements and processes of our model are described in further details.

Model’s agents and links

Around 14,000 Canadian scientists in our database, who are also the nodes of the network,

act as the individual agents of our model and are characterized by a set of parameters

reflecting their research performance, scientific collaboration activities and network

properties as in 2012. The initial values for these parameters and information about the

collaborative activities history will be loaded into the model through reading text files

created based on proper SQL queries from our database. The co-authorship relationships

between each two scientists will represent links in our model. Each link has a weight
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reflecting the strength of their collaboration relationships based on how many times they

have coauthored an article together. All scientists who have a prior collaboration with a

researcher will be stored as his/her previous partners agent set. Considering that this is a

two-way relationship, the pair of scientists at both ends of each link will be added to be

referred to while seeking partners for new collaboration. Table 1 presents all model agents’

parameters and their description:

The environment

Within the model, there are two groups of global variables for setting the environment. The

values for the first group of variables will be given using the sliders on the interface and

they determine the percentage of scientists in each group to the whole population. The

default value for each group is 5%, while we will decrease and increase this percentage in

different scenarios for analyzing the effect of this change on the structure and efficiency of

the network. The initially given value for each of the status parameters (i.e. Star?, Gate-

keeper?, etc.) is false, and will be changed to true for a ratio of the scientists with the

highest values for the associated parameters.

The interface of our model has switches used for setting the second group of variables to

represent the existence of each group in the world. All switches are set to ON by default,

which means scientists belonging to all groups exist unless other settings are specified.

When a switch gives a false value, the nodes representing the scientists in the associated

group will die (the node will be removed completely from the world along with the

collaborative links the author entertained). The purpose of using this setting is to examine

the role of each group of scientists by investigating the impact of their absence on both

Table 1 List of model parameters owned by its agents (authors)

Category Parameter Description

Identification and
status

Node-ID The author identification number as in SCOPUS

Firm The category of author’s affiliation as in 2012

Star? True when this author is a star scientists

Gatekeeper? True when this author is a gatekeeper

Popular? True when this author is a popular scientist

Loyal? True when this author is a loyal scientist

Embedded? True when this author is well connected to others in the cluster

Research
performance

Nano-articles Number of the author’s publications which contain
the specialized keywords in nanotechnology

All-articles Number of all articles that the author has in SCOPUS

Citation-count Total number of citations this authors’ articles received

H-index The H-index considering SCOPUS articles published after 1996

Collaboration Max-partners The maximum number of potential partners the author may
search for

Previous-
partners

Agent-set of authors with whom the author has previously
partnered

Network properties Betweenness Betweenness centrality of this node in the network

Degree Degree centrality of this node in the network

wDegree Weighted degree centrality of this node in the network

CC Clustering coefficient of this node in the network
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network structure and productivity. While the model is running, these two settings (the

ratio of each group and whether they exist or not) will be implemented at each model’s

iteration considering the updated agents’ variables from the previous iteration.

The partnerships

An agent in the model may consider partnerships and start seeking potential partners to

collaborate with in order to complement their knowledge and consequently publish a new

article. For each iteration (time unit), a random number of nodes will be acting as starters

who will initiate the partnership process by searching for candidates to collaborate with.

That is, the total number of articles resulting in that iteration depends on the performance

and initial number of starters. In experimenting with the model, starters will follow dif-

ferent strategies for seeking their partners while another starter can select them as well. In

other words, an agent can be involved in more than one collaboration activity at the same

time with a maximum number of partners for each involvement.

Several factors were considered for forming the collaboration ties within the model.

These were determined based on the results of the extensive analysis for the historical data

collected from SCOPUS and the questionnaire as discussed earlier (‘‘Historical data

analysis’’ section). There are three different strategies for seeking potential partners. First,

an agent who has a prior satisfactory collaboration experience with an author will most

likely attract him/her for a new one. This is reflected in the model by the repeated

collaboration function: to find a partner, a starter will seek among previous partners’ agent

set and assign some as candidates. Second, finding a partner who is well known and has a

high academic reputation shows a high importance level for all groups of scientists and

especially for those with minimal level of experience. Star scientists, gatekeepers, and

those with good academic profile (represented by H-index) will be more frequently

selected than others to act as potential partners for new collaborations. That is, author’s

superior productivity gives him/her a higher probability to act as a starter or to be among

the most attractive scientists for a potential new partnership. Lastly, a random search

strategy is used for finding more candidates for new collaboration till the maximum

number of partners is reached.

After finding the candidates, the partnership relationship will be established, where for

some of them it will be based on the preferable number of partners according to past col-

laboration. If this is the first time for a pair of scientists to collaborate a new link will be

created between them and a value of 1 will be given to its strength. Alternatively, if the

collaboration tie between them already exists, its strength will be incremented by 1. We are

assuming that each collaboration activity is resulting in a new publication coauthored by the

involved scientists. Thus, the variable (Nano articles) for each of these agents will be also

increased by 1. Besides, the actual partners will be added to previous partners agent set, if

they are not already there, for a future collaboration that might occur in the next iterations.

The networks

Only agents that have participated in any collaboration activity during this step (iteration)

will be given an age value equal to the step number x. Those agents will form the new

network which its structure and productivity will be examined. For all nodes with

(age = x) we will recalculate the values of variables related to network measurements. In

other words, the idle agents, those who did not publish at this time, will be available for

future collaboration but will not be part of the reconstructed network.
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The NetLogo NW3 extension for network analysis have been integrated with our model

to reanalyze the network constructed in each iteration based on the new collaboration

activities. The degree centrality, betweenness centrality and clustering coefficient for each

node in the new network will be updated as values for the associated variables. After

updating the values, the structure measurements for the whole network will be calculated

by averaging the values of individual participants. Before moving to the next iteration

randomly selected agents who were a part of this network will be completely removed

from the network. This represents the behavior in the real world where some scientists

publish only once and quit the network after.

According to the changes in the performance and centrality of scientists involved in

lately formed network they might have different status and act as new or different member

of the identified groups. That will be verified by implementing the set up world functions at

the beginning of each iteration. That will find the agents with the highest values for the

associated variables and change their status parameters to true and remove the scientists in

specific group if any of the switches is set to OFF.

The flowchart (Fig. 1) below describes the sequence of the process in the developed

model.

Fig. 1 Flowchart of the developed simulation model

3 NW is an extended library that can be integrated with models developed in NetLogo to perform the social
network analysis. More information and the downloadable files are available at: https://github.com/
NetLogo/NW-Extension.
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Experimental scenarios

The nanotechnology scientists are part of the knowledge-based networks, that is, they

appear and grow in the networks naturally. Accordingly, the hypotheses regarding their

number as well as their absence from the network can be validated only through simulated

scenarios and not by real evidences. The parameter variability analysis is implemented by

carrying out several experiments to examine the effect of changing the values of the input

and internal parameters of the model upon the model‘s behavior or output. Various sce-

narios are simulated to study the role of each group of scientists first by removing them

completely from the network and then by increasing or decreasing their ratio to the

population.

Using BehaviorSpace4 we have run the model 10 times for each scenario and the results

reported are the average from these runs. Beside the basic scenario where each group of

interest (i.e., star scientists, gatekeepers, popular scientists, loyal, and embedded scientists)

is present as 5% of the population, several experimental scenarios are carried out using two

values for the switches (true and false) reflecting the existence and absence of each group

respectively. The objective of these scenarios is to examine the role of scientists repre-

senting each group and how their absence will affect both the productivity and structure of

the network, as well as, the collaborative behavior of other scientists used to interconnect

with them. In this set of scenarios, the tested group and their co-authorship relationships

will be completely removed from the network. In other words, in each scenario we have

removed the nodes that act as specific group along with their links (i.e., their collaboration

ties will be removed also, but their partners will remain in the network open for new

partnerships).

The other set of experiments used four different values for each slider reflecting the

increase and decrease of the group’s ratio to the population (2 scenarios each). Since we

work with 5% as default setting, we used 1%, 3%, 7% and 9% as testing values. In each

scenario, we have examined the change of one value only while the rest of the settings

remain the same. For comparing and evaluating the scenarios we were mainly concerned

about the performance and the structure of the whole network.

As for the performance, the total number of publications for the whole network and the

average number of the articles published by each group are used as indicators of the

productivity. On the other hand, we have examined the structure of the network as it plays

the key role in the diffusion of knowledge and production of innovation. The network

structure properties have been calculated by averaging the values of the corresponding

variables for all nodes that the network consists of. Degree centrality, betweenness cen-

trality, clustering coefficient and network density have been calculated and compared in

different scenarios to evaluate the impact of the changed setting.

Results

The role of individual researchers in co-authorship network

In this section, the performance and structure of knowledge-creation networks are

numerically analyzed for five different scenarios where each involves the absence of one of

4 BehaviorSpace is a software tool integrated with NetLogo that allows you to perform experiments with
models.
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the previously introduced groups. The results of each scenario have been always compared

to the basic one that exemplify the real world where all groups are included with a 0.05

ratio to the population. Our findings are based on different sets of analysis which can be

categorized into three main groups; the overall scientific production performance, the

knowledge transmission efficiency and the productivity of each individual group of sci-

entists. The results of each set of analysis are discussed in the following sections:

The overall network productivity

The performance of Canadian nanotechnology network is analyzed in the presence and

absence of each group while considering two indicators: (1) the performance of scientists

(measured by the average number of publications/author), (2) the network productivity

(measured by the average number of publications/year in the network). Figure 2 below

illustrates corresponding results of the average productivity of the scientists in scenarios

where star scientists were excluded, and when gatekeepers were excluded comparing to the

real world scenario (all groups are included).

The figure shows that the average productivity of the network is almost 25% less than its

amount in the absence of star scientists in the network and reduces over time to almost one-

third of the one with gatekeepers’ existence. In addition, the average productivity of

scientists in the network is 1.66 article/author in the first scenario (when all groups are

included), which is considerably higher than the average of 1.26 articles/author in the case

of star scientists’ or gatekeepers’ absence. In fact, the roles of stars and gatekeepers are

complementary, and their existence is critical for the knowledge production in the whole

network. Similar results have been proposed by Abbasi et al. (2012), Tajaddod Alizadeh

et al. (2015) and Guan et al. (2016). While star scientists are extremely productive by

themselves and attract other knowledge and resources, gatekeepers may not necessarily be

Fig. 2 Average number of publications per scientist when star scientists or gatekeepers are excluded
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very productive in terms of publications but they provide other fellow scientists with

significant connections to fresh new knowledge.

On the other hand, popular scientists, as defined in this work, are expected to play a role

in the knowledge sharing and transmission within the network enabled by the fact that they

know large number of collaborators. However, by excluding this group of scientists from

the network we observe inconsiderable difference in the average individual productivity in

the network. The average performance for the scientists in case of popular scientists-

excluded network is 1.58 article/author comparing to 1.66 article/author in their presence

(Fig. 3). That is, although popular scientists are greatly responsible for the knowledge

sharing and involvement of the nodes within the network due their high number of con-

nection, the overall productivity is not much affected by their absence.

Figure 3 shows that the loyalty of scientists, measured by their high weighted degree

centrality, is positively associated with the individual performance of scientists and con-

sequently the overall network performance. That is, the total number of publications per

year (3436 publications/year) is affected by the frequency of repeated collaborations and

drops to 2676 publications/year in the scenario where loyal scientists were excluded.

Therefore, we can state that researchers who have strong ties to co-authors (i.e., repeated

co-authorships, given by high weighted degree centrality) have a better research perfor-

mance than others, which enhances the overall performance of the network. Although

some studies suggested a negative impact of loyalty on the researchers’ performance (Van

Segbroeck et al. 2009) or the organization’s ability to innovate (Guan and Liu 2016), our

analysis supports the findings suggesting that maintaining a strong co-authorship rela-

tionship with same co-author(s) leads to a better individual performance as well as network

efficiency (Abbasi et al. 2012; Tajaddod Alizadeh et al. 2015). In fact, the increasing

number of scientists who already have satisfactory collaboration experiences would

motivate them to renew the partnership and to be involved in new research activities

together. This consequently affects the individuals productivity as well as the overall

network efficiency.

Fig. 3 Average number of publications per scientist when popular or loyal scientists are excluded
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Moreover, both the overall performance of the network and average number of publi-

cations per scientist show that the network scientific productivity slightly improves when

embedded scientists (i.e., those with high clustering coefficient) are excluded. Several

researchers have studied the impact of clustering coefficient in networks and their con-

clusions are not consistent, as both positive and negative effects have been reported. Our

model experiments support the finding that the high clustering coefficient of the co-au-

thorship network limits the knowledge creation and thus affects the research productivity

negatively (for example Fleming et al. 2007; Gilsing et al. 2008; He and Fallah 2009;

Eslami et al. 2013). We can therefore conclude, based on the simulation results, that the

presence of embedded scientists has negative impact on the average productivity per

scientist in the network. Embedded scientists are usually engaged in research activities

within limited closed groups, therefore excluding these scientists from the network results

in a better individual performance by opening new opportunities for the scientists to

collaborate with new partners outside their research group.

The network structure and knowledge transmission efficiency

The structure of the Canadian nanotechnology network has been also analyzed in the

scenarios where each group was excluded from the network and the results were then

compared to the original one (all groups included). In all the scenarios, we have calculated

the average of degree centrality, betweenness centrality, and clustering coefficient (CC) as

well as the network density. Even though the density is related to the size of the network,

and the removal of some nodes (one or more of the defined groups) will lead to a smaller

network size, the change in this measure for both scenarios was found to be relatively

inconsiderable. That is, the proportion of ties in a network is comparable to the total

potential ties in the real world. The network structure properties under the 6 tested sce-

narios are summarized in Table 2.

According to the literature, star scientists in most cases are more likely to repetitively

collaborate with the same scientists (Zucker and Darby 1996), which could consequently

result in a less socialized network context that reduces the transmission of knowledge

among other scientists. The transmission of knowledge within the network seems to be

affected by the absence of the stars as they have been considered the main sources of

knowledge. Gatekeepers, on the other hand, have a significant impact not only on the

productivity of the networks, but also on the improvement of the performance of indi-

viduals connected to them in the network. Their role as controllers of the connections and

resources in the network can even affect the direction of the research (Heikkinen et al.

Table 2 Summary results for the network structure properties in different scenarios

Scenario Avg. betweenness
centrality

Avg. degree
centrality

Avg. clustering
coefficient

Network
density

All groups included 0.0032 6.58 0.47 1.28

Star scientists excluded 0.0027 6.61 0.53 1.20

Gatekeepers excluded 0.0020 6.61 0.67 1.17

Popular scientists excluded 0.0028 5.53 0.51 1.24

Loyal scientists excluded 0.0029 6.66 0.40 1.26

Embedded scientists excluded 0.0040 6.56 0.35 1.31
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2007). Since gatekeepers facilitate the communication in such networks, the scientists with

no direct connection to gatekeepers will have lower chance to be involved in collaboration

activates with others, which may affect the overall network productivity and knowledge

transmission as well.

Due to the centralized positions of the star scientists and gatekeepers, it is expected that

their absence would decrease the degree centralization of the whole network. However, our

results show that in all scenarios, scientists will be engaged in collaborative activities with

an equivalent opportunity to find partners (not necessarily star scientists or gatekeepers).

However, other network properties are slightly affected and changed when we excluded

these groups. The average betweenness centrality, for example, reduces from 0.0032 to

0.0027 when star scientists are not there, and considerably drops from 0.0032 to 0.0020

when gatekeepers were excluded. Hence, given their centralized positions, the overall

centralization of the network will be negatively affected by removing the star scientists.

The change in network centralization will obviously affect the knowledge transmission

among its nodes. The presence of star scientists with high average betweenness centrality

creates opportunities for potentially more flows of knowledge between different network

clusters. Similarly, gatekeepers act as connection points in the network by having shortest

paths running through them. That is, if such centralized position researchers are not present

in the network, others will probably start collaborating more within their own groups

(clusters) (Schiffauerova and Beaudry 2011). Consequently, the cliquishness of the net-

work, represented by the average clustering coefficient, increased when nodes with central

positions were removed. Our results show that the 47% likelihood for two individuals with

a common collaborator to also have partnership together when all groups were included

has increased to almost 53% in case of star scientists’ absence and to over 67% when

gatekeepers are not there. That is, the central position of star scientists and gatekeepers

resulting in higher number of connections (compared to other scientists) will cause that

many scholars in the network would become isolated if their connection to the centralized

ones was lost for any reason.

As expected, the average degree centrality of the network, as an indicator of the average

number of collaborators per node, has decreased from 6.58 to 5.53 in the scenario where

popular scientists were excluded. The fact that the portion of authors with extremely high

degree centrality is very small comparing to our large population makes this relatively

significant change even more considerable. Apparently, the transmission of knowledge in

the network is very much affected by sharing the knowledge between the nodes through

collaboration activities. In addition, a small change has been noticed in the average degree

centrality of 6.66 reflects an insignificantly higher number of connections for each node in

case of excluding the loyal scientists comparing to 6.58 in case of their presence. In a

network without loyal scientists there is a slightly higher possibility of improving the

performance as a result of accessing fresh knowledge through having partnership with new

collaborators.

The average betweenness centrality, however, has been negatively affected by the

absence of both popular and loyal scientists. That is, the average betweenness of the

network representing the real world is 0.0032, but this decreases to 0.0028 after popular

scientists removal and to 0.0029 when loyal scientists where absent. Mathematically, a

network with both higher average degree centrality and higher average betweenness

centrality is more centralized and theoretically supports better flow of knowledge. Thus,

we can conclude that by including the popular scientists in the network (researchers with

high number of collaborators) and loyal scientists (researchers with repeated co-authorship

relationships), the overall centralization of the network slightly improves which make the
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network more cohesive, and may subsequently enhance the knowledge transmission within

the network.

Moreover, repeating the scientific collaboration with same or limited number of co-

authors shows an increase in the average clustering coefficient indicating higher network

cliquishness. This result supports the argument stated by Mat et al. (2009) that loyalty, i.e.,

maintaining strong collaboration ties, causes the structure of collaborative networks to

become embedded. High network clustering (embeddedness) affects the knowledge

transmission within the network negatively; as more clustered groups have many redundant

links bearing the same knowledge and little fresh knowledge flowing to the cluster. We can

thus conclude that having strong collaboration ties with limited number of partners within

the network has negative impact on the network structure and on the transmission of

knowledge.

Furthermore, the absence of embedded scientists would result in lower cliquishness and

improved knowledge transmission performance of the whole network. Since the embedded

scientists are identified in the network by a high clustering coefficient, their removal from

the network must obviously cause the network to become less clustered. The lower average

clustering coefficient of 0.35 suggests a lower probability of two individuals with a

common collaborator to also have partnership together comparing the real-world scenario

whereas this probability is 0.47. Consequently, the researchers will have more chances to

gain external knowledge instead of being limited within a closed research group. A positive

impact of their exclusion on the network structure can be also observed through the

increase in the average betweenness centrality to 0.0040 versus 0.0032 for the network that

includes the embedded scientists. By excluding the embedded scientists from the network,

it becomes more centralized in terms of its betweenness and less clustered, which will

reduce the number of closed research groups within the network and support the knowl-

edge transmission among clusters.

The collaborative behavior and productivity of the groups

The last set of analyses we have conducted was related to the performance of individual

scholars in case of excluding the scientists belonging to a specific group in order to

investigate how other scientists would behave in case of their absence. In fact, it is

expected that there is some overlapping between scholars in the different introduced

groups. Star scientists, for example, usually occupy more central positions in the network

with high number of connections. It is expected that some of these individuals will also be

gatekeepers and popular scientists who have highest degree and betweenness centrality.

Consequently, removing the star scientists from the network will also affect the perfor-

mance of these groups negatively as the average number of articles coauthored by sci-

entists belonging to gatekeepers and popular scientists groups reduces to around 50%

comparing to their average performance when the star scientists are included. Moreover,

our survey results (discussed earlier) suggest that stars, as the scientists with highest

reputation in the field, represent usually more attractive potential collaborators and can be

selected by more than one scientist at the same time which will result in a considerable

increase of the average number of articles coauthored by each scientist in the network. That

is, the absence of star scientists will give similar opportunities for all the scientists to be

selected as partners, and therefore the share of productivity is more evenly distributed

among the scientists.

Besides, our results show a slightly negative impact of excluding the gatekeepers on the

performance of all other groups except for the star scientists. The average research
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productivity for star scientists raised from 25 articles/author to around 28 articles/author

and to almost 29 articles/author when gatekeepers and popular scientists are removed

respectively. That is, when regular collaborators are not present in the network, other

scholars still need to get the access to the knowledge and turn to the most trustable and

well-known ones within their cluster. According to Kollock (1994), there is a relation

between trust and reputation in the formation of cooperative and exchange structures. The

academic reputation of star scientists hence makes them more trustable than other scientists

in the network, which may result in the overemphasis on the trust and in the neglect of

other factors during the selection of potential collaboration partners. Star scientists are

usually not only well connected but they are also attractive partners by themselves. As a

result, they also play the role of a substitute for the missing partners.

Since we assume that the loyal scientists are among the productive researchers, their

removal from the network will leave their former collaboration partners in need for some

active productive researchers to collaborate with. Our results show that star scientists will

again play the role of substitutes and create thus many new fruitful ties, which is reflected

by the great hike in the average performance to around 33 articles/author when loyal

scientists are excluded.

In addition, when reducing the network cliquishness by the removal of the highly

clustered nodes, we observe that our results are in accordance with the findings of some

previous studies mentioned earlier (Fleming et al. 2007; Gilsing et al. 2008; He and Fallah

2009; Eslami et al. 2013) who observed an improved performance of less clustered net-

works. We found a positive impact of the lower degree of cliquishness on the average

research performance of almost all other groups. Excluding scientists with highest clus-

tering coefficient from the network will destroy the network cliques and thus open new

opportunities for the scientists to collaborate with new partners outside their research

group, which leads to a better individual performance (Fig. 4).

Fig. 4 The impact of embedded scientists on the performance of other groups
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Effect of changing the ratio of the researchers’ groups to the population

Seeing that the removal of each group of scientists from the network affects the average

performance so significantly, our next set of scenarios aimed to investigate how the net-

work will be affected by removing only some of them and keeping their various portions.

For each group, we have conducted four different experiments using 1%, 3%, 7% and 9%

as values for group’s ratio to the population and then compared the results to the basic

scenario when each group represented 5% of the population.

Surprisingly, the lower number of star scientists within the scientists’ population in fact

shows a better performance of the network, and with an increasing number of the star

scientists in the network the average productivity decreases. Also, both lower and higher

than 5% ratio of gatekeepers to the population decreases the overall network productivity

(see Table 3). It seems that if the lower number of star scientists existed in the network it

would give the researchers higher chance to be selected over and over again and conse-

quently enhance their individual performance, which would positively contribute toward

improving the overall productivity. According to Zucker and Darby (1996) star scientists

are the most productive researchers in the network and thus this result is rather surprising

as it was expected that having more star scientists in the network will increase the pro-

ductivity of the system.

Besides, we can say that when more scientists establish partnerships through the same

gatekeepers it will result in enhancing the knowledge transmission within the network by

improving its centrality and thus leading to better research performance, which is com-

patible with the findings of Abbasi et al. (2012). Our result can be explained by the network

properties as if there are only very few individuals performing extremely well, the network

becomes much more centralized which improves its overall knowledge transmission

properties, which consequently has a positive impact on its performance. We therefore

suggest that if there is any ‘‘optimal’’ percentage of star scientists and gatekeepers in the

network to achieve the highest possible productivity it would be somewhere around 5%.

However, this issue has never been addressed in the existing literature and further research

is needed.

On the other hand, our experiments showed an increasing efficiency of the network with

more popular or loyal scientists included. The results of the scenarios where we changed

the ratio of these groups to the population present a considerable improvement in the

research performance in correlation with the increase of popular scientists (see Table 3).

Table 3 The average and standard deviation of individuals research performance

Groups The percentage of researchers group to the population

1% 3% 5% 7% 9%

AVG SD AVG SD AVG SD AVG SD AVG SD

Star scientists 1.69 0.27 1.67 0.32 1.66 0.28 1.61 0.23 1.58 0.21

Gatekeepers 1.60 0.32 1.60 0.18 1.66 0.28 1.50 0.26 1.49 0.28

Popular scientists 1.74 0.30 1.61 0.37 1.66 0.28 1.62 0.39 1.77 0.29

Loyal scientists 1.68 0.23 1.61 0.30 1.66 0.28 1.59 0.24 1.71 0.29

Embedded scientists 1.57 0.22 1.74 0.25 1.66 0.28 1.60 0.22 1.63 0.25
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That is, the better connected scientists we have in the network the more cohesive the

network becomes and the more the knowledge transmission is enhanced. This result

supports the finding of a study conducted by Ahuja (2000) regarding the negative impact of

increasing structural holes on innovation in collaboration network. Likewise, the increasing

number of scientists who have already satisfactory collaboration experiences would

motivate them to renew the partnership and involve in new research activities together

(Mat et al. 2009). This consequently affects the individual productivity as well as the

overall network efficiency.

Furthermore, as the efficiency of the network correlates inversely with its cliquishness,

the increasing number of embedded scientists leads to the presence of more clusters (closed

research groups) which is expected to negatively affect the knowledge transmission among

the scientists (Eslami et al. 2013). Table 3 shows the result of different scenarios including

lower and higher values of the percentage of embedded scientists comparing to the default

setting of 5%. The observed finding supports the hypothesis that the lower number of

embedded scientists within the scientists’ population results in a better performance of the

network, and thus increases the average individual productivity.

Discussion and concluding remarks

The aim of the study is to evaluate the knowledge transmission within the Canadian

nanotechnology co-authorship network based on the individual scholars’ behavior. A

comprehensive dataset of nano-related articles has been first analyzed to detect the col-

laborative behavior of scientists in real world and then modeled in a system to be tested

with control of various parameters.

We could characterize and categorize the individual researchers into five groups based

on their research performance and their positions in the network. The introduced groups are

star scientists, gatekeepers, popular scientists, loyal scientists and embedded scientists. The

highest values for number of publications, betweenness centrality, degree centrality,

weighted degree centrality and clustering coefficient have been used as criteria to identify

the scientists belonging to each group respectively.

Our results related to network’s productivity confirm the general evidence of the pos-

itive association between research performance and actors’ position in the network (Abbasi

and Altmann 2011; Abbasi et al. 2012; Eslami et al. 2013; Contandriopoulos et al. 2016).

Our results demonstrated the critical role of the star scientists and gatekeepers in enriching

both the scientific production and knowledge transmission of Canadian nanotechnology

network due to their high individual performance as well as their centralized positions. Star

scientists are also very active partners, and therefore they are attractive for other scientists

to be selected as collaborators, which however reduces the chance for other scientists to

establish partnerships. Gatekeepers are the influential individuals who are responsible for

the dynamics of knowledge transmission in the network, and they are also valuable for

merging different existing ideas that are held by various disconnected or otherwise isolated

research groups.

Nevertheless, there is some literature suggesting that more homogenous power distri-

bution in the network in fact provides more productive environment where the central

structure of the network reduces the overall knowledge spillovers among the scientists,

resulting in less productivity in the upcoming year (Chung and Hossain 2009; Eslami et al.

2013). Hence, this indirectly suggests that too many stars in the system can in fact hinder
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the performance of the whole probably by its impact on other researchers. Our results

support this point as we found that although the complete removal of star scientists from

the network resulted in a poor performance, including a high percentage of them did not

prove to be good for the network performance either as the network becomes more cen-

tralized which affects the productivity negatively. We can say that there is an inverted-U

relationship between network centralization and productivity, where too many or too few

centrally positioned scholars will not lead to the best performance.

We suggest that for each research field some optimum percentage, the value of which is

not very high, seems to exist. We find specific percentage values for each group in our

system. In case of the gatekeepers it is at around 5% when they appear to have most

beneficial effect on the transmission of knowledge in the network. For star scientists,

however, it seems to be at 1% or even less, as even though they have a profound effect on

the publication count themselves, the negative network effects are probably much greater

than their positive individual effect. These numbers will most likely differ in other systems

since the studied effects will have different size in different environments and under

various conditions. Therefore, further research is needed.

We expected that the flow of knowledge within the network would also be affected by

popular and loyal scientists. The high numbers of connections that popular scientists have

provide them with a unique role in increasing the speed of the knowledge sharing and

transmission, enhancing connectivity within the network and decreasing its embeddedness

(Henderson and Cockburn 1996). Consequently, it was surprising to find that the overall

productivity of the network was not affected much by increasing or decreasing the number

of partners involved in each collaboration activity. Loyalty, i.e., maintaining strong col-

laboration ties, has shown to have a considerable impact on the transmission of knowledge.

Although our findings support the previous evidences of the better individual research

performance achieved by the strong collaboration ties (Abbasi et al. 2012; Tajaddod

Alizadeh et al. 2015), the results also suggest that maintaining the collaboration rela-

tionship with the same partners negatively affects the network structure over the time. That

is, repeated collaboration activities would make the network more embedded and conse-

quently worsen the knowledge transmission.

Embedded scientists, i.e., scholars with highest clustering coefficients, provide higher

chance for their collaborators to be involved deeply in closed research groups (Eslami et al.

2013) and also to collaborate less with new partners outside their team. The results show

the negative impacts of embedded scientists by making the network less centralized and

more embedded. With lower average betweenness centrality, and higher average clustering

coefficient the knowledge flow among clusters is slow and the number of closed research

groups within the network increases.

It is interesting that Eslami et al. (2013) argue that even though high degree of

embededness in scientific communities hinders knowledge productivity, they also found

that it in fact facilitates scientific efforts leading to possible applications in industrial

context due to the importance of increased confidence and trust in industrial settings. This

means that the impact of cliquishness in different environments and under various con-

ditions may vary. Furthermore, the effects of cliquishness were in this work studied in

separation from other effects. Small worlds networks, which are the networks which

combine a high degree of clustering (cliquishness) and short network distance (shortest

path length), have been proposed to lead to greater innovative productivity (Schilling and

Phelps 2007) and to higher quality of articles in terms of citations or journal impact factor

(Ebadi and Schiffauerova 2015a).
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It is thus possible that high cliquishness itself does not have positive effects on the

network productivity but if the highly cliquish network has at the same time short path

length the productivity may be positively affected. In this case high level of loyalty and

trust among the partners will still exist but the established research groups collaborating

repetitively will be close to other researchers. The short path length in the network will

enable them to bring fresh knowldge from other communities and research groups. This

still needs further investigation. We were unable to measure path length in the network

because our network is disconnected and we would need to limit our investigation to the

greatest component only.

We have observed a great overlap between scholars in the different defined groups. For

example, the more centrally positioned scholars, e.g., star scientists, have also high number

of connections, thus, the star scientists are also part of gatekeepers and popular scientists

groups which have highest degree and betweenness centrality. We find a negative impact

of the performance of all groups when the star scientists, gatekeepers or popular scientists

are not present in the network. However, star scientists appear to play a substitutive role in

the network, i.e., they are the ones most likely to be selected as potential partners if the

usual collaborators are missing. This role leads to an increasing productivity of the star

scientists group in case that any other group is excluded.

The results of this work could be used by governmental agencies and other institutions

for improving the research and technology polices. We suggest to provide support for star

scientists and gatekeepers, as they are important and they are also complementary.

However, since it was shown that the existence of a few big star scientists and well

connected agents in the network will lead to higher network productivity than if there are

more of the smaller ones, specific granting opportunities should be designed for these

scientists, such as strategic, targeted and high priority funding programs for high caliber

researchers.

Besides, the funding opportunities should involve programs for existing research groups

such as renewal grants in order to support the established research groups within which the

trust and confidence have already been developed. However, we need to be careful here,

because, as discussed previously, these existing groups with constant repetitive collabo-

ration partnerships can get closed upon themselves with limited access to new knowledge

from outside of this community. Therefore, the inflow of new knowledge should be sup-

ported. This could be done through the support of various collaborations between these

funded research groups or through the requirement of new partners in the groups stipulated

by the funding agencies.

Limitations and directions for future research

The contributions of this research were the essential first steps towards studying the per-

formance of knowledge-based networks at the individual level. Many real-world problems

were simplified or ignored due the need for more data or because their solutions were

outside the scope of this research. In this section, the limitations of this study will be

summarized and the opportunities for future research will be outlined accordingly.

First of all, although this work is mainly concerning the nanotechnology sector in

Canada, our developed model is sufficiently flexible to be used for extending the results of

this research into the global level and/or comparing the findings to the ones from other

high-tech industries in Canada. On the other hand, further research could use more
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comprehensive database(s) where more information about the field of expertise, research

interests and funding amount each scientist receives could be collected to improve the

partner‘s selection mechanism in the model and reduce the level of randomness.

Moreover, the analysis of network performance in our simulation model considers only

quantity of the knowledge diffusion and transmission in nanotechnology field, i.e., average

number of publications, while their quality is ignored. Research performance indicators for

individual scientists, such as the H-index, and for the research society, such as the RC-

index and the CC-index, should be included for quality evaluation.

Furthermore, our results suggested that the absence of both star scientists and gate-

keepers negatively affects the network performance, but, at the same time, we observed

that their presence produces negative effects in the network as well. This could be an

interesting issue for the scholarly investigation to determine whether any optimal portion

of this group exists which would allow to achieve the highest efficiency of the network.

Lastly, other types of centralities such as closeness or eigenvector could be taken into

consideration for more extensive network structure analysis. It would be interesting and

more realistic also to consider some details about the scientists’ research career, e.g.,

change in their positions and/or mobility between different firms or organization. These

changes might affect their productivity and open new opportunities for scientific

partnerships.

Appendix: List of nanotechnology keywords (based on Moazami et al.
2015)

Search term Search queries

Nano* terms ‘‘nano assembly’’, ‘‘nano computer’’, ‘‘nano cubic technology’’, ‘‘nano molecular
machine’’, ‘‘nano optic’’, ‘‘nano optical tweezers’’, ‘‘nano warfare’’, ‘‘nanoarray’’,
‘‘nanoassembler’’, ‘‘nanobarcode’’, ‘‘nanobarcodes particle’’, ‘‘nanobioprocess’’,
‘‘nanobot’’, ‘‘nanobotics’’, ‘‘nanobots’’, ‘‘nanobubble’’, ‘‘nanobusiness alliance’’,
‘‘nanobusiness company’’, ‘‘nanocatalysis’’, ‘‘nanoceramic’’, ‘‘nanochemistry’’,
‘‘nanochip’’, ‘‘nanocircle’’, ‘‘nanocluster’’, ‘‘nanocomputer’’, ‘‘nanocone’’,
‘‘nanocontact’’, ‘‘nanocrystal’’, ‘‘nanocrystal antenna’’, ‘‘nanodefense’’,
‘‘nanodentistry’’, ‘‘nanodetect’’, ‘‘nanodevice’’, ‘‘nanodiamond’’, ‘‘nanodisaster’’,
‘‘nanodot’’, ‘‘nanoelectrospray’’, ‘‘nanoengineering’’, ‘‘nanofacture’’, ‘‘nanofacty’’,
‘‘nanofiber’’, ‘‘nanofibre’’, ‘‘nanofiltration’’, ‘‘nanofluidic’’, ‘‘nanofoam’’, ‘‘nanogate’’,
‘‘nanogear’’, ‘‘nanogenomic’’, ‘‘nanoimaging’’, ‘‘nanoimprint lithography’’,
‘‘nanoimprint machine’’, ‘‘nanoimprinting’’, ‘‘nanolabel’’, ‘‘nanolithography’’,
‘‘nanomachine’’, ‘‘nanomagnet’’, ‘‘nanomanipulat’’, ‘‘nanomanipulation’’,
‘‘nanomanufacturing’’, ‘‘nanomaterial’’, ‘‘nanomechanical’’, ‘‘nanomot’’,
‘‘nanoparticles’’,nanowire’’, ‘‘nanope’’, ‘‘nanope’’, ‘‘nanopharmaceutical’’,
‘‘nanophotonic’’, ‘‘nanophysic’’, ‘‘nanoplumbing’’, ‘‘nanoprism’’, ‘‘nano-ring’’,
‘‘nanoscale self assembly’’, ‘‘nanoscale synthesis’’, ‘‘nanoscience’’, ‘‘nanoscopic
scale’’, ‘‘nanoscopic scale’’, ‘‘nanosens’’, ‘‘nanosheet’’, ‘‘nanoshell’’, ‘‘nanosource’’,
‘‘nanostructure’’, ‘‘nanostructured’’, ‘‘nanosurgery’’, ‘‘nanosystem’’, ‘‘nanotechism’’,
‘‘nanotechnology’’, ‘‘nanotube’’, ‘‘nanotube bundle’’, ‘‘nanowalker’’, ‘‘nanowetting’’

Quantum terms ‘‘quantum cascade laser’’, ‘‘quantum coherence’’, ‘‘quantum computation’’, ‘‘quantum
compute’’, ‘‘quantum computer’’, ‘‘quantum 116 computing’’, ‘‘quantum conduct’’,
‘‘quantum conductance’’, ‘‘quantum conductivity’’, ‘‘quantum confine’’, ‘‘quantum
device’’, ‘‘quantum dot’’, ‘‘quantum gate’’, ‘‘quantum information’’, ‘‘quantum
information process’’, ‘‘quantum mirage’’, ‘‘quantum nanophysics’’, ‘‘quantum
nanomechanics’’, ‘‘quantum system’’, ‘‘quantum well’’
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Search term Search queries

Molecular*
terms

‘‘molecular assembler’’, ‘‘molecular machine’’, ‘‘molecular nanogenerat’’, ‘‘molecular
nanotechnology’’, ‘‘molecular robotic’’, ‘‘molecular scale manufacturing’’, ‘‘molecular
systems engineering’’, ‘‘molecular technology’’

Self assembly
terms

‘‘fluidic self assembly’’, ‘‘nanoscale self assembly’’, ‘‘self assembled’’

Atomic terms ‘‘atomic manipulation’’, ‘‘atomic nanostructure’’

Other terms ‘‘biofabrication’’, ‘‘biomedical nanotechnology’’, ‘‘biomimetic synthesis’’,
‘‘biomolecular assembly’’, ‘‘biomolecular nanoscale computing’’, ‘‘biomolecular
nanotechnology’’, ‘‘bionems’’, ‘‘brownian assembly’’, ‘‘buckminsterfullerene’’,
‘‘buckyball’’, ‘‘buckytube’’, ‘‘c60 molecule’’, ‘‘carbon nanotubes’’, ‘‘conductance
quantization’’, ‘‘dna chip’’, ‘‘electron beam lithography’’, ‘‘epitaxial film’’, ‘‘epitaxy’’,
‘‘fat fingers problem’’, ‘‘ganic led’’, ‘‘glyconanotechnology’’, ‘‘grey.goo’’, ‘‘immune
machine’’, ‘‘khaki goo’’, ‘‘laser tweezer’’, ‘‘limited assembler’’, ‘‘military nanotech.’’,
‘‘moletronic’’, ‘‘naneplicat’’, ‘‘nanite’’, ‘‘optical trapping’’, ‘‘protein design’’, ‘‘protein
engineering’’, ‘‘proximal probe’’, ‘‘rotaxane’’, ‘‘single cell manipulation’’, ‘‘spin
coating’’, ‘‘stewart platfm’’, ‘‘sticky fingers problem’’, ‘‘textronic’’, ‘‘universal
assembler’’, ‘‘utility fog’’, ‘‘zettatechnology’’
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