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Preface

Land is a limited resource. It must be treated with utmost responsibility in order to 
minimise unavoidable damage to soils and landscape through urban development as 
well as the numerous environmental problems associated with such damage.

This book is a result of the first International Land Use Symposium (ILUS), 
which was held in Dresden from 11 to 13 November 2015. Organised by the Leibniz 
Institute of Ecological Urban and Regional Development (IOER), the symposium’s 
title was “Trends in Spatial Analysis and Modelling of Settlements and 
Infrastructure”. The book’s structure reflects the four core themes of this sympo-
sium, namely:

• Towards a better understanding of settlements and infrastructure
• Geographic data mining
• Spatial modelling, system dynamics and geosimulation
• Multi-scale representation and analysis

Leading experts from a wide range of institutions have been commissioned by 
the editors to discuss the various topics. In addition to this book a selection of post-
conference full papers was published in the ISPRS International Journal of Geo-
Information. The aim of this special issue was to publish original research or review 
papers in order to stimulate further discussions on recent trends in spatial analysis 
and modelling of built-environment characteristics. All published papers (11/21 
submissions) of the special issue are gathered at http://www.mdpi.com/journal/
ijgi/special_issues/Built-Environment2015.

ILUS brought together leading academics and interested parties for presenta-
tions, discussions and collaborative networking on the issues of settlements and 
infrastructures. Clearly, these involve many fields of expertise in the spatial sci-
ences, information sciences, environmental studies, geography, cartography, 
GIScience, urban planning and architecture. The interdisciplinary nature of the 
symposium encouraged the cross-fertilisation of new ideas from overlapping fields 
of studies with the goal of advancing our understanding of built-up areas. In particu-
lar, participants considered how recent developments in spatial analysis and model-
ling can foster the sustainable management of resources, support planning and 

http://www.mdpi.com/journal/ijgi/special_issues/Built-Environment2015
http://www.mdpi.com/journal/ijgi/special_issues/Built-Environment2015
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regional development, enhance spatial information and knowledge as well as opti-
mise strategies, instruments and tools. An investigation of settlements and infra-
structures throws up many questions: What are likely to be the most relevant 
challenges and research questions in this topic over the coming years? What data 
and analysis strategies do we need? What are the strengths and weaknesses of the 
current frameworks and methods? In what way are developments in theory sup-
ported by the quantitative exploration of spatial and process-related interrelations, 
structures and patterns?

The symposium also included a presentation of current developments and results 
of the so-called Monitoring of Settlement and Open Space Development (www.ioer-
monitor.de). This freely available scientific service run by the IOER provides visual 
illustration, comparison and statistical analysis of almost 80 indicators of land use 
structure at spatial levels ranging from the whole of Germany down to individual 
municipalities and regular grids. One recent innovation has been the development of 
a new smartphone app Land Use Monitor DE which presents high-resolution raster 
maps of local land use to users while also permitting comparison with previous time 
periods.

We are grateful to all authors for the excellent collaboration in the editing pro-
cess. Our particular thanks go to the numerous colleagues at the IOER who have 
assisted us in realising this book.

Dresden, Germany Martin Behnisch
  Gotthard Meinel

Preface

http://www.ioer-monitor.de
http://www.ioer-monitor.de
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Chapter 1   
Reverse Engineering of Land Cover Data: 
Machine Learning for Data Replication 
in the Spatial and Temporal Domains
             

Galen Maclaurin and Stefan Leyk

Abstract Land cover datasets are generally produced from satellite imagery using 
state-of-the-art model-based classification methods while integrating large amounts 
of ancillary data to help improve accuracy levels. The knowledge base encapsulated 
in this process is a resource that could be used to produce new data of similar qual-
ity, more efficiently. A central question is whether this richness of information could 
potentially be extracted from the underlying remote sensing imagery to then clas-
sify an image for a different geographic extent or a different point in time. This 
chapter summarizes the state of research in this field and highlights the most impor-
tant insights derived from recent studies. Regional and national land cover datasets 
exist in many countries and the development of automated, robust methods for spa-
tial extrapolation or temporal extension of such data would benefit the scientific 
community and planning agencies, and advance similar areas of research in the 
methodological and applied domains.

Keywords Land cover classification • Spatial data replication • Machine learning • 
Remote sensing • Information extraction

1.1  Introduction

Land cover data serve an important role in physical and social science research by 
providing a thematic survey of the Earth’s surface at broad scales – from regional to 
global. Integrated with other data sources, such as population, terrain or climate 
information, land cover classifications allow researchers to ask questions and test 
hypotheses over large geographic extents. Such integration facilitates an efficient, 
data-driven process for research on topics ranging from urbanization to soil 

G. Maclaurin (*) • S. Leyk 
Department of Geography, University of Colorado, Boulder, CO, USA
e-mail: galen.maclaurin@colorado.edu; stefan.leyk@colorado.edu
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mapping. National level land cover datasets are generally created from publicly 
available multispectral imagery (e.g., Landsat) using state-of-the-art classification 
methods, and often integrate ancillary data sources to improve accuracy (e.g., ter-
rain models, vegetation surveys, agricultural databases, etc.). Landsat 5 TM and 
Landsat 7 ETM+ imagery has been used widely in land cover mapping efforts due 
to the extensive temporal extent (starting with the Landsat 5 launch in 1984) and the 
relatively high spatial resolution (30  m) compared to other publically available 
image sources. For example, Landsat imagery was used to produce the United 
Kingdom Land Cover Map (LCM) for 1990, 2000 and 2007 (Morton et al. 2011), 
the South African National Land Cover dataset for 1994 and 2000 (Van den Berg 
et al. 2008), and the National Land Cover Database (NLCD) in the U.S. for 1992, 
2001, 2006 and 2011 (Jin et al. 2013). Global land cover datasets, such as GlobCover 
(ESA 2010) or MODIS Global Land Cover (Friedl et al. 2010), are generally pro-
duced at a coarser spatial resolution (250 m or coarser) and land cover classes are 
more generalized to be applicable globally, which makes them less appropriate for 
regional studies.

As can be seen in this short summary, dataset updates in some countries are 
released at 5–10 year intervals (e.g., in the U.S. and the UK), which allow for some 
land cover change monitoring. However, this is not common globally, and many 
countries only have fine resolution (i.e., 30 m) national land cover data for at most 
two points in time (e.g., China and South Africa). Coarse temporal resolution and 
limited temporal extent of existing land cover databases makes characterizing trends 
across time difficult and can inhibit integration with other data sources. This and the 
geographically constrained extent of existing land cover datasets can limit research 
potential, particularly for cross-border studies where data are unavailable or incon-
sistent between regions or countries.

Overall, there is an emerging need for land cover data at fine spatial and temporal 
resolutions for regions where such data are not currently available. For example, 
research addressing urbanization along the U.S.-Mexico border (e.g., Biggs et al. 
2010; Norman et al. 2009) would benefit from improved spatial and temporal cover-
age of land cover data in this region. The North American Land Cover dataset – cov-
ering Mexico, the U.S. and Canada – was created at 250 m resolution and is available 
for two points in time (Latifovic et al. 2010). The National Land Cover Database 
(NLCD) is available for four points in time at 30 m resolution, but only covers the 
contiguous U.S. (Jin et al. 2013). Such datasets demonstrate that extensive efforts 
have been made to create land cover data at various spatial scales and resolutions 
and for multiple points in time. Given that such regional and national scale land 
cover datasets are expensive to produce and can take a number of years to complete, 
the scientific community would benefit from more efficient methods for fulfilling 
land cover data requirements.

Significant progress has been made in the fields of image classification and infor-
mation extraction for replicating existing land cover data products in the spatial and 
temporal domains. This chapter summarizes recent efforts in land cover data repli-
cation using machine learning frameworks and outlines the state-of-the-art in the 
field.

G. Maclaurin and S. Leyk
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1.2  State-of-Research: Machine Learning for Land Cover 
Data Replication

With the increasing availability of large-volume geospatial data, machine learning 
techniques have gained importance in developing efficient and robust analytical 
procedures to process these data volumes and to generate new knowledge. For 
example, information extraction from remote sensing data to create land cover or 
land use classifications supports novel research across a broad range of disciplines 
and has become increasingly important for many interdisciplinary efforts across the 
social and environmental sciences. Since numerous high quality land cover data-
bases already exist, a logical question is whether these existing products could be 
used effectively to increase the coverage of land cover information. This avenue of 
inquiry requires new methodological approaches that enable successful data repli-
cation. This section reflects on these fundamental challenges and summarizes the 
state of the research in this growing field. Insights into the concept of land cover 
data replication using existing spatial data is presented, while shedding light on the 
nature of integrated spatial data products and how they are created to establish valu-
able knowledge bases. One of the most significant problems in land cover data rep-
lication is dataset shift, which is formally defined and discussed within the context 
of remote sensing image classification. Finally, this section reviews two promising 
machine learning algorithms demonstrated for information extraction: Supported 
Vector Machines and Maximum Entropy Classifiers.

1.2.1  Data Replication: Information Extraction from Remote 
Sensing Imagery Using Existing Spatial Data Products

Research on information extraction in the field of remote sensing has developed 
various models for interpreting radiation data from airborne or satellite sensors for 
purposes of classification, temporal change detection, or measuring physical char-
acteristics such as elevation or temperature (Verstraete et al. 1996). In other fields, 
such as in natural language processing (NLP) or knowledge discovery in databases 
(KDD), information extraction approaches are used to process and analyze existing 
digital data products (e.g., text documents or database records) in order to discover 
patterns and derive semantic meaning from the data that can be applied for other 
documents (Fayyad et al. 1996). These two approaches towards information extrac-
tion take different, yet interrelated, perspectives: The former produces thematic 
information from raw data (e.g. imagery), while the latter examines existing data 
products in databases (e.g., published documents) to produce generalizable models 
for future data characterization. A fusion of these two approaches in the form of data 
replication has demonstrated potential in remote sensing and GIScience research for 
extracting information from imagery guided by existing spatial data (Guo and 
Mennis 2009; Miller and Han 2009). Specific examples include spatial 

1 Reverse Engineering of Land Cover Data: Machine Learning for Data Replication…



6

extrapolation of models of ecological processes using satellite imagery as input to 
other study areas (Miller et al. 2004) and regional models of productivity of soil 
landscapes derived from Landsat imagery based on and guided by local soil maps 
(Grinand et al. 2008).

When spatial data layers are created (through measurement or modeling) infor-
mation is encapsulated in the final data product about processes and properties of 
the geographic extent they represent. Reality is abstracted to produce thematic lay-
ers (e.g., land cover, soil types) and measurements are summarized spatially to rep-
resent phenomena and processes (e.g., temperature gradients, terrain). The wealth 
of information encapsulated in such spatial data layers, which often remains under-
used, represents an important knowledge base and if accessed and integrated appro-
priately, has great potential to improve information extraction from raw data sources 
such as remote sensing imagery. The creation of land cover data based on classify-
ing remote sensing imagery generally integrates large amounts of ancillary data 
sources (e.g., terrain derivatives, agricultural data, and vegetation surveys) to 
improve accuracy of land cover classes that are particularly difficult to classify from 
imagery alone, such as wetland or agriculture. The knowledge base encapsulated 
through the model-based integration of satellite imagery and ancillary data is a valu-
able resource that could be extracted and used to replicate the land cover classifica-
tion efficiently and in an automated manner. From a practical perspective, one 
central question to be addressed is whether this richness of information could poten-
tially be extracted from the underlying remote sensing imagery alone to then clas-
sify an image for a different geographic extent or a different point in time (Fig. 1.1). 
The global extent and broad temporal coverage of satellite imagery allow for wide- 
ranging potential application.

1.2.2  Spatial Data Integration to Create Geographic 
Knowledge Bases

Effective data integration is an ongoing challenge where multiple disparate data 
sources must be combined to provide a unified view of the data (Lenzerini 2002) 
and potentially create new data products. In the spatial sciences, data integration has 
played an important role in integrating GIScience and remote sensing research to 
improve information extraction (Congalton 1991; Harris and Ventura 1995), par-
ticularly for work on land cover classification and change detection (e.g., Liu et al. 
2003; Stefanov et al. 2001). Here, the integration process is usually implicit and 
subject to the inclusion of additional ancillary data in the classification process in 
order to improve extraction results from raw image data. For example, multi-sensor 
(e.g., Landsat imagery and aerial photography) and multi-source (e.g., multispectral 
imagery and long-term climate observations) data integration has resulted in the 
improvement of land cover classifications (Geneletti and Gorte 2003; Liu et  al. 
2003), estimates of tree cover density (Huang et al. 2001), and land cover change 

G. Maclaurin and S. Leyk
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observations (Petit and Lambin 2001). The production of broad scale land cover 
datasets (e.g., the NLCD in the U.S. and the CORINE dataset in Europe) using 
model-based classification approaches has benefitted from the integration of large 
amounts of ancillary spatial data. For example, in order to create the NLCD several 
disparate spatial data layers were integrated including forest inventory data, terrain 
data, and agricultural surveys with Landsat imagery to improve accuracy levels 
(Homer et al. 2007). The CORINE dataset used topographic maps and orthophotos 
to improve the classification of Landsat-derived Image 2000 data (Büttner and 
Kosztra 2007). Integration of satellite imagery with field-based data for predictive 
modeling is well established in ecology (Kerr and Ostrovsky 2003), and is fre-
quently used for spatial extrapolation of known information (e.g., data from previ-
ous studies or knowledge of a process) to expand the geographic extent to areas 
where field-based data are limited or nonexistent (Miller et al. 2004). Similar work 
in other fields has extrapolated soil properties from local to regional scales using 
predictive models and existing ancillary spatial data (Lemercier et al. 2012) and also 
by integrating satellite imagery (Grinand et al. 2008). While these data integration 
efforts often create valuable new data, the methodological challenges of integration 
with regard to spatial resolution, temporal offsets and ambiguity in thematic classes 
are complex and represent a research field in and of itself (e.g., Cruz and Xiao 2008; 
Hasani et al. 2015). Overall this body of research has shown the benefits of data 
integration methods for information extraction in the spatial sciences. The higher 
complexity of data provides additional opportunities for integrating information and 
constructing valuable knowledge bases. However, little attention has been paid to 
the use of this encapsulated information in the development of formal methods for 
spatial and temporal replication using remote sensing imagery. The knowledge base 
encapsulated in existing spatial databases therefore remains an underused resource.

Fig. 1.1 Conceptual process diagram of land cover data replication

1 Reverse Engineering of Land Cover Data: Machine Learning for Data Replication…
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1.2.3  Dataset Shift as a Major Challenge in Sampling 
and Active Machine Learning Solutions

Dataset shift (also referred to as domain adaption) is a classification problem where 
the distributions of the training and test data differ significantly (Quionero-Candela 
et al. 2009), which affects the robustness of the classifier and prevents the develop-
ment of general models applicable to different data. In the machine learning litera-
ture, dataset shift is described as a violation of the assumption made in many 
classification algorithms that the training and test data follow the same distribution 
(Moreno-Torres et al. 2012). Recently, a growing body of research has developed 
remote sensing classification models for spatial extrapolation or temporal extension 
of a given training sample that specifically address the dataset shift problem. 
Working with synthetic experimental data, important theoretical and methodologi-
cal advancements have been made to better understand the impact of dataset shift on 
image classification algorithms. For example, a support vector machine (SVM) 
classifier was applied to Landsat 5 TM imagery and synthetic data to extend a given 
training sample to a different geographic extent (Bruzzone and Marconcini 2010) 
and a different point in time (Bruzzone and Marconcini 2009). These studies 
reported that differences in the distribution of spectral information between the 
training and test data posed a challenge for the classification algorithm because the 
training data were not representative for the test data. Other studies confirmed these 
observations indicating that dataset shift negatively impacts land cover classifica-
tion results when the underlying imagery for the training sample does not follow the 
same distribution as the image to be classified (Tuia et al. 2011). These early studies 
addressed dataset shift by applying an active machine learning framework where 
the classifier iteratively selects an optimal training sample from a pool of training 
data. Active learning has been used extensively in computer vision and natural lan-
guage processing (Settles 2010), and has been successfully applied in remote sens-
ing image classification contexts to address dataset shift (e.g., Tuia et al. 2009).

Extending on early work by Bruzzone and Marconcini (2009, 2010), active 
learning was used in spatial extrapolation experiments to migrate the training sam-
ple iteratively from the training domain to the test domain (Matasci et  al. 2012; 
Persello and Bruzzone 2012). In this iterative procedure, new sample pixels from 
the test domain were selected and then labeled by the user, while sample pixels from 
the training domain were gradually removed. This way the distributional differences 
could be reduced by shifting the distribution of the training sample towards that of 
the test data. This adaptation approach was tested on high-resolution multispectral 
imagery and hyperspectral imagery. Results in both applications yielded improved 
classification accuracy and demonstrated that active learning can effectively address 
and mitigate dataset shift while requiring a small initial training sample. Related 
work has applied similar frameworks in the temporal domain as a potential method 
for updating land cover data (Bahirat et al. 2012; Demir et al. 2013). However, the 
need to label new training pixels from the test domain throughout the procedure is a 
significant drawback regarding automation of the general framework. Ideally, the 

G. Maclaurin and S. Leyk



9

user would not have to intervene in the classification of new training pixels thus 
avoiding the need of expert knowledge.

Building upon this body of literature, Maclaurin and Leyk (2016a, b) proposed a 
methodological framework to address the dataset shift problem for spatial and tem-
poral replication of existing land cover data. These studies addressed dataset shift in 
a different situation where the pool of potential training data was vast (i.e., all pixels 
in the existing land cover dataset), and therefore the focus was to define an optimal 
training sample from the underlying imagery that approximated the distribution of 
the imagery for a different geographic extent or point in time. In the spatial domain, 
a corrective sampling method was developed to match the training and test data 
distributions as closely as possible. Dataset shift was mitigated in the temporal 
domain by applying an orthogonal cross decomposition that jointly transformed the 
training and test images into a maximally correlated space, and thus improved the 
performance of the information extraction procedure. Properly mitigating dataset 
shift allowed for successful replication of the existing land cover data in both 
domains.

1.2.4  Predictive Machine Learning Models for Information 
Extraction

Predictive modeling in the spatial sciences has seen recent interest in machine learn-
ing algorithms. In particular, support vector machines (SVM) (Drake et al. 2006; 
Mountrakis et al. 2011) and maximum entropy (MaxEnt) models (Baldwin 2009; Li 
and Guo 2010) are highlighted in this section because they have been applied 
broadly in land cover replication and classification. Both of these models belong to 
a class of general-purpose statistical approaches for modeling incomplete informa-
tion that are particularly useful when probability based interpretation is desired.

Support vector machines algorithms are non-parametric supervised classifiers 
that define a hyperplane as the optimal boundary between classes in multivariate 
space (Mountrakis et al. 2011). In its simplest form, SVM is an optimization prob-
lem that maximizes the separation between data points from two classes and the 
hyperplane. In most practical applications, data points cannot be completely sepa-
rated and the hyperplane identifies a boundary that optimally classifies the data into 
classes while minimizing misclassification error based on the training data (Huang 
et al. 2002). SVM classifiers have been adapted for multi-class applications to cre-
ate land cover data (e.g., Foody and Mathur 2004), which has broadened their util-
ity. This family of classifiers has been employed extensively in ecological modeling 
(Drake et al. 2006; Pouteau et al. 2012) and in remote sensing image classification 
(Pal and Mather 2005; Mountrakis et al. 2011). Recent research on dataset shift in 
land cover classification (discussed in Sect. 1.2.3) has applied semi-supervised 
SVM techniques to optimize the training sample and thus improve the final classifi-
cation (e.g., Persello and Bruzzone 2012; Tuia et  al. 2011). In classifying 
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 multispectral and hyperspectral remote sensing imagery, SVM methods have shown 
to handle high-dimensional space effectively and perform well across a broad range 
of land cover classification applications (Tuia et al. 2009). However, it has also been 
shown that performance of SVM classifiers is dependent on the quality of the train-
ing data (Foody et al. 2006), and that results can vary significantly depending on the 
input parameters (Li and Guo 2010; Munoz-Mari et al. 2007).

The principle of maximum entropy is that predictions should be based only on 
the information that is known while making no assumptions about what is unknown 
(Jaynes 1957). This means that the model is fit to the training sample while ensuring 
maximum entropy of the estimated distribution (i.e., probabilities are distributed as 
evenly as possible while conforming to the information put forth by the training 
sample). This is done by estimating a probability distribution for class c over the 
finite set X (e.g., the underlying remote sensing data) that adheres to a set of speci-
fied constraints (determined from the training sample) and has maximum entropy, 
i.e., the most uniform distribution (Berger et al. 1996). The constraints in a MaxEnt 
model are implemented as a set of real-valued functions (f1,f2,…,fn) on X. The 
expected values of these functions represent what is known from the training sam-
ple. Multiple distributions could satisfy the constraints, so based on the principle of 
maximum entropy the most uniform one that does so is chosen.

MaxEnt has been applied extensively in spatial contexts to model ecological and 
demographic processes. Phillips et al. (2006) used MaxEnt to model distributions of 
two species of mammals in South America based on spatial data of climate, eleva-
tion and vegetation. Leyk et al. (2013) implemented MaxEnt for dasymetric model-
ing of census microdata for small area estimation. Wei et al. (2011) estimated the 
risk of Hantavirus infection based on a MaxEnt ecological niche model of rodent 
populations in eastern China. The broad application of maximum entropy models in 
geographic research demonstrates its efficacy for extracting information from spa-
tial data in probabilistic solutions. Lin et al. (2014) used a MaxEnt model to classify 
urban land across China by combining multispectral satellite imagery with night-
time lights data. Li and Guo (2010) applied MaxEnt for land cover classification 
from high-resolution aerial imagery, and found it to be more accurate than an SVM 
classifier. Erkan et al. (2010) assessed the efficacy of MaxEnt for image segmenta-
tion and classification using three types of remote sensing data: multispectral, 
hyperspectral and synthetic aperture radar. They concluded that MaxEnt shows 
excellent potential and provides a strong alternative to widely used SVM classifiers. 
Detailed in the following section, Maclaurin and Leyk demonstrated the potential of 
MaxEnt in a data replication framework for spatial extrapolation (2016a) and tem-
poral extension (2016b) of the NLCD using the underlying Landsat 5 TM imagery. 
This body of research shows that MaxEnt is well suited for a wide range of sensor 
types and performs particularly well for land cover classification.
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1.3  Is Land Cover Data Replication Feasible?

Two research studies conducted by the authors developed a land cover data replica-
tion model for spatial extrapolation and temporal extension based on a MaxEnt 
active machine learning framework. The model was applied to an existing land 
cover database – the NLCD – and performed well in extracting class-specific infor-
mation in both cases, even though the NLCD represents an imperfect data product 
(Wickham et al. 2010; Wickham et al. 2013). These experiments present important 
benchmarks showing that typical land cover data products with varying levels of 
accuracy can be replicated successfully. While the MaxEnt classifier appeared to 
accommodate imperfect training data in the active learning framework, it showed 
significant sensitivity to dataset shift. Therefore, separate preprocessing procedures 
for spatial extrapolation and temporal extension were developed to mitigate dataset 
shift. A flowchart of this combined framework is shown in Fig. 1.2. In both studies, 
the model was tested across three study areas to assess performance under different 
landscape conditions.

In the spatial domain, the model extracted NLCD class information using 
Landsat imagery from one geographic extent (i.e., the training area) and then repli-
cated the NLCD from this model for a Landsat 5 TM image covering a different 
geographic extent (i.e., the test area) (Maclaurin and Leyk 2016a). The framework 
is efficient and fully automated, relying solely on the NLCD for the training area 
and Landsat imagery for the training and test areas (Fig. 1.3). The Tasseled Cap 
(TC) transformation was applied on the Landsat images to reduce the dimensional-
ity to three transformed bands, which has been shown to improve separability of 
vegetated classes while capturing most of the variance in the imagery (Homer et al. 
2004).

A major challenge for the model arose from the inherent covariate shift problem 
–a special case of the more general dataset shift as described in Sect. 1.2.3, where 
the conditional distributions are the same between the training and test data, but the 
distributions themselves differed significantly. This problem was mostly attributed 
to different proportions of individual NLCD classes between the training and test 
areas. Other possible causes for observed distributional differences such as illumi-
nation and atmospheric or environmental conditions were expected to be minimal 
since training and test areas were selected from the same Landsat scene. To mini-
mize the effects of covariate shift, a corrective sampling method was implemented 
to optimally sample the training data such that the distribution approximated the test 
distribution as closely as possible (Fig. 1.4), and therefore improved performance 
while increasing the efficiency of the replication algorithm. This spatial extrapola-
tion framework has been shown generalizable, under the assumption that distribu-
tional differences due to illumination and atmospheric or environmental variation in 
the training and test images are minimal. The model achieved similar levels of 
agreement as the original NLCD when compared against high-resolution reference 
datasets (Table 1.1).
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Fig. 1.2 Flow chart of framework for spatial and temporal land cover data replication

Fig. 1.3 Spatial extrapolation of the NLCD

G. Maclaurin and S. Leyk
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The replication model was modified for the temporal domain using bi-temporal 
pairs of Landsat imagery corresponding to two NLCD releases (e.g., 2001 and 
2011) (Maclaurin and Leyk 2016b). The experimental setup was to extract informa-
tion from the Landsat imagery for one NLCD release year (e.g., 2001) and then 
replicate it for a different release year (e.g., 2011) but for the same geographic 
extent, allowing for direct comparison between the replicated classification and the 
updated NLCD release. While the use of surface reflectance corrected Landsat 
image pairs improved bi-temporal extraction from the images, residual differences 
remained; these differences were reduced by a partial least squares (PLS) cross- 
decomposition that produced maximally correlated bands between the images 
(Wegelin 2000). Next, the active learning framework as described above was used 
to collect the optimal training samples and temporally replicate the NLCD. For each 
study area, replicated datasets were compared against the NLCD and the high- 
resolution reference land cover data. The results indicated encouraging replication 
performance for two of the study sites and moderate performance for the third one 
(Table 1.1).

When compared against the high-resolution reference land cover datasets, the 
replication model, in both domains, produced similar levels of overall agreement as 
the NLCD. Whether the levels of individual class agreement for the replicated clas-
sification were surprisingly low or encouragingly high, they were generally very 
similar to those of the NLCD when both were compared against the reference 
 datasets. For example, the wetland class consistently had the lowest levels of agree-
ment with the reference datasets for the replicated classification. Generally, the 
NLCD also showed similarly low levels of agreement with the reference dataset for 
the wetland class. This phenomenon was also observed for classes that performed 

Fig. 1.4 Example of corrective sampling: the distribution of the training data (red) is shown 
before and after covariate shift corrective sampling was applied, and overlain by the test distribu-
tion (in blue with transparency) resulting in overlapping regions in purple. In order to overcome 
significant distributional differences between training and test data (left panel) a subset sample of 
training data was generated by the covariate shift corrective sampling method that matches very 
closely the distributional properties of the test data (right panel)
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very well in both the NLCD and the replicated classification, such as forest or open 
water. Interestingly, the levels of agreements of the replicated classification com-
pared against the NLCD were similar to the levels of each classification compared 
against the reference datasets. The relationship between levels of agreement between 
the three datasets (replicated classification, NLCD and reference dataset) suggests 
that the quality of the knowledge base extracted from the NLCD for a given class is 
dependent on the class’s level of accuracy (Fig. 1.5).

Table 1.1 Overall agreement (OA) between the NLCD, the reference dataset, and the replicated 
classification shown for the spatial extrapolation and temporal extension model results (see 
Maclaurin and Leyk 2016a, b)

Study 
site

Spatial extrapolation Temporal extension
NLCD- 
reference 
(%)

Replicated- 
reference 
(%)

Replicated- 
NLCD (%)

NLCD- 
reference 
(%)

Replicated- 
reference 
(%)

Replicated- 
NLCD (%)

1 77.6 80.2 81.5 77.6 85.8 89.5
2 52.5 55.0 64.1 52.5 51.8 58.5
2 63.7 57.5 56.5 63.7 43.5 47.2

Fig. 1.5 The relationship between the levels of accuracy of the input land cover database (the 
NLCD), the replicated classification and the reference dataset
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1.4  Lessons Learned

This section summarizes the most important lessons learned and addresses the 
remaining limitations based on recent research efforts. We discuss the feasibility of 
the general idea of reverse engineering land cover data for replication purposes in 
the spatial and temporal domains, and comment on the generalizability of existing 
information extraction frameworks. Finally, we address the issue of the imperfect-
ness of existing land cover databases that researchers are trying to replicate. It is the 
hope of the authors that these key aspects will help others to identify further poten-
tial for improvement of existing methods.

1.4.1  Feasibility of Reverse Engineering Frameworks for Land 
Cover Data Replication

Using remote sensing imagery alone, national scale land cover databases such as the 
NLCD in the United States, can be effectively replicated in order to create similar- 
quality data for a different geographic extent or for a different point in time. Thus, 
there is significant potential to extract the knowledge base encapsulated through the 
complex classification procedure that often includes rich ancillary datasets. While 
accuracy levels of large-scale land cover data typically vary regionally and between 
classes (e.g., Wickham et al. 2010, 2013), the recent research studies presented here 
have shown that information for most individual classes can be extracted consis-
tently. When applied to different test data in both the spatial and temporal domains 
these models were able to produce levels of overall and class-specific accuracies 
similar to those of the original data, whether they were exceptionally high or sur-
prisingly low in the case of the NLCD.

While there are still limitations and further need to test existing methods over 
larger geographic scales, the reverse engineering frameworks discussed here dem-
onstrate remarkable progress and the potential to create land cover data at fine reso-
lution for geographic extents and points in time with no or limited coverage. 
Successfully reversing an existing classification procedure with a machine learning 
classifier (e.g., MaxEnt or SVM) using only remote sensing imagery appears to be 
a vital solution to automated replication of land cover data.

1.4.2  Lessons Learned from Spatial Extrapolation

The replication of land cover data for different geographic extents benefits from 
reducing the dimensionality of the imagery (e.g., by using a Tasseled Cap (TC) 
transformation). The main challenge for spatial extrapolation appears to be 
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addressing the covariate shift problem, which could be related to different composi-
tions of land cover classes (i.e., the frequency of occurrence for each class) between 
the training and test areas if these are within the same image scene. Active learning 
frameworks that incorporate corrective sampling steps enable the selection of an 
optimal training sample for the classifier (e.g., MaxEnt) to match the distribution of 
the test area. Such corrections have been demonstrated as an effective way to reduce 
covariate shift resulting in the improvement of the classification result and an 
increased efficiency of the process (Maclaurin and Leyk 2016a, b; Tuia et al. 2011). 
While these experiments are encouraging starting points, further research is needed 
to understand and address covariate shift if the training and test areas are covered by 
different images as this will add differences in illumination and environmental con-
ditions as causes for covariate shift. This will demonstrate how generalizable these 
approaches are at larger geographical scales and under different environmental con-
ditions and compositions of land cover classes.

1.4.3  Lessons Learned for Temporal Extension

Recent experiments showed that existing machine learning frameworks for tempo-
ral land cover data replication have the potential to work backwards and forwards in 
time (Bruzzone and Marconcini 2009; Maclaurin and Leyk 2016b). The main chal-
lenge in temporal replication is spectral and radiometric differences between the 
bi-temporal images, which could be seen as a form of the dataset shift problem. 
Surface reflectance correction models significantly reduce artifacts introduced from 
illumination and viewing geometry of the sensor (Masek et  al. 2006). However, 
often there are still spectral differences present due to environmental, on-the-ground 
variation such as temporal differences in productivity of vegetation, states of agri-
cultural land (e.g., different crop schedules or rotation of fallow land) (Lambin et al. 
2000), and atmospheric noise (such as thin clouds or haze) (Lunetta et al. 2004). 
The application of a partial least squares cross-decomposition to the image pairs has 
been shown as just one way to further reduce these residual differences and improve 
overall replication (Maclaurin and Leyk 2016b). Nevertheless, the presence of these 
unexpected differences can still lead to significant misclassification, and thus require 
further attention before broad, regional scale land cover replication would be 
feasible.

1.4.4  Generalizability of Replication Methods for Different 
Landscape Types and Scales

Landscape heterogeneity and strong overlap between spectral signature of classes 
appear to have some negative impact on the performance of active learning frame-
works for land cover classification (Tuia et al. 2011) and for land cover replication 
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(Maclaurin and Leyk 2016a, b). While the range of landscape types in the studies 
discussed here was rather limited, results indicate some stability and generalizabil-
ity across different landscape types and varied compositions of land cover classes. 
To achieve more confidence, additional confirmatory tests need to be done covering 
larger areas and greater variability in landscape types and compositions.

Smith et al. (2003) demonstrated that overall land cover classification accuracy 
tends to increase as landscape homogeneity and average patch size for individual 
classes increase. Furthermore, examination of scale dependence on accuracy levels 
in land cover data showed that smaller geographic extents generally had lower lev-
els of overall accuracy (Hollister et al. 2004). These two observations suggest that 
the impact of landscape composition and environmental variation on both spatial 
and temporal replication requires further investigation at broader, regional scales.

1.4.5  Imperfect Land Cover Data as Knowledge Bases 
for Information Extraction

In general, higher prevalence classes are expected to perform better as a direct ben-
efit from a larger sampling pool. An interesting phenomenon that will always pose 
a challenge in this research is the dichotomy between the concepts of land cover and 
land use and how this distinction is blurred in the final data products. Land cover 
describes biophysical properties through direct observation and classification (usu-
ally by remote sensing) of the earth’s surface, whereas land use is defined by how 
human activities alter, occupy, and manage the physical environment of the earth’s 
surface (Comber 2008; Theobald 2014). One example of this is the developed open 
space class in the NLCD, which is highly comprised of secondary roads. Theobald 
(2010) removed secondary roads from the NLCD 2001 (using the same Census 
TIGER files applied to initially burn in the roads), and replaced these pixels with the 
dominating neighboring class. He found that this reduced the overall percentage of 
developed land from 5.11 to 2.69% for the conterminous U.S. Two-lane roads in 
rural areas are less than 15 m wide (FHWA 2014), and are thus particularly difficult 
to extract from Landsat imagery. Forest canopy can partially obscure these roads 
from the remote sensor and in non-forested areas roads are usually bordered by 
herbaceous vegetation (i.e., grassland in the NLCD). The open space developed 
class in the NLCD is therefore predominately comprised of highly mixed pixels. 
This can pose serious problems, as a high proportion of sampled pixels for devel-
oped land would spectrally represent different or mixed classes.

Another, slightly different example is wetland. Wetland classes are often defined 
as areas of forest, shrub, or herbaceous vegetation where the soil is periodically 
saturated or covered with water (Homer et al. 2004). Often the data producer relies 
on extensive ancillary data for classifying wetlands (Homer et al. 2004, 2007). Soil 
moisture in vegetated areas is a difficult property to measure with remote sensing 
imagery due to the small portion of the spectral signature actually coming from the 
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soil (Muller and Decamps 2001). Furthermore, if the soil is not highly saturated at 
the time the image is captured, the spectral response will not differ significantly 
from that of other vegetated classes resulting in misclassifications as forest, grass-
land or shrub. Replication of wetland is further impeded by typically low preva-
lence, which limits the potential pool of data to train the classifier and thus lower 
levels of generalizability of the model. This problem is also true for other classes 
with low occurrence such as bare land.

Importantly, the land cover dataset must be taken as-is when it serves as the 
knowledge base for a spatial or temporal replication effort. A well-performing data 
replication approach will recreate each class for a different geographic extent or 
point in time with approximately the same accuracy. It is unlikely that a replication 
framework could produce a significantly improved classification, either in space or 
time, with any consistency. For existing algorithms to be applied as generalizable 
approaches they must be applicable across different landscapes and be stable for 
both spatial and temporal replication.

1.5  Conclusions & Outlook

Research studies to date represent an encouraging perspective for extraction of the 
rich knowledge base encapsulated in existing high-level spatial data using remote 
sensing imagery for both spatial extrapolation and temporal extension. The exten-
sive spatial and temporal coverage of satellite imagery would enable researchers 
and industry to scale up such frameworks once they become fully operational. 
However, studies on real data are only in early phases and future research should 
continue to test existing and novel approaches on different national or regional land 
cover databases. Successful temporal replication has great potential for updating, 
and also for backcasting, existing land cover data. Since updating such databases is 
generally a highly labor-intensive and expensive operation, procedures for produc-
ing updates at higher levels of automation would be highly beneficial and have sig-
nificant policy and funding implications.

Methodologically, solutions for distributional differences between training and 
test data, e.g., the covariate shift problem in remote sensing (e.g., Bruzzone and 
Marconcini 2010; Matasci et  al. 2012) or residual differences between two bi- 
temporal images due to environmental variation, have been a focus in recent studies. 
With increasing use of machine learning algorithms in remote sensing (Pal and 
Mather 2005; Rogan et al. 2008), dataset shift has become a more common and 
recognized problem (Tuia et  al. 2011, Persello and Bruzzone 2012) and future 
research will further develop sampling methods that account for such problems.

Future work in this field should test existing replication frameworks on themati-
cally refined land cover classes which are of greater use in specific application 
domains such as landscape ecology, land use science or urban planning. Such 
improvements in the replication procedure could be gained by using multisensor 
remote sensing imagery and/or multisource data. For example, long wavelength 
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radar has been shown to improve classification of wetland (Rosenqvist et al. 2007), 
and could help improve the extraction of this problematic class. Another natural 
future step in this research will be to synthetically improve the accuracy of the data-
base of interest using existing reference datasets. Training samples collected for the 
extraction can be restricted to pixels that agree with the reference data thus improv-
ing the active learning approach for more effective replication.

Information extraction from remotely sensed imagery for spatial data replication 
is an exciting research frontier that benefits from an ongoing integration of machine 
learning theories and methods in remote sensing and GIScience research. The 
development of theoretical frameworks and formal methods for this avenue of 
research has received little attention, yet shows great potential. Further advance-
ments in the field of automated spatial and temporal replication of existing land 
cover databases would help overcome spatial and temporal limitations of land cover 
data for the scientific community.
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Chapter 2
Geospatial Analysis Requires a Different Way 
of Thinking: The Problem of Spatial 
Heterogeneity
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Abstract Geospatial analysis is very much dominated by a Gaussian way of 
thinking, which assumes that things in the world can be characterized by a well-
defined mean, i.e., things are more or less similar in size. However, this assumption 
is not always valid. In fact, many things in the world lack a well-defined mean, and 
therefore there are far more small things than large ones. This paper attempts to 
argue that geospatial analysis requires a different way of thinking – a Paretian way 
of thinking that underlies skewed distribution such as power laws, Pareto and 
lognormal distributions. I review two properties of spatial dependence and spatial 
heterogeneity, and point out that the notion of spatial heterogeneity in current spa-
tial statistics is only used to characterize local variance of spatial dependence or 
regression. I subsequently argue for a broad perspective on spatial heterogeneity, 
and suggest it be formulated as a scaling law. I further discuss the implications of 
Paretian thinking and the scaling law for better understanding geographic forms and 
processes, in particular while facing massive amounts of social media data. In the 
spirit of Paretian thinking, geospatial analysis should seek to simulate geographic 
events and phenomena from the bottom up rather than correlations as guided by 
Gaussian thinking.
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2.1  Introduction

Geospatial analysis, or spatial statistics in particular, has been dominated by a 
Gaussian way of thinking, which assumes that things are more or less similar in 
size, and can be characterized by a well-behaved mean. Based on this assumption, 
extremes are rare; if extremes do exist, they can be mathematically transformed into 
normal things (e.g., by taking logarithms or square roots). This Gaussian thinking is 
widespread, and has dominated the sciences for a very long time. However, Gaussian 
thinking has been challenged and been accused of misrepresenting our world 
(Mandelbrot and Hudson 2004; Taleb 2007). Indeed, many things in the world are 
not well behaved or lack of a well-behaved mean. This can seen from the extreme 
events such as the September 11 attacks. The extent of devastation of such events 
was enormous and beyond any predictions and estimations. This is the same for 
many geographic features, which exhibit a pretty skewed or heavy-tailed distribu-
tion such as power laws and lognormal distributions. The heavy-tailed distributions 
imply that there are far more small geographic features than large ones, namely 
scaling of geographic space.

A power law distribution is often referred to as scale free, literally meaning a 
lack of average for characterizing the sizes of things (Barabási and Albert 1999). 
The power law distribution has been given different formats for it was discovered by 
different scientists in different disciplines over the past 100 years. Among several 
alternatives, Zipf’s law (1949) and the Pareto distribution (Pareto 1897) are the two 
formats most frequently referred to in the literature. Zipf’s law, with respect to city 
sizes, implies that there are far more small cities than large ones, while the Pareto 
distribution indicates that there are far more poor people than rich people, or equiva-
lently far more ordinary people than extraordinary people. The Pareto distribution 
has been popularized as the 80/20 principle (Koch 1999) or the long tail theory 
(Anderson 2006) in the popular science and business literature. The heavy-tailed 
distribution, including power laws, lognormal and others similar, is what underlies 
the new way of thinking I want to advocate in this paper. The central argument is 
that geospatial analysis requires a new way of thinking radically different from 
Gaussian thinking, and spatial heterogeneity should be formulated as a scaling law 
of geography.

This is an unprecedented time when we face increasing rich geographic data 
sources based not only on the legacy of traditional cartography and remote sensing 
imagery, but also emerging from various social media such as Flickr, Twitter, and 
OpenStreetMap, collectively known as volunteered geographic information 
(Goodchild 2007). Today, one can amass gigabytes of an entire country’s data for 
geospatial analysis and computing, for both data volumes and computing capacity 
have increased dramatically. However, our mindsets, subsequently our analysis 
methods, have been relatively slower to adapt the rapid changes (Mayer-Schonberger 
and Cukier 2013). For example, we tend to sample data rather than take all data for 
geospatial analysis; we tend to transform skewed data into “normal” by taking loga-
rithms for example. The sampling and logarithm transformation have distorted the 
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underlying property of the data before the data can yield insights. The old way of 
thinking, Gaussian thinking, that relies on a well-defined mean to characterize geo-
graphic features, is a major barrier to achieving deep and new insights into geo-
graphic forms and processes.

Many analytical techniques have been developed, in both standard and spatial 
statistics, to address outliers, to measure skewness and autocorrelation, and to test 
significance. However, what I want to argue in this paper is not these techniques per 
se, but something radical in the way of thinking. Gaussian thinking, based on the 
assumption of independent things in a simple, static, and equilibrium world, is 
essentially a typical linear thinking, which implies that small cause small effect, 
large cause large effect, and the whole is equal to the sum of its parts. This linear 
thinking is a simple way of thinking guided by the reductionism philosophy, and for 
understanding a simple world in essence (see Sect. 2.2.2 for more details). The 
reader may argue that spatial statistics differs from standard statistics in spatial 
dependence or spatial autocorrelation. It is indeed true, but the notion of spatial 
dependence or autocorrelation does not help us to go beyond Gaussian thinking 
assumed by standard statistics, for we tend to characterize things by a well-defined 
mean with a limited variance. It is well recognized that geographic forms are fractal 
rather than Euclidean, and geographic processes are nonlinear rather than linear 
(Batty and Longley 1994; Chen 2009). In other words, a geographic system is a 
complex nonlinear world, in which there is the butterfly effect, and the whole is 
greater than the sum of its parts. In this paper, I attempt to argue that the Paretian 
way of thinking, founded on the assumption of interdependent things in a complex, 
dynamic, and nonequilibrium world, is more appropriate for geospatial analysis, 
and for better understanding geographic forms and processes. Geospatial analysis, 
while facing increasing amounts of social media data, should seek to uncover the 
underlying mechanisms through simulations from the bottom up rather than simple 
causality or correlations.

The remainder of this paper is organized as follows. Section 2.2 introduces, in a 
pedagogic manner, two distinct statistic distributions, namely Gaussian- and 
Paretian-like distributions, with a particular focus on the underlying ways of think-
ing. Section 2.3 reviews two unique properties of spatial dependence and spatial 
heterogeneity, and points out that the notion of spatial heterogeneity in current spa-
tial statistics is only used to characterize local variance of spatial dependence. I 
therefore argue, in Sect. 2.4, that spatial heterogeneity should be formulated as a 
scaling law, and suggest some effective ways of detecting and revealing the scaling 
law and pattern for geographic features. I further discuss, in Sect. 2.5, some deep 
implications of Paretian thinking and the scaling law before draw a summary in 
Sect. 2.6.
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2.2  Two Distinct Distributions and the Underlying Ways 
of Thinking

In this section, I first illustrate statistical differences between a homogenous 
Gaussian-like distribution and a heterogeneous Paretian-like distribution (Note the 
‘homogenous’ is relative to the ‘heterogeneous’; see Sect. 2.2.1 for more details), 
using temperature and population of major US cities, and based respectively on 
histograms and rank-size plots. The temperature is the annual average maximum 
during 1981–2010, taken from the site: http://www.prism.oregonstate.edu/products/
matrix.phtml, while the population is according to the 2010 US census. I then elabo-
rate on the underlying ways of thinking or world views associated with the two 
categories of distributions.

2.2.1  Gaussian- Versus Paretian-Like Distributions

If we carefully examine two variables  – temperature and population  – of 720 
major U.S. cities with population greater than 50,000 people, we can see that the 
two variables are very distinct. Although not a normal distribution, the tempera-
ture can be well characterized by its mean 20.6 (Fig. 2.1a). One can estimate a 
city’s temperature fairly accurate and precise based on the mean value, since the 
highest is 31.6, and the lowest is 9.3. In other words, the mean 20.6 is a typical 
temperature for US cities. The distribution that can be characterized by a well-
defined mean is referred to as a Gaussian-like distribution including for example 
the binomial and Poisson distributions. This temperature distribution can be fur-
ther assessed from the detailed statistics as shown in Table 2.1 (the temperature 
column). The range between the highest (31.6) and the lowest (9.3) is not very big 
(22.3), and the ratio of the highest to the lowest is as little as 3.4. The two  measures 
of central tendency – mean and median – are the same. The standard deviation is 

Fig. 2.1 Histograms of (a) the temperature, and (b) the population of U.S. cities (Note: the two 
distinct distributions indicate respectively Gaussian-like and Paretian-like distributions)

B. Jiang

http://www.prism.oregonstate.edu/products/matrix.phtml
http://www.prism.oregonstate.edu/products/matrix.phtml


27

4.9, about one quarter of the range. This statistical picture of the temperature is 
very distinct from that of the city size or population.

The histogram of the population is extremely right skewed (Fig.  2.1b). This 
extreme skewness is reflected in several parameters: a wide range (8,273,676), a 
huge ratio (166), and a large standard deviation (393,004). In such a significantly 
skewed distribution, the mean of 157,467 make little sense for characterizing the 
population. In other words, the mean of 157,467 does not represent a typical size of 
the U.S. cities, since the largest city is as big as 8 millions, while the smallest city is 
as small as 50,000. The right skewed histogram indicates that there are far more 
small cities than large ones in the U.S. No wonder that the two measures of central 
tendency – mean and median – differ from each other significantly; refer to Table 2.1 
(the population column) for more details. The standard statistics, or the histogram 
in particular, is little effective for describing data with a heavy-tailed distribution 
such as city sizes. Instead, power law based statistics, or rank-size plots in particu-
lar, should be adopted for characterizing this kind of data.

Instead of plotting temperature and population on the x-axis (as in the histo-
grams), they are plotted on the y-axis, while the x-axis is the ranking order. This 
way of plotting is called rank-size plot, or rank-size distribution (Zipf 1949). The 
largest city (in terms of population) ranks number one, followed by the second larg-
est, and so on. The same arrangement is made for the temperature; the highest tem-
perature city ranks number one, followed by the second highest, and so on. The two 
distribution lines look very different; the temperature curve drops gradually, and 
then reaches quickly the minimum, while the population curve drops quickly and 
then gradually approaches the minimum (Fig. 2.2). Note that the red parts in the 
figure are those above the averages, called the head, while those below the averages, 
called the tail, are shown in blue. More specifically, 362 cities (approximately 50%) 
are above the average temperature 20.6, while only 146 cities (approximately 20%) 
are above the average city size 157,467. Clearly, a heavy or long tail (80% in the 
tail) exists for the population distribution, but a short tail (50%) for the temperature 
distribution. Generally, a heavy-tailed distribution possesses an inbuilt imbalance 
between the head and the tail (e.g., a 70/30 or 80/20 relationship). This imbalance 
indicates a nonlinear relationship between the head and the tail. Such an inbuilt 

Table 2.1 Statistics about 
temperature and population 
of U.S. cities

Statistics Temperature Population

Minimum 9.3 50,056
Maximum 31.6 8,323,732
Range 22.3 8,273,676
Ratio 3.4 166
Mean 20.6 157,467
Median 20.6 82,115
Mode 14.9 62,820
St. Dev. 4.9 393,004

2 Geospatial Analysis Requires a Different Way of Thinking: The Problem of Spatial…
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imbalance, or nonlinearity, is clearly missing in a Gaussian-like distribution with a 
well-balanced relationship between the head and the tail (e.g., 50/50).

2.2.2  The Underlying Ways of Thinking

The differences between the two distributions lie fundamentally in different ways of 
thinking, or different ways of viewing the world, rather than different techniques 
associated with each distribution. Technically, data with a Paretian-like distribution 
can be easily transformed into a Gaussian-like distribution, e.g., by taking loga-
rithms. Gaussian thinking implies more or less similar things in a simple, static, and 
equilibrium world, while Paretian thinking believes in far more small things than 
large ones in a dynamic, complex, and nonequilibrium world (McKelvey and 
Andriani 2005; see Table 2.2). Standard statistics teaches us that if the probability 
of an event is small, then the event occurs rarely. The event can be considered an 
outlier that is literally distant from the rest of the data. However, in Paretian think-
ing, an event of small probability, or the highly improbable, has a significant impact 
(e.g., the September 11 attacks) and thus be ranked highly.

In Gaussian thinking, the world does not change much, and all changes occur 
around a stable and well-defined mean. Thus, the presumed Gaussian world is static, 

Fig. 2.2 Rank-size plots of (a) the temperature, and (b) the population of the U.S. cities (Note: 
values above and below the averages are respectively in red and blue; clearly, there is a short head 
and a long tail for the population, forming an unbalanced contrast, while the values above and 
below the averages are more or less the same for the temperature)

Table 2.2 Comparison 
between the two ways of 
thinking

Gaussian thinking Paretian thinking

With a mean (or scale) Without a mean (or scale-free)
Static Dynamic
Simple Complex
Equilibrium Non-equilibrium
Linear Nonlinear
Predictable Unpredictable
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simple, linear, and predictable. The Newtonian physics is sufficient to understand 
and deal with the Gaussian world. Why does such a predictable world exist? Such a 
world reflects a lack of interaction and competition among individual agents; every 
agent acts independently without influences upon or affects from others. This 
assumption is fundamental to standard statistics, and of course appropriate for many 
events in the world like human heights. Spatial statistics differentiate it from stan-
dard statistics in spatial dependence, but it does not change fundamentally the 
underlying way of thinking – Gaussain thinking with a well-defined mean for char-
acterizing things. On the other hand, in Paretian thinking, the world is full of sur-
prises, and changes are often dramatic and unexpected. Thus, there is no stable and 
well-defined mean for characterizing the surprises and changes. The presumed 
Paretian world is essentially dynamic, complex, nonlinear, and unpredictable. This 
unpredictable world is founded on the assumption that everything is related to, or 
interdependent with, everything else. This interdependence assumption implies that 
cooperation and competition would eventually lead to unbalanced results character-
ized by a long-tail distribution (c.f. Sect. 2.3 for more discussions).

Nature is awash with phenomena such as trees, rivers, mountains, clouds, coast-
lines, and earthquakes that exhibit power laws or heavy-tailed distributions in gen-
eral (Mandelbrot 1982; Schroeder 1991; Bak 1996). Accordingly, power law has 
been formulated as a fundamental law in various disciplines such as physics, biol-
ogy, economics, computer science, and linguistics. People’s daily activities are also 
governed by power laws (Barabási 2010), indicating bursty behaviors of human 
mobility or activities in general. Power laws are a signature of complex systems that 
are evolved in nonlinear manners, i.e., small causes often have disproptional large 
effects. For instance, the top 10% of the most connected streets account for 90% of 
traffic flows (Jiang 2009). In a 21-block area of Philadelphia, 70% of the marriages 
occurred between people who lived no more than 30% of that distance apart (Zipf 
1949).

The examination of the two ways of thinking suggests that Paretian-like distribu-
tion, or Paretian thinking in general, appears more appropriate for understanding 
geographic forms and processes, for dependence is a key property of spatial statis-
tics (c.f., Sect. 2.3 for more details). In spite of spatial dependence being its key 
property, spatial statistics is still unfortunately very much dominated by Gaussian 
thinking. The very notion of spatial heterogeneity refers to local variance of spatial 
dependence, but from global to local, or from one single correlation coefficient to 
multiple coefficients (c.f., Sect. 2.3 for more details). In the remainder of this paper, 
we review two spatial properties of dependence and heterogeneity, and argue that 
spatial heterogeneity is ubiquitous, and it should be formulated as a scaling law. 
And we further discuss some deep implications of the scaling law and Paretian 
thinking for better understanding of geographic forms and processes in the era of 
big data.
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2.3  Spatial Properties of Dependence and Heterogeneity

It is well known that in contrast to the independence assumption of standard statis-
tics, geographic phenomena or events are not random or independent. Geographic 
events are more likely to occur in some locations than others (spatial heterogeneity), 
and nearby events are more similar than distant events (spatial dependence). Both 
spatial heterogeneity and spatial dependence are referred to as spatial properties, 
indicating respectively that geographic events are related to their locations and to 
their neighboring events. Spatial dependence is widely known or formulated as the 
first law of geography: “Everything is related to everything else, but near things are 
more related than distant things” (Tobler 1970). For example, your housing price is 
likely to be similar (positive correlation) to those of your neighbors. Similarly, the 
elevations of two locations 10 m apart are likely to be more similar than the eleva-
tions of two locations of 100 m apart. Note that “likely” indicates a statistical rather 
than a deterministic property; one can always find exceptions in statistical trends.

Spatial heterogeneity refers to no average location that can characterize the 
Earth’s surface (Anselin 1989; Goodchild 2004). This is indeed true, while for 
example referring to the diversity of landscapes and species (animals and plants) on 
the Earth’s surface (Wu and Li 2006; Bonner 2006). This diversity or heterogeneity 
indicates uneven geographic and statistical distributions involving both landscapes 
and species – that is, a mix of concentrations of multiple species (biological), terrain 
formations (geological), environmental characteristics (such as rainfall, tempera-
ture, and wind) on the one hand, and various concentrations of various types of 
species on the other. A variety of habitats such as different topographies, soil types, 
and climates can accommodate a greater number of species. These are the natural 
environments of the Earth’s surface. Spatial heterogeneity in geography also con-
cerns human-made built environments created by human activities such as industri-
alization and urbanization, and in particular, for example, the diversity of human 
settlements or cities in particular. Given the diversity or spatial heterogeneity of the 
Earth’s surface, homogeneous Gaussian-like distribution is unlikely to be the right 
means to characterize complex geographic features.

Spatial dependence and spatial heterogeneity are properties to spatial data and 
geospatial analysis (Anselin 1989; Griffith 2003), and probably the two most impor-
tant principles of geographic information science (GIScience). Goodchild (2004) 
has been a key advocator for formulating general principles for GIScience. On sev-
eral occasions, he has made insightful remarks on spatial heterogeneity or spatial 
properties in general. His definition of spatial heterogeneity as “no average loca-
tion” is in effect the notion of scale-free used to characterize things that exhibit a 
power law or heavy-tailed distribution (Barabási and Albert 1999). On the other 
hand, he stated, with respect to spatial heterogeneity, that all locations are unique, 
due to which geography might be better considered as an idiographic science, study-
ing the unique properties of places (Goodchild 2004). However, I argue, in contrast 
to Goodchild, that spatial heterogeneity makes geography a nomothetic science. 
This is because spatial heterogeneity itself is a law – the scaling law, implying that 
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there are far more small geographic features than large ones. Spatial heterogeneity 
is a kind of hidden order, which appears disordered on the surface, but possesses a 
deep order beneath. This kind of hidden order can be characterized by a power law 
or a heavy-tailed distribution in general.

Current spatial statistics suffers from what I call ‘spatial heterogeneity paradox’. 
Spatial heterogeneity is defined as no average location, but we tend to use a well- 
defined mean or average to characterize locations. This paradox implies that our 
mindsets are still constrained by Gaussian thinking. The current notion of spatial 
heterogeneity refers to local variance of spatial dependence or regression. This can 
be seen from the development of local spatial statistics and local statistical models 
that initially brought spatial heterogeneity into spatial statistics (Anselin 1989). 
Local spatial statistics concern local variants of spatial autocorrelation or regres-
sion, a measure to spatial dependence, including, for example, the local statistical 
models (Getis and Ord 1992), the LISA techniques (Anselin 1995), and 
geographically- weighted regression (Fotheringham et al. 2002). The shifting per-
spective of spatial autocorrelation from global to local brings new insights into spa-
tial dependence, or the heterogeneity of spatial dependence. However, all these 
techniques and models are essentially based on Gaussian statistics, using a well- 
defined mean with a limited variance. To paraphrase Mandelbrot (Mandelbrot and 
Hudson 2004), spatial heterogeneity refers to ‘wild’ variances, but Gaussian-like 
distribution can only characterize ‘mild’ variances.

Human activities are the major forces behind spatial heterogeneity in the built 
environments. While carrying out activities, human beings (and their interventions) 
must respect the spatial heterogeneity of Nature – that is, harmonize with rather 
than damage the natural environments. Geographic information concerning urban 
and human geography captures essentially spatial variations of the built environ-
ments, which demonstrate ‘wild’ heterogeneity as well. For example, Zipf’s law on 
city sizes (Zipf 1949) mainly concerns such a spatial variation. Thus, I argue, in 
contrast to the conventional view, that dependence, or more precisely interdepen-
dence, is a first-order effect, while heterogeneity is a second-order effect. Let us do 
a thought experiment. Imagine that once upon a time, there were no cities, only 
scattered villages. Over time, large cities gradually emerge through the interactions 
of villages, so do mega cities through the interactions of cities. The interactions 
(competition and cooperation) of villages and cities are actually those of people act-
ing individually and/or collectively. These interactions are what we mean by depen-
dence and interdependence. Eventually, there are far more small cities than large 
ones through for example the mechanism of “the rich get richer.” This observation 
is the same for the wealth distribution among individuals in a country; far more poor 
people than rich people, or far more ordinary people than extraordinary people 
(Epstein and Axtell 1996). The interactions among people and cities reflect the 
interdependence effect in the formation and evolution of cities and city systems, and 
the built environments in general.
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2.4  Spatial Heterogeneity as a Scaling Law

The subtitle of this paper ‘The Problem of Spatial Heterogeneity’ is an homage to 
the classic work ‘The Problem of Spatial Autocorrelation’ (Cliff and Ord 1969), 
which popularized the concept of spatial dependence. Similarly, spatial heterogene-
ity under Gaussian thinking is indeed a problem because the Earth’s surface cannot 
be characterized by a well-defined mean. However, in the Paretian way of thinking, 
spatial heterogeneity is not a problem, but the norm. Spatial heterogeneity should be 
formulated as a scaling law in geography.

2.4.1  Ubiquity of the Scaling Law in Geography

Geographic features are unevenly or abnormally distributed, so the scaling pattern 
of far more small things than large ones is widespread in geography (Pumain 2006). 
The scaling pattern has another name called fractal (Mandelbrot 1982). Fractal- 
related research in geography has concentrated too much on concepts such as fractal 
dimension and self-similarity. In fact, the scaling law is fundamental to all of these 
concepts. In this regard, Salingaros and West (1999) formulated a universal rule for 
city artifacts; there are far more small city artifacts than large ones, due to which the 
image of the city can be formed in human minds (Jiang 2013b). With the increasing 
availability of geographic information, the scaling law has been observed and exam-
ined in a wide range of geographic phenomena including, for example, street lengths 
and connectivity (Carvalho and Penn 2004; Jiang 2009), building heights (Batty 
et al. 2008), street blocks (Lämmer 2006; Jiang and Liu 2012), population densities 
(Schaefer and Mahoney 2003; Kyriakidou et al. 2011), and airport sizes and con-
nectivity (Guimerà et al. 2005). Interestingly, the scaling of geographic space has 
had an enormous effect on human activities; human activities and interactions in 
geographic space exhibit power law distributions as well (Brockmann et al. 2006; 
Gonzalez et al. 2008; Jiang et al. 2009). Table 2.3 provides a synoptic view of the 
ubiquity of power laws in geography, noting that the references listed are non- 
exhaustive, but for example only.

Despite its ubiquity, ironically the scaling law, or the Paretian way of thinking in 
general, has not been well received in geospatial analysis as elaborated earlier in the 
text. Current geospatial analysis adopts a well-defined mean or average to charac-
terize spatial heterogeneity. The two closely related concepts of scale and scaling 
must be comprehended together, i.e., many different scales, ranging from the small-
est to the largest, form a scaling hierarchy. This comprehension should be added, as 
a fourth one, into the three meanings of scale in geography: cartographic, analysis, 
and phenomenon (Montello 2001); see more elaborations in this recent paper (Jiang 
and Brandt 2016). The essence of power laws is the scaling pattern, in which there 
are far more small scales than large ones. This scaling pattern reflects the true pic-
ture of spatial heterogeneity or that of the Earth’s surface.
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2.4.2  Detecting the Scaling Law

What were claimed to be power laws in the literature could be actually lognormal, 
exponential, or other similar distributions, because the detection of power laws can 
be very tricky. Given a power law relationship y = xα, it can be transformed into the 
logarithm scales, i.e., ln(y) = a ⋅ ln(x), indicating that the logarithms of the two vara-
ibles x and y have a linear relationship. Conventionally, an ordinary least squares 
(OLS) based method was widely used for the detection. In the fractal literature, the 
box-counting method is usually used to compute the fractal dimension, which is the 
de facto power law exponent, and its computation is also based on OLS. There are 
at least two issues surrounding the power law detection. The first is that the OLS 
based method is found to be less reliable for detecting a power law, so a maximum 
likelihood method has been developed (Clauset et al. 2009). It was found that many 
claims on power laws in the literature are likely to be lognormal or other degener-
ated formats such as a power law with an exponential cutoff. For the sake of read-
ability, this paper does not cover mathematical details on heavy-tailed distributions 
and their detection; interested readers can refer to Clauset et al. (2009) and the refer-
ences therein. The second is that even with the OLS-based method, the definition of 
fractal dimension is so strict that many geographic features are excluded from being 
fractal (Jiang and Yin 2014). Given the circumstance, the authors have recently pro-
vided a rather relaxed definition of fractals, i.e., a geographic feature is fractal if and 
only if the scaling pattern of far more small things than large ones recurs multiple 
times. The number of times plus one is referred to as ht-index (Jiang and Yin 2014), 
an alternative index of fractal dimension for characterizing complexity of fractals or 
geographic features in particular.

Table 2.3 Power laws in geographic features or phenomena

Geographic phenomena References (for example)

City sizes Zipf (1949), Krugman (1996), and Jiang and Jia (2011)
Fractals in cities or geographic 
space

Goodchild and Mark (1987) and Batty and Longley (1994)

Coast lines and mountains Mandelbrot (1967) and Bak (1996)
Hydrological networks Hack (1957), Horton (1945), Maritan et al. (1996), and 

Pelletier (1999)
Urban and architectural space Salingaros and West (1999)
Street lengths and connectivity Carvalho and Penn (2004) and Jiang (2009)
Building heights Batty et al. (2008)
Street blocks Lämmer (2006) and Jiang and Liu (2012)
Population density Schaefer and Mahoney (2003) and Kyriakidou et al. (2011)
Airport sizes and connectivity Guimerà et al. (2005)
Human mobility Brockmann et al. (2006), Gonzalez et al. (2008), and Jiang 

et al. (2009)
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The idea behind the relaxed definition of fractals, or the ht-index, is pretty simple 
and straightforward. It is based on the head/tail breaks (Jiang 2013a), a new classi-
fication scheme for data with a heavy-tailed distribution. Given a variable whose 
distribution is right skewed, compute its arithmetic mean, and subsequently split its 
values into two unbalanced parts: those above the mean in the head, and those 
below the mean in the tail. The values above the mean are a minority, while the 
values below are a majority. The ranking and breaking process continues for the 
head part progressively and iteratively until the values in the head no longer meet 
the condition of far more small things than large ones. This way both the number of 
classes and the class intervals are naturally and automatically derived based on the 
inherent hierarchy of data. Eventually, the number of classes, or equivalently the 
ht-index, indicates hierarchical levels of the values. One can simply rely on an 
Excel sheet for the computation of the ht-index. As an example, Fig. 2.3 illustrates 
the scaling pattern of the US cities, discussed earlier in Sect. 2.2.1, and it has the 
ht-index of 7.

2.4.3  Revealing the Scaling Pattern

The head/tail breaks can effectively reveal or visualize the scaling pattern if the data 
itself exhibits a heavy-tailed distribution. This is because the head/tail breaks was 
developed initially for revealing the inherent scaling hierarchy or the scaling pat-
tern. In this regard, conventional classification methods, mainly guided by Gaussian 
thinking, failed to reveal the scaling pattern. For example, the most widely used 
classification natural breaks (Jenks 1967), which is set as a default in ArcGIS, is 
based on the principle of minimizing within-classes variance, and maximizing 
between-classes variance. It sounds very natural. In some case like the US cities, the 
classification result of the natural breaks may look very similar to the one by natural 
breaks (Fig. 2.3). However, this is just by chance. Essentially, the natural breaks is 
motivated by Gaussian thinking; each class is characterized by a well-defined mean 
with a limited or minimized variance. In a contrast, the head/tail breaks is motivated 
by Paretian thinking, and for data with a Paretian-like or heavy-tailed distribution. 
The iteratively or recursively defined averages are used as meaningful cutoffs for 
differentiating hierarchical levels.

The reader probably has got used to the US terrain surface (Fig. 2.4a), which is 
based on the natural breaks. It is commonly seen in geography and cartography 
textbooks and atlases. However, I want to challenge this conventional wisdom, 
arguing that the natural breaks based visualization is little natural. I contend that the 
head/tail breaks derived visualization is more natural, since it reflects the underlying 
scaling pattern of far more small things than large ones (Fig. 2.4b). The things here 
are referred to individual locations, or more specifically, far more low locations than 
high locations. The left visualization, which distorted the scaling pattern, appears 
having far more high locations than the visualization to the right, or equivalently far 
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more high locations than what it actually has. The visualization to the right reflects 
well the underling scaling pattern. This can be further seen from the corresponding 
histograms of the individual classes of the two classifications (Fig. 2.4c, d). What is 
illustrated by the left histogram is “more low locations than high ones” which is a 
linear relationship, rather than “far more low locations than high ones”, which is a 
nonlinear relationship. For the left histogram, each pair of the adjacent bars from 
left to right does not constitute an unbalanced contrast of majority versus minority. 
For example, the first pair of bars of the left histogram shows a well-balanced con-
trast of 7–6; in a contrast, the first pair of the right histogram is unbalanced, 14–5. 
Therefore, the right histogram indicates clearly “far more low locations than high 
ones”. Interestingly, the scaling pattern remains unchanged with respect to different 
scales of digital elevation models (Lin 2013).

Fig. 2.3 Scaling pattern of US cities with ht-index equal 7 (Note: the four insets from the left to 
the right provide the enlarged view respectively for San Francisco, Los Angeles, Chicago and 
New York regions)
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2.5  Implications of Paretian Thinking and the Scaling Law

Current geospatial analysis concentrates more on geographic forms, but less on why 
the forms. The forms illustrated are mostly limited to whether they are random, or 
to what extent they are auto-correlated. As to why the forms, it is usually ended up 
with simple regressions and causalities. This way of geospatial analysis is much like 
short-term weather forecasting. Despite its usefulness, the short-term weather fore-
cast adds little to understanding the complex behavior of weather – the long-term 
weather beyond 2 or 3 weeks. In essence, the long-term weather, or climate change 
in general, is unpredictable, just like earthquakes and many other events in Nature 
and society (Bak 1996). If the real world is unpredictable, what can we do as scien-
tists? We can simulate interactions of things from the bottom up in order to under-
stand the underlying mechanisms, which would help improve predictions. In this 
regard, the emerging social media, in particular location-based social media, pro-
vide valuable data for validating the simulation results (Jiang and Miao 2015). The 
data, unlike traditional statistical or census data that are mainly aggregated, are not 
only big in size, but are collected at individual levels. The data are not only at indi-
vidual levels, but linked in time and among individuals. The data can help track the 
trajectories of individuals and their associations in space and over time. For this 
kind of social media data, the scaling law and fractals should be the norm.

Current spatial statistics constrained by Gaussian thinking show critical limita-
tions for analyzing or getting insights into big data (Mayer-Schonberger and Cukier 

Fig. 2.4 The scaling pattern of US terrain surface is distorted by the natural breaks, but revealed 
by the head/tail breaks
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2013). What are illustrated by spatial statistics, either patterns or associations, can 
be compared to the mental images of the elephant in the minds of the blind men. 
These images reflect local truths, and are indeed correct partially, but they did not 
reflect the whole of the elephant. Geospatial analysis should go beyond illustrating 
spatial autocorrelation, either globally or locally, but towards uncovering the under-
lying scaling or fractal patterns. Geographic features are essentially and ultimately 
scaling or fractal. Therefore, any patterns deviating from the scaling pattern or that 
can be characterized by a well-defined mean are either wrong or biased.

Geographic forms (or phenomena) are not the outcomes of simple processes but 
the results of complex processes with positive feedbacks. In the built environments, 
human interventions (interdependence and interactions) of various kinds are the 
major effects of spatial heterogeneity. As famously stated by Winston Churchill 
(1874–1965), “we shape our buildings, and thereafter they shape us”. This state-
ment should be comprehended in a progressive and recursive manner. This compre-
hension, which underlies Paretian thinking, is essentially a complex system 
perspective for exploring the underlying processes related to geographic forms 
(e.g., Benguigui and Czamanski 2004; Blumenfeld-Lieberthal and Portugali 2010). 
In this regard, complexity science has developed a range of tools such as discrete 
models, complex networks, scaling hierarchy, fractal geometry, self-organized criti-
cality, and chaos theory (Newman 2011). All these modeling tools attempt to reveal 
the underlying mechanisms, linking surface complex forms (or complexity) to the 
underlying mechanisms (or deep simplicity) through simulations from the bottom 
up, rather than simple descriptions of forms or of geographic forms in particular.

Paretian thinking represents a paradigm shift. Shifting from the sands to the ava-
lanches (Bak 1996), and from the street segments to the natural streets (Jiang 2009), 
enables us to see something interesting and exciting, i.e., from the things of limited 
sizes to the things of all sizes. The things of all sizes imply a scaling pattern across 
all scales. Recognition of the scaling pattern helps us to better understand the under-
lying universal form of geographic features. This scaling pattern can further be 
linked to the underlying geographic processes that are dynamic, nonlinear, and 
bottom-up in nature. This view would position geography in the family of science, 
since we geographers are interested in not only what things look like (the forms) but 
also why things look that way (the processes). Spatial heterogeneity is thus not a 
problem but an underlying scaling law of geography.

2.6  Concluding Summary

This paper argues that geospatial analysis requires a different way of thinking, or 
world view in general, that underlies the Paretian-like distribution of geographic 
features. We put the two distinct views in comparison: more or less similar things in 
a simple, static, and equilibrium world on the one hand, and far more small things 
than large ones in a complex, dynamic, and non-equilibrium world on the other. 
Geospatial analysis has been dominated by Gaussian statistics with a well-defined 
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mean for characterizing spatial variation (‘mild’ variance so to speak). Despite its 
ubiquity in geography, the Paretian-like heavy-tailed distribution, or the underlying 
way of thinking in general, has not been well received in geospatial analysis. The 
current geospatial analysis mainly focuses on how spatial variation deviates from a 
random pattern, and measuring spatial auto-correlation from global to local (the 
current spatial heterogeneity), but leaves the underlying processes unexplored. This 
way of geospatial analysis is inadequate for understanding geographic forms and 
processes, in particular while facing increasing amounts of social media data.

No average location exists on the Earth’s surface. Instead, there are far more 
small things than large ones in geographic space; small things are a majority while 
large things are a minority. Importantly, the pattern of far more small things than 
large ones recurs multiple times (Jiang and Yin 2014). This recurring scaling pattern 
reflects the true image of spatial heterogeneity that lacks a well-defined mean 
(‘wild’ variance so to speak). Spatial heterogeneity is indeed a problem in Gaussian 
thinking, but it is a law or scaling law in Paretian thinking. In the spirit of Paretian 
thinking and the scaling law, geospatial analysis should seek to simulate individuals 
and individual interactions from the bottom up rather than simple correlations and 
causalities. In this connection, complexity tools such as complex networks, agent- 
based modeling, and fractal/scaling provide effective means for geospatial analysis 
of complex geographic phenomena.
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Chapter 3
A Survey on Spatiotemporal and Semantic 
Data Mining

Quan Yuan, Chao Zhang, and Jiawei Han

Abstract The wide proliferation of GPS-enabled mobile devices and the rapid 
development of sensing technology have nurtured explosive growth of semantics- 
enriched spatiotemporal (SeST) data. Compared to traditional spatiotemporal data 
like GPS traces and RFID data, SeST data is multidimensional in nature as each 
SeST object involves location, time, and text. On one hand, mining spatiotemporal 
knowledge from SeST data brings new opportunities to improving applications like 
location recommendation, event detection, and urban planning. On the other hand, 
SeST data also introduces new challenges that have led to the developments of vari-
ous techniques tailored for mining SeST information. In this survey, we summarize 
state-of-the-art studies on knowledge discovery from SeST data. Specifically, we 
first identify the key challenges and data representations for mining SeST data. 
Then we introduce major mining tasks and how SeST information is leveraged in 
existing studies. Finally, we provide an overall picture of this research area and an 
outlook on several future directions of it. We anticipate this survey to provide read-
ers with an overall picture of the state-of-the-art research in this area and to help 
them generate high-quality work.

Keywords Spatiotemporal data • Semantic data • Data mining techniques

3.1  Introduction

With the wide proliferation of GPS-enabled mobile devices and the rapid advance 
of sensing technology, recent years are witnessing a massive amount of semantics- 
rich spatiotemporal data accumulated from various sources. For example, on social 
media platforms like Twitter, millions of geo-tagged tweets are created every day, 
where each geo-tagged tweet consists of a timestamp, a location, and short text 
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(Fig. 3.1). For another example, mainstream search engines (e.g., Google, Bing) are 
continuously collecting queries from GPS-enabled mobile devices. These queries 
are also associated with timestamps and locations as metadata.

Compared to traditional spatiotemporal data like GPS traces and RFID data, 
semantics-enrich spatiotemporal (abbreviated as SeST onwards) data is multidi-
mensional in nature. A typical SeST object involves three different data types (loca-
tion, time, and text) and thus provide a unified where-when-what (three W) view of 
people’s behaviors. As such, the prevalence of SeST data brings new opportunities 
to spatiotemporal knowledge discovery and opens doors to improving a lot of real- 
life applications. Consider mobility understanding as an example. While traditional 
GPS trace data can reveal how an individual moves from one location to another, the 
SeST data allows us to go beyond that and understand what activities the individual 
does at various locations. Such semantics-level information is essential in terms of 
capturing people’s mobility patterns, improving applications e.g. location predic-
tion, advertising targeted users, and urban planning.

While SeST data sheds light on improving a wide variety of real-life applica-
tions, it is by no means trivial to fully unleash its power. Compared with knowledge 
discovery in traditional spatiotemporal data, mining SeST data introduces a handful 
of new challenges:

• How to integrate diverse data types? SeST data involves three data types: loca-
tion, time, and text. Considering the distinct representations of these data types 
(continuous or discrete) and the complicated correlations among them, it is dif-
ficult to effectively integrate them for spatiotemporal knowledge discovery.

• How to overcome data sparsity? Unlike intentionally collected tracking data, 
most SeST data is low-sampling in nature. Take geo-tagged tweets as an exam-
ple, a user is unlikely to report her activity at every visited location. Such data 
sparsity makes it challenging to apply classic data mining and machine learning 
techniques.

• How to extract useful knowledge from noisy data? Text in SeST data is usu-
ally short and noisy. For example, a geo-tagged tweet contains no more than 140 
characters, and most geo-tagged Instagram photos are associated with quite short 
text descriptions. Moreover, existing studies have revealed that about 40% social 
media posts are just pointless babbles (Kelly 2009). Still, it is nontrivial to make 
use of such noisy and incomplete text data to acquire useful knowledge.

• How to handle large-scale SeST data to build scalable and efficient systems? 
Many spatiotemporal applications (e.g., local event detection, location  prediction) 

Fig. 3.1 An example of geo-annotated tweet. User name and url link are anonymized for privacy 
preservation
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requires the back-end system to deal with large-scale SeST data and to respond 
to users’ needs in a timely manner. Since practical SeST data comes in a massive 
volume, how to develop efficient techniques to handle such big SeST data 
remains challenging.

Because of the large potential of SeST data in improving various spatiotemporal 
applications as well as the unique challenges in fully unleashing the power of SeST 
data, mining SeST data has attracted a lot of research attention from communities 
like data mining, civil engineering, transportation, and environmental science. SeST 
data mining has potentially great impact on a variety of fields such as sociology, 
epidemiology, psychology, public health, etc. We notice several review works on 
spatial and spatiotemporal data mining (Cheng et al. 2014; Shekhar et al. 2015), but 
a systematic summarization on state-of-the-art techniques for mining SeST data is 
still an untouched topic. In this survey, we summarize recent research studies on 
knowledge discovery from SeST data. Specifically, we introduce data representa-
tions, key research problems, methodologies, and future directions. We anticipate 
this survey to provide an over- all picture of this area, which can help the commu-
nity better understand the cutting edge and generate quality research results.

The organization of this survey is as follows. In Sect. 3.2, we survey the datasets 
and the representations of spatial, temporal and semantic information used in exist-
ing studies, and introduce the major approaches to SeST data mining. Then, in Sect. 
3.3 we review the major tasks that are widely studied in existing SeST data mining 
works. Important directions for future research are discussed in Sect. 3.4. In the end, 
Sect. 3.5 summarizes the article.

3.2  Framework of Mining the SeST Data

Mining the SeST data is a general process of acquiring, integrating, analyzing, and 
mining semantics-enriched spatiotemporal data. In this section, we overview the 
data sources and representations of SeST data, and then introduce the major 
approaches to mining SeST knowledge.

3.2.1  Data Sources

Various types of SeST data are used in existing studies. In this section, we list the 
major data sources and introduce their properties.

• User generated content. With the development of social media websites and 
GPS technology, a great quantity of user generated content has been accumu-
lated, which involves spatial, temporal and semantic information. Examples are 
social media posts such as Tweets and Facebook statuses, reviews in crowd- 
sourced review based social networks (e.g., Yelp, Dianping), check-ins 
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in location- based social networks (e.g., Foursquare), events in event-based social 
networks and travelogues.

• Survey study data. Some organizations collect the mobility behaviors of users 
via survey studies. Representative survey data includes MIT Reality Mining,1 
American Time Use Survey,2 and Puget Sound Regional Council Household 
Activity Survey.3 In the survey data, each visit of an individual involves location, 
visiting time, and semantics describing the activity (working, shopping, etc.) or 
visiting purpose. Sometimes, survey data also contains demographic information 
of individuals, such as age, gender, job, etc. This enables us to study the correla-
tions between user mobility and their demographics.

• GPS trajectories. Trajectories, consisting of a series of coordinates-timestamps 
information, are used to unveil people’s mobility. As visits are passively col-
lected, people often need to extract stay points as the locations which a user 
visited rather than passed by. The stay points are extracted based on other evi-
dence, such as the mobility range in a session and the stay time. Semantic infor-
mation, such as location categories and descriptions, are often extracted from 
external data sources, such as Wikipedia, gazetteers, land use around cell towers, 
etc.

• Query logs and browsing histories. As an increasing number of cellphones are 
3G/4G enabled, more people search information and browse webpages on the 
go. As a result, query logs and browsing data are associated with geographic co- 
ordinates, representing the current surrounding of the users. The metadata reveal 
spatial and temporal information, and the text content can be used as the seman-
tic information.

• News feeds and blogs. A large amount of news feeds and blogs have location 
and time information, and thus such data can be also viewed as SeST data. In 
these datasets, spatial and temporal information can be either collected from 
metadata, or exacted from the content parsed by some natural language process-
ing (NLP) tools. The text content carries rich and often high-quality semantics.

Among these datasets, the publicly available user generated content are often of 
large quantity but low quality, in terms of sparsity (some users may only have few 
posts), noise (users write text in free style), and incompleteness (observations are 
available only if the users actively submit them). In contrast, survey data is of much 
higher quality, but they are expensive to get, and the lengths of observations are 
often short (ranging from 2 to 100 days). Trajectory data often has a reasonable and 
stable sampling rate, but it is hard to collect and additional steps are needed to 
extract stay-points and to infer the semantics. Query logs are not publicly available. 
Only search companies such as Google, Bing, Yahoo! can access such data. News 
articles have many constraints due to the natures. For example, it cannot be used to 
analyze user behaviors. In practical data mining tasks, researchers may exploit 
 multiple data source. For example, various data, such as Tweets, News feeds, survey 
data, and webpages is used to forecast events in a city (Sect. 3.3.4).

1 http://realitycommons.media.mit.edu/realitymining.html
2 www.bls.gov/tus/
3 https://survey.psrc.org/web/pages/home/
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3.2.2  Data Representations

In the literature, spatial, temporal, and semantic information can be represented in 
various forms.

• Spatial information. A pair of latitude and longitude is the most representative 
form of spatial information of a target location. Other representations include 
lines (e.g., road segments) and polygons (e.g., universities, parks). At the mean- 
time, there are also a lot of studies that index locations by identifiers, such as 
venues (point-of-interest, POI), cities, grids, etc.

• Temporal information. Temporal information can be represented as either con-
tinuous or discrete variables. The continuous representation mostly denote time 
as a real-value offset (e.g., timestamp) with regard to a specific starting time. For 
the discrete representation, one can choose the appropriate granularity (e.g., 
hour, day, week, month) depending on the specific tasks. Sometimes temporal 
information is implicitly modeled as the order of visits (e.g., trajectory mining in 
Sect. 3.3.6).

• Semantic information. Semantic information can be modeled as a categorical 
variables or plain text, and it can be associated with locations, users, and visits. 
For example, the semantics of a user could be her jobs, her hobbies extracted 
from Facebook profiles. For a location, we can get its semantics like category 
(e.g., hotel, restaurant, airport), and descriptions. We can also get the semantics 
of a user’s visit at a location, which could be a Yelp review or the text content of 
a geo-annotated tweet. Some studies go one step further beyond text, and extract 
additional knowledge, such as named entities, emotions, etc., using text mining 
or NLP techniques. The usage of semantics depends on both specific tasks and 
data availability.

Figure 3.2 shows the graph representation of SeST data. In this figure, users, 
POIs and visits are associated with text, and visits and POIs have time and category 
as metadata, respectively. Based on the time of visits, we can recover the trajectory 
of a user (e.g., dashed line in Fig. 3.2 for user u4). In addition, friend links among 
users may be available in social media data. Although some datasets may have addi-
tional objects, e.g., events, the majority of SeST data can be modeled as subgraphs 
of the figure.

3.2.3  Approaches

Different studies exploit spatial, temporal and semantic information in different 
ways, which can be categorized into four approaches.

• Some studies use the three types of information independently, and build models 
for each of them. Then, the results coming out of different models are combined 
by certain strategies. For example, in order to recommend POIs to users
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• (Section 3.3.2), some researchers build separate models to estimate a target 
user’s spatial, temporal and semantic preference scores of a candidate POI, then 
these three scores are combined into a final preference score by linear interpola-
tion. Other studies build different classifiers for different types of information 
and employ co-training strategy to boost the classification performance.

• Some studies extract features from SeST data to train supervised models, such as 
regression (regression tree, lasso) and classification (support vector machine 
SVM, Maximum Entropy). This approach is often adopted when a number of 
features are available, and the target task can be modeled as a supervised or semi- 
supervised problem, such as quantity prediction (Sect. 3.3.5) and POI typing 
(Sect. 3.3.8).

• The three types of information are also used as observations for unsupervised 
models, such as factorization models (tensor factorization, singular value decom-
position SVD), graphical models (latent Dirichlet process LDA, hidden Markov 
model HMM, conditional random field CRF), and graph models (random walk 
with restart RWR, diffusion model). This approach is often used when the inter-
actions between different information are clear and relatively straightforward to 
model.

• For some specific tasks, the three types of information are used as optimization 
constraints or filtering criteria. For example, to plan a trip (Sect. 3.3.7), traveling 
duration and location category are often modeled as the constraints of an 
 optimization problem. For a second example, many studies on event forecasting 
do not use the location information in the model. Instead, the location informa-
tion (e.g., regions, cities) is often used to separate data inside the area of interest 
from outside.

Fig. 3.2 The graph representation of SeST data
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3.3  Spatiotemporal and Semantic Data Mining Tasks

Many data mining tasks on spatial, temporal, and semantic information have been 
studied in the literature, the majority of which, however, only exploit at most two 
dimensions of the three. Recent studies exploit all of the three dimensions, and the 
integration of space, time, and semantics provides new possibilities of data mining. 
In this section, we review several most popular SeST data mining tasks, which can 
be organized as in Fig. 3.3.

3.3.1  Prediction

Prediction aims to infer the candidate dependent variable for a target variable. Under 
the SeST scenario, the target variable could be user, visit, social media post, etc., 
while in most studies the dependent variable is location. Representative tasks 
include next movement prediction for users, home location inference for users, POI 
inference for geographic coordinates, location estimation for tweets or photos 
(Hauff and Houben 2012), etc. In most existing studies, the semantic information is 
the POI category or the text associated with the records. In this section, we take the 
former two tasks as examples and review existing studies.

Next-place prediction aims at predicting the next place a user is about to visit 
based on her current location or recent moves, e.g., suppose an office lady just vis-
ited a bank branch after work, where is she going to visit next? Next-place predic-
tion is of great importance to user mobility modeling as well as advertisement. Most 
initial studies only exploit location and time information to construct trajectories, 
and then predict the next place based off either frequent trajectories of massive 
people or the user herself. Many recent studies attempt to use semantic information 
as additional evidence to estimate user mobility preference, where the semantics 
can be POI categories or text. One thread of works is to extract the frequent trajec-
tory patterns over POI categories. Suppose the pattern office bank restaurant is 
popular in the database, then we can predict that the next place the lady is going to 
visit is a restaurant. Based on her current location and time, we can select a specific 
restaurant as the prediction result. Instead of extracting trajectory patterns, we can 
also infer the transitions between HMM latent states from users’ traces for predic-
tion, where each latent state (e.g., office state, home state) defines a semantic topic 

Fig. 3.3 An overview of SeST data mining tasks
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(e.g., working), a time range (day-time), and a geographic area (CBD) (Zhang et al. 
2016). Another thread is to model the task as a supervised learning problem, in 
which features like temporal frequencies of categories are extracted to rank candi-
date POIs by building ranking models.

Home inference is to estimate the home location (e.g., city, state) of a user based 
on her historical records, such as social media posts, friends, IP address, etc. Home 
inference is important because users’ home information is essential to many tasks 
such as event detection, personalized recommendation, advertisement, but only few 
people disclose their home locations on social networks. Pioneering studies exploit 
social links and user generated text. Suppose a boy has many Facebook friends in 
New York City, and he has posted a lot about Net Knicks and Bronx, then he is likely 
to live in NYC as well. Recent studies use the temporal information to extract the 
spatiotemporal correlations between text content and locations (Yamaguchi et al. 
2014), or extract users’ temporal tweeting behavior. For example, if a user posts a 
tweet right after an earthquake, we can infer that the home of the user should be 
close to the location of the earthquake. As another example, New Yorkers are more 
likely to post tweets at 7:00 pm EDT, whereas people who live in Log Angles may 
tweet less because they are still at work (4:00 pm PDT) in California.

3.3.2  Recommendation

The goal of recommender systems is to suggest new items that a target user might 
be interested in. While many traditional recommender systems are built on explicit 
numeric feedbacks (e.g., movie ratings), most recommendation tasks under SeST 
scenarios deal with implicit binary feedback data, e.g., whether a user will visit a 
place. Representative tasks include the recommendations of POIs, events, entities 
(Zhuang et al. 2011), short messages, etc., where the first two tasks are introduced 
as examples in this section.

POI recommendation aims to suggest unvisited POIs to users based on users’ 
preference. This task has caught a lot of research attention because it can not only 
help users explore new places but also has great commercial value in advertising. 
Pioneering studies use spatial and temporal information for recommendation based 
on the assumptions that users tend to visit their nearby places (Ye et al. 2011b), and 
a user’s preference over POIs is influenced by time (Yuan et al. 2013), e.g., visiting 
libraries in the morning and bars at night. Some recent works exploit semantic 
information such as POI categories, check-in text, and reviews to better estimate 
users’ preference implicitly. A straightforward strategy is to recommend the POIs 
belonging to the categories that the target user visited most. For example, if a user 
went to many Italian restaurants, then it is safe to continue recommending Italian 
restaurants to her. We can also infer users’ preference transitions over POI catego-
ries for recommendation. For example, if a user just visited a restaurant, then we 
can recommend a theater to her if the pattern restaurant theater is frequent in the 
training set. Rather than using semantics implicitly, we can explicitly take the target 
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user’s specific requirements (e.g., cheesy pizza and spaghetti) as input, and recom-
mend POIs that best match the target user’s semantic profile, mobility behavior and 
the requirements (Yuan et al. 2015).

Event recommendation aims at recommending local events (e.g., a BBQ party) 
in event-based social networks (e.g., Meetup4) for users to participate in. Initial 
studies on event recommendation mainly focus on spatial, social and semantic 
information, based on the assumption that a user tend to participate in events that (1) 
held close to her, (2) topically attractive to her, and (3) many of her friends also took 
part in. However, time is also a factor that needs to be taken into consideration 
because users can only join an event if she is available at that time. To exploit time, 
several methods (Pham et al. 2015) have been proposed under the frameworks of 
RWR or ranking models, assuming user tends to attend events held at similar times 
(e.g., time of a day and day of a week) of the events she attended before.

3.3.3  Event Detection

Event detection is to detect unusual semantic trends that are temporally spiking. 
Pioneering studies focus on temporal and semantic information to detect global 
events, e.g., stock market fluctuations and presidential elections, while recent stud-
ies exploit the spatial information to detect local events from geo-annotated data, 
where local event is defined as something that happens at some specific time and 
place (Lee 2012), such as a basketball game or a terrorist attack. Different from the 
global ones, the local events should be bursty in terms of both location and time. For 
example, an unlarge number of tweets are talking about explosion at Istanbul airport 
indicate there is an local event terrorist bombing at the airport. The can be detected 
either by monitoring the changes of spatial and temporal distributions of semantics 
(Chen and Roy 2009), or comparing the predicted count of tweets generated by 
regression models with the actual count of tweets for each region (Krumm and 
Horvitz 2015). Some studies are designed to detect specific types of events such as 
earthquakes and traffic congestions, in which task-specific evidence is utilized, e.g., 
the change of massive drivers’ routing behavior on road network for traffic anomaly 
detection (Pan et al. 2013).

3.3.4  Event Forecasting

Event forecasting aims to predict whether an event will happen in the near future. 
The forecast results make it possible for individuals, organizations and government 
to prepare for potential crisis in advance. Early studies produce forecasts via either 
supervised models or time series evolution models that use the temporal and 

4 http://www.meetup.com/
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semantic information. The spatial information makes it possible to forecast local 
events. Existing studies on local event forecasting are domain-specific, i.e., they can 
detect a specific type of events, such as civil unrest and disease outbreaks. They 
assume local events can be predicted by monitoring some indicative features, such 
as keywords counts, tweet cascades, extended vocabulary, etc., extracted from vari-
ous data sources. For example, if a large portion of tweets in a city are talking about 
protest and march, but the portion is small in other cities, there is likely an civil 
unrest in the city. To forecast whether an event will happen, we can either estimate 
the development stages (e.g., emerging, uprising, peak, etc.) by monitoring the 
tweet stream (Zhao et al. 2015), or build regression or classification models on the 
extracted features.

3.3.5  Quantity Prediction

The availability of SeST information enables us to predict quantity of event or 
objects based on current observations. Representative tasks include popularity pre-
diction, air quality prediction, traffic volume prediction, etc.

Popularity prediction aims to predict the number of objects adoptions (e.g., 
hashtags, topics) at specific time in social media, and try to answer the questions 
like how many times the hashtag #brexit will be discussed tomorrow in twitter? 
Predicting hashtag popularity is important to the identification of commercial and 
ideological trends. It has been shown that the content of the hashtag (e.g., character 
length, number of words), the locations mentioned in the tweets, the social network 
topology (e.g., the number of followers of users who used the hashtag) and the 
counts of the hashtags in each time intervals are all important features to train a 
regression model for popularity prediction (Tsur and Rappoport 2012).

Some studies focus on air quality prediction for city regions. This is a challeng-
ing task because only a limited number of air quality monitor stations are available 
in a city, and the air quality depends on various factors, such as meteorology, traffic, 
land use, etc. This follows our intuition that the air quality in an industry region with 
high traffic speed is likely to be worse than that in a university. Several supervised 
or semi supervised models (Zheng et al. 2013) have been developed to predict air- 
quality based on various spatiotemporal features such as human mobility, traffic 
speed, the categories of POIs within a region (e.g., factories, parks), etc. Similar 
strategies are employed to predict the traffic volume in different road segments, 
where users’ activity such as shopping and leisure is an important consideration.

3.3.6  Frequent Pattern Mining

Spatiotemporal frequent pattern mining aims to extract patterns that frequently 
occur in the given spatiotemporal database. While classic studies on frequent pat-
tern mining in spatiotemporal data can uncover the regularity of people’s 
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spatiotemporal movements, the availability of SeST data adds semantics to them 
and enables us to discover interpretable patterns. Broadly speaking, frequent spatio-
temporal patterns in SeST data can be classified into two categories: frequent event 
patterns, mobility patterns.

Event pattern mining aims to extract frequently co-occurring, cascade, and 
sequential event patterns from historical SeST data. Co-occurring patterns are 
events that frequently happen at the same time, e.g., the pattern {morning, break-
fast, at home} → {read news} detected from smartphone context data; cascade pat-
terns are partially ordered subsets of events located together and occurring serially, 
e.g., the event bar closing leads to subsequent event assault, and the two together 
result in drunk driving (Mohan et al. 2012); sequential patterns consist of a series 
events that happen usually in order, e.g., the disease transmission pattern bird → 
mosquito → human being.

In addition to finding frequent event patterns, researchers have also utilized SeST 
data to mine frequent movement patterns and tried to understand people’s mobility 
regularity. For example, we can extract sequential patterns over location groups 
from semantic trajectory databases, where locations in each group are close in dis-
tance and consistent in semantic categories (Zhang et  al. 2014). For example, a 
frequent sequential pattern in London could be {House of Parliament, Westminster 
Abbey} → {Hyde Park, Regent’s Park}. The former set contains historic sites, while 
the latter set contains parks. The locations in each set are close to each other.

3.3.7  Trip Planning

The goal of trip planning is to construct a series of locations as travel route for target 
users. Intuitively, individuals may have limited budget and time for a trip, and dif-
ferent users may have different preferences over places of interests. For example, 
suppose a girl has only 1 day to travel in London, and she is interested in historic 
and cultural sites, we should construct a sequence of places within the city, such as 
the House of Parliament, the British Museum, Tower Bridge, etc., instead of 
Wimbledon Tennis Court or Windsor Castle because of they cannot fulfill the girl’s 
interests and the travel time is too long. To incorporate such information, most exist-
ing studies (Brilhante et al. 2015) model the trip planning task as an optimization 
problem by selecting a series of POIs that can meet constraints on time, expense, 
categories, etc.

3.3.8  Semantic Annotation and Profiling

Semantic annotation aims to infer semantics (categories, descriptions, etc.) for 
objects (POIs, regions, user visits, trajectories, etc.). Semantic annotation is of great 
importance to many applications. For example, about 30% of POIs in Foursquare 
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are lacking any meaningful textual descriptions (Ye et al. 2011a). Annotating these 
POIs with categories can facilitate both place exploration for users and recommen-
dation services for businesses.

To archive semantic annotation, it is important to exploit spatial, temporal and 
semantic jointly. To take POI annotation as an example, it is observed that the cat-
egories of POIs visited by the same user at the same time are similar. In addition, 
visitors’ demographic information (e.g., age and gender) and the surrounding busi-
ness are both good indicators of the POI category: a student may stop by a restaurant 
for lunch at noon because of a break between two classes, and the restaurant is close 
to other restaurants and grocery stores. Classification models are effective in com-
bining spatiotemporal and semantic features for category estimation. Similarly, the 
function of a region can be inferred from various SeST evidence such as human 
mobility and POI categories (Yuan et al. 2012). There are also studies on visit anno-
tation, which uncover the visiting purpose by both static and dynamic features: on 
the one hand, the visiting purpose is related to the static features such as POI cate-
gory and region’s land use that are invariant to time; on the other hand, the purpose 
is also influenced by dynamic local events, such as sport games or festival celebra-
tions (Wu et al. 2015). Consider a man who visits Oracle Arena in Oakland on June 
19 2016. Then the purpose of his visit might be watching NBA Finals Game 7. 
Recent studies use static and dynamic features to infer the visiting purpose and 
achieve satisfactory performance.

Profiling is to characterize entities by spatiotemporal or semantic data. Several 
papers are published to profile users, POIs and words. Among them, user profiling 
received the most research interest. Different methods profile users from different 
aspects, such as individuals’ frequent routines (Farrahi and Gatica-Perez 2011), 
spatiotemporal mobility and topic preference such as movie, hiking (Yuan et  al. 
2015), and demographic information such as age, gender, marital status (Zhong 
et al. 2015). It has been shown that the spatial, temporal and semantic information 
of users’ visiting records are all important evidence for profiling.

3.3.9  Clustering

Clustering, which aims to group objects such that objects in the same group are 
more similar to each other than those in other groups, is a fundamental task in data 
mining. The availability of spatial, temporal and semantic information enables us to 
better estimate the relatedness between objects and form clusters. The detected clus-
ters can not only provide a high-level summary of the whole data, but also are 
important to a number of tasks, such as community detection, frequent pattern min-
ing, recommendation, event detection, next-place prediction, etc. Several methods 
have been proposed to cluster objects such as tags, hashtags, tweets, users, trajecto-
ries, etc. For different objects, the SeST information is used in different ways. For 
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example, to cluster tags or hashtags, the co-occurrence between two objects is an 
important measure. In other cases, however, the co-occurrence itself is not enough 
to estimate the relatedness. For example, in Flickr photos, the tags The Statue of 
Liberty and Times Square are seldom used together, but the two tags are highly cor-
related because both of them refer to two famous landmarks in New  York City. 
Thus, in addition to co-occurrence, spatial and temporal features are extracted to 
cluster tags, based on the assumption that related concepts should have similar spa-
tial and temporal distributions (Zhang et al. 2012). For another example, trajectories 
can be clustered not only based on locations and visiting orders, but also based on 
the semantics, e.g., location categories. Now, we can identify groups of objects such 
as individuals and taxi drivers based on the behaviorally-driven markers of indi-
vidual and collective movement (Liu et al. 2013).

3.4  Future Directions

Although mining SeST data has been gaining much research attention in recent 
years, many remaining challenging issues call for new and effective solutions. We 
outlook some important directions for future research in mining SeST data.

• Deeper understanding of semantics. While various techniques have been pro-
posed to incorporate semantics information into the process of mining SeST for 
useful knowledge, the modeling of the semantics is still built upon simple mod-
els e.g., bag of keywords. More accurate methods, e.g., phrase mining (Liu et al. 
2015), named entity recognition and typing (Ren et al. 2015), sentiment analysis, 
etc., are necessary so as to capture the intrinsic semantics more accurately.

• Managing and integrating multiple data sources. Current research for mining 
SeST data mostly consider only one data source. It is interesting and important 
to integrate the data from different sources (e.g., social media, sensor data) to 
extract valuable evidence in various aspects.

• Interactive exploration of SeST data. In many real-life applications, it is not 
easy to determine the data mining techniques and model parameters before-hand. 
Extracting the most useful knowledge from the given SeST data usually involves 
extensive model and parameter tuning. Therefore, it has become an urgent need 
to develop techniques that can support interactive exploration of SeST data.

• Assisting decision making. How to discover knowledge from SeST data to aid 
decision making is a promising direction. For example, the semantic enriched 
mobility of massive people is at great importance to urban planning such as site 
selection for a new airport. In addition, how to generate interpretable and 
 explorable knowledge is also a critical problem to facilitate decision making 
processes.
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3.5  Summary

With the prevalence of GPS technology and the development of social networks, a 
sheer amount of SeST data has been accumulated. It involves additional types of 
information compared with traditional datasets which have up to two dimensions 
among location, time, and semantics. The multi-dimensional SeST data bring new 
opportunities along with new challenges to extract knowledge. In this article, we 
introduced the major challenges, data sources, information representation, and gen-
eral mining approaches to SeST data mining. We also reviewed nine important tasks 
and cutting edge studies. Some promising directions for future work were also dis- 
cussed. To the best of our knowledge, this is the first survey that focuses on summariz-
ing existing techniques for mining SeST data. We hope this article can provide readers 
with a high-level and systematic overview of the research on SeST data mining.
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Abstract The interest in using information to improve the quality of living in large 
urban areas and the efficiency of its governance has been around for decades. 
Nevertheless, recent developments in information and communications technology 
have sparked new ideas in academic research, all of which are usually grouped 
under the umbrella term of Smart Cities. The concept of Smart City can be defined 
as cities that are lived, managed and developed in an information-saturated environ-
ment. However, there are still several significant challenges that need to be tackled 
before we can realize this vision. In this study we aim at providing a small contribu-
tion in this direction, by maximizing the usefulness of the already available infor-
mation resources. One of the most detailed and geographically relevant information 
resources available for studying cities is the census, more specifically, the data 
available at block level. In this study we use self-organizing maps (SOM) to explore 
the block level data included in the 2001 and 2011 Portuguese censuses for the city 
of Lisbon. We focus on measuring change, proposing new ways to compare the two 
time periods, which have two different underlying geographical bases. We proceed 
with the analysis of the data using different SOM variants, aiming at providing a 
twofold portrait: showing how Lisbon evolved during the first decade of the twenty- 
first century and how both the census dataset and the SOMs can be used to produce 
an informational framework for micro analysis of urban contexts.
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4.1  Introduction

The challenges posed by cities and the exploration of urban trends have both 
received significant attention with regards to sustainable development (Braulio- 
Gonzalo et  al. 2015; Huang et  al. 2016), namely socio-economic development, 
environmental management and urban governance (United Nations 2013). In order 
to attain these goals, it is necessary to tackle three major issues: the increasing eco-
nomic division between rich and poor, climate change and the efficient management 
of public goods (Birch and Wachter 2011).

In this challenging environment, the concept of Smart Cities emerges referring to 
the opportunity of developing new strategies to tackle the problems that the urban 
society faces every day (Roche 2014). Although the cities’ very complexity has led 
to a non-agreement as to what exactly defines a “Smart City” (Lombardi et  al. 
2012), it is possible to identify a major set of activities focused on the implementa-
tion of technology and strategies aimed to improve the city itself. Current research 
present essentially two main streams of thought: a) the solutions based in informa-
tion technologies that fully rely on IoT (Internet of Things) and IoS (Internet of 
Services) as enablers of smart cities that use an unified ICT (Information and 
Communications Technology) platform (Hernández-Muñoz et  al. 2011) and b) 
more systemic solutions that rely on management, organization, technology, gover-
nance, policy, the people and the communities, economy, infrastructure and the 
natural environment. The last one sees the city as organic and complex systems with 
multiple and diverse stakeholders, high levels of interdependence, competing objec-
tives and values and social and political complexity (Chourabi et al. 2012).

The urban fabric can be very complex and hard to understand. The inclusion of 
attributes such as population, infrastructures, social-economic environment, among 
others, arriving in constant streams, reveal the inherit complexity of this task (Lee 
and Rinner 2014). The increased sophistication of the Geographic Information 
Systems (GIS) can contribute to mitigate some of the aforementioned difficulties. 
The georeferencing of non-spatial data, particularly high-dimension data, allows us 
to visualize the underlying context. These links can manifest as a cartographic rep-
resentation of multivariable groups depending on the information one desires to 
attain. The nongeographic information is processed by computational tools and the 
results are expressed in maps, where it is easier to interpret the output (Koua and 
Kraak 2004; Penn 2005; Skupin and Hagelman 2005; Skupin 2002).

To a human being, the visualization of several dimensions of data at once repre-
sents a problem, since it is not possible to apprehend a large number of dimensions 
in an interpretable way (Bação et al. 2004). It is therefore necessary to implement 
techniques that improve the perception of high dimensional data. Dimension reduc-
tion aims to decrease the data parameters to the bare minimum needed to explain the 
data properties, also known as intrinsic dimensionality (Fukunaga 1990). As a 
result, it facilitates classification, visualization and compression of high- dimensional 
data, among others (van der Maaten et al. 2009).
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Lisbon makes for an excellent case study due to the intense modifications that 
occurred during the last decades and particularly throughout the most recent years 
(Silva and Syrett 2006; Veiga 2014).

The goal in this work is to characterize the population and the residential infra-
structure through the use of clustering techniques. In order to support the future 
implementation of the Smart City, the city portrait includes the targeting of the most 
affluent areas, where the use of the most recent IT tools and services have the high-
est probability of acceptance and diffusion. Thus, it is also possible to identify more 
deprived areas where people and infrastructures are unprepared to deal with future 
uses of the Internet.

In order to improve the desired portrait, the modifiable areal unit problem must 
be mitigated during the process. It is imperative to successfully tackle the land use 
by reallocating the population from a statistical unit to what is the true urban tissue 
if we want to characterize the area at block level.

Looking for a reliable and efficient solution in the present study, Self-Organizing 
Maps were selected to produce an informational framework, where the inclusion of 
other sets of attributes won’t be a challenge, but instead an opportunity to evolve 
towards more specific or broad subjects.

At the same time, spatiotemporal analysis between 2001 and 2011 was per-
formed once pattern and trends identification enabled the understanding of environ-
mental phenomena and a better insight of socio-economic behaviors.

4.2  Context of Research

The concentration of people, investment and resources turn cities into hubs of eco-
nomic development, innovation and social interaction (Longo et al. 2005; Polèse 
2010). This environment brought forth the concept of “Smart Cities”, bringing with 
itself a whole new perspective. The term “Smart” means having or showing a quick- 
witted intelligence, which is why in some literature it is possible to find the term 
“intelligent city”, or even “digital city”, the latter being a more concrete way to 
define how it operates.

There are several definitions of “Smart Cities” (Nam and Pardo 2011), but gener-
ally speaking, they all refer to the opportunity to develop strategies to face the chal-
lenges that urban society encounters every day (Roche 2014). The main components 
of a Smart City were concatenated by Nam and Pardo (2011) in technology, institu-
tional and human factors, fetching a large set of attributes, that can be used to trans-
form a city into a smart, sustainable city.

The use of spatial features attached to non-spatial attributes such as economic, 
social and demographic data brings new opportunities to develop methods to under-
stand environmental phenomena and socio-economic behaviors (Bação et  al. 
2005c).

Spatiotemporal data poses serious challenges to analysts. The number of distinct 
places can be too large, the time period under analysis can be too long and/or the 
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attributes depending on space and time might be too numerous. Therefore, human 
analysts require proper support from computational methods able to deal with large, 
multidimensional data (Andrienko et  al. 2008, 2010; Andrienko and Andrienko 
2006).

In that way, it’s necessary to have an observational data source based on valid, 
reliable, timely, useful, accessible and cost-effective information criteria (Howard 
et al. 2011).

Looking for data sources that enable the development of methods to understand 
environmental phenomena and socio-economic behaviors and work as a means of 
construct an informational framework, the censuses have the required features. The 
attributes applied (infrastructure, demography, morphology and economic), as well 
as the granularity (Skupin and Agarwal 2008), cover every need, from national to 
block level, which enables every sort of analysis (Skupin and Hagelman 2005). The 
census enumeration units assemble the collected information from the inhabitants 
from predefined areas. Similar to zone design, the n areal units are aggregated into 
k zones (Bação et al. 2005a).

For legal and confidentiality reasons, the censuses’ specific information cannot 
be publicly released (Nelson and Brewer 2015), and thus the data must be aggre-
gated in a way that is tractable enough to provide the necessary outputs (Openshaw 
1984). Knowing that the resolutions taken affect the reliability of the conclusions 
reached (Fiedler et al. 2006), it is necessary to avoid inferences that could lead to 
ecological fallacies once the data we are dealing with is a really aggregated (Nelson 
and Brewer 2015; Root 2012).

The last sentence refers to the data aggregation that is scale-dependent and 
obtained from smaller areas (scale effect) (Jelinski and Wu 1996). The use of the 
land cover data sources enables the mitigation of the previous stated limitation in 
order to partially tackle the aforementioned MAUP. For that, it is necessary to cross- 
reference both data sets and a lot of research has been performed particularly on 
Areal Interpolation, which is formally defined as the process of transferring spatial 
data from one set of units to another (Bloom et al. 1996; Fisher and Langford 1996). 
Taking into account the biased aggregated data that was presented, an effort was 
done to solve the MAUP, albeit unsuccessfully (Manley 2014).

The census tracts are a well-known data source, which includes all types of land 
use. However, the variables relevant to the present study are the ones that are located 
in the urban tissue. The cross-referencing of variables, particularly population char-
acteristics, infrastructure and land use, has been explored to examine different sub-
jects such as urban planning, public health and transportation (Wier et  al. 2009; 
Waddell 2007).

The use of location grids enables the identification of different land uses at lower 
levels, but no major cross-referencing has been performed with the census tracts to 
reallocate the population at block level. The method that was employed that most 
closely resembles that cross-referencing, which is also the one used in the present 
study, is the one performed by Eicher and Brewer (2001), the Polygon Binary 
Method, where the data was distributed between inhabitable and uninhabitable 
areas at the county scale.
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Looking for the best way to explore data, the clustering techniques show several 
advantages, namely the ability to group similar objects in one cluster and dissimilar 
ones in another. This enables correct labeling and permits acting accordingly in 
relation to their features and characteristics. The objects are automatically assigned 
to a cluster, meaning that every item can be described by its representative. These 
techniques are often scalable and easy to handle, even with different attribute types.

This path takes us to a method that used in intensive computation and applied to 
large data sets, the Kohonen Map or Self-Organizing Map (SOM) (Kohonen 2013), 
which performs vector quantization and projection (Kohonen 2013). The output is a 
two-dimensional grid, easy to visualize and understand. The use of a two- 
dimensional surface mitigates the human inability to comprehend the visualization 
of multidimensional data (Bação et al. 2005c; Koua 2003).

Using this technique, it is possible to perform a clustering operation by aggregat-
ing the items or objects to the nearest neuron or unit as their representative (Jain 
et al. 1999; Mennis and Guo 2009) (Fig. 4.1).

4.2.1  Self-Organizing Map

The SOM is an unsupervised Artificial Neural Network, a clustering technique 
based on the classical vector quantization. The idea is to simulate the brain maps 
where it is possible to ascertain that certain single neural cells in the brain respond 
selectively to some specific sensory stimuli (Kohonen 2013). SOM displays high- 
dimensional data in generally two dimensions, preserving the relations already exis-
tent in the input source, meaning that the components that are the most similar will 
appear near to each other and far away from the ones where it is identified a bigger 

Training pattern

BMU
BMU

Input space-3D grid Output space-2d grid 

Fig. 4.1 SOM training phase. A training pattern is presented to the network and the closest unit is 
selected (Best Matching Unit – BMU). Depending on the leaning rate, this unit moves towards the 
input pattern. Based on the BMU and on the neighborhood function, neighbors are selected on the 
output space. Neighbors are also updated towards the input pattern (Henriques et al. 2012)
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dissimilitude. The SOM algorithm performs a number of iterations in order to rep-
resent the input patterns by reference vectors as best as possible. The movements 
can be visualized as exemplified in Fig. 4.3:

This way, we can ascertain the Best Matching Unit as well as its closest neigh-
bors. The SOM algorithm is described in Kohonen (2013).

4.2.2  SOM Views

The SOM’s visualization is possible through a series of methods like component 
planes, distortion patterns, clustering and U-matrix (Skupin and Agarwal 2008). A 
major set of representations can also be found and used (Vesanto 1999).

The input and output space perspectives are directly connected once the output 
space tries to preserve the topology of the input space (Gorricha and Lobo 2012; 
Kohonen 2013; Bação et al. 2005b).

As referred previously, there are other methods to visualize the SOM.  The 
U-Matrix is a solution that shows the clusters and it is the most used method to 
perform the SOM visualization (Ultsch and Siemon 1990). The U-matrix uses col-
ors in order to identify the neighbor’s distance. Closest units use lighter colors while 
darker tones are used for units farther away (Kohonen 1995).

The other option is to use component planes to view each variable individually. 
Using the same locations units as in the U-matrix, it is possible to analyze the dis-
tribution of each variable based on the clustering result (Hajek et al. 2014).

The results were attained through a combination of this technique with geovisu-
alization (Henriques et al. 2012; Koua 2003).

4.3  Data and Software

“The population and housing census represents one of the pillars for the data collec-
tion on the number and characteristics of the population of a country” (United 
Nations Economic Commission for Europe 2006). Based on the quality of this data 
source, this study focuses on the information extracted from the 2001 and 2011 
censuses. The data was collected from Instituto Nacional de Estatística (INE), 
Portugal’s national statistics institute (censos.ine.pt).

As referred previously, to georeference the inquiries’ datasets, cartography is 
essential to determinate the global position. In order to fulfill this requirement, the 
authors used the Portuguese “Based Geographical Referencing of Information” 
(BGRI) (mapas.ine.pt). The statistical territorial unit used is the Subsection Stats, 
which represent the smallest area unit, increasing the available study resolution.

The main attributes used in this study are Building, Family Accommodation, 
Classic Family and Resident Individual. From these, the censuses provided us with 
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an enormous subset of variables, obtained directly from the census or by 
processing.

The dataset refers to the Lisbon municipality and includes 3623 Enumeration 
Districts and 122 original variables in 2011 that are able to characterize social, 
demographic and economic stats in the applied areas. Related to 2001, there are 
4390 Enumeration Districts and 99 original variables. As can be perceived, the basis 
of the census has changed as a result of spatiotemporal mutations over the selected 
areas. In order to accomplish consistent results, the influence of different population 
and housing sizes was reduced, and a ratio that increases analysis effectiveness and 
reduces description clutter was also included. Implementing relations between vari-
ables is a part of good scientific practice (Fink 2009), and so is the ability to avoid 
the high dimensionality curse (Donoho 2000). The vector dimension was reduced to 
the bare minimum of attributes that could be used to explain the results and to 
decrease the occurrence of spurious relations.

In order to better understand the city, we must be able to properly map the data 
extracted from the census. The land cover information is extremely useful in these 
cases. There are two main available datasets, the CORINE Land Cover and the 
Portuguese COS2007. The source used in the present study was the COS2007 level 
2, since it has a smaller mapping unit (1 ha vs 25 ha) making for a more precise 
reading of the maps.

In order to better allocate the population and the buildings, the target areas are 
the ones, which represent urban tissue. Based on recent years, the Lisbon urban tis-
sue didn’t suffer significant changes from 2007 to 2011, when the census was per-
formed. However, the present research process always depicts the relation between 
the BGRI2011 and COS2007.

We used the GeoSOM suite tool, which allows for a number of operations such 
as training self-organizing maps that apply the standard SOM algorithm and pro-
duce several representations of the input and output data. This tool is implemented 
in Matlab and uses the public domain SOM toolbox (Henriques et al. 2012).

4.4  Methodology

As referred previously, the study area is the Lisbon municipality data, which was 
extracted from public institutional websites.

As explained, the census subsections have changed from 2001 to 2011, in order 
to improve the quality of the information obtained from the inquiry. One of the 
goals of this study is to address the mutations that occurred Lisbon municipality 
(whose borders haven’t changed) during that decade.

First, we must merge the COS2007 with the BGRI to obtain a real distribution of 
the population and buildings (urban fabric), excluding all the other areas. The pro-
cess of getting a final dataset to be used as input in the SOM algorithm is obtained 
through a sequential process of intersection among BGRI and COS2007 on a N2 
and a 50 × 50 m grid resulting in what can be seen in Fig. 4.2:
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The distribution of the attribute values among the generated pixels was per-
formed recurring to proportional areas. Below, it is possible to see how this process 
is enacted.

Figure 4.3 shows the process involved in fitting the BGRI relative areas to a 
single pixel. For example, imagine we use the individual residents to create a new 
distribution on the final grid. Figure 4.5a shows a subsection BGRI polygon (SBP) 

Fig. 4.2 Grid result after intersection process

Fig. 4.3 Intersection methodology process
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with the Area (AT) and number of Individuals (IT). Crossing the SBP and the urban 
fabric, as shown in Fig. 4.5b (from COS2007N2), results in what is presented in 
Fig. 4.5c. A green area (AY), representing a park (no population allocated), is cre-
ated along with two new populated areas (AX and AZ).

The areas’ percentages are as follow:

 A A AX Y Z= = =25 25 50%; %; %  

This means that the new considered area is:

 Area A A A Anew X Z T T= + = ´ + ´0 25 0 50. .  

Since the EDs from 2001 and 2011 don’t have the same spatial delimitation, we 
created a grid over the urban fabric to map the changes occurred in that period 
(Fig. 4.5d).

Now, we have a new Area that will be distributed by the pixels. Each pixel will 
include the areas of one or more SBPs. In this case, the selected Pixel includes two 
Areas (AX,1 and AZ,1) that represent the proportion inside the new SBP pixel.

Let’s assume that the new SBP area’s percentages are as follows:

• AX , % .1 5 0 05= => ´Areanew  
• AZ newArea, % .1 20 0 2= => ´  

Then the population allocated to this red Pixel is the following:
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The issues that rise from this data transformation are already known as 
MAUP. Using the example provided again, the population would be better allocated 
in 75% of the total area than in 100%, although the final distribution by each pixel 
assumes that the attribute values spreading is uniform.

4.4.1  SOM

The resulting shapefile, with the attributes previously described in the Data and 
Software section, was imported to the Geo-SOM Suite, where the configuration 
algorithm processing take place. The parameters were chosen with the intent to use 
the best characteristics and features of the Kohonen map that fit the object of our 
study. Deciding on the map size was ultimately based on the results obtained in the 
study performed by Bação et al. (2005a). Selecting a wider map allows for a better 
distribution of units per neurons and increases the interpretability of the grid dis-
tances in order to identify the clusters present. Nevertheless, an extremely large map 
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is not without its drawbacks, since what we gain in reliability we lose in 
interpretability.

Based on these premises, a grid of 20 × 15 was used, representing around 10% of 
the total analyzed population (of subsections). The final network architecture that 
run on SOM was hexagonal based on the advantages referred by Kohonen (1995). 
The input data was standardized and the learning process occurred under a Gaussian 
neighborhood function. The resulting U-Matrix has a large number of neurons, and 
therefore, makes it extremely difficult to understand which ones are the general 
characteristics applied to each cluster. The interpretability problem was solved by 
the use of hierarchical clustering (HC), a known clustering technique, in the process 
flow, in order to define the final clusters.

The hierarchical clustering is depicted in trees or dendrograms, nesting, but not 
deterministic partitions, once no random initial conditions are given, except for the 
method itself. The hierarchical clustering method selected was Ward. This method 
measures the distance between two clusters (or units), searching for the increasing 
sum of squares, also known as The Merging Cost. The clustering technique applied 
had been studied by the academia for a while (Jain et  al. 1999; Steinbach et  al. 
2000). The demonstrated advantages fit our purpose, resulting in a more reliable 
way to aggregate the units obtained from the neural network. Finally, through an 
average of all the corresponding input grid elements, we are given the resulting 
cluster, which is then mapped and used to perform spatial-temporal comparisons.

In order to perform an accurate comparison between the two datasets (2001 and 
2011), we’ve classified the 2001 elements based on the resulting hierarchical clus-
ters obtained from the 2011 study process.

The classification was performed through an Euclidean distance calculation 
among the 2001 elements and the obtained units (neurons) from the 2011 dataset. In 
a way, it is possible to say that the 2001 element looks for the Best Matching Unit 
without changing the network. The remaining parameters like location update and 
learning rate are part of the initial conditions set by the analyst that were tuned dur-
ing the iterative process.

4.5  Results

The resulting U-Matrix (20 × 15) (Fig. 4.5b) reveals the existence of some clusters 
with different sizes. It was also possible to locate the Best Matching Units with the 
elements present in the Lisbon municipality urban selection map. For example, after 
the selection of six units (red hexagons Fig. 4.4a), they also appear selected in red 
on the map (Fig. 4.4b).

However, the 300 units obtained with the SOM represent a wide variety of clus-
ters. Hierarchical clustering was performed as merging technique to obtain the 
higher cluster level. The decision to cut at the “height = 11” parameter was based on 
the ability to perform enough clustering to get the most interpretability without los-
ing the “special” differentiating characteristics each cluster should have. The result-
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ing U-Matrix (Fig. 4.4d), with the new six grouped clusters, is presented with the 
same matching colors/numbers in both Fig. 4.4c, d.

The centroid was calculated for every HC in order to understand which cluster 
belongs to which element (Table 4.1).

The choropleth map (Fig. 4.5a) shows the 2011 hierarchical clustering distribu-
tion display how the population is organized and structured in the Lisbon munici-
pality. The reason why we apply hierarchical clustering over the BMUs instead of 
the items themselves is because HC doesn’t produce satisfactory results in big data-
sets and the final dendrogram isn’t easy to understand due to the huge amount of 
height links (Guha et al. 1998). The clusters geolocation is heterogeneous, meaning 

Fig. 4.4 (a) Map output view; (b) SOM classical U-matrix; (c) cluster dendrogram; (d) SOM HC 
U-matrix

Fig. 4.5 (a) SOM hierarchical mapping; (b) comparison of 2001 and 2011 choropleths
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that urban fabric doesn’t follow a precise pattern when growing, especially when 
compared with the non-geographic features.

Figure 4.5b aims to show how the city mutated over the decade (2001–2011) and 
shows that in fact, the historic city center is getting clear improvement spots, repre-
sented in white.

4.6  Conclusions

In this paper, we focus our efforts in analyzing an available data resource, which 
possesses high quality standards, the census. It was possible to link the data mining 
techniques with the Smart Cities concept.

The census data revealed itself an excellent source of information to assess the 
environmental phenomena and socio-economic behaviors that depict the city. We 
used exploratory spatial data analysis and clustering techniques that successfully 
gave a deeper insight into the Lisbon municipality.

Table 4.1 SOM hierarchical cluster description

Cluster (name/number) Description

Upper class TB – 1 New, tall buildings
Largely occupied by the owners themselves (i.e. not rented)
Highly educated population with a low unemployment rate
Population usually composed of young, active people

Upper class SB – 3 Older Buildings, mainly occupied by the owners
Families tend to be larger (more than 4 members)
Highly educated population

Middle class TB – 2 Older, taller Buildings
Families tend to be smaller
Population tends to be highly educated, but also older

Middle class SB – 5 Older, smaller Buildings
Families tend to be smaller
Population tends to have an average education
Older population (low density)

Middle lower class 
SB – 6

Older, smaller Buildings, with a high rent rate
Population tend to have a lower education level with a high 
unemployment rate
Average population age (low density)

Lower class – 4 High density of population and accommodations in newer buildings, 
with the highest rent rate
Large families
Lower education level with the highest unemployment rate
Youngest population of all

The cluster mapping was performed for both the 2001 and 2011 datasets
SB Short Buildings (less than four floors), TB Tall Buildings (five or more floors)

F.J.F.L. Bação et al.
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The MAUP problem was addressed and a new methodology that mitigates errors 
in population and building assignment was presented. This new methodology 
crosses the land cover use data with the census tracts to increase the reliability of the 
areal aggregated data.

The use of Unsupervised Neural Networks and SOM allowed for a broader anal-
ysis of the change of the spatial situation over time by implementing a new geo-
graphic base that tackled the statistical territorial unit mutation.

The spatiotemporal change (2001–2011) was pictured through SOM and a new 
informational framework, one able to receive additional data from different sources, 
was created. This portrait of the population and residence infrastructure was 
achieved through map grids. However, to tackle the human inability to deal with 
large amounts of data, we executed a hierarchical clustering and generalized the 
applied areas effectively.

Looking to particular areas in the paper, the historic city center and Parque das 
Nações, it was possible to identify patterns and trends. Parque das Nações assumes 
its position as an upper class area. On the other hand, the historic city center shows 
an increased gentrification, since a change from lower level clusters to higher ones 
is clearly identifiable.
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Chapter 5      
The Application of the SPAWNN Toolkit 
to the Socioeconomic Analysis of Chicago, 
Illinois                                      

Julian Hagenauer and Marco Helbich

Abstract The SPAWNN toolbox is an innovative toolkit for spatial analysis with 
self-organizing neural networks. It implements several self-organizing neural net-
works and so-called spatial context models which can be combined with the net-
works to incorporate spatial dependence. The SPAWNN toolkit interactively links 
the networks and data visualizations in an intuitive manner to support a better 
understanding of data and implements clustering algorithms for identifying clusters 
in the trained networks. These properties make it particularly useful for analyzing 
large amounts of complex and high-dimensional data. This chapter investigates the 
application of the SPAWNN toolkit to the socioeconomic analysis of the city of 
Chicago, Illinois. For this purpose, 2010 Census data, consisting of numerous indi-
cators that describe the socioeconomic status of the US population in detail, is used. 
The results highlight the features of the toolkit and reveal important insights into the 
socioeconomic characteristics of the US.
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5.1  Introduction

Technological advances have facilitated acquiring, sharing, processing, and storing 
spatial information. As a result, we are confronted with a massive increase of spatial 
data (Miller and Goodchild 2014). This data typically contains hidden and unex-
pected information, which can hardly be explored using traditional methods from 
the field of statistics, since these typically require hypothesis testing and are not 
amenable to handle large amounts of data (Miller and Han 2009). To address these 
issues, spatial data mining emerged as a new field, borrowing mainly methods from 
the fields of artificial intelligence, machine learning, and spatial database systems, 
to extract information and to ultimately transform it into new and potentially useful 
knowledge (Yuan et al. 2004).

One of the most important methods of spatial data mining is clustering. It orga-
nizes observations into clusters such that the similarity within a cluster is maxi-
mized while the similarity between different clusters is minimized (Jain 2010). 
Such an organization represents structural organization of the data, which alleviates 
data exploration of the data. These tasks are often done by a human analyst. Since 
the humans’ ability to perceive and understand visual patterns exceeds the capabili-
ties of computational algorithms (Keim 2002; Ware 2012), it is common practice to 
combine clustering methods with appropriate visualizations and interactive means 
in a combined toolkit.

Spatial clustering is different from common clustering in that it takes spatial 
dependence into account. Spatial dependence means that observations that are spa-
tially close to each other also tend to have similar characteristics (Sui 2004). Without 
spatial dependence, the variation of phenomena would be independent of location, 
and thus, the notion of a region would be less meaningful (Goodchild 1986). Mostly 
it is necessary to take spatial dependence explicitly into account when clustering 
spatial data, because the available data is not sufficient to accurately model the spa-
tial varying phenomena. Consequently, neglecting spatial dependence has a high 
risk of resulting in incorrect clusters, leading to a limited understanding of the spa-
tial patterns (Openshaw 1999).

Because of the importance of clustering for data analysis, many different cluster-
ing algorithms for spatial and non-spatial data have been developed in the past (see, 
e.g., Guo 2008; Jain 2010; Parimala et al. 2011). However, only very few neural 
network-based clustering approaches that explicitly take spatial dependence into 
account have been developed. The GeoSOM (Bação et  al. 2005) and contextual 
neural gas (CNG) (Hagenauer and Helbich 2013) represent to notable approaches. 
Both are adaptations of basic self-organizing network algorithms which utilize the 
spatial configuration of the neurons to account for spatial dependence. However, 
both approaches are purely computational; a human analyst is still inevitable to 
interpret the resulting clusters, taking domain-specific knowledge into consider-
ation, and to adjust the parameter settings if needed. To facilitate these tasks, it is 
necessary to integrate different self-organizing neural network-based clustering 
methods, where each comes with its unique advantages, in an interactive toolkit 
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with other computational, visual, and geographic methods. Such toolkit should be 
intuitive and easy to use so that its usage is promoted across different spatial 
disciplines.

To address the lack of such toolkit, the SPAWNN-toolkit (Hagenauer and Helbich 
2016) has been developed. It implements the self-organizing map (SOM) (Kohonen 
1982, 2001) and neural gas (NG) (Martinetz and Schulten 1991; Martinetz et al. 
1993) and allows these self-organizing networks to be combined with either the 
CNG or the GeoSOM approach, or with alternative spatial context models, in order 
to account for spatial dependence. Furthermore, the toolkit provides different visu-
alizations and links between the neurons and a geographic map, which permits the 
analyst to interactively select neurons or observations and to visually inspect the 
mapping between them in order to explore the results of the trained networks in 
detail, and implements a set of powerful clustering algorithms for post-processing 
the network models. This permits the analyst to interactively select neurons or 
observations and to visually inspect the mapping between them for exploring the 
results of the trained networks in detail.

These properties make it particularly useful for analyzing large amounts of com-
plex and high-dimensional data. This chapter investigates the application of the 
SPAWNN toolkit to the socioeconomic analysis of the city of Chicago, Illinois, 
using US census 2010 data. This data consists of a large amount of observations and 
numerous complex indicators that describe the socioeconomic status of the US pop-
ulation in detail. The results of the present analysis bring out the useful features of 
the toolkit and also give important insights into the socioeconomic characteristics of 
the city of Chicago.

The paper is structured as follows: Sect. 5.2 presents the methods that are used in 
this study and which are all part of the SPAWNN toolkit. In Sect. 5.3 the application 
of these methods to the socioeconomic analysis of Chicago, Illinois, is investigated. 
Finally, Sect. 5.4 concludes the paper and discusses future work.

5.2  Methods

This chapter utilizes the SPAWNN toolkit for analysis. The toolkit consists of 
numerous components, which can be useful for different applications (for a detailed 
description of the toolkit, see Hagenauer and Helbich (2016)). This section describes 
the main methods and algorithms that were used for the analysis of the present 
chapter.

5 The Application of the SPAWNN Toolkit to the Socioeconomic Analysis…
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5.2.1  Self-Organizing Networks

Self-organizing neural networks represent a class of artificial neural networks 
(ANNs) that are trained in an unsupervised manner. The SPAWNN toolkit imple-
ments two basic self-organizing networks, which are both used in this chapter 
because of their complementary useful properties (see Hagenauer and Helbich 
2016). The first network is the SOM (Kohonen 1982, 2001). The SOM consists of 
an arbitrary number of neurons that are connected to adjacent neurons by a neigh-
borhood relation that defines the topology of the map. While in principle the dimen-
sion of a SOM is arbitrary, two-dimensional SOMs are more commonly used in 
practice because of their ease of visualization. Each of the SOM’s neurons is associ-
ated with a prototype vector that is of the same dimension as the input space. During 
the training, input vectors are presented to the SOM, and the neuron with the small-
est distance to the input vector, referred to as the best matching unit (BMU), is 
identified. The prototype vector of the BMU and the prototype vectors within a 
certain neighborhood on the map are then moved in the direction of the input vector. 
The magnitude of the movements depends on the distance of the neurons to the 
BMU on the map and on the actual learning rate. Both the size of the neighborhood 
and the learning rate are monotonically decreased during the learning. After the 
training, the SOM represents a low-dimensional map of the input space. Each neu-
ron of the SOM represents some portion of the input space and distance relation-
ships of the input space are mostly preserved.

The second network is NG (Martinetz and Schulten 1991). While NG is inspired 
by the SOM, it has some significant differences. Similar to the SOM, it consists of 
an arbitrary number of neurons. However, in contrast to the SOM, the NG’s neu-
rons are not subjected to any topological restrictions, which typically results in a 
superior quantitative performance compared to the SOM (Martinetz et  al. 1993; 
Cottrell et al. 2006). Associated with each of the NG’s neurons is a prototype vector 
of the same dimension as the input space. During the training, input vectors are 
presented to the NG and each neuron is moved in the input vector’s direction. The 
magnitude of the movement depends on the neurons’ ranking order with respect to 
the distance to the input vector, the learning rate, and the neighborhood range. The 
neighborhood range and learning rate are typically set to decrease with training 
time. After a sufficient number of training steps, the prototype vectors typically 
approximate the probability density function of the input space with near-minimum 
quantization error.

In contrast to the SOM, NG does not have a predefined topology, which reflect 
the similarity relationships between the neurons (Martinetz and Schulten 1991). 
A topology is particularly useful because it can reveal valuable information 
about the underlying data. In order to learn a topology, competitive Hebbian 
learning (Martinetz and Schulten 1991; Martinetz 1993) can be applied to NG in 
a post- processing step as follows: For each input vector, the two closest neurons 
are identified and a connection between these two neurons is added to the total 
set of connections, whereas closeness is usually measured by Euclidean distance. 
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When all input vectors have been processed, the resulting set of connections 
represents the topology. The number of connections that have been added 
between two neurons can be used to indicate the strength of their relationship 
(Hagenauer 2014).

5.2.2  Spatial Context Models

Hagenauer and Helbich (2016) introduced the concept of the spatial context model. 
A spatial context model describes the relationships between spatial observations 
and the neurons of a self-organizing neural network during the training or when 
applying the trained network to data. They have previously been considered as a 
integral part of a self-organizing network (see, e.g., Bação et al. 2005; Hagenauer 
and Helbich 2013). However, it is reasonable to distinguish between self-organizing 
networks and spatial context for the following reasons: First, such a distinction 
maintains the modularity of the toolkit. This is desired because it facilitates reuse of 
existing code, the implementation of new features, and its further extension. Second, 
and more important, it allows to combine different self-organizing networks with 
different spatial context models and thus increases the analytical capabilities of the 
toolkit (Hagenauer and Helbich 2016).

While  the SPAWNN toolkit implements a variety of different spatial context 
models, this study uses the GeoSOM (Bação et al. 2005) and Contextual Neural Gas 
(CNG) (Hagenauer and Helbich 2013). A particular advantage of both is that they 
can produce accurate mappings and do not require to scale the spatial dimensions of 
the input data to match the feature space dimensions (Hagenauer and Helbich 2016).

The GeoSOM (Bação et al. 2005) is a variant of the SOM algorithm that adapts 
the idea of Kangas (1992) for quantizing, clustering, and visualizing spatial data. 
The main difference with the basic SOM is that the GeoSOM uses a two-step pro-
cedure to determine the BMU. In the first step, the neuron that is spatially closest to 
the input vector is identified. In the second step, the closest neuron to the input vec-
tor, but within a fixed radius of this neuron (in terms of map distance), is identified. 
This neuron is then designated as the final BMU. The size of the radius affects the 
strength of spatial dependence that is incorporated into the learning process. The 
smaller the radius, the more the final ordering of the map is determined by spatial 
closeness.

CNG (Hagenauer and Helbich 2013) is a vector quantization and clustering algo-
rithm that combines the concepts of the GeoSOM with the NG algorithm. Analogous 
to the GeoSOM, CNG enforces spatial proximity between the observations and neu-
rons by utilizing the spatial arrangement of the neurons. However, since its neurons 
are not topologically ordered in a map, CNG applies a two-step procedure for deter-
mining a rank ordering: In the first step, the neurons are ordered with respect to 
spatial closeness. In the second step, the first k neurons of the resulting spatial order-
ing are reordered within their ranks according to input vector similarity. The param-
eter k controls the degree of spatial dependence that is incorporated in the adaptation 
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process. The smaller the parameter k, the more is the adaptation of neurons deter-
mined by spatial closeness.

5.2.3  Network Clustering

The SPAWNN toolkit provides several powerful clustering algorithms as well as 
means for manually outlining and visualizing clusters in the trained networks. The 
advantage of using clustering algorithms is that the results depend less on the sub-
jective decisions of an analyst and are more convenient to obtain for large or com-
plex networks. Because contiguity constrained clustering has already been shown to 
be effective for clustering self-organizing neural networks (see e.g. Murtagh 1995), 
this algorithm is also used in this chapter. The algorithm works as follows: At the 
beginning each neuron represents one cluster. Than, two clusters are determined 
which have at least one neighboring neurons and maximize a certain optimization 
criterion. These clusters are then merged and the procedure is repeated until the 
number of desired clusters is reached. While many different criterion for hierarchi-
cal clustering exist, this study uses Ward’s criterion (Ward 1963). This criterion 
evaluates the smallest increase of sum of squares that results from a merge of two 
clusters.

5.3  Case Study

This sections investigates the application of the SPAWNN toolkit to the analysis of 
the socio economic characteristics of the city of Chicago, Illinois. The analysis con-
sists of several steps, namely an outlier analysis, a correlation analysis, and a cluster 
analysis.

Chicago is situated in the Midwestern United states, in the northeast of Illinois 
on the southwestern shores of the Lake Michigan and consists of an area of approxi-
mately 606 km2. The city is currently the third largest city in the United States with 
an estimated population of 2.7 million people in 2012. It is also the principal city 
and cultural center of the Chicago Metropolitan Area with an estimated population 
of 9.9 million people. Two thirds of the cities population are members of minority 
groups and segregation is on an exceptional high level (Kaufman 1998). 
Consequently, it is expected that the analysis will reveal the socioeconomic charac-
teristics of the city strongly vary across space and that the segregation of minority 
groups will emerge as distinct clusters.

The case study uses freely available tract-level data extracted from the 2010 US 
Census about ethnicity, age, housing, and households in Chicago. While census 
tracts are mostly homogeneous with respect to population characteristics, economic 
status, and living conditions, there are census tracts which exhibit pronounced eth-
nic heterogeneity below the census tract level. These tracts do not affect the 
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 applicability of the toolkit, but they must be considered when interpreting the 
results. The following eight variables are used: percentage of white population, per-
centage of African Americans, percentage of Asians, percentage of Hispanics, per-
centage of renter-occupied houses, percentage of population younger than 25 years 
old, percentage of population older than 64 years and the average size of house-
holds. Tracts without population are removed from the data set beforehand, and all 
attributes are standardized to zero mean and unit variance to make them compara-
ble. The study site consists of 797 census tracts in total. While the SPAWNN toolkit 
can be applied to data sets of arbitrary size, the rather small number of census tracts 
in this case study facilitates the visualization of the results.

In the following, a GeoSOM and CNG are trained with the following settings. 
The GeoSOM consists of 12  ×  8 neurons and the CNG consists of 96 neurons. 
Preliminary tests have shown that these numbers represent a fair compromise 
between computational effort for training the networks and quantization perfor-
mance. Both networks are trained for 500,000 iterations. Moreover, the neighbor-
hood of the GeoSOM is chosen Gaussian and its radius is at the beginning set to 10 
and approaches 1 at the end of the training. The learning rate of the GeoSOM 
decreases linear from 1 to 0.01. The neighborhood range and learning rate of CNG 
are chosen to decrease linear with training time. Starting with 48, the neighborhood 
range reaches 0.01 at the end of the training. The learning rate starts with 0.5 and 
also ends with 0.01.

A critical role plays the choice of the parameters that determine the strength of 
spatial autocorrelation that is incorporated in the mapping, the radius of the 
GeoSOM and k of NG. The radius of the GeoSOM is set to 4, while k of the CNG 
is set to 35. These settings provide a fair compromise between quantization perfor-
mance of the networks and incorporation of spatial dependence. Moreover, the ratio 
of quantization performance and spatial coherence, measured as the quantization 
error of the spatial coordinates, is for both settings approximately the same.

5.3.1  Outlier Analysis

First, a GeoSOM and CNG are trained for outlier detection. The identification of 
outliers is a crucial task, because outliers distort the distribution of the data and thus 
can significantly affect the results of subsequent analysis.

In the distance matrix representation of the resulting GeoSOM (Fig. 5.1), outliers 
can be identified by neurons that have high median distance to neighboring values 
and are, given that the size of the map is sufficiently large, located at the border of 
the matrix (Muñoz and Muruzábal 1998). In total, the GeoSOM identified 25 census 
tracts as outliers. In the distance-based representation of the resulting CNG 
(Fig. 5.2), outliers can be identified by having also a high median distance to neigh-
boring neurons but also by being sparsely connected to other neurons (Hagenauer 
and Helbich 2016). In total, the CNG identified three outliers, one in the north and 
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two close to the shore in the west of the city. The northern outlier is mapped by a 
different neuron than the other two neurons.

Comparing the identified outliers (outlined in red) in both representations shows 
that they mostly do not correspond. Only one census tract in the west has been iden-
tified by both networks as an outlier. A reason for the differences might be that 
selecting a median distance threshold is a rather subjective task. This matter is typi-
cally less crucial for CNG, because the learned topology provides an additional 

Fig. 5.2 Distance-based representation of the CNG (a) and the geographic map (b). Identified 
outliers are outlined in red

Fig. 5.1 Distance matrix (a) and cartographic map (b) of the GeoSOM. Identified outliers are 
outlined in red
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guidance for the identification of outliers (Hagenauer and Helbich 2016). Moreover, 
the generally better quantization performance of CNG (see Hagenauer and Helbich 
2013) permits a more accurate representation of the data. Indeed, close inspection 
of the outliers identified by the GeoSOM does not reveal a common pattern that 
helps to understand why the GeoSOM identified these particular tracts as outliers. 
Many of the outliers of the GeoSOM share similarities and can barely considered 
outliers. Inspecting the outliers of the CNG in detail reveals that the northern tract 
is considered an outlier because of its very high rate of old population. None of the 
tracts in its neighborhood has comparable age characteristics. Similarly, the two 
tracts in the west are considered outliers by CNG, because their rates of young and 
white population exceed the ones of every other tract in their neighborhoods. Thus, 
it can be concluded from this section that the results of the CNG are more consistent 
with the actual data than the ones of the GeoSOM and that the CNG is more appro-
priate for identifying outliers than the GeoSOM.

5.3.2  Correlation Analysis

As a second analysis step, correlation analysis is performed which identifies and 
evaluates the associations between different attributes of the data. For this purpose, 
the identified outliers are removed from the data set first and a GeoSOM and a CNG 
are trained.

A common approach for identifying correlations in the data is to compare com-
ponent planes (e.g., Vesanto and Ahola 1999; Barreto and Pérez-Uribe 2007). 
Correlations become apparent by similar (positive correlation) or complementary 
(negative correlation) patterns in identical areas of the network.

This approach for identifying correlations has several advantages over standard 
correlation analyses: First, the SOM as well as the NG provide a nonlinear map of 
the data which allows the identification of nonlinear correlations. Second, by com-
paring multiple component planes multivariate correlations become apparent. Third, 
local correlations can be identified by partially matching patterns.

Figure 5.3 exemplarily depicts the GeoSOM component planes for the rates of 
African Americans and white population. The component planes reveal comple-
mentary patterns, indicating a strong negative correlation and therefore high segre-
gation between the African American and white populations. Furthermore, it can be 
seen that the patterns for both rates span the whole map. Since the GeoSOM is 
spatially explicit, this indicates that the segregation between the African American 
and white population is not restricted to local neighborhoods, but rather is present 
for most parts of the city.

Similar, Fig. 5.4 shows the neurons of the CNG, which are also colored accord-
ing to the percentage of African Americans (a) and the percentage of white popula-
tion (b). Even though the complementary patterns are also present, these patterns 
are more difficult to perceive due to the seemingly unordered arrangement of the 
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neurons and overlapping topology of the network. In fact, it is hardly feasible to 
arrange the CNG’s neurons on a two-dimensional plane while preserving the neu-
rons’ topological relationships. This problem typically becomes even more severe 
as the dimension of the input space increases. Thus, it is hard to perceive the dis-
tance relationships of the neurons from the network topology alone.

Figure 5.3 exemplarily depicts the GeoSOM component planes for the rates of 
Hispanics and average household size. The component planes reveal more complex 
relationships between these variables. The similar dark coloring in the upper left 

Fig. 5.4 Neurons of the CNG, colored according to the rates of African Americans (a) and white 
population (b)

Fig. 5.3 GeoSOM component planes for the rates of African Americans (a) and white population 
(b)

J. Hagenauer and M. Helbich



85

and lower right of both component lanes indicates clearly that for some areas of the 
city high rates of Hispanic population correlate strongly with large average house-
hold sizes. However, the coloring of the planes is rather different in the middle left 
of the component planes. This indicates, that large average household sizes are not 
exclusively related to high rates of Hispanic population.

Analogously, Fig. 5.4 shows the neurons of the CNG, which are also colored 
according to the percentage of Hispanics (a) and the average household size (b). It 
can be clearly seen that in this representation high rates of Hispanic population 

Fig. 5.6 Neurons of the CNG, colored according to the rates of Hispanics (a) and average house-
hold size (b)

Fig. 5.5 GeoSOM component planes for the rates of Hispanics (a) and average household 
size (b)
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correlate strongly with large household sizes. Besides that, further patterns that 
reveal further insights into the relationships of these variables are again hardly 
perceivable.

To conclude, both networks show a high segregation of Chicago and the correla-
tion between high rates of Hispanic population and large average household sizes. 
However, the GeoSOM provides a more clear representation of the relationships of 
the variables than the CNG and is thus more appropriate for visually analyzing 
correlations.

5.3.3  Cluster Analysis

As a last step showing the application of the SPAWNN toolkit to the socioeconomic 
analysis of Chicago, the trained GeoSOM and CNG from the preceding section are 
used to detect spatially contiguous clusters within the study area. The applied clus-
tering algorithm is contiguity-constrained hierarchical clustering using Ward’s cri-
terion. Figure 5.7 maps the results for the CNG, while the results for the GeoSOM 
are shown in Fig. 5.8. In addition, to facilitate interpretation of the results boxplots 
are depicted in Fig. 5.9 for CNG and Fig. 5.10 for the GeoSOM.

Both algorithms detected very different clusters, even though there are also some 
notable similarities. For example, cluster 3 of the GeoSOM matches cluster 3 and 7 
of CNG, while the outline of cluster 4 of CNG is similar to cluster 4 and 6 of the 
GeoSOM. However, no clusters of GeoSOM and CNG are perfectly identical.

In general, the high segregation present throughout the city facilitates the inter-
pretation of the clustering results. Cluster 8 of the GeoSOM, for instance, outlines 
accurately the census tracts with the highest rates of Asian population. However, the 
GeoSOM does not distinguish between tracts where Asians represent a majority and 

Fig. 5.7 Clustering results for CNG
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minority of the population. By contrast, CNG does not outline all census tracts with 
high rates of Asian population, in particular not the ones in the north of the city, but 
it clearly identifies the census tracts where Asians represent the majority of the 
population (cluster 6 and 8). Even though Cluster 6 and 8 are located close to each 
other, CNG distinguished between them. The reason for this is that the rate of Asian 
population and the proportion of people older than 65 is higher for cluster 6. In fact, 
cluster 6 mainly covers the Chinatown neighborhood of Chicago, which is the old-
est persisting settlement of Chinese in the city (Santos et al. 2008).

African Americans represent the largest minority in Chicago and its segregation 
is particularly strong (Kaufman 1998). This characteristic is clearly visible for the 
clustering of CNG, where cluster 1 almost exclusively consists of census tracts 
where African Americans represent the majority of population. In the clustering of 
the  GeoSOM, predominantly African American census tracts are mainly repre-
sented by two different clusters, cluster 5 and 7 in the south of the city. Such a dis-
tinction between clusters can be meaningful, because the clusters represent different 
regions of the city, which might have undergone different social and economic 
developments in the past. In addition, cluster 5 also consists of some tracts with 
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significant rates of African Population. Thus, the high segregation of  the African 
American population is more apparent in the clustering of the CNG.

The second largest minority of the city represent Hispanics. Similar to the rates 
of African Americans, CNG outlines the predominantly Hispanic census tracts by a 
single cluster (cluster 4), while the GeoSOM basically represents these tracts by two 
separate clusters (cluster 4 and 5). However, some tracts of cluster 5 of the GeoSOM, 
particularly in the southwest of the city, have low rates of Hispanic population. 
Thus, the Hispanic population is more faithfully represented by the clustering of the 
CNG.

Cluster 3 of the GeoSOM is characterized by a high proportion of white and old 
population. It is very similar to cluster 3 of CNG, but the latter assigns the census 
tracts on the east coast to a separate cluster (cluster 7). The reason for this is that the 
rate of renter occupied houses is much higher for these tracts than for the rest of the 
tracts of cluster 3. This reflects the actual geography of the city: While the northeast 
of the city is characterized by middle class family homes, the tracts of cluster 3 of 
CNG are characterized by many large apartment buildings. Therefore, the clustering 
of the CNG is more reasonable than the on of the GeoSOM.

In conclusion, while the GeoSOM is particularly useful for relating clusters to 
component planes in order to inspect data relationships, the clustering of the CNG 
is geographically more accurate

5.4  Conclusion

This chapter presented the application of the SPAWNN toolkit, a new and powerful 
exploratory toolkit for spatial analysis and clustering, for the analysis of the socio-
economic characteristics of the city of Chicago, Illinois, using US census data. The 
results showed the complementary advantages of CNG and GeoSOM and how these 
networks can be used to get a better understanding of the data. In addition, they 
pointed out that Chicago is faced with high segregation across the cityscape and 
challenged by socioeconomic diversity.
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Chapter 6
The Evolution of the Land Development 
Industry: An Agent-Based Simulation Model

Jonatan Almagor, Itzhak Benenson, and Daniel Czamanski

Abstract Urban spatial structure is shaped by decisions of land developers that 
both react to and influence urban plans. The paper presents an agent-based model of 
the evolution of the land development industry in a city regulated by a land-use plan 
that is modified from time to time by the planner. At the heart of the model are 
investment decisions of developers that generate profits and accumulated assets, 
which in turn affect investment decisions. In the model, the economic state of the 
developers is initially equal. Over time, certain developers accumulate wealth that 
enables them to make larger investments and take higher risks by investing in low 
priced lands that are not zoned for urban development. These risky investments are 
motivated by the prospect of obtaining land-use variance. We demonstrate that 
when the land market favors large developers who are more likely to obtain con-
struction permits from the planner, a positive feedback effect is created, which leads 
to an oligopolistic market, controlled by a few large developers. We also demon-
strate that the interaction between risk-taking developers and a flexible planner who 
approves incremental amendments and periodic updates to the land-use plan may 
result in bifurcations of the city structure, which leads to a polycentric city.
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6.1  Introduction

There is limited literature concerned with the land development industry. The exist-
ing literature suggests that there is a large variance in size distribution of developers. 
Somerville (1999) finds a rich variation in the market structure of developers across 
metropolitan areas. He demonstrates that the mean size of developer firms is larger 
in the more active housing markets, where more undeveloped land is available and 
where the probability of carrying out land assembly is lower. He concludes that the 
systematic variation in developer firm size is consistent with treating homebuilding 
as an imperfectly competitive industry. Our study is motivated by this stylized regu-
larity. We seek to understand the repercussions of investment behavior of land 
developers on the industrial organization of the industry and its impact on urban 
spatial structure. We examine the claim that under particular land-use plan dynam-
ics and market conditions, rent seeking by developers leads to an imperfectly com-
petitive industrial structure and specific patterns of spatial evolution of cities.

Regulation is an important factor affecting the land development industry. Land- 
use plans restrict land supply, and therefore owners of residential land sites acquire 
a degree of monopoly power (Ball 2003). This may lead to the emergence of larger 
developers who exploit the opportunity to control supply and reduce competition in 
both land and housing markets. Buzzelli (2001) analyzes the evolving firm size 
structure of developers in North America based on census data. He finds no long- 
term trend toward rising market concentration that is characterized by a few large 
development firms. Rather the industry passes through cycles in the levels of con-
centration, and even when concentration peaks, it never approaches the degree of 
centralization common in other industries. In contrast, Coiacetto (2009) points to 
evidence that supports the tendency of the land development industry to concen-
trate. Such evidence includes the rise of large development firms that dominate the 
industry in the UK and are increasingly common in Australia. The use of product 
branding by development firms, which is associated with oligopolistic strategy and 
locally oriented development, lead to spatial monopoly. Coiacetto (2009) suggests 
that variation in the development industry structure depends on local factors and 
sectors, where instances of high oligopoly can exist and some degree of monopoly 
can be achieved.

The study of economic behavior of developers demands explicit description of 
their behavior. Agent-based modeling (Benenson and Torrens 2004) makes it pos-
sible to incorporate microeconomic fundamentals into the agents’ decision-making 
rules. Parker and Filatova (2008) outline a conceptual agent-based model of land 
market dynamics with the agents representing buyer households, relocating seller 
households and developers. Seller and buyers negotiate and bid prices evolve in 
respect to the ratio of active buyers and sellers at the market. Ettema (2011) devel-
ops this idea further by examining the dynamics of housing market where prices are 
established according to the agent’s perception of the availability of housing. 
Magliocca et al. (2011) expand the scheme proposed by Parker and Filatova (2008) 
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and link developers’ rent expectations and bidding at the land market. Magliocca 
et al. (2015) investigate how changes in landscape characteristics and heterogeneity 
in consumer preference impact land prices, timing of land sales and location and 
density of development.

A fundamental assertion at the backdrop of this paper is that to understand the 
evolution of the land development industry, it is imperative to frame land develop-
ers’ behavior in the spatial context of cities and the land-use plans that regulate 
them. The behavior of land developers reflects parsimoniously all the relevant infor-
mation concerning urban land markets and aims at profit maximization. However, 
the outcomes of developers’ decisions are always uncertain and bear risk. One of 
the significant risks developers face is associated with obtaining construction per-
mits (Sevelka 2004). It may be high in areas not zoned for construction, where the 
likelihood of obtaining the necessary approvals and permits is uncertain; Whereas, 
in areas with an approved development plan, the permitting risk is reduced and the 
regulatory process required for obtaining construction permits is shortened. The 
delay in obtaining construction permits creates additional costs for the developer 
and delays revenue generation from the development. The duration of the develop-
ment process, from the time of land purchase up to the sale of the developed land or 
real-estate products, constitutes the critical variable in developers’ decision-making 
processes (Czamanski and Roth 2011). Recent analysis of empirical data is consis-
tent with the theory that regulatory delays reduce the probability of subdivision 
development on a parcel (Wrenn and Irwin 2015).

In this paper, we investigate the emergence of a land development industry as the 
outcome of individual developers who make land investment decisions within a city 
constrained by a land-use plan. By means of an agent-based model (ABM), we 
investigate the consequences of developers’ actions following two basic assump-
tions grounded in theory and empirical evidence. First, the perception of risk is 
dependent on the financial state of the land developer. We assert that large develop-
ers are less risk-averse and more accepting of investments in land not zoned for 
development than small developers. This is because they are more likely to obtain 
land-use variances from the planning authorities by using political influence and 
negotiating capabilities (Molotch 1976; Stone 1993; Dalton et  al. 1989; Ruming 
2010).

Second, land-use plans are not static. Planning authorities periodically adjust plans 
in response to development pressures (Booth 1995; Booth 2003; Janssen-Jansen 
and Woltjer 2010; Alfasi et al. 2012; Abrantes et al. 2016). This implies the possibil-
ity of qualitative changes in entire sections of the city’s spatial pattern, following the 
accumulation of local land-use variances. These deviations of development from the 
land-use plan are later included by the planning agencies in the next comprehensive 
land-use plan (Alfasi et al. 2012). By this reason, we deviate from the popular mod-
eling assumption that urban development plans do not change throughout the simu-
lation (Huang et al. 2013a, b) and, in the ABM presented in this paper, incorporate 
the possibility of modifications in the land-use plan as the simulation progresses. 
The ABM enables explicit consideration of multiple decision-making of developers 
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operating under changing planning conditions and the study of the consequences on 
the land development industry and urban patterns.

The model starts with developer-agents who are homogeneous in terms of wealth 
and simulates the economic repercussions of their investments in land. Agent het-
erogeneity emerges as some receive abnormal profits from construction. The accu-
mulation of wealth by larger developer-agents makes it possible for them to make 
even larger investments and assume greater risks. As a result, and under different 
conditions of competition and regulation, we obtain various size-distributions of 
developers and various urban development patterns.

The remainder of this paper includes four sections. In Sect. 2, we discuss two 
main planning systems and lay out the context of our model. In Sects. 3 and 4 we 
describe the structure and dynamics of the ABM. In Sect. 5 we present the results of 
our simulations, which we discuss in Sect. 6.

6.2  Regulatory Versus Discretionary Planning Systems

Developers operate under the restrictions of planning systems. Planning legislation 
has two basic forms. The first is based on land-use regulation. The second is a gen-
eral planning policy with discretionary decision-making. In this paper, we assume 
that developers operate within a regulatory planning system that is widely used in 
the majority of European countries, Australia, and most of the United States. Long- 
term comprehensive outline plans form the pillars of this system. The outline plan 
includes land-use scripts and ordinances that assign specific land-uses to different 
zones and determine both spatial location and the extent of land-use development. 
The regulatory planning system assumes that future land development can be pre-
dicted and directed and provides an excess supply of land for each activity by which 
the environment is developed and organized (Alfasi and Portugali 2004; Alfasi and 
Portugali 2007). As such, regulatory planning is mainly passive. While assigning 
the location and extent of development, it does not initiate actual development. The 
implementation of the plan is in the hands of landowners, developers and other 
public bodies (Dalton 1989).

The discretionary planning approach consists of a general guiding policy. This 
planning approach is implemented in the United Kingdom, where the central gov-
ernment supervises and controls planning policies and publishes national and 
regional guidelines that constitute instructions for planning decisions for local 
authorities on numerous policy topics. There are no national or regional spatial 
plans, such as comprehensive land-use plans. Local authorities grant planning per-
missions and, thus, regulate development. The permission to develop land com-
monly involves extensive negotiation processes between private developers and 
local planning authorities (Janssen-Jansen and Woltjer 2010; Buitelaar et al. 2011; 
Booth 2003).

J. Almagor et al.



97

On the one hand, discretionary planning provides the planning authorities with 
flexibility in dealing with the uncertain nature of reality, including unexpected 
development, local initiatives, innovations and changing public needs that were not 
predicted by the plan. On the other hand, a regulative planning system ensures 
 certainty for an extended period and minimizes risks for owners of development 
rights (residents, landowners and developers) (Booth 1995). However, Alfasi (2006) 
argues that in regulative planning systems there is a growing gap between the offi-
cial planning system and its conduct in actuality. This gap is the result of the conflict 
between the need to create a firm picture of future development and the need to 
leave room for discretionary actions to incorporate unexpected needs and initiatives. 
In actuality, local authorities develop a leeway for discretion in decision-making by 
using exemption procedures that amend the operative land-use plans that were not 
foreseen by legislators (Janssen-Jansen and Woltjer 2010).

Local pressure from developers, combined with the interest of local municipali-
ties to attract new building projects that enlarge the city’s revenues and prestige, 
push the local planning commission to approve local changes to the plan (Booth 
2002). The wide use of spot zoning – the procedure for approving local amend-
ments to the plan – characterizes Israel’s planning institutions. It results in sub-
stantial deviations from the comprehensive plan policy. As local plans deviate 
from the comprehensive policy set by higher order plans, the regulatory planning 
system hierarchy is breached. The scale of the deviations of actual development 
from the comprehensive plan was examined recently in the context of the imple-
mentation of Israel’s central district plan – DOP/3 (Alfasi et al. 2012). These devi-
ations are frequent, ranging from single constructions to groups of buildings and 
extended urban areas which, over the years, are incorporated into the comprehen-
sive land-use plan prepared for the next period. These deviations confirm an expla-
nation for the gap between the regulatory planning and its actual implementation 
brought by Dalton (1989) who asserts that the dependence on regulation as the 
primary form of plan implementation “reinforces a decision making process that 
emphasizes bargaining with applicants, permitting piecemeal adjustments to the 
plan over time” (p. 162). The planning agency is “captured” by the development 
industry because of the close interaction between the project review planner and 
the developers.

In what follows, we incorporate into the model the aforementioned discretionary 
mechanisms that take place in actuality under regulative planning systems. We 
assume that the statutory land-use plan is not static but constantly modified. 
Developers submit applications for a land-use modification and the planning 
authorities (represented in the model by a developer-agent), based on policy rules, 
decide whether to accept them. In this way, unplanned development becomes 
possible.
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6.3  The Evolution of the Land Development Industry: 
An Agent-Based Model

6.3.1  Concise Introduction to the Model

The goal of the model is to simulate the process of city formation and wealth distri-
bution by developers under varies assumptions regarding the competition in the land 
market and land-use regulation. Two types of agents operate and interact in the 
modeled city: developers and a planner. The planner-agent aims at preserving the 
city compactness by limiting development to the urban zone established by a land- 
use plan. Developer-agents purchase lands and construct housing with the goal to 
maximize their profits. All developer-agents start with an equal endowment of 
wealth, which they invest in land purchase and residential development. The 
developer- agents’ financial state is based on the land they own and their profits. The 
term large/small is used when referring to the developer-agent’s financial state. The 
model focuses on the possible advantage that large developers have over smaller 
ones in their interaction with the planner and during the competition for lands, and 
studies the consequences of this advantage.

The Landscape The landscape of the model is constructed from square cells repre-
senting land parcels. The center of the city is situated in the middle of the landscape. 
A land-use plan divides the landscape into two zones: urban and non-urban. 
Initially, the urban zone covers the area around the city center, beyond that is the 
non-urban zone. Within the urban zone housing construction is allowed in accor-
dance with development rights as specified by the plan for each parcel. Over this 
virtual landscape the developer-agents operate and their main activity is land pur-
chase and housing construction. The land parcels are initially non-built; as a result 
of developers’ actions they change state (Fig. 6.1). After the parcels are purchased 
by developers they are constructed and the housing is sold and populated. As the 
simulation progresses the city develops.

Land-Use Plan The land-use plan is established by a planner for several years 
ahead and defines an urban zone where construction is permitted during the planned 
period. Each parcel in the urban zone is assigned with building right that determines 
the number of floors allowed for development in the parcel. Construction outside 
the urban zone, which is called the non-urban zone, is prohibited. Every few years, 
the planner extends the urban zone by including a part of the non-urban zone in 
order to supply residential space for the growing population.

Developers The model simulates a group of land developer-agents operating in a 
city. Developer-agents purchase lands, construct buildings and sell them to resi-
dents. Developer-agents aim to maximize their profits. Their decisions regarding 
land investment at a certain year is influenced by their current financial state, and the 
outcomes of their investment decisions influence their financial state and decision- 
making in the future. The model follows their accumulation of wealth.
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Planner The planner-agent represents a municipal planning commission that 
establishes and manages the land-use plan. The policy of the planner-agent is to 
constrain outward sprawl while providing the necessary floor space for the city’s 
growing population.

Developer-Planner Interactions The land-use plan determines development rights 
and, therefore, affects land values. Urban boundary (i.e. the boundary of the urban 
zone), is assigned by the plan and results in a decline in land price. However, fol-
lowing developer-agent’s pressure on the planner-agent, the plan may be occasion-
ally amended by the planner-agent using assignment of special construction permits 
for lands in the non-urban zone. These occasional amendments are considered by 
developer-agents as a source of wealth, due to the potential appreciation of exces-
sively high land values for lands located in the non-urban zone after their develop-
ment (Christensen 2014).

Developers’ Decision-Making Developer-agents compare expected profits from 
alternate land parcels. Profit expectations vary among developer-agents and are 
dependent on their size (accumulated wealth). The value of parcels within the urban 
zone depends on their development potential, and therefore their value is high. 
These parcels can be developed immediately after they are acquired. The value of 

Fig. 6.1 The landscape of the ABM. Cells represent land parcels that change state as a result of 
developers’ actions. The gray scale represents the height of the building, where the highest build-
ing is black and height declines towards light gray
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parcels in the non-urban zone is low and capital realization for these parcels is 
highly uncertain. The developer-agents will assume the risk and purchase non-urban 
parcels only when their expected profit, after accounting for the time and expenses 
spent on lobbying and obtaining construction permits, is higher than those in the 
urban zone.

Planner’s Decision-Making The planner-agent occasionally grants a limited num-
ber of special construction permits to developer-agents who own lands located in 
the non-urban zone. This is assumed to be the outcome of negotiations and pres-
sures by the developer-agents. The planner-agent’s decision to grant permits is the 
result of the resolution of two opposing forces: the political pressure from the 
developer- agent to allow construction of land zoned as non-urban; and the policy 
guidelines to restrict development activities and prevent urban sprawl.

Size Advantage We investigate the profit accumulation dynamics in imperfect land 
markets. In such markets, large developers hold more knowledge on available land 
supply, have beneficial government regulations and are more likely to secure loans 
from banks. We call these conditions size advantage and investigate the city’s 
dynamics depending on the potency of this advantage.

6.3.2  Comprehensive Model Description

6.3.2.1  Population Growth and Residential Demand

The dynamics of the model are driven by the growing population that results in the 
demand for housing. The city’s population grows at a rate:

 
Pop t Pop t R+( ) = ( ) +( )∗

1 1
 

Where P(t) denote population numbers in year t and R annual growth rate, nor-
mally distributed with average Ravg = 0.02 and standard deviation Rstd = 0.025.

The demand for floor space D(t), at time t is:

 
D t Pop t C t( ) = +( ) ( )1 –

 

Where C(t) is an amount of constructions available at the beginning of year t.
In case the completed constructions exceed the demand, completed construc-

tions are sold in a random order until demand is satisfied, and the remaining con-
structions are left available for the next year.
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6.3.2.2  The Land-Use Plan and the Planner

The Land Use Plan
The land-use plan divides the urban space into urban-zones and non-urban zones. 
Within the urban zone, parcel development is allowed in accordance with the build-
ing rights assigned by the land-use plan. These rights specify the maximal number 
of floors allowed for construction. It is assumed that the maximal height assigned by 
the plan for a parcel monotonously decreases with the increase in the distance 
between a parcel and the nearest center of the city (Fig. 6.2, Appendix 1).

Expansion of the Urban Zone
Once in T years, the planner-agent estimates the floor space required to accommo-
date expected population growth in the next T years and expands the urban zone, by 
including part of the non-urban area (Appendix 2). We assume that the planner- 
agent aims at minimizing urban sprawl and maintaining continuity of the build-up 
area. To implement this policy, the planner-agent seeks to include the densest build-
 up areas that were developed outside the urban zone into the extended urban zone 
(Appendix 3).

Granting Special Construction Permits
Developer-agents who possess lands in the non-urban zone exert pressure on the 
planner-agent to obtain special construction permissions. The planner approves 
some of these requests and each year issues a few special construction permits. The 
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planner-agent’s decision to grant a construction permit outside the urban zone is 
affected by two main factors:

 (a) The planning policy that aims to reduce urban sprawl by permitting develop-
ment adjacent to already built-up areas.

 (b) The political power of the developer owning the parcel to negotiate with the 
planning commission.

These factors are translated into probabilities to issue special permits for each of the 
purchased parcels located in the non-urban zone (Appendix 4). The total amount of 
special construction permits granted by the planner-agent constitutes a fraction nsp 
of the planner’s estimated demand for floor space M(t) (Appendix 2).

6.3.2.3  Land Market Regulations

The land market is regulated according to the following principles:

 – The total number of parcels transactions at a year t is limited by the the planner’s 
estimated annual demand M(t) (Appendix 2).

 – To reflect an anti-trust law, the planner-agent restricts annual purchases by one 
developer-agent to m*M(t), where 0 < m < = 1.

6.3.2.4  Behavior Procedures of the Developer-Agents

Each year t, the developer-agent chooses potentially profitable parcels in the urban 
zone and in the non-urban zone and competes with other developer-agents for the 
right to purchase them. After purchasing an urban parcel, the developer-agent begins 
construction immediately. For parcels located in the non-urban zone, the developer- 
agent must wait for a construction permit from the planner-agent. Once completing 
a construction, the developer-agent attempts to sell the housing.

Formally, each year t, the developer-agent implements several procedures in an 
order presented below (Fig. 6.3):

 – Evaluates expected profit from constructing on non-built parcels within the urban 
and non-urban zones and chooses parcels for purchasing according to the value 
of her liquid assets DL(t).

 – Competes for the chosen parcels with the other developer-agents and purchases 
them if she wins the competition.

 – Starts construction on parcels she owns, for which she has construction permits. 
Construction lasts 1–3 years (the length of construction is equally probable).

 – Sells completed buildings. Completed buildings are randomly selected for sell-
ing until the demand for floor space at time t is satisfied.

 – Updates the state of her assets based on purchases and profits.
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6.3.2.5  Choice of Parcels for Purchasing

Developer-agent D is characterized by Liquid assets DL(t) and Total assets DT(t). 
The latter is comprised of DL(t) plus the value of parcels owned by the developer- 
agent at t. Developer-agent D initially allocates her investments between urban and 
non-urban parcels. A constant share surban of her liquid assets is invested in urban 
parcels, the rest, 1 – surban in non-urban parcels. A developer-agent invests in a non- 
urban parcel only if it is potentially more profitable than any parcel within the urban 
zone. The developer-agent’s estimate of parcel’s potential profitability includes an 
estimate of the time to realization of building permits, which is uncertain. Larger 
size developer-agents tend to evaluate shorter time to realization (Appendix 7). 
When developer-agents do not invest in non-urban parcels, all liquid assets are used 
to purchase parcels within the urban zone.

Developer-Agents as Satisficers We assume that the rationality of the developer- 
agents is limited and regard them to be satisficers who consider alternatives for 
which payoffs are above a certain value (Simon 1955, 1959; Daniels 1998; Mohamed 
2006, 2009). Interpreting this view, we assume that the developer-agent can only 
roughly asses the most profitable parcel. Therefore, she chooses one of the ten most 
profitable parcels available, not necessarily the most profitable. Once that parcel is 
found, the developer-agent concentrates the rest of her purchases around it, in order 
to form a continuous area. A continuous area of parcels aims at reducing develop-
ment costs in the future. Parcels are chosen based on return on investment: The 

Fig. 6.3 Planner-agent and developer-agents’ decisions taken each year in reaction to the varying 
demand
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developer-agent first chooses one parcel in the urban and one parcel in the non- 
urban zone. To choose she searches for one of the ten most profitable patches in 
each of the zones. After locating these parcels, she chooses parcels adjacent to them 
until their total cost reaches her investment budget (Fig. 6.4).

The profitability of choosing a parcel P is estimated by the developer-agent D 
based on the return on investment ROID(P):

 
ROI P E P V P N PD D( ) = ( ) ( ) + ( )( )/

 

Where V(P) is the price of parcel P (Appendix 5), N(P) is the construction cost 
on parcel P, and ED(P) is the expected profit of developer-agent D from construc-
tion on parcel P (Appendix 6). ED(P) is defined by the zone, where P is located and 
the distance to a city center and D’s estimate of the delay in obtaining construction 
permit. We assume that developer-agent’s estimate of the delay is considered 
inversely proportional to the developer-agent’s total assets DT(t) (Appendix 7). 
That is, larger developer-agents are ready to take higher risks, as they are more 

Fig. 6.4 The decision-making process for choosing parcels by developer-agents
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experienced in negotiating with planning committees and have a greater influence 
on the decisions of the planner-agents.

6.3.2.6  Competing for Land Purchase

After developer-agents have selected their preferable parcels, they compete for pur-
chasing them. A developer-agent’s success in competing for parcels is determined 
by her total assets DT(t).

At the beginning of the competition developer-agents are ordered according to 
their total assets DT(t) (Fig. 6.5). Parameter k reflects the nature of completion in the 
market. When k = 1, the competition in the land market is completely imperfect and 
the purchase order is completely dependent of the size of the developers. While with 
the increase in k the market becomes more competitive (Appendix 8). The competi-
tion starts as one among the first (k) largest developer-agents is selected, equally 
probable, and can purchase her chosen parcels as long as market regulation limits 
are not reached. The purchased parcels are removed from the market, and one of the 
(k) largest among the remaining developer-agents is selected to purchase parcels.

6.3.2.7  Framework of Implementation

The model is implemented with Netlogo, a multi-agent simulation environment 
(Wilensky 1999; Sklar 2007). The user interface includes a parameter setup, a map 
of parcels state, temporal charts representing the value of assets by developer-agents 
and the distribution of developer-agents by total assets. Several aggregate indicators 
are also plotted, such as market concentration expressed by the share of assets 
owned by the ten largest developer-agents; population growth; unsatisfied demand; 
and available floor space in the urban zone (Fig. 6.6).

Fig. 6.5 Procedures for competition over land purchases
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6.4  Method of Analysis

The ABM investigates the evolution of assets accumulation by the land develop-
ment industry and the formation of city structure under various conditions of regula-
tion and competition in the land market. Three types of conditions are investigated 
in the simulation scenarios:

Flexibility of the planner: Represented by a parameter that controls the number of 
special construction permits approved by the planner each year for development 
of land that is not assigned for development by the original land-use plan.

Regulation of the land market: Represented by a parameter that restricts the amount 
of land permitted for purchasing by a single developer each year.

Competition in the land market: Represented by a parameter that controls the level 
of advantage that larger (wealthier) developers have in the competition for pur-
chasing land.

All model runs for a certain set of parameters are repeated 100 times and the 
results are averaged. The simulation is run for a period of 50 years in each scenario. 
The parameters’ values used in the model are presented in Table 6.1. The values 
presented are kept constant in all simulation scenarios. Parameters values vary 
according to the scenario being investigated and are specified in the context of each 
scenario.

The industry structure that emerges under different scenarios is presented in a 
rank-size form. Developer-agents are sorted in descending order of their assets and 
presented as a function of their rank.

Our benchmark, or “null hypothesis”, represents a perfectly competitive market. 
In such a market there are no abnormal profits and accumulation of wealth. To illus-
trate this we sampled 50 observations from uniform distribution, on a [50, 1500] 
interval, Fig. 6.7. The density of such a rank-size distribution is a linear decreasing 
function on the [1, 50] interval.

Fig. 6.6 User interface (Netlogo)
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For measuring the difference between the rank-size distribution of developer- 
agents derived by the different simulation scenarios and the distribution presented 
above, we employ the following U-measure:

 
Uk = ( ) − ( )( )∑

=r

n

r rD scenario D uniform N
1

/
 

Table 6.1 Parameter values common for all simulation scenarios

Parameter Value Description

P(0) 10,000 Initial city population
N 50 Number of developer-agents
DL(0) 50 Developer-agent’s initial liquid assets, equal for all developer-agents
snon-urban 30% The share of developer-agent’s liquid assets used for purchasing 

non-urban parcels
α 0.1 Annual interest rate for developer-agent’s alternative investment
T 10 years The length of the planned period, in years
R 2% Annual population growth rate
gCBD 5 Returns for selling one floor in the city center
PCBD 30 Number of floors permitted for construction in the city center
cnon-urban 1 Price of a parcel assigned by the plan as non-urban
nsp Varies Percentage of current demand for housing that is issued with special 

construction permits every year
m Varies Maximal share of current demand for floor space that one developer- 

agent can purchase in the urban and non-urban zones every year
k Varies Number of the largest developer-agents that have identical advantage 

when purchasing parcels
Grid 70*70 Size of the model space (4900 parcels)

Fig. 6.7 A sample of 50 observations from a uniform distribution on [50, 1500], represented in a 
standard form (a) rank-size form (b)
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Where Dr(scenario) is the size of a developer-agent of rank r in the simulation 
scenario and Dr(uniform) is the size of a developer-agent of rank r in the uniform 
distribution.

6.5  Results

6.5.1  The Effects of Size Advantage when Purchasing Parcels

To begin with, there are two polar scenarios of market conditions. In the first, size 
does not influence the developer-agent’s chance to purchase attractive parcels. 
Formally (see Sect. 3.2.6), this is the scenario of k = N. The second scenario repre-
sents the opposite case of market conditions that provides absolute advantage of 
size, k = 1. We employ the values of nsp = 20% and m = 0.1 in both.

In the first scenario, developer-agents’ assets at t = 50 vary between 0.3% and 
4.6% of the total assets of all developer-agents and developer-agents’ size dis-
tribution remains uniform. This distribution represents an absolute competitive 
market.

In the second scenario, the distribution of assets at t = 50 is bimodal (Fig. 6.8, 
Table 6.2) and the ratio of the amount of assets of the largest to that of the median 
developer-agent is 23.4, which is essentially higher than the value 2.1, characteristic 
of the uniform distribution. The development industry in this scenario is controlled 
by ten developer-agents who hold 77.6% of the total assets, compared to 30.3% 
obtained in the first scenario (Fig. 6.8, Table 6.2).

Fig. 6.8 Developer-agents’ rank-size distribution at t = 50, based on absolute advantage to size 
(k = 1) and for no advantage to size (k = 50)
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6.5.2  Dynamics of Assets Accumulation

Over time, in the case of market conditions with no advantage of size (k  =  N), 
developer- agents’ size distribution remains uniform all the time (Fig. 6.9a). This is 
not so in the scenario of absolute advantage of size (k  =  1). Time-evolution of 
developer- agents’ size in this scenario exhibits two phases (Fig. 6.9b). During phase 
1 (up to the year 10), developer-agents remain similar in size and their size distribu-
tion remains close to uniform. Phase 2 starts when one or more developer-agents, by 
chance, become significantly larger than the rest. From that time on, these developer- 
agents have the advantage in purchasing land and, as a result, increase their assets 
faster than the smaller developer-agents. This positive feedback results in the separa-
tion between the large and the small developer-agents towards t ~ 20. The full control 
of large developer-agents over the land market is eventually reached towards t = 50.

6.5.3  Model Sensitivity to Competition Over Land

In what follows, developer-agents’ size distribution is simulated under different 
market conditions that vary in the competition level (k) of having an advantage of 
size when purchasing land. Figure  6.10 and Table  6.3 present developer-agents’ 

Table 6.2 Characteristics of the rank-size distributions of developer-agents by their assets at 
t = 50 for the cases of no advantage to size (k = 1), and of absolute advantage to size (k = 50)

Index
No advantage of size 
(k = 50)

Absolute advantage of size 
(k = 1)

Percent of assets owned by 10 largest 
developer-agents

30.3% 77.6%

Ratio of the largest/median 2.1 23.4
Comparison to the uniform distribution, 
χ50 and p

χ50 = 9.1 (p ~ 0.17) χ50 = 131.4 (p < 0.0001)

Fig. 6.9 Dynamics of asset accumulation, for each one of 50 developer-agents (each line repre-
sents a developer-agent).no advantage of size (k = 50) (a) advantage of size (k = 1) (b)
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rank-size distributions and their aggregate characteristics as dependent on k pre-
serving the values of nsp = 20% and m = 0.1.

We classify as “large” the developer-agents who are larger than the developer- 
agents of the same rank in the case of the uniform distribution, when k = 50 (see 
Fig. 6.10). The influence of uncertainty is summarized in Table 6.3.

As can be seen from Table 6.3, with the increase in the level of uncertainty the 
distribution of developer-agents’ size converges to uniform distribution. However, 
this convergence is non-linear, the difference between the developer -agents’ distri-
bution and the uniform remains high up to k = 5 and then drops and decreases with 
k linearly. Note that the total share of large developer-agents rises by 6% only 
between k = 1 and k = 25, while the number of large developer-agents more than 
doubles.

Fig. 6.10 Developer -agents’ rank-size distribution at t = 50 as dependent on the uncertainty in 
purchasing as expressed by parameter k

Table 6.3 Characteristics of the developer-agents’ rank-size distributions for different levels of 
uncertainty of having size advantage (k) when purchasing parcels

Index k = 1 k = 5 k = 10 k = 15 k = 20 k = 25 k = 50

Number of large 
developer-agents

10 12 15 18 21 25 –

Total share of large 
developer-agents

77.6% 80.5% 76.6% 80.5% 81.9% 83.5% –

Largest/median 
developer-agent ratio

17.5 16.3 9.1 7.3 4.7 2.8 2.1

Assets owned by 10 
largest 
developer-agents

77.6% 73.7% 58.7% 52.6% 47.5% 42.8% 30.3%

Uk measure 1.89** 1.82** 1.39* 1.27 1.07 0.8 0.43

Mann-Whitney test, comparison to the uniform distribution, significance levels: ** – 0.0001, * – 
0.01
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6.5.4  Restrictions on Land Purchases

Restrictions on land purchases evidently affect the potential of a developer-agent to 
accumulate assets. Such restrictions are represented in the model by m –the maxi-
mal share of total demand for floor space that one developer-agent is allowed to 
purchase per year. To explore the influence of m on the developer-agents’ rank-size 
distribution, we compared model outcomes for the scenario of absolute advantage 
of size (k = 1) for four values of m – 0.1, 0.2, 0.5 and 1 and nsp is kept 20%. The 
resulting rank-size distributions of the developer-agents’ assets are presented in 
Fig. 6.11.

According to the Fig. 6.11, the higher m, the lower the number of large developer- 
agents and the “wealthier” the largest developer-agent. This phenomenon can be 
expected: Given m, the entire unsatisfied demand is divided every year between 1/m 
largest developer-agents. That is, the higher m, the higher the advantages of the 
large developer-agents and the lower the chances of small developer-agents for 
growth. Generally, the value of 1/m defines essential model invariants. For example, 
the total assets of the 1/m large developer-agents at t = 50 is close to the 75% of the 
total assets in the city (Table 6.4).

6.5.5  Size Distribution and the Flexibility of the Planner

The flexibility of the planner-agent is represented in the model by the number of 
special permits she approves annually- nsp. The more special construction permits 
issued by the planner-agent, the more certain the investment in purchasing parcels 
located in the non-urban zone. To investigate dependence of developer-agents’ dis-
tribution by size on the number of special permits, we compare scenarios in which 
the annual number of special construction permits differs. The number of special 

Fig. 6.11 Assets distribution at t = 50 as dependent on maximal market share m
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construction permits is measured as the percentage nsp of the current demand for 
floor space. Four scenarios of nsp = 0%, 20%, 40% and 60% are investigated for the 
case of absolute advantage of size (k = 1) and m = 0.1.

As seen in Fig. 6.12a, the higher the share of special construction permits, the 
sharper the distinction between the groups of large and small developer-agents, and 
the higher is the share of the total assets held by the ten largest developer-agents. 
This share depends on nsp non-linearly and the overall share of total assets owned by 
ten largest developer-agents seems to stabilize at a level of 85% as far as the amount 
of special permits reaches 60% (Fig. 6.12b).

6.5.6  The Dynamics of the City Pattern

We illustrate here the impact of two planning policies on the spatial urban pattern. 
The first policy establishes a land-use plan with a planning horizon of 10 years, 
which is modified at the end of that period with respect to the population forecast 
for the next decade. The second policy has a long-term planning horizon and estab-
lishes a land-use plan for the whole simulation period based on a population fore-
cast. We model the city pattern for a period of 50 years for both policies and present 
the results of three simulation runs for each of the scenarios. In both scenarios the 
advantage of size is absolute (k  =  1), the maximal market share that can be 

Table 6.4 Percent of total assets owned by the 1/m largest developer-agents, for different values 
of m

Maximal market share that can be purchased by a single 
developer – m

100% 50% 20% 10%

Percent of assets owned by 1/m developer-agents 76.5% 73% 73.4% 77.6%

Fig. 6.12 Rank-size distribution at t = 50 (a) and the percent of total assets at t = 50 held by 10 
largest developer-agents (b) as dependent on number of special construction permits nsp
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purchased by one developer (m  =  0.1) and the fraction of special permission 
(nsp = 20%).

As seen in Fig. 6.13a, plan extension every 10 years essentially influences urban 
pattern dynamics. The location of new urban centers reflects the history of land 
purchases in the non-urban zone and every simulation produces a different urban 
pattern. In contrast, in all three simulations, the long-term plan produces the same 
mono-centric city (Fig. 6.13b). Development takes place from the center out towards 
to the fringes, with scattered development outside the urban zone, which is the out-
come of Special construction permits.

6.5.7  Qualitative Comparison to Real Data

Our model is a stylized theoretical exercise. However, the model’s distributions of 
developer-agents’ assets (Fig. 6.14a) obtained in two scenarios of absolute advan-
tage of size (k = 1), and a high maximal share of parcels available for purchasing by 
one developer-agent, m = 1 and m = 0.5, strongly resemble the size distribution of 
Israeli land development firms (Fig. 6.14b). Different from reality, the model pre-
dicts a larger share for the largest developer(s). A possible reason for this difference 
is that, in reality, large development firms are involved in other fields of business 

Fig. 6.13 Dynamics of the city pattern, total population and planned floor space in the urban zone 
in case the plan is modified every 10 years (a) and a long-term plan (b). Darker color marks higher 
buildings in the parcel
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and divert essential share of their profits from land development into other activities. 
With that, the qualitative resemblance of the results indicates that market conditions 
in Israel provides advantage of size that result in imperfect market.

6.6  Conclusions

By means of an agent-based model, we study the evolution of the land development 
industry in a city regulated by a land-use plan, under different levels of competition 
for purchasing land. Starting with developers endowed with equal assets, the differ-
ences in accumulation of profits result in increasingly non-uniform distribution of 
developers’ size. The model allows larger developers to assume greater risks and 
amass even greater assets. The risks in the model are associated with the nature of 
urban zones where land development requires exertion of political pressure and 
negotiation that at times yields building permits and abnormal profits. This spatial 
context of profit accumulation contributes to the emergence of an oligopolistic 
industry structure.

The model includes a dynamic land-use plan, managed by a planner-agent, aim-
ing to maintain excess supply of planned land for residential development. On the 
developer’s side, investment within the planned urban zone is certain but when com-
pared to lands in the non-urban zone, in the long run, it can be less profitable. 
However, the investment in non-urban zone is less certain and demands plan modi-
fication, either by the expansion of the planned urban zone or by special construc-
tion permits. Pressures imposed by developer-agents on the planner-agent can lead 
to modifications of the land-use plan by obtaining construction permits outside the 
planned urban zone. In time, these advantages result in abnormal profits for some 
developers and influence the evolution of the land development industry and forma-
tion of city patterns.

Fig. 6.14 Rank-size distribution of developer-agents’ assets at t = 50 obtained in scenarios of 
k = 1, nsp = 20% and m = 1 and 0.5 (a) versus rank-size distribution of development firms in Israel 
in 2013 (Ranking of Construction and Development 2013) (b)
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Like any other, our model is a simplification of reality, which intends to explore 
certain aspects of a phenomenon based on stated assumptions (Benenson and 
Torrens 2004). Our ABM uses a simplified space comprised of square parcels of 
identical size, which are differentiated based on distance from the urban centers. 
Real cities are much more complicated and include many factors that characterize 
parcels and influence their demand and price. With that said, we intend to reveal the 
major processes that affect the land development industry. A simple representation 
of space enables the isolation of these processes without the “noise” created by 
random variations of other factors that may change from city to city.

Our model keeps land and housing prices stable throughout the simulation pro-
cess and ignores the boom and slump cycles that may occur over long periods in the 
market (Gillen and Fisher 2002). We are not certain to what extent these cycles 
affect the system dynamics and we intend to incorporate them in future research.

Our model demonstrates the evolution of a monopoly and oligopoly in an imper-
fect market. In imperfect markets, where larger developers both have an advantage 
in competing for land and are more likely to obtain special construction permits 
from the planning authorities, a positive feedback is generated. This feedback 
causes increasing returns for some developers and, over the long run, a divergence 
of the development industry into two distinct groups of large and small developers. 
This divergence does not emerge in markets where land purchase is competitive and 
do not entail advantage of size to some developers. In that case, the outcome is a 
uniform distribution of developers’ assets that is preserved over time.

Even when developers are initially equal in size, small initial differences in 
developers’ profits are growing over time and lead to a situation in which some of 
them become larger than others. In imperfect markets, the initial divergence in size 
activates positive feedback and larger developers begin to exploit their size  advantage 
by accumulating more assets and by further investing in land purchase and con-
struction. Consequently, the level of market concentration steadily grows and even-
tually a few ever-growing large developers control the development industry. The 
effect of the level of competition in the land purchasing market is non-linear, and in 
order to achieve a competitive land development industry, competitiveness in the 
land purchasing market should be significantly high. That is, market conditions 
should not favor larger developers over smaller developers when competing for 
land.

Planners’ approval of special permits for construction in the non-urban zone 
strengthen the positive feedback and increase market concentration. Special con-
struction permits are more beneficial to large developers and therefore accelerates 
the convergence of the industry into being controlled by a few large developers who 
control larger parts of the market.

Recent studies on agent-based models demonstrate the influence of agents’ het-
erogeneity on the formation of urban spatial pattern (Ligmann-Zielinska 2009; 
Irwin 2010; Hatna and Benenson 2012; Broitman and Czamanski 2012; Huang 
et al. 2013b). Our study specifies the process of emergence of agent heterogeneity 
and the resulting pattern of city development. Agent heterogeneity emerges and 
increases over time, as developers receive profits from construction and their 

6 The Evolution of the Land Development Industry: An Agent-Based Simulation Model



116

economic state differentiates. We also demonstrate the importance of the planner – 
developer interactions when considering urban patterns. The urban development 
plan aims at governing developers’ decisions regarding land purchases and con-
struction. However, planning policy requires flexibility, and plan’s modifications 
entail a co-adaptation of the planner and the developers. As we demonstrate, these 
processes are history-dependent and thus, hardly predictable. These processes give 
rise to qualitative consequences on the city structure. The interaction between risk 
taking developers and a flexible planner who approves incremental amendments 
and periodic updates of the land-use plan may result in bifurcations of city structure, 
which leads to a polycentric city.

Finally, our model suggests three policy implications. First, the efforts of planners 
to prevent sprawl by issuing land-use plans can be counterproductive when land can 
be rezoned within a reasonable time frame. Land-use plans create discontinuity in 
land prices, making land not zoned for development, such as agriculture, nature and 
open space, attractive to developers who foresee the potential for rezoning. Second, 
when rezoning is widely used by planners, it creates windfall profits for developers 
willing to take risks, and therefore reinforces the establishment of large development 
firms. Third, the land development industry has a high tendency to produce oligopoly 
and monopoly without any regulations. Therefore, in order to prevent such market 
failure, strong intervention by regulation in the land purchasing market is required.

Appendix 

1. The amount of construction permitted on a parcel P is expressed by the number 
of floors F(P). Within the urban zone, F(P) monotonously decays with the 
increase in the distance Dist(P, PCBD) between parcel P and the nearest central 
parcel PCBD as:

F(P) = max {1, INT[F(PCBD)/(1 + δ∗Dist(P, PCBD))]}

Where F(PCBD) is the number of floors in the nearest central parcel and INT(X) 
is a closest integer to X. In what follows, the value of F(PCBD) is set, for all central 
parcels, equal to 30 floors. To guarantee that the minimal possible height of 1 
floor will be reached far away from the center, the value of δ is chosen equal to 
0.2, providing the distance from the city center equal to 70 parcels.

 2. To evaluate expected demand (ED) for floor space for the next planning period 
of T years, the planner-agent estimates population growth and assesses the cur-
rently available floor:

ED(t + T) = Pop(t)∗((1 + Ravg)T) + A(t) – C(t)

Where C(t) is the amount of construction available at year t, and A(t) is the 
potential floor space, yet developed, in the current urban zone at t.

The demand for floor space M(t) is estimated by the planner based on the 
yearly average demand in the next 3 years:

M(t) = ((Pop(t)∗((1 + Ravg)3) – C(t) – L(t))/3

Where L(t) is the floor space that is currently under construction.

J. Almagor et al.
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 3. The density of built area in the non-urban zone is estimated as a moving average of 
the buildings’ height within a circle of a 6-unit radius around a parcel P. The loca-
tion, with the highest density is considered as a new central parcel. The planner-
agent aims at including central parcels into the plan when extending the plan. To 
ensure plan’s contiguity, the extension includes, together with the central parcel, all 
parcels within a buffer zone of a shortest path between the central parcel and the 
existing urban zone. The width of the buffer zone is increased, until the accumulated 
amount of floor space is sufficient to accommodate the expected demand ED(t + T).

After the plan is expanded, the central parcel is assigned with a permitted 
number of floors for construction equal to F(PCBD) and becomes an anchor for 
calculating the permitted floors for construction for the parcels in its vicinity (as 
in formula 1). If the highest built density is equal in a few parcels, the one closer 
to the urban zone is selected.

 4. The probability to obtain a special permit is based on the density of buildings 
within a 6-unit neighborhood around the parcel and the relative wealth of the 
developer-agent D who owns the parcel. The higher is the density of construction 
around a parcel and the higher is the wealth rank of the parcel’s owner the higher 
is the relative weight that the parcel will be granted a permit for construction. A 
Special construction permit assigns to the non-urban parcel amount of floors for 
construction F(P) according to a normal distribution, with mean equal to 
F(PCBD)/3 and STD is equal to 2.

 5. To determine parcel price in the model, we follow the Ricardian rent theory and 
consider, land prices as residuals of the housing prices relative to construction 
costs (Ball 1983).

The market price V(Purban) of an urban parcel Purban is defined as a fraction r of 
expected revenue G (Purban) from selling the construction. In what follows, we 
assume that G (Purban) is proportional to the number of floors in the construction 
and inversely proportional to the distance between P and the city center:

G P g Dist P P F P

V P r G P
urban CBD urban CBD urban

urban

( ) = ( ) ( )
( ) =

∗ − ∗

∗

,
β

uurban( )

where gCBD is the return per one floor in the center of the city, F(Purban) is given by 
(1), the power β = −0.1 is a decay of the price away from the nearest central 
parcel and r is uniformly distributed on [0.3, 0.5].

The market price of all non-urban parcels Pnon-urban is constant:

V(Pnon ‐ urban) = vnon ‐ urban

where vnon-urban is a value which is below the price of any parcel within the urban 
zone.

 6. For a parcel Purban in the urban zone, expected profit ED(Purban) is estimated as:

ED(Purban) = G(Purban) – V(Purban) – N(Purban)

where G(Purban) is the expected revenue from selling the construction, V(Purban) 
is the price of the parcel and N(Purban) is construction cost at Purban.
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In what follows, we assume that the construction cost of one floor is the same 
in all parcels, where it is equal to 20% of the returns from selling one floor gCBD 
in the center of the city, see (appendix 5)

N(P) = 0.2∗gCBD
∗F(P)

The developer-agent’s D estimate of profit from a non-urban parcel Pnon-urban 
accounts for the possible delay in capital realization and therefore accounts for 
opportunity cost:

ED(Pnon − urban) = G(Pnon − urban) – V(Pnon − urban)∗(1 + α)τD(t) – N(Pnon − urban) where α 
is the annual interest rate from an alternative investment, and τD(t) is developer- 
agent’s D estimate of the length of the delay necessary to obtain a special con-
struction permit at Pnon-urban.

 7. The delay in obtaining construction permit τD(t) is calculated as:

τD(t) = Int(2∗rD(t)0.5)

where rD(t) is a rank of developer-agent D at t according to her total assets DT(t).
 8. The higher k is, the higher the uncertainty of the outcome of the purchasing pro-

cess. For k = 1 the developer-agent with the largest total assets DT(t) will always 
be first to purchase, then the second largest will enter the bid to purchase, etc. For 
k ~ N/2 any of the developer-agents whose assets are higher than the median 
assets, can be the first. For the case k = N, there is no advantage of size.
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Chapter 7      
Dynamic Relationships Between Human 
Decision Making and Socio-natural Systems                                      

Andreas Koch

Abstract The following article presents an attempt to model and simulate pro-
cesses of urban socio-spatial segregation by focusing on both the local scale of 
households’ decision-making processes and the macro scale of institutional and 
market determinants. In so doing, the theoretical domain of the model’s purpose is 
to highlight the mutual relationships between individual acting conditions and 
structural ordering conditions, embedded in the context of intra-urban moves. The 
methodological domain of the model’s purpose is to model residential agents as 
truly individual units. One aim of this paper is to alter some of the agents’ premises 
and neighborhood rules of evaluation and movement in order to strictly individual-
ize the defined entity of households. The city of Salzburg, Austria, serves as a test 
bed for this approach.

Keywords Residential mobility • Individual autonomy • Institutional meaning

7.1  Introduction

The distribution of households in urban space, its underlying mechanisms, processes 
and spatiotemporal structures, is a complex phenomenon (see, for instance, Iltanen 
(2012, p. 75f) and Mitchell (2009, pp. 3ff and 145ff) as a reference for complexity 
science). The social and spatial patterns which arise and – subtly and dynamically – 
change over time, such as segregation, residential up- and down- grading, gentrifica-
tion, places of inclusion and exclusion, are significantly influenced and determined 
by numerous rules, markets, political attitudes, and behavior of different stakehold-
ers. In order to adequately analyze and evaluate how social and spatial forces are 
mutually linked attempts to model issues of households’ location-allocation patterns 
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and to simulate their processes have to explicitly take into consideration the three 
crucial domains of ‘scales’, ‘entities’, and ‘interactions’.

The following article presents an attempt at modeling and simulating processes 
of urban socio-spatial segregation by focusing on both the local scale of house-
holds’ decision-making processes and the macro scale of institutional and market 
determinants. In so doing, the theoretical domain of the model’s purpose is to high-
light the mutual relationships between individual acting conditions and structural 
ordering conditions, embedded in the context of intra-urban moves. An actor- 
centered modeling perspective appears to be important because it makes the scope 
and constraints explicit and visible from the bottom up. This perspective, however, 
needs to be complemented by macro determinants, such as housing markets, the 
capitalization of these markets, estate agencies, urban planning strategies, as well as 
social norms and cultural attitudes towards lifestyle and neighborhood building, 
which affect individual decisions in a top-down manner. Putting emphasis on intra- 
urban moves is justified since they make up a large proportion of all residential 
mobility; for European cities, for instance, they vary between approx. 20 movers per 
1000 inhabitants in Irish cities and up to 121 in Finnish cities, per year (Knox and 
Pinch 2006, p. 252; comparative data is from 1980). This remarkable range can be 
used as one indicator for the mutual relationship between the local-individual and 
global-social scale.

The methodological domain of the model’s purpose is to model residential agents 
as truly individual units. The Schelling-style segregation model serves thereby as a 
starting point and benchmark. One of the great benefits of this model type lies in its 
emphasis on emerging spatial patterns at the macro level which cannot be thor-
oughly explained by investigating the motives and interaction patterns at the micro 
level. One aim of this paper is to alter some of the agents’ premises and neighbor-
hood rules of evaluation and movement in order to strictly individualize the defined 
entity of households. The problem of many Schelling-style models is that they do 
not consistently account for the individual but refer only to collective actions: from 
the initialization of the model up to the agents’ evaluation and decision to move, a 
homogenized procedure to set the rules has been implemented.

In the remaining part of this chapter we first take a look at some of the macro- 
social regularities which determine the agents’ power to act. These regularities have 
conceptually been put into model practice by inserting a model component that 
aims to represent the institutional functioning of urban planning and real estate 
agencies through the implementation of large housing units. This component repre-
sents the socio-natural system approach. This is followed by a discussion about the 
need to modify Schelling-style segregation models. An individualized model 
approach is then presented, describing first the agents’ characteristics and then illus-
trating the effects by presenting some of the relevant model’s results. Thereby the 
human decision process domain is incorporated.

A. Koch
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7.2  The Macro Scale of Segregation

The “Nature of Cities”, published by Harris and Ullman in 1945, has changed eco-
nomically, socially, politically, culturally, and geographically in structure, shape, 
meaning and function. With respect to the function of housing in general and the 
different socio-spatial patterns of segregation in particular several theoretical 
approaches have been developed, putting the macro scale forces to the fore. One 
early but, to date, influential approach to investigate gentrification as a specific kind 
of segregation (which we are interested in here) is the rent gap theory by Smith 
(1979, 1996). The core concern of this theory is a profit-driven economic explana-
tion of the processes of social, cultural, and architectural upgrading accompanied by 
social homogenization of gentrified neighborhoods and the displacement of less 
affluent households. The emergence of a rent gap in city areas has been linked to 
suburbanization of urban agglomerations. “Inner-city decline and suburban expan-
sion has therefore led to a rent gap – a disparity between the potential rents that 
could be commanded by inner-city properties and the actual rents they are com-
manding” (Knox and Pinch 2006, p. 145). Rent-gap driven socio-spatial revaluation 
remains an important aspect in urban redevelopment, mainly as a consequence of 
the contemporary financial and economic crises. This in turn means that classical 
models, such as the Chicago model of urban structure, are “[…] now largely redun-
dant” (Fyfe and Kenny 2005, p.  128). On the other hand, an exclusive rent-gap 
perspective “[…] leaves little room for human agency or consumer preferences. 
Thus, by itself, the rent-gap theory cannot explain which cities, and which areas 
within cities, are most likely to be regenerated” (Knox and Pinch 2006, p. 146).

A different but closely related macro-scale approach, highlighting the processes 
of residential mobility and neighborhood change, is the concept of invasion- 
succession cycles (Clay 1979). It describes the invasion of low-income households, 
referred to as pioneers (e.g. students, artists, people with an alternative lifestyle), 
into obsolescent city areas. During this phase a cultural revaluation, by establishing 
new and alternative stores (e.g. ethnic food restaurants) and services (e.g. galleries), 
and a modest architectural revaluation, the so called incumbent upgrading, takes 
place. A second cycle is initiated by the invasion of gentrifies who prefer the cultural 
atmosphere but dislike the built environment. Due to large-scale and costly architec-
tural revaluation, often realized by large property development companies, housing 
becomes significantly more expensive, resulting in extensive displacement of less 
affluent households, including the pioneers of the first phase. Although this theory 
represents a socio-spatial generalization of city development which is often trig-
gered by urban planning strategies and political desires of urban uniqueness under 
conditions of global competitiveness, it is simultaneously understood as a bottom-
 up approach to explaining individual preferences. It is, however, not a strict and 
pervasive individual perspective, but one that takes into account communities 
(milieus, lifestyles) as more or less homogenous entities (see, e.g. Baumgärtner 
2009, p. 66).
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A further determinant influencing individual decision making and agency is 
given with institutional stakeholders. Dangschat (1997, p. 643; 2007), among oth-
ers, proposes an integrative approach for a theory of segregation by including a 
theory of social inequality, a theory of spatial inequality, and a theory of alloca-
tion of living space and city districts to households and social aggregates. Apart 
from builders, developers, mortgage lenders, and government agencies it is the 
estate agents who do play a crucial role within the network of mediators between 
sellers and buyers or landlords and tenants. Residential property management, 
insurance, data collection and analysis, and financing are only a few of the tasks 
they undertake and contribute to housing market mechanisms. “They are not sim-
ply passive brokers in these transactions, however; they influence the social pro-
duction of the built environment in several ways. In addition to the bias introduced 
in their role as mediators of information, some estate agents introduce a deliber-
ate bias by steering households into, or away from, a specific neighborhood in 
order to maintain what they regard as optimal market conditions. […] Thus the 
safest response for realtors is to keep like with like and to deter persons from 
moving to areas occupied by persons ‘unlike’ themselves” (Knox and Pinch 2006, 
p. 143). Though real estate agents complexify segregation processes one should 
keep in mind that simplified decentralized bilateral trading mechanisms, too, can 
exhibit remarkable complexity at the individual level, as is shown by Filatova 
et al. (2009).

There are undoubtedly several more approaches which deal with macro impli-
cations of segregation. One may think of the theory of fragmenting development 
which links global trends of economic and political developments to locally frag-
mented but homogenous processes of residential structuring (Scholz 2002); other 
determinants are social housing policies and the public housing sector. The cre-
ation of large housing complexes that give rise to influences on the individual scale 
of households appears also to be an appropriate theoretical representative for top-
down driven socio-spatial changes. Though all these criteria are relevant to under-
standing segregation in a more comprehensive way, it is usually difficult to 
represent them all in an adequate manner. Apart from data availability at high reso-
lution and the necessity to suitably translate them into procedural code, it is some-
times hard to connect the (potential) knowledge to a valid synoptic unity (e.g. how 
do you weight all the information properly?). The following model incorporates 
the above mentioned determinants in a preliminary and approximate way by (i) 
inserting two large and socially different housing estates into a model representa-
tion of the city of Salzburg, Austria, and (ii) using rent price as a cumulative indica-
tor which has been disaggregated by statistical techniques. This appears to be 
justified by the model’s purpose, because it has its thematic priority in a compre-
hensive individualization of agents’ agency. Before presenting some results, the 
theoretical counterpart of the model about incorporating actual individual agents 
will be discussed.
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7.3  With Schelling Beyond Schelling: Individualization 
of Agents

Urban segregation appears to be an amalgamation of smaller-scale intra-urban 
moves and larger-scale in- and out-migration. Knox and Pinch (2006, p. 254ff) refer 
to empirical results of intra-urban mobility which allow for some generalization in 
the search for regularities of social homogenization at the neighborhood scale. We 
refer to these regularities as a coarse framing of agents’ social and spatial evaluation 
and decision-making behavior, in addition to the macro-social influential forces 
mentioned above. “The most significant regularities in intra-urban movement pat-
terns […] relate to the relative socioeconomic status of origin and destination areas. 
The vast majority of moves […] take place within census tracts of similar socioeco-
nomic characteristics” (ibid., p. 254). This result correlates closely with the distance 
of moves which have been found to be comparatively short, however, varying by 
income, tenure, ethnic identity and suchlike. Another determinant is the distinction 
between voluntary and involuntary moves, which are not recognized as a sharp 
dichotomy in the following model (and voluntary moves are in themselves different, 
which causes ongoing discourses on the evaluation of ‘voluntary’ moves; see, e.g. 
Dangschat and Alisch 2012, p. 36).

The search for a new home is commonly biased, too. Criteria such as living- 
space, tenure, dwelling preferences, built environment, and social neighborhood all 
need to be considered. In addition, the search space is strongly correlated with local 
knowledge about urban districts, influenced by spatial activity patterns and informa-
tion sources (e.g. media, friends). “It follows that different subgroups of house-
holds, with distinctive activity spaces and mental maps, will tend to exhibit an 
equally distinctive spatial bias in their search behaviour” (Knox and Pinch 2006, 
p. 262). For the following model it is assumed that agents are flexible in their search 
space, being able to get information about living costs (the spatial rent domain) and 
the social status of neighbors (the social attitude domain) (Ioannides 2013, p. 101).

Against this background the benefit of Schelling-style segregation models lies in 
its explicit focus on local circumstances as reasons for processes of socio-spatial 
homogenization. The model’s purpose is directed towards the micro-macro link of 
individual agency (Schelling 2006, O’Sullivan and Perry 2013, p. 83). One of the 
most important results of Schelling’s model approach is the phenomenon that, if 
agents act according to their subjective aspirations of residing in close proximity to 
other agents with equal social characteristics, a global pattern arises which cannot 
be derived from these aspirations automatically. The detection of emerging segrega-
tion to a much stronger extent than individually anticipated and intended is, on the 
other hand, a result of a standardization of the individual agent.

For the development of a conceptual segregation model the difficulty is to com-
bine methodologically true individual entities with socially similar characteristics 
and behavior. This challenge is framed by complex empirical knowledge. Just to 
give an example about the intention of contributing to socially homogenous neigh-
borhoods: Squazzoni (2012, p. 89), by highlighting a continuum of nearness and 
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distance as a determinant for social relations, argues: “Therefore, for extensive co- 
residing as in modern cities, individuals have also developed subtle, complex and 
sometimes partially unconscious and unintended ways of dissociating from and dis-
criminating against others”. Contrary to this ‘unconscious’ and ‘unintended’ behav-
ior effect, Sennett (1970, p. 48) stresses an explicit desire “[…] for coherence, for 
structured exclusion and internal sameness […]”, which in turn seems to be in con-
tradiction with contemporary aims of living in vivid mutual supportive communi-
ties: “Innate to the process of forming a coherent image of community is the desire 
to avoid actual participation. Feeling common bonds without common experience 
occurs in the first place because men are afraid of participation, afraid of the dangers 
and the challenges of it, afraid of its pain”. (ibid., p. 42) Both aspects can be observed 
empirically, the latter, for instance, in gated communities and (partly) gentrified 
neighborhoods, while the former is more common in organically grown, multi- 
cultural urban neighborhoods.

A reliable conflation of individual agency (subjective opportunities for freedom 
with respect to aspirations, preferences, but also constraints) and social influences 
(power relations, cultural bias, or recognition of capabilities) in segregation model-
ing is justified by empirical experience and progressive debates on modifications 
and alterations of Schelling-like models (see, e.g. Bruch and Mare 2006; Fossett 
2006; Fossett and Waren 2005; Pancs and Vriend 2007; Zhang 2009; for a review of 
these studies see O’Sullivan and Perry (2013, pp.  83–87) and Squazzoni (2012, 
pp. 88–97). Squazzoni (2012, p. 96) draws the conclusion “[…] that if individual 
preferences and perceived differences between groups refer just to one characteris-
tic, such as ethnicity, religion or political position and decision is binary, segrega-
tion is unavoidable and social integration is impossible”. From a modeling 
perspective the unrealistic determination is due to the univariate reference and the 
binary decision scheme. Moreover, relaxing the causal link between the decision- 
threshold of (dis-)satisfaction and corresponding action should surmount the seem-
ingly inevitability of segregation.

Furthermore, the individual-community link complexifies the discussion about 
segregation when taking majority-minority relationships into consideration. In this 
case processes of inclusion and social cohesion can conflate with displacement, and 
political claims of integration and neighborhood diversity converge or diverge 
scale-dependently by quite similar transformations. From a model perspective it is 
very hard (or even impossible) to reasonably disentangle the bundle of interwoven 
processes and relations. “The language of ‘preference’ and ‘tolerance’ surrounding 
the Schelling model can give the appearance that such claims are being made. It is 
important to keep in mind that we could just as easily interpret the movement of 
minority households into friendly neighborhoods as arising from an inability to 
access neighborhoods with a high presence of the majority, a reading that would 
make the driving mechanism not preference but discrimination. Such debates are 
not about the model’s outcomes but about its interpretation and what can be inferred 
from it” (O’Sullivan and Perry 2013, p. 85).

To sum up: the consequent disaggregation of agents’ characteristics and behavior 
towards the individual level is an attempt to avoid homogenous community building 
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that derives deterministically from an a priori standardized setting of attributes 
which leaves agents indistinguishable. The inherent sameness of agents at the group 
level in the original model contains segregation within itself as a predictable out-
come to some degree. Truly distinguishable agents do recognize social conditions, 
nonetheless, but they do it differently. We put the emphasis on similar agents acting 
similarly with regard to similar decision making.

7.4  The Simulation Model

The current version of the segregation model is a conceptual simulation model 
which serves predominantly as an instance to verify the model’s purpose. It has 
been built to simulate intra-urban residential mobility in the city of Salzburg, 
Austria, by highlighting both emerging and downward-causing patterns of socio- 
spatial cohesion. A quantity of census data from 2001 to 2011 has been used to carry 
out a factor analysis followed by a cluster analysis. The data is applied to initialize 
spatial raster cell characteristics on an approximate empirical basis. Future model 
development is intended to transform the pre-given model raster cell resolution to a 
250 by 250 m scale in accordance with the officially available data provided by the 
Austrian Statistics Authority (Statistik Austria 2014). A validation of segregation 
processes over the period of one decade will then be possible.

7.4.1  Agents’ Properties

The entire agent population is subdivided into four different subgroups, represent-
ing cluster characteristics which have been derived from a factor analysis with 14 
socio-demographic variables (e.g. education, age cohorts, religion, household size, 
nationality). Clusters represent demographic characteristics of the city of Salzburg 
at district level and have been disaggregated randomly at cell level.

The realization of creating individual agents refers to agents’ characteristics and 
decisions as well as executed actions. With respect to characteristics, ‘income’ is 
used as a prototypical randomized variable using a normal distribution function 
with a small standard deviation to individualize an agent’s economic situation. In 
addition to the variation of income within the four subgroups, a variation has been 
applied between them. This is to vary the economic wealth of agents at the collec-
tive scale, representing social status.

Due to the normal distribution of income values there is no sharp distinction 
between agents as economically defined entities. Because of this, we included a 
second variable, ‘attitude’, which represents agents’ social preferences (or disaffir-
mations) in a qualitatively generalized way; an agent’s ‘attitude’ is represented by 
color. This is according to the idea mentioned above. The fluent transition of eco-
nomic property (income) correlates with a clear distinction of the social  characteristic 
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(attitude) and allows for a reasonable diversity of agents; for instance, two socially 
similar agents share the same attitude but differ in income, and two economically 
similar agents may have similar income, but differ in their attitudes.

The reference variable for every agent to derive its initial income is given with 
the ‘rent’ value of the cell (patch) in which an agent is situated initially. Thus, a 
valid relationship of agent-location interaction is achieved.

The evaluation procedure of an agent’s neighborhood embraces the affordability 
of the current location and the (dis-)satisfaction with its neighborhood. Whilst in the 
first case agents must move if their income is less than the costs for housing, in the 
latter they are equipped with some flexibility when assessing their neighbors’ 
income and attitude. The common approach in agent-based segregation modeling is 
a single unified threshold value which will be applied to all agents. In contrast to 
this approach we first use two thresholds (for income and attitude, separately) and 
second vary the values of income by applying a range of values around the mean 
income (the qualitative indicator of ‘attitude’ remains as a binary variable). The 
income threshold which, as mentioned earlier, represents the approximate socio- 
economic status of an agent, is then transformed by a normal distribution function 
in order to individualize the decision-making process for residential moves.

In addition, and different from traditional segregation modeling, we have inserted 
two more modifications. First, not all agents move, even if they fulfill the condition 
of being dissatisfied. The reason for this can be justified with empirical observa-
tions: residential relocation is a complex fact, involving lots of criteria which must 
be pondered deliberately and diligently (which is represented here quite inaccurate 
by just two dimensions). The desire of retaining social ties developed over a long 
period or the established familiarity of everyday activities may represent reasons 
which imply some inertial behavior though dissatisfaction is a significant counter 
force (Knox and Pinch 2006, p. 253). Furthermore, even if one feels dissatisfied 
with one’s current social and spatial neighborhood situation, relocation is not the 
one and only obligatory response to it. One may think of political activism or com-
munity engagement in order to improve local social well-being.

Secondly, and contrary to the first modification, agents may wish to move even 
though they might be satisfied with their current neighborhood. Reasons for such a 
decision might be the inheritance of a house or apartment, change of work place, 
family situation, lifestyle changes, or simply the search for the perfect home.

Agents who are not able to find an affordable dwelling in the city of Salzburg 
within a certain period of time because of economic reasons are forced to move to 
the suburban region. In turn, agents with sufficient income can either return to the 
city or immigrate (and might return again). With this procedure we have included 
migration in addition to intra-urban mobility.
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7.4.2  Spatial Entities’ Properties

Spatial entities (patches) represent housing costs as scaled values derived from clus-
ter data. The scaling of values is based initially on a normal distribution and then 
adapted to the cluster characteristics. The data used represents a coarse approxima-
tion of the socio-demographic situation at census district level and is disaggregated 
statistically but verified as a proven approximation by experts from city 
authorities.

7.4.3  Scale Relevant Model Issues

The model has been implemented in NetLogo 5.2.0 (Wilensky 1999). The parame-
ters ‘income’ of agents and ‘housing costs’ of spatial entities increase marginally 
per time step, i.e. there is an interaction pattern not only among agents, but also 
between them (the social domain) and the cells (the spatial domain). This interac-
tion pattern thus represents the local scale of dynamic relationships between human 
decision making and socio-natural systems. The “between-agent” type of interac-
tion is currently implemented in an abstract way because only a global trend of 
housing costs is included due to restrictions in data availability. There is, however, 
no local modification of this global trend at the moment. One may think, for instance, 
of a higher/lower dynamic in areas of high/low status neighborhoods. What has 
been implemented, however, is an accidental above-average increase and decrease, 
respectively, of housing costs, whereby 5% of all patches are then affected by an 
increase and 3% by a decrease. The extent can be altered interactively; for the sub-
sequent model results the increase is set to 20% and the decrease to 10%.

In order to incorporate the institutional and market domains, i.e. the macro- 
structural determinants of the dynamic relationships between human decision mak-
ing and socio-natural systems, two large housing estates have been implemented 
into the simulation model. They are located at different city districts and vary in 
social policy: “The socially homogeneous housing estate with a high proportion of 
social housing has been realised in a less affluent district (Itzling) in order to support 
affordable living conditions for the local communities. This housing estate repre-
sents an actually existing urban planning realisation. The second estate, following a 
“social mix” housing concept, has been realised in a wealthy city district of Salzburg 
(Aigen) and represents an actual realisation of future urban planning. In order to 
analyse the question of how large housing estates influence individual migration 
decisions under the pre-conditions of individual affordability and preferences, the 
size of the two housing estates has been varied by three steps. In addition, migration 
dynamics have not only been investigated within the housing estates, but also in the 
immediate local surroundings” (Koch 2016, np).
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7.5  Selected Model Results

The resolution of the city is set to approx. 15,000 spatial entities inhabited by 
150,000 citizens. A number of 6000 agents is selected as potential intra-urban mov-
ers which is an estimated 4% of the total population. Initially, agents of all four 
subgroups are randomly distributed over the urban space, according to the price per 
patch, i.e. initially, every agent can afford the dwelling she/he is living in. Census 
districts are colored according to the cluster they belong to, representing housing 
costs which vary from cheap to expensive in the following sequence: 
brown-orange-blue-pink-green-yellow.

The standard model (thereafter sm) has the following settings: the proportion of 
each subgroup is the same (25%), the preferences of similarity for each group is 
25% for ‘income similarity’ and 20% for ‘attitude similarity’. Income and housing 
price growth rates are set equal to 0.5% per time step. Seventy percent of dissatisfied 
agents actually move, but also 5% of satisfied agents do so. Two remarkable results 
are noteworthy: (1) Compared to a Schelling-type model, segregation is no longer a 
common phenomenon, being distributed evenly over the urban space (Fig. 7.1).

Instead, segregation is concentrated in affordable districts (colored brown and 
orange), and its spatial manifestation is given at a small-scale level. In high-price dis-
tricts (green and yellow) socio-spatial community building of similar agents is much 
harder to achieve, even for the most affluent (red agents). (2) Segregation takes place, 
notwithstanding. Ultimately different degrees of neighborhood evaluation, of deci-
sion-making processes, and agents’ as well as patches’ characteristics do not avoid 
clustering of similar agents. The exceptional fact is the declining degree of segrega-
tion, most obvious for the least affluent (blue agents) and only very limited for the 

Fig. 7.1 Spatial 
representation of 
segregation with the 
standard simulation model
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most affluent. As an attempt to interpret one might be tempted here to draw a distinc-
tion between involuntary moves, caused by displacement, and more opportunities for 
freedom with respect to affordability, income and attitude preferences. For the current 
model there is only a qualitative statement of experts’ empirical experiences, verifying 
the segregation clusters in the north of Salzburg but of less scope in the southern dis-
trict. Other interesting results refer to the extent of outmigration to the suburban region, 
which significantly depends on the agent’s income and the city’s housing cost situation 
and which is most problematic for the least affluent subgroup (Fig. 7.2). Sudden dra-
matic rises of rents do affect all tenants in more or less the same way (Fig. 7.3).

Fig. 7.2 Number of agents forced to the city (sm)

Fig. 7.3 Agents dissatisfied (%) and move from sudden increases of rent prices (sm)
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The standard segregation simulation model is provided with eleven parameters to 
modify and alter the behavior space of agents according to the theoretical require-
ments mentioned above. The behavior space, therefore, offers a wide range of 
opportunities for if-then-analyses and scenario building. In what follows, four 
model variations which appear to be relevant for the (potential) emergence of segre-
gation will be discussed briefly.

The first modification refers to the variation of the (individualized) thresholds of 
‘income’ and ‘attitude’. One hypothesis here is that the more affluent subgroups 
(red and green agents) appreciate higher degrees of income-similarity while the less 
affluent prefer higher degrees of attitude-similarity. Thus, income-similarity of red 
and green agents is set to 40%, and attitude-similarity to 15%. Yellow and blue 
agents’ preferences are set to 25% for income-similarity and 45% for attitude- 
similarity. As Fig.  7.4 illustrates (with four sudden significant leaps of housing 
costs), a differentiation in the quality of preferences leads to two different levels of 
realized homogenous neighborhoods of similar agents. The trajectories of either 
two subgroups remain, however, relatively similar. It turns out that the emergence of 
neighborhoods with higher aspirations of income-similarity is less difficult to 
achieve than it is the case for attitude-similarity. This can be explained with the 
continuous variance of the income variable which makes the arrangements of local 
co-residing much easier than for the dichotomous attitude variable, even in the case 
of individualized agents. Segregation patterns are in part similar to the standard 
model  – higher proportions of small-scale segregation have been evolved in the 
cheaper districts, but are also different from that model, because red and green 
agents have now been more successful in the creation of homogenous neighbor-
hoods. Finally, the effect of the cost jumps is different for the four subgroups 
(Fig.  7.5); while for the least affluent agent population (blue) displacement is a 
cumulative force from the very beginning of the simulation, it is of only marginal 
relevance for the more and most affluent during the first half of simulation time and 
remains less influential in the second half.

Fig. 7.4 Agents dissatisfied (%) and sudden increases of rent prices

A. Koch



133

The parameters that determine the proportion of unhappy agents who actually 
move and happy agents who move notwithstanding, are relatively stable. For the 
first case we varied the proportion between 60% and 90% without significant 
changes in the model output. The latter has been varied between 3% and 10%, again 
without significant changes. These results hold true if the preferences for income- 
similarity and/or attitude-similarity are being varied (between 20% and 40% for 
both kinds across agents’ subgroups).

A third variation of the standard simulation model considers the independent 
variables of ‘increase of income’ and ‘increase of housing costs’ as influential for 
neighborhood composition. Income-similarity and attitude-similarity is set to 35% 
for every subgroup. If income development is substantially higher than the develop-
ment of housing costs (the subsequent model used an earnings growth of 0.7% per 
time step and a growth of housing costs of 0.3% per time step) then the, more or 
less, expected result is that all subgroups are able to live in the city. The differences 
between groups are marginal and even sudden leaps of rising prices do not affect 
agents’ residential behavior significantly (Fig. 7.6).

In fact, the percentage of dissatisfied agents is slightly decreasing. Furthermore, 
even small clusters of homogenous neighborhoods of medium- and high-income 
households in more expensive districts have evolved. The situation changes with a 
reverse relationship but less significant than expected. Remarkably, the four sub-
groups do not differ in their capability to create homogenous neighborhoods 
(Fig. 7.7). Sudden changes of housing costs do, however, influence this capability 
explicitly. In the simulation illustrated in Fig. 7.7 the percentage of unhappy agents 
increases from approx. 37% before up to 63% after the jump in prices.

Fig. 7.5 Number of agents forced to move from the city (Notice: Figures 7.4 and 7.5 represent the 
change-of-preference model)
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The last variation takes the range of action of minorities into account. A first 
modification refers to the situation of having one minority in the city, starting with 
the least affluent subgroup (blue agents). They represent 10% of the urban popula-
tion while the other three subgroups make up 30% each. The poor minority seeks to 
live in a neighborhood with at least 50% of agents sharing a similar attitude; its 
aspiration towards income-similarity is comparatively low (20%). The remaining 
subgroups all have a relationship of 35% income-similarity and attitude-similarity, 
respectively. Surprisingly, the poor minority does not have completely different 
troubles in dealing with its preferences of co-residing (Fig. 7.8) though there are 
fewer opportunities because of the small size of this group. The size of the group 
might be a suitable explanation for this result since majorities  – primarily the 
socially adjacent group of yellow agents with slightly higher income and less 
restrictive preferences – are more powerful competitors in the housing market. Rent 
gaps and public housing allocation policy, as mentioned above, may contribute to 

Figs. 7.6 and 7.7 Agents dissatisfied (%) and sudden increase of rent prices (change-of-income- 
cost-relationship model), with 0.3/0.7% (above) and 0.7/0.3% (below) cost-income change
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amplify or mitigate this competitive change in socio-spatial distribution. Figure 7.9 
confirms this thesis in part: the competition among the three relative majorities out-
performs the competition between them with the minority.

If the most affluent subgroup in the city is in a minority situation – and their 
aspirations are more directed towards income-similarity (50%) and less towards 
attitude-similarity (20%) – then the underlying principle does change visibly: the 
affluent agents do much more to achieve their preferences, and the percentage of 
unhappy fellows is significantly larger than it was for the poor agents (Fig. 7.10). 
Simultaneously, the least affluent agent group exhibits a contradictory fact: on the 

Fig. 7.8 Agents dissatisfied (%) and move from the city

Fig. 7.9 Number of agents forced to sudden increases of rent prices (Notice: Figures 7.8 and 7.9 
represent the poor-minority model)
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one hand it is much easier for them to segregate themselves in the affordable dis-
tricts; on the other hand the number of agents who were forced to move is much 
higher than it is for the other three groups (Fig. 7.11). One explanation might again 
lie in greater competition between socially and economically similar communities 
of the same population size.

The second modification of majority-minority relationship investigates the con-
stellation of two minorities. In the first scenario the most and least affluent agent 
groups find themselves in a minority position. While the richest agents prefer 

Fig. 7.10 Agents dissatisfied (%) and move from the city

Fig. 7.11 Number of agents forced to sudden increases of rent prices (Notice: Figures 7.10 and 
7.11 represent the rich-minority model)
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income-similarity (50% compared with 20% attitude-similarity) the poorest like it 
the other way round. In addition, housing costs growth is higher than income 
growth. Now, both minorities have significantly greater difficulties in segregating 
themselves. They live in some kind of diaspora while the two middle-class majority 
populations are able to create small-scale but widespread homogenous neighbor-
hoods. They, however, struggle most against displacement.

On the assumption that social polarization took place in the city, with high pro-
portions of most and least affluent agent groups (80%), and a strong minority of 
middle-classes (20%) which prefer attitude-similarity to a higher degree (50% com-
pared with 20% of income-similarity) then, again, it becomes obvious that displace-
ment of the poor to the affordable districts (and to the suburban region) does play a 
crucial role in intra-urban residential mobility (Fig. 7.12).

On the other hand, no large-scale gentrification of the richest agents in the most 
expensive districts takes place. This modeling outcome is contrary to the empirical 
reality and thus confirms the necessity to take macro social conditions more seri-
ously into account.

The consideration of these conditions has been incorporated by two large hous-
ing estates, as mentioned earlier. The following results are based on an extended 
model and a first and preliminary discussion is published in Koch (2016) where we 
refer to this article. With the simulation model it is possible to vary the spatial area 
of investigation, i.e. the neighborhood area that influences potential segregation 
outcomes. Interestingly, the two housing block areas do not exert a significant 
influence at the large-scale city level. Indeed, both the most and the least affluent 
agents appear to be easily able to establish socially similar neighborhoods. The least 

Fig. 7.12 Spatial 
representation of 
segregation with the two 
minorities’ simulation 
model
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affluent agent group is, however, less often able to do so, likely because they are 
restricted to cheaper places in the city which hardly exist.

More interesting are the small-scale dynamics at the district level (within and 
around the newly created large housing estates). The case study area of Itzling with 
a high proportion of social housing highlights the fact that all four agent populations 
are able to achieve quite similar levels of satisfaction, which are relatively indepen-
dent from the size of the neighbourhood area. However, the larger the area is the less 
easily are rich agents capable of realizing their preferences and needs. One explana-
tion might be that they are not as easily able to achieve their goals in terms of status 
satisfaction, which is obvious from an empirical perspective, as social housing is 
dedicated to less affluent households. The case of Aigen with a mix of social hous-
ing and private property is somewhat different. The poor agents have the relatively 
highest percentage of dissatisfaction, irrespective of the size of the neighbourhood 
area; living in a high-price place is most difficult for them, although urban planning 
has developed strategies of inclusion. Surprisingly, unhappy rich agents are ranked 
second, but maybe this is again due to the social policy of socially mixed areas, 
“[…] which makes it more difficult to achieve the goal of homogeneous social 
neighbourhoods in sustainable ways” (Koch 2016, np).

The study of relationships between individual motives and collective behavior 
reveals another interesting insight when comparing patterns of within-agent popula-
tion decision processes: the different dynamics of how agents struggle with their 
social and spatial environment (labelled as “unhappy agents”). In this case the resi-
dential mobility behavior of all four agent populations over the two districts that 
inhabit the housing blocks is compared. As Figs. 7.13, 7.14, 7.15, and 7.16 illus-
trate, this dynamic is less pronounced for the most affluent (red) and least affluent 
(blue) agents, as is the case for the middle classes (green and yellow).

As has been stated by Koch (2016, np): “While red agents feel most comfortable 
in a small housing estate in Itzling and much less comfortable in larger units in both 
districts, the blue agent population exhibits a sharp distinction between Itzling 
(smaller degrees of unhappiness) and Aigen. The common competition for afford-
able living space provides the red agents with an advantage due to a higher degree 
of economic power, which in turn provides them with more opportunities to live in 
close proximity – even in areas that are spatially less attractive. The blue agents, on 
the other hand, are displaced to locations with a high degree of social housing, pre-
venting social interactions with other social groups.”

The middle-income agent populations, represented as green and yellow graphs in 
Figs.  7.15 and 7.16, display a different migration behavior which is much more 
volatile but with lower levels of dissatisfaction at the same time. In addition, a 
 distinct segregation pattern cannot be detected, “[…] neither in terms of the size of 
the housing estate nor of the city district” (Koch 2016, np). Consequently, the social 
planning strategy (social housing or social mix) does not induce a sharp 
distinction.
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Figs. 7.13 and 7.14 Dissatisfied rich agents (left; red graphs = Aigen, purple graphs = Itzling) and 
dissatisfied poor agents (right; dark blue graphs = Aigen, light blue graphs = Itzling). Solid lines 
represent small housing estates, dotted lines large housing estates according to the variability given 
with the simulation model

Figs. 7.15 and 7.16 Dissatisfied upper middle-class agents (left; dark green graphs = Aigen, light 
green graphs = Itzling) and lower middle-class agents (right; yellow graphs = Aigen, light orange 
graphs = Itzling). Solid lines represent small housing estates, dotted lines large housing estates 
according to the variability given with the simulation model
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7.6  Conclusion

The theoretical aim of the paper was to develop a segregation simulation model 
which implements a coherent and reliable representation of the mutual influences 
und dependencies between individual agents and institutional structures. While the 
notion of the “individual” comprises the versatile characteristics and decision pat-
terns of acting units (households in our case) it is the notion of “structure” that – 
with its rules, norms, attitudes, and other forms of collectivization  – acts as a 
counterpart. The model’s purpose therefore was to highlight both the bottom-up 
processes which may help to understand better the emerging patterns of urban 
socio-spatial homogenization and the top-down processes of downward-causation 
which are an independent force in altering or maintaining human decisions.

The observation of Ioannides (2013, p. 123), “despite the elegance of Schelling’s 
model, empirics show neighborhoods are overall quite mixed”, inspired us to use 
the basic ideas of this model-type in order to create true individual agents consis-
tently. The benefit of Schelling’s model approach, apart from it being the most influ-
ential approach in computational segregation research, is that it integrates a 
locational model and a “bounded-neighborhood model” (ibid., p. 115). From this 
starting point the results of the extended and modified simulation model presented 
here have demonstrated that segregation is a strong, though small-scaled process 
when viewed from the bottom up. Even though: (1) agents individually vary in atti-
tudes, decision making, actions, and characteristics; (2) a universal threshold has 
been avoided; (3) macro social determinants have approximatively been included 
with urban planning realizations of large and socially diverse housing estates and 
housing costs, segregation took place.

Some empirical validation is given: while affluent households voluntarily tend to 
exclude themselves from the rest of the society, poorer households are mostly forced 
to segregate, although they would prefer to live in a socially mixed environment. 
Segregation is a controversial topic  – in science, spatial planning, and politics. 
Among many others, one aspect has become increasingly crucial in debates on seg-
regation: the knowledge transfer between people of different social statuses has 
been more and more interrupted, because of the creation of tangible and intangible 
borders. These borders tend to be used to make exclusion, injustice, and poverty 
invisible. A computational approach thus remains an important technique and pro-
vides a scientific contribution to detect the hidden mechanisms of these processes.
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Chapter 8      
Lessons and Challenges in Land Change 
Modeling Derived from Synthesis  
of Cross- Case Comparisons                                      

Robert Gilmore Pontius Jr., Jean-Christophe Castella, Ton de Nijs, 
Zengqiang Duan, Eric Fotsing, Noah Goldstein, Kasper Kok, Eric Koomen, 
Christopher D. Lippitt, William McConnell, Alias Mohd Sood, 
Bryan Pijanowski, Peter Verburg, and A. Tom Veldkamp

Abstract This chapter presents the lessons and challenges in land change modeling 
that emerged from years of reflection and numerous panel discussions at scientific 
conferences concerning a collaborative cross-case comparison in which the authors 
have participated. We summarize the lessons as nine challenges grouped under three 
themes: mapping, modeling, and learning. The mapping challenges are: to prepare 
data appropriately, to select relevant resolutions, and to differentiate types of land 
change. The modeling challenges are: to separate calibration from validation, to pre-
dict small amounts of change, and to interpret the influence of quantity error. The 
learning challenges are: to use appropriate map comparison measurements, to learn 
about land change processes, and to collaborate openly. To quantify the pattern vali-
dation of predictions of change, we recommend that modelers report as a percentage 
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of the spatial extent the following measurements: misses, hits, wrong hits and false 
alarms. The chapter explains why the lessons and challenges are essential for the 
future research agenda concerning land change modeling.

Keywords CLUE • CLUE-S • Environment Explorer • Geomod • Land 
Transformation Model • Land change • Land Use Scanner • LUCC • Map • Model 
• Prediction • SAMBA • SLEUTH • Validation

8.1  Introduction

The first author of this chapter extended an open invitation to the community of land 
change modelers to participate in a cross-case comparison of spatially explicit land 
change modeling applications. The focus was the assessment of pattern validation 
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of the mapped output of such models, so the invitation requested that participants 
submit for any case study three maps of land categories: (1) a reference map of an 
initial time 1 that a land change model used for calibration, (2) a reference map of a 
subsequent time 2 that could be used for validation, and (3) a prediction map of 
same time 2 that the land change model produced. Ultimately, we compiled 13 cases 
from nine countries, which were submitted from seven different laboratories. 
Pontius et al. (2008) derived and applied metrics to compare those various cases. We 
presented our work at several scientific conferences. Pontius et al. (2008) has been 
cited more than 396 times as of September 2017 according to scholar.google.com, 
thus has had a substantial influence on the constantly growing field of land change 
modeling (Paegelow et  al. 2013). A frequent initial reaction that audiences have 
when they first hear about our exercise is to ask “Which model is best?” However, 
the exercise never intended to rank the models. The audience’s unintended reaction 
has been one of the inspirations for this follow-up chapter. The popularity of the 
question indicates that we must be careful to interpret the results properly, because 
the purpose of the exercise can be easily misinterpreted. We have found that the 
exercise’s methods and results inspire quite disparate conclusions from various sci-
entists. The purpose of the exercise was to gain insight into the scientific process of 
modeling, in order to learn the most from our modeling efforts. Therefore, this 
chapter shares the lessons that survived after years of reflection on both participa-
tion in the cross-case comparison and interactions with colleagues.

Figure 8.1 shows how we think of the lessons in terms of the flows and feed-
backs of information among the various components of modeling. The figure begins 
with the landscape in the upper left corner. Scientists create data to summarize the 
landscape. There is a tremendous amount of information that scientists can derive 
from simply analyzing the maps from two or more time points (Aldwaik and 
Pontius 2013; Runfola and Pontius 2013). Scientists anticipate that they can learn 
even more by engaging in a modeling procedure that produces a dynamic simula-
tion of land change. Scientists usually use a conceptual understanding of landscape 
dynamics to guide the selection or production of algorithms that express those 
dynamics. This chapter uses the word “model” to refer to such a set of algorithms, 
and the word “case” to refer to an application of the model to a particular study site. 
One way to assess a case is to examine the output that the model produces. 
Ultimately, a major purpose of the analysis is for scientists to learn from the mea-
surements of the data and the outputs from the model. Scientists can use this learn-
ing to revise the mapping, the modeling and/or the measurements of the data and 
the model’s output. The components of Fig. 8.1 reflect the structure of this chapter 
in that this chapter’s Methods section summarizes the techniques to measure both 
the data and the model’s output, while the subsequent Results and Discussion sec-
tion presents the most important lessons, organized under the themes of mapping, 
modeling, and learning.

8 Lessons and Challenges in Land Change Modeling Derived from Synthesis…
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8.2  Methods

All of the models have been published in peer-reviewed journals and books. Raster 
maps have been submitted by scientists from the laboratories that developed the 
models. Collectively, the sample of models and their applications cover a range of 
some of the most common modeling techniques such as statistical regression, cel-
lular automata, and machine learning. SAMBA is the single agent-based model in 
the collection. Table 8.1 offers specific characteristics of the nine models used for 
the 13 cases. These cases offer illustrations of these models that have been applied 
with various objectives, extents and resolutions. The model characteristics in 
Table 8.1 are necessary for proper interpretation. Geomod, Logistic Regression, and 
Land Transformation Model (LTM) use maps for which each pixel shows the land 
as either undeveloped or developed. These three models predict a single transition 
from the undeveloped category to the developed category. The other six models use 
maps of more than two categories to predict multiple transitions. For seven of the 
models, the user can set exogenously the quantity of each land cover category for 
the predicted map, and then the model predicts the spatial allocation of the land 
categories. SLEUTH and SAMBA do not have this characteristic. The cases that 
derive from LTM, CLUE-S, and CLUE use the quantity of each category in the 
reference map of time 2 as input to the model. For these cases, the model is assured 
to simulate the correct quantity of each category at time 2, thus the purpose of the 

Fig. 8.1 Conceputal diagram to illustrate flows and feedbacks of information among components 
and procedures for a systematic analysis. Rectangles are components of the research system; dia-
monds are procedures; the oval is the modeler whose learning can inform methods of mapping, 
modeling and measuring

R.G. Pontius Jr. et al.
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modeling application is to predict the spatial allocation of change. Most of the mod-
els are designed to use pixels that are categorized as exactly one category, while 
Land Use Scanner, Environment Explorer and CLUE can use heterogeneous mixed 
pixels for both input and output.

Both Land Use Scanner and Environment Explorer are applied to the entire 
country of The Netherlands. One substantial difference between these two cases is 
that the number of categories in the output map for the application of Land Use 
Scanner is eight, while the number of categories for the application of Environment 
Explorer is 15. LTM, CLUE-S, and CLUE are applied to more than one study area, 
which allows us to see variation in how a single model can behave in various case 
studies. Our sample does not include cases of how a single model can produce vari-
ous outputs for a single extent depending on how the model is parameterized. The 
possible variation due to parameterization of a single model is one reason why we 
do not rank the performance of the models.

Figure 8.2 shows the mapped results for each of the 13 cases. Each map in 
Fig. 8.2 derives from an overlay of the three maps that a modeler submitted. The 
first 11 of the 13 cases share the same legend, while Costa Rica and Honduras share 
a different legend because those two cases have mixed pixels. We encourage the 
profession to use the following short names for the categories in the legend of 
Fig. 8.2 (Brown et al. 2013). Misses are erroneous pixels due to observed change 
predicted as persistence. Hits are correct pixels due to observed change predicted as 
change. Wrong hits are erroneous pixels due to observed change predicted as change 
to the wrong gaining category. False alarms are erroneous pixels due to observed 
persistence predicted as change. Correct rejections are correct pixels due to observed 
persistence predicted as persistence.

Figure 8.3 summarizes the results where a segmented bar quantifies each case in 
terms of the legend of Fig.  8.2. Each bar is a Venn diagram where one set is the 
observed change and the other set is the predicted change, as the brackets illustrate for 
the case of Perinet. The “figure of merit” is a summary measurement that is a ratio, 
where the numerator is the number of hits and the denominator is the sum of hits, 
wrong hits, misses and false alarms (Pontius et al. 2007, 2011). If the model’s predic-
tion were perfect, then there would be perfect intersection between the observed 
change and the predicted change, in which case the figure of merit would be 100%. If 
there were no intersection between the observed change and the predicted change, 
then the figure of merit would be zero. Figure 8.3 orders the cases in terms of the fig-
ure of merit, which is expressed as a percent at the right of each bar. It is also helpful 
to consider a null model for each case. A null model is a prediction of complete per-
sistence, i.e. no change between time 1 and time 2 (Pontius et al. 2004a). Consequently 
the accuracy of the null model is 100% minus the percent of observed change. 
Figure 8.3 shows that the accuracy of the land change model exceeds the accuracy of 
its corresponding null model for 7 of the 13 cases at the resolution of the raw data.

Figure 8.4 plots for each case the figure of merit versus the percentage of observed 
change. Figure 8.4 reveals two clusters. The tight cluster near the origin shows that 
all of the cases that have a figure of merit less than 15% also have an observed change 
less than 10%. We analyzed many factors that we suspected might explain the predic-
tive power for the 13 cases and found that the percentage of change observed in the 
reference maps had the strongest relationship with predictive accuracy.

R.G. Pontius Jr. et al.
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Fig. 8.2 Maps of misses, hits, wrong hits, false alarms and correct rejections

8 Lessons and Challenges in Land Change Modeling Derived from Synthesis…
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Fig. 8.2 (continued)

We have been soliciting feedback on our exercise since the initial invitation to 
participate in 2004. We have presented our work at five international scientific 
 conferences: the 2004 Workshop on the Integrated Assessment of the Land System 
in Amsterdam The Netherlands, the 2005 Open Meeting of the Human Dimensions 
of Global Environmental Change Research Community in Bonn Germany, the 2006 
Meeting of the Association of American Geographers in Chicago USA, the 2007 
World Congress of the International Association for Landscape Ecology in 

R.G. Pontius Jr. et al.
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Fig. 8.3 Misses, hits, wrong hits, and false alarms for pattern validation of 13 cases. Correct rejec-
tions are 100% minus the length of the entire segmented bar. Each bar is a Venn diagram where the 
union of hits and wrong hits is the intersection of observed change and predicted change

Fig. 8.4 Relationship 
between predictive 
accuracy and observed 
change
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Wageningen The Netherlands, and the 2007 Transatlantic Land Use Conference in 
Washington DC USA. There were panel discussions in Amsterdam, Chicago and 
Wageningen, where authors shared their experiences and audience members shared 
their reactions. The next section of this chapter synthesizes the lessons that have 
withstood more than a decade of examination of this cross-case comparison.

8.3  Results and Discussion

This section offers nine lessons. Each lesson has implications concerning the agenda 
for future research; therefore each lesson corresponds to a sub-section that articu-
lates a challenge for future modeling efforts. The lessons are grouped under three 
themes: mapping, modeling, and learning. These groupings emerged as the authors 
reflected on the various types of lessons. The first theme demonstrates that the selec-
tion of the spatial extent and the production of the data have a substantial influence 
on the results, so scientists must pay as much attention to the mapping procedure as 
they do to the modeling procedure. This message reinforces known fundamental 
concepts in mapping, which scientists must keep at the front of their minds. The 
second theme concerns the modeling process. The challenges under this second 
theme derive from insights that have emerged specifically as a result of this cross- 
case exercise. They have implications for how scientists design and assess modeling 
procedures. The third theme focuses on learning, thus it emphasizes careful reflec-
tion on mapping and modeling. If mapping and modeling are not interpreted prop-
erly, then modelers can exert a tremendous amount of time and energy without 
learning efficiently. This third theme contains ideas for how modelers can maximize 
learning from mapping and modeling.

8.3.1  Mapping Challenges

8.3.1.1  To Prepare Data Appropriately

The decisions concerning how to format the data are some of the most influential 
decisions that scientists make. In some cases, scientists adopt the existing format of 
the available data, while in other cases scientists purposely format the data for the 
particular research project. Scientists must think carefully about the purpose of the 
modeling exercise when determining the format of the data. Formatting decisions 
concern the spatial, temporal and categorical scales in terms of both extent and reso-
lution. The apparent complexity of a landscape is a function of how scientists choose 
to envision it, which is reflected in their mapping procedures. If scientists choose a 
great level of detail, then any landscape can appear to be greatly complex; while if 
scientists choose less detail, then the same landscape can appear simpler than what 
the more detailed data portray. For example, the Dutch landscape is not inherently 

R.G. Pontius Jr. et al.
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more complex than the Perinet landscape. However the data for Perinet were for-
matted to show a one-way transition from forest to non-forest while the data for 
Holland(15) were formatted to show multiple transitions among 15 categories based 
on the data formatting decisions of the modelers. One could have attempted to ana-
lyze the Dutch landscape as two categories of built versus non-built, and could have 
attempted to analyze the Perinet data as numerous categories of various types of 
uses and covers. For example, Laney (2002) chose to analyze land change in 
Madagascar at a much finer level of detail and deeper level of complexity than 
McConnell et al. (2004). Anyone can choose a great level of detail for the data that 
will overwhelm the computational and predictive ability of any particular model. 
More detail does not necessarily lead to a more appropriate case study, just as less 
detail does not necessarily lead to a more appropriate case study. Scientists face the 
challenge to select a spatial resolution, spatial extent, temporal resolution, temporal 
extent, and set of categories for which a model can illuminate issues that are rele-
vant for the particular purpose of the inquiry.

Decisions concerning the format and detail of the data are fundamental for 
understanding and evaluating the performance of the model (Dietzel and Clarke 
2004). The Holland(8) case demonstrates this clearly as it relates to the reformatting 
from maps that describe many heterogeneous categories within each pixel to maps 
that describe the single dominant category within each pixel. The Land Use Scanner 
model was run for heterogeneous pixels of 36 categories, and then the output was 
reformatted to homogenous pixels of eight categories for the three-map comparison 
presented in Fig. 8.2. This reformatting is common to facilitate the visualization of 
such mixed pixel data. A major drawback of this reformatting is that it can introduce 
substantial overrepresentation of categories that tend to cover less than the entire 
pixel but more than any other category within the pixel (Loonen and Koomen 2009). 
Consequently, the reformatting can also introduce substantial underrepresentation 
of minority categories. These artifacts due to reformatting can generate more differ-
ences between the maps than the differences that the model generates by its pre-
dicted change. Such biases substantially influenced the analysis of the Holland(8) 
case and caused the apparent error of quantity for the predicted change to be larger 
than the error of quantity for the null model.

Decisions concerning how to format the data are influential, but scientists lack 
clear guidelines concerning how to make such decisions. It makes sense to simplify 
the data to the level that the calibration procedure and validation procedure can 
detect a meaningful signal of land change. It also makes sense to simplify the data 
so that the computer algorithms focus on only the important transitions among cat-
egories, where importance is related to the practical purpose of the modeling exer-
cise. Scientists who attempt to analyze all transitions among a large number of 
categories face substantial challenges. For the Santa Barbara, Holland(8), and 
Holland(15) cases, each particular transition from one category to another category 
in the reference maps occurs on less than 1% of the spatial extent. Each of these 
individual transitions would need to have an extremely strong relationship with the 
independent variables in order for a model to predict them accurately. Scientists can 
alleviate the challenge by aggregation from a set of numerous detailed categories to 
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a set of fewer coarser categories. Aldwaik et al. (2014) offer an algorithm for how 
to aggregate categories while maintaining the signals of land change.

Decisions concerning the data are related closely to decisions concerning the level 
of complexity of the models. Models that simulate only a one-way transition from one 
category to one other category can be simpler than models that simulate all possible 
transitions among multiple categories. If scientists choose to analyze very detailed 
data, then they may be tempted or forced to use very complex models. It is not clear 
whether it is worthwhile to include great detail in the data and/or in the models, 
because it is not clear whether more detail leads to better information or to more error.

Modelers should consider the certainty of the data, because much of the apparent 
land change between two time points could be due to error in the reference maps at the 
two time points (Enaruvbe and Pontius 2015; Pontius and Lippitt 2006; Pontius and 
Petrova 2010). Participating scientists suspect that error accounts for a substantial 
amount of the observed difference between the two reference maps for Maroua, Kuala 
Lumpur, and Holland(15). Scientists should use data for which there is more variation 
over time due to the dynamics of the landscape than due to map error. This can be 
quite a challenge in situations where map producers are satisfied with 85% accuracy, 
which implies up to 15% error, while many data sets show less than 15% land change.

8.3.1.2  To Select Relevant Spatial Resolutions

Spatial resolution is a component of data format that warrants special attention 
because: (1) spatial resolution can have a particularly strong influence on results, (2) 
spatial resolution is something that modelers usually can influence, and (3) it is not 
obvious how to select an appropriate spatial resolution. The spatial resolution at 
which landscapes are modeled is often determined by data availability and compu-
tational capacity. For example, if a satellite image dictates the resolution and extent, 
as it did in the Maroua case (Fotsing et al. 2013), then the boundaries of the study 
area and the apparent unit of analysis are determined in part by the satellite imaging 
system, not necessarily by the theoretical or policy imperatives of the modeling 
exercise. Kok et al. (2001) argue that the selection of resolution should take into 
consideration the purpose of the modeling application and the scales of the land 
change processes. For example, the Worcester case uses 30-m resolution data, but 
we know of no stakeholders in Worcester who need a prediction of land change to 
be accurate to within 30 m. Some stakeholders would like to know generally what 
an extrapolation of recent trends would imply over the next decade to within a few 
kilometers, which is a resolution at which Geomod predicts better than a null model 
as revealed by a multiple-resolution analysis of the model’s output. Therefore, it is 
helpful from the standpoint of model performance to measure the accuracy of the 
prediction at resolutions coarser than the resolution of the raw data. Pontius et al. 
(2008) show that 12 of the 13 case studies have more error than correctly predicted 
change at the fine resolution of the raw data. However, for 7 of the 13 cases, most of 
the errors are due to inaccurate spatial allocation over relatively small distances. 
Multiple-resolution analysis shows that the errors shrink when the results are 
assessed at a resolution of 64  times the length of the side of the original pixels. 
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Errors of spatial allocation shrink as resolution becomes coarser, but errors of quan-
tity are independent of resolution when assessed using an appropriate multiple- 
resolution method of map comparison (Pontius et al. 2004a).

If there is more allocation error than correctly predicted change at the resolution of 
the raw data, then it means that the data have a resolution that is finer than the ability 
of the model to predict allocation correctly. This can be a desirable characteristic 
because it means that the modeling exercise is not limited by the coarseness of the 
spatial resolution of the data. If there is more correctly predicted change than alloca-
tion error than at the resolution of the raw data, then it might be an undesirable char-
acteristic because it might mean that the modeling exercise is limited by the coarseness 
of the spatial resolution of the data. The size of the error is larger than the size of 
correctly predicted change for 12 of 13 of our case studies at the spatial resolution of 
the raw data. Some scientists might conclude that the models are not accurate, while 
it may be more appropriate to conclude the data are more detatiled than necessary.

Advances in mapping technology have made it increasingly easy to find data that 
have a resolution finer than is necessary to address various research questions. If 
data are available at the meter resolution, then it does not imply that scientists are 
obligated to simulate changes accurately to within a meter. It might be desirable to 
run the model at a fine resolution, but to analyze the output at coarser resolutions in 
order to find a spatial resolution for which the model predicts sufficiently given the 
goals of the modeling exercise.

8.3.1.3  To Differentiate Types of Land Change

Scientists should select the types of land change that are of interest before deciding 
which model to use, because some types of land change present particular chal-
lenges for models. It is useful to think of two major types of change: quantity differ-
ence and allocation difference. Quantity difference refers to the difference in the 
size of the categories in the reference maps of time 1 and time 2, while allocation 
difference refers to the difference in the spatial allocation of the categories given the 
quantity difference (Pontius et al. 2004b; Pontius and Millones 2011; Pontius and 
Santacruz 2014). Allocation difference exists when a category experiences loss at 
some places and gain at other places during a time interval. The reference maps for 
Holland(15), Cho Don, Haidian, Honduras and Costa Rica demonstrate more allo-
cation than quantity difference. In particular, Costa Rica demonstrates about ten 
times more allocation than quantity difference. When there is substantial allocation 
difference in the observed data, the model is faced with the challenge to predict 
simultaneous gains in some pixels and losses in other pixels for a single category in 
order to predict the change accurately. This can be much more challenging than to 
predict a one-way transition from one category to one other category. For example, 
the Worcester, Perinet, Detroit, and Twin Cities cases use models that are designed 
to simulate only the gross gain of only one category, while all the other cases use 
models that are designed to allow for simultaneous transitions among several cate-
gories. It is particularly challenging to write an algorithm for situations where more 
than one category competes to gain at a particular pixel.
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8.3.2  Modeling Challenges

8.3.2.1  To Separate Calibration from Validation

Calibration is the procedure to set the parameters of a model, based on information 
at or before time 1. Validation is the procedure to assess how the predicted change 
compares to the reference change from time 1 to time 2. Proper validation of tem-
poral prediction requires that calibration must be separate from validation though 
time. However, most of the cases used for calibration some information subsequent 
to time 1 in order to predict the change between time 1 and time 2. In 7 of the 13 
cases, the model’s calibration procedure used information directly from the refer-
ence map of time 2 concerning the quantity of each category. Other cases used 
influential variables, such as protected areas, that derive from contemporary time 
points subsequent to time 1. In these situations, it is impossible to determine whether 
the model’s apparent accuracy indicates its predictive power through time. If a 
model uses information from both time 1 and time 2 for calibration, then the mod-
el’s so-called prediction map of time 2 could be a match with the reference map of 
time 2 because the model parameters might be over fit to the data. The apparent 
accuracy would reflect a level of agreement higher than the level of agreement 
attributable to the model’s predictive power into an unknown future.

There are some practical reasons why modelers use information subsequent to 
time 1 to predict the change between time 1 and time 2. Some reasons relate to the 
purpose of the model; other reasons relate to data availability.

The cases that applied LTM, CLUE-S and CLUE used information directly from 
the reference map of time 2 concerning the quantity of each category, because the 
priority for those applications was to predict the spatial allocation of land change. The 
user can specify the quantity of each category independently from the spatial alloca-
tion for these models, which can be an advantage in allowing them to be used with 
tabular data and other types of models that generate non-spatial information concern-
ing only the quantity of each land category. For example, CLUE-S and CLUE can set 
the quantity of each category by using case-study-specific and scale- specific methods 
ranging from trend extrapolations to complex sectoral models of world trade.

Some models such as SAMBA require information that is available only for 
years after time 1. SAMBA is an agent-based modeling framework that uses infor-
mation from interviews with farmers concerning their land practices. For the Cho 
Don case, these interviews were conducted subsequent to time 2. Furthermore, the 
purpose of the SAMBA model is to explore scenarios with local stakeholders, not to 
predict the precise allocation of land transitions. The SAMBA team has been devel-
oping other methods for process validation of various aspects of their model 
(Castella et al. 2005b; Castella and Verburg 2007).

There are costs associated with separating calibration from validation informa-
tion, because strict separation prohibits the use of some variables that are known to 
influence land change but are available only for time points beyond the calibration 
time interval. The Worcester case accomplished separation between calibration 
information and validation information by restricting the use of independent 
 variables. For example, maps of contemporary roads and protected areas are 
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 available in digital form, but those maps contain some post-1971 information. The 
scientists for the Worcester application refrained from using these variables that are 
commonly associated with land change. Consequently, the Worcester case uses only 
slope and surficial geology as independent variables. Nevertheless, Pontius and 
Malanson (2005) show that there would not have been much increase in hits by 
using the map of protected areas, because such a map shows the places where 
change is prohibited, not the few places where change is likely to occur.

8.3.2.2  To Predict Small Amounts of Change

All 13 of the cases have less than 50% observed change, seven of the cases show 
less than 10% observed change, while the Holland(8), Santa Barbara, and Twin 
Cities have less than 4% observed change. Land change during a short time interval 
is usually a rare event, and rare events tend to be difficult to predict accurately. 
Figure 8.4 gives evidence that smaller amounts of change in the reference maps are 
associated with lower levels of predictive accuracy.

The challenge to detect and to predict change is made even more difficult by 
insisting upon rigorous separation of calibration data from validation data, espe-
cially in situations where data are scarce. For example, many models such as 
Environment Explorer are designed to examine change during a calibration interval 
from time 0 to time 1, and then to predict the change during a validation interval 
from time 1 to time 2. The Holland(15) case separates calibration information from 
validation information using this technique, where the calibration interval is only 
7 years and the validation interval is only 4 years. In such situations, models may 
have difficulty in detecting a strong relationship between land change and the 
 independent variables during the calibration interval, and the validation measure-
ments may fail to find a strong relationship between the predicted land change and 
the observed land change during the validation interval. One solution would be for 
scientists to invest the necessary effort to digitize maps of historic land cover, so 
scientists can have a longer temporal extent and finer temporal resolution during 
which to calibrate and validate.

8.3.2.3  To Interpret the Influence of Quantity Error

Models that do not use the correct quantity of each category for time 2 must some-
how predict the quantity for each category for time 2. Modelers need to be aware of 
how error in the prediction of quantity influences other parts of the validation pro-
cess. Models typically fail to predict the correct allocation precisely; so models that 
predict more change are likely to produce more false alarms than models that pre-
dict less change, when assessed at fine spatial resolutions. For example, the 
Worcester case predicts more than the observed amount of change, which leads to 
false alarms. If the model were to predict less than the observed amount of change, 
then its output would have fewer false alarms and more correct rejections. In con-
trast, SLEUTH predicts less than half of the amount of observed change for the 
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Santa Barbara case, thus its error is close to that of a null model. It does not make 
sense to use criteria that reward systematic underestimates or overestimates of the 
quantity of each category. This is a weakness of using the percentage correct and the 
null model as benchmarks for predictive accuracy, and is a reason why Pontius et al. 
(2008) used the figure of merit as a criterion.

It is difficult to evaluate a model’s prediction of spatial allocation when there is 
large error in quantity, especially when the model predicts less than the amount of 
observed change in the reference maps. We can assess the model’s ability to predict 
spatial allocation somewhat when the model predicts the correct quantity, which is 
one reason modelers sometimes use the correct quantity at time 2 for simulation. 
Nevertheless, if we use only one potential realization of the model’s output map, then 
the model’s specification of spatial allocation is confounded with its single specifica-
tion of quantity. The Total Operating Characteristic (TOC) is a quantitative proce-
dure that can be used to measure a model’s ability to specify the spatial allocation of 
land change in a manner that allows the modeler to consider various specifications of 
quantity (Pontius and Si 2014). Scientists can compute the TOC for cases where the 
model generates a map of relative priority for the gain of a particular category, which 
many models do in their intermediate steps. The TOC allows scientists to measure a 
model’s ability to predict the few locations that change and a model’s ability to pre-
dict the majority of locations that persist. The TOC is a recent advancement inspired 
by the Relative Operating Characteristic (Swets 1988; Pontius and Parmentier 2014).

8.3.3  Learning Challenges

8.3.3.1  To Use Appropriate Map Comparison Measurements

Scientists have invested a tremendous amount of effort to create elaborate algo-
rithms to model landscape change. We are now at a point in our development as a 
scientific community to begin to answer the next type of question, specifically, 
“How well do these models perform and how do we communicate model perfor-
mance to peers and others?” Therefore, we need useful measurements of map com-
parison and model performance. Pontius et al. (2008) derived a set of metrics to 
compare maps in a manner that we hope is both intellectually accessible and scien-
tifically revealing, because analysis using rigorous and clear measurements is an 
effective way to learn. The initial invitation to participants asked them to submit 
their recommended criteria for map comparison. Few participants submitted any 
criteria, and those who did typically recommended the percentage of pixels in 
agreement between the reference map of time 2 and the prediction map of time 2.

This percentage correct criterion is one that many modelers consider initially. 
However, percentage correct can be extremely misleading, especially for cross-case 
comparisons. Percentage correct fails to consider the landscape dynamics, because 
percentage correct fails to include the reference map of time 1. For example, the 
Santa Barbara case has by far the largest percentage correct, 97%, simply because 
there is very little observed change on the landscape and the model predicts less 
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than the amount of observed change. On the other hand, the Cho Don case has the 
smallest percentage correct, 54%, primarily because the Cho Don case has more 
observed change than any other case. The Perinet case has the largest figure of 
merit, while its percentage correct of 81% ranks just below the median of the 13 
cases. Producer’s Accuracy, User’s Accuracy, and Kappa are other indices of agree-
ment that are extremely common in GIS and can be quite misleading in assessing 
the accuracy of land change models (Pontius and Millones 2011). The figure of 
merit has properties that are more desirable than metrics that are frequently used for 
pattern validation of land change models (Pontius et al. 2007, 2011). We recom-
mend the figure of merit for situations when it is necessary to rank numerous model 
runs with a single measurement. However, a single measurement offers only one bit 
of information thus fails to convey various important aspects of a pattern validation. 
For example, the figure of merit fails to convey the size of the reference change rela-
tive to the size of the predicted change.

We recommend much more highly that modelers report the sizes of misses, hits, 
wrong hits and false alarms, which are the components of the figure of merit. That 
combination of four measures is helpful in a variety of respects. For example, the false 
alarms are fewer than the misses when the model predicts less change than the refer-
ence change; and the false alarms are more than the misses when the model predicts 
more change than the reference change. If there exist false alarms at some locations and 
misses at other locations, then there exists allocation error. It is helpful to distinguish 
allocation error from quantity error, because the two types of error can have different 
implications for practical interpretation depending on the model’s purpose. For exam-
ple, if the purpose of the model is to simulate total carbon dioxide emissions due to 
deforestation, then allocation error is less important than quantity error for spatial 
extents where forest biomass is homogeneous (Gutierrez-Velez and Pontius 2012).

We need to continue to invest effort to improve methods of map comparison. The 
Map Comparison Kit includes a variety of new tools (Visser and de Nijs 2006). 
Modules in the GIS software TerrSet allow scientists to compare maps where the 
pixels have simultaneous partial membership to several categories, which is essential 
for multiple resolution comparison (Pontius and Connors 2009). The free software R 
contains packages that land change scientist will find helpful. The TOC package 
computes the Total Operating Characteristic (Pontius and Si 2014). The diffeR pack-
age gives components of difference at multiple spatial resolutions for two maps that 
show a single variable, such as maps from times 1 and 2 (Pontius and Santacruz 
2014). Moulds et al. (2015) created in R the lulcc package, which performs a variety 
of operations, including the multiple resolution calculation of misses, hits, wrong 
hits, false alarms and correct rejections as derived by Pontius et al. (2011).

8.3.3.2  To Learn About Land Change Processes

During the panel discussions, participants agreed that a main purpose of modeling 
land use and cover change (LUCC) is to increase understanding of processes of 
LUCC, and that scientists should design a research agenda in order to maximize 
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learning concerning such processes, not merely to increase predictive accuracy. 
Therefore, scientists should strive to glean from a validation exercise useful lessons 
about the processes of land change and about the next steps in the research agenda.

Some attendees at the panel discussions expressed concern that this chapter’s 
validation exercises focus too much on prediction to the exclusion of increasing our 
understanding of the underlying processes of LUCC.  Many scientists profess to 
seek explanation, not necessarily prediction. Some scientists think that a model can 
predict accurately for the wrong reasons; in addition these scientists think a model 
can capture the general LUCC processes, but not necessarily predict accurately due 
to inherent unpredictability of the processes. These participants reminded the audi-
ence that pattern validation examines the output maps from the simulation models 
but does not examine whether the structure of the algorithm matches theory con-
cerning the processes of change. Process validation is required to validate the struc-
ture of the algorithm for process based models, especially when path dependence 
plays a role (Brown et al. 2005).

Other scientists see pattern validation as a means to distinguish better explana-
tions from poorer explanations concerning the LUCC processes. For these other 
scientists, pattern validation allows a modeler to gain insight concerning the degree 
to which the simulated change is similar to the observed change. Furthermore, sci-
entists must test the degree to which the past is useful to predict the future because 
this allows scientists to measure the scales at which LUCC processes are stable over 
time. A model’s failure to predict accurately may indicate that the process of land 
change is non-stationary in time and/or space, in which case pattern validation can 
reveal information that is helpful to learn about LUCC processes (Chen and Pontius 
2010; Pontius and Neeti 2010). Thus there is need for new methods, such as Intensity 
Analysis, that test for stationarity at various levels, even before any predictive model 
is run (Aldwaik and Pontius 2013; Runfola and Pontius 2013). If scientists interpret 
the validation procedure in an intelligent manner, then they can perhaps learn more 
from inaccurate predictions than from accurate ones. Consequently, inaccurate 
 predictions do not mean that the model is a failure, because validation can lead to 
learning regardless of the revealed level of accuracy.

This difference in views might explain the variation in the LUCC modeling com-
munity concerning how best to proceed. One group thinks that models are too sim-
ple so that future work should consider more variables and develop more complex 
algorithms so the models can generate a multitude of possible outcomes. A second 
group insists that such an approach would only exacerbate an existing problem that 
models are already too complicated to allow for clear communication, even among 
experts. From this second perspective, contemporary models lack aspects of scien-
tific rigor that would not be corrected by making the models more complex. For 
example, many models fail to separate calibration information from validation 
information, fail to apply useful methods of map comparison, and fail to measure 
how scale influences the analysis. For this second group of scientists, it would be 
folly to make more complicated algorithms and to include more variables before we 
tackle basic issues, because we will not be able to measure whether more complex 
models actually facilitate learning about LUCC processes until we develop and use 

R.G. Pontius Jr. et al.



161

helpful measures of model performance. This apparent tension could be resolved if 
the scientists who develop more complex models collaborate with the scientists who 
develop clearer methods of model assessment.

8.3.3.3  To Collaborate Openly

Participants at the panel sessions found the discussions particularly helpful because 
the sessions facilitated open and frank cross-laboratory communication. Many con-
ference participants expressed gratitude to the co-authors who submitted their maps 
in a spirit of openness for the rest of the community to analyze in ways that were not 
specified a priori. The design of the exercise encouraged participation and open col-
laboration because it was clear to the participants that the analysis was not attempt-
ing to answer the question “Which model is best?”

Some participants in the conference discussions reported that they have felt pro-
fessional pressure to claim that their models performed well in order for their manu-
scripts to be accepted for publication in peer-reviewed journals. We hope that this 
chapter opens the door for honest and helpful reporting about modeling results. In 
particular, we hope that editors and reviewers will learn as much from this study as 
the conference participants did, so that future literature includes useful information 
about model assessment. The criterion for acceptance of manuscripts should be 
rigor of method and clarity of presentation, not results concerning predictive accu-
racy, and certainly not vacuous claims of success.

There is clearly a desire to continue this productive collaboration because it 
greatly increases learning. One particularly constructive suggestion is to build a 
LUCC data digital library so that scientists would have access to each others’ data, 
models, and modeling results. The data would be peer-reviewed and have metadata 
sufficient so that anyone could perform cross-model comparison with any of the 
entries in the library. In order for this to be successful, scientists need sufficient 
motivation to participate, which requires funding and professional recognition for 
participation.

8.4  Conclusions

The collective experience of the co-authors supports the statement that all models 
are wrong but some are useful (Box 1979). All 13 of the models are wrong in the 
respect that the outputs have errors. Errors in pattern validation mean that the pat-
terns extrapolated from the calibration time interval were not stationary with the 
patterns observed during the validation time interval. These errors are a reflection of 
the landscape as much as they are a reflection of the model. If the scientists interpret 
the results in a useful manner, then scientists can learn; and if scientists learn from 
a model, then the model was successful at advancing science. It is essential to use 
measurements that can be interpreted with respect to a model’s intended purposes in 
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order to facilitate learning. Clarity and rigor are necessary to establish procedures 
and measurements for informative judgments concerning model performance. This 
chapter illuminates common pitfalls and offers guidance for ways to overcome the 
pitfalls. Specifically, we recommend modelers report the sizes of misses, hits, wrong 
hits, and false alarms. Those four measurements are based on the mathematical 
ideas concerning the intersection of sets, which are regularly taught to elementary 
school students. If scientists meet the challenges specified in this chapter, then we 
are likely to learn efficiently, because meeting these challenges can help scientists 
prioritize a research agenda for land change science. To facilitate open collabora-
tion, we have made the raster maps used in this cross-case comparison available for 
free at www.clarku.edu/~rpontius.
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Chapter 9
Applications of 3D City Models for a Better 
Understanding of the Built Environment

Bruno Willenborg, Maximilian Sindram, and Thomas H. Kolbe

Abstract The administration of modern cities is a complex task involving various 
disciplines. To satisfy their specific needs regarding planning and decision making, 
all of them require a virtual representation of the city. Semantic 3D city models 
offer a reliable and increasingly available virtual representation of real world objects 
in an urban context. They serve as an integration platform for information and appli-
cations around the city system, because data from different domains can be linked 
to the same objects representing real world urban objects. This work gives an over-
view on the current state of applications based on semantic 3D city models and how 
they can be categorized. Three use cases are explained in detail. Based on city mod-
els according to the CityGML standard, first a tool for estimating the solar irradia-
tion on roofs and facades is introduced. By the combination of a transition model, 
sun position calculation, and an approximation of the hemisphere the direct, diffuse 
and global irradiation as well as the SkyViewFactor are computed. Second, an 
application for the simulation of detonations in urban space is presented. The city 
model is converted to a field-based representation for running a Computational 
Fluid Dynamics (CFD) simulation. By storing logical links between the object and 
the field-based representation of the city model, information exchange between the 
simulation tool and the city models is realized. The third application demonstrates 
the estimation of the energy demand of buildings based on official statistical data 
and the simulation of refurbishment measures. All three applications use a cloud-
based 3D web client for visualization of the city model and the application results 
including interactive analysis capabilities.
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9.1  Introduction

Virtual 3D city models have been used for many years to capture and explore the 
view of a city. Visualization and visibility analysis have been (and still are) key 
applications. The requirements on a 3D city model for these type of applications are 
rather low. Basically, a Digital Surface Model (DSM) is used to describe the geom-
etry of the Earth’s surface – including the shape of the natural and built environment 
like trees or buildings. In addition, photographic images are mapped onto the DSM 
providing color and appearance information. Due to major progress in photogram-
metry and remote sensing technology and methodology over the last ten years these 
3D models can be generated from airborne or terrestrial mapping campaigns in a 
fully automated way. Good examples are the 3D models provided in Google Earth 
or in Apple’s map application.

While the visual aspects of the built environment are well covered, the before 
mentioned models do not carry any knowledge of what they are representing. 
Visualization models in principle just consist of geometric elements like 3D poly-
gons, volumes, or meshes with additional appearance information. The interpreta-
tion of the rendered 3D model happens completely by the (human) viewer relying 
on his capability to recognize and discriminate the individual urban objects like 
buildings, bridges, roads, trees etc.

The administration and development of modern cities is a complex task involv-
ing many disciplines, each of them with their own requirements. To satisfy their 
specific needs regarding planning and decision making, all of them require a virtual 
representation of the cityscape, that allows for much more than mere visualization. 
For instance, to determine the total roof surface area of a city quarter, information 
on which surfaces represent roofs and a geometric representation allowing area cal-
culation are indispensible.

Semantic 3D city models not only represent the shape and graphical appearance 
of urban objects but contain semantic information describing their thematic proper 
ties, taxonomies, aggregations and interrelations. As depicted in Fig. 9.1, the visual 
quality of semantic 3D city models (right image) may be lower than in visualiza-
tions models (left image), but it is possible for machines/algorithms to distinguish 
urban object like buildings (see highlighted building in the right image) and use 
their rich thematic and geometric information for queries, statistical computation, 
simulation, and visualization. Driven by the growing availability of semantic 3D 
city models and the expanding number of thematic classes for different object types 
(e.g. roads, vegetation, bridges, tunnels, etc.) new applications in the context of 
urban planning arise. In the following, we introduce the main modelling concepts 
and show selected application scenarios that demonstrate the added value of seman-
tic 3D city models coping with current social, ecological, and economical 
challenges.

B. Willenborg et al.
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9.2  Semantic 3D City Models and CityGML

The international standard City Geography Markup Language (CityGML) is an 
open data model and encoding format that has been developed for the representation 
and exchange of semantic virtual 3D city and landscape models. CityGML com-
prises information on the geometry, appearance, semantics and topology of objects 
in an urban context. The city objects are decomposed following logical criteria 
which can be observed in the real world according to the ISO 19109 definition of 
geographic objects (ISO 19109:2005(E) 2005). The exchange format defined by 
CityGML is based on the Extensible Markup Language (XML) and the ISO 19100 
standards family, for instance the ISO 19107 standard (Herring 2001). The standard 
is an application schema of the Geography Markup Language version 3.1.1 (GML3). 
Its latest issue, version 2.0.0, was released in 2012 as an official standard of the 
Open Geospatial Consortium (OGC) (Kolbe 2009).

The CityGML standard was designed to serve as a universal topographic infor-
mation model independent of specific subject areas. It defines a common under-
standing of the segmentation of the most relevant features classes of a city and their 
attributes. Hence, the standard serves as an information model for a broad range of 
applications like urban planning, civil engineering, environmental simulations or 
tourism. Figure 9.2 gives an overview on the modular structure of CityGML. Based 
on a core module 10 thematic modules for e.g. buildings, transportation systems or 
vegetation are defined which can be freely combined according to the given applica-
tion context (Kolbe 2009).

However, in practical applications it is frequently required to store and exchange 
additional information, which is not covered by the predefined classes mentioned 
above. Therefore, CityGML supports two extension mechanisms, generics and 
Application Domain Extension (ADE) as shown in Fig.  9.2. All city objects can 
carry an arbitrary number of generic attributes, which are defined by a name, data 
type and value. Moreover, generic city objects with arbitrary geometries and generic 

Fig. 9.1 Comparison of visualization only (left image, source: Google Earth) and semantic 3D 
city models (right image, source: State mapping agency of Bavaria (LDBV)): while the visual 
quality is higher in the visualization model, individual objects, as for instance the highlighted 
building, can be discriminated computationally within the semantic model
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attributes can be defined. The second extension concept are so called ADEs. ADEs 
allow the extension of existing thematic modules and the creation of new feature 
classes. In contrast to generics, ADEs are defined in a separate XML schema defini-
tion file with their own namespace. Hence, they are formally specified and instance 
files can be validated against the schema of the ADE (Kolbe 2009). An example 
ADE for modelling traffic noise emissions (Noise ADE (Czerwinski et al. 2006)) is 
provided within the CityGML 2.0 specification (Gröger et al. 2012). Other popular 
ADE examples are the Energy ADE extending the CityGML model with features 
for building heat demand (Nouvel et al. 2015) and the currently developed Utility 
Networks ADE enabling the modelling of supply and disposal networks for analys-
ing the urban supply situation (Becker et al. 2011, 2013; Kutzner and Kolbe 2016).

On the subject of variable resolution requirements of different applications, 
CityGML supports a multi-scale representation of objects with five consecutive 
Level of Details (LoDs). Objects become more detailed both geometrically and the-
matically with increasing LoD. Each object can be stored in different LoDs simul-
taneously, allowing its analysis and visualization according to the degree of detail, 
the given application context requires. Level of Detail 0 (LoD0) is a coarse repre-
sentation of the earth’s surface, Level of Detail 1 (LoD1) is the well know blocks 
model, where all 3D objects are created by vertical extrusions of footprints. Level 
of Detail 2 (LoD2) offers distinctive roof structures for buildings, while Level of 
Detail 3 (LoD3) denotes architectural models with detailed wall and roof surfaces, 
windows and doors. Level of Detail 4 (LoD4) adds building interiors like rooms, 

Fig. 9.2 Modularization of CityGML. Vertical modules contain the semantic modeling for differ-
ent thematic domains. The horizontal modules contain core functionality and mechanisms for 
different kinds of graphical appearance of city objects and for extending the predefined thematic 
modules
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stairs and furniture. The LoD concept applies to all other CityGML features types 
as well (Kolbe 2009).

Semantic 3D city models are predominantly created and provided by public 
mapping agencies, which ensures their sustainable maintenance and updating. They 
are derived in fully or semiautomated workflows from official 2D cadastral data and 
elevation information from airborne laser scanning or aerial images. However, the 
automated creation of CityGML models based on open data is feasible as well. 
Kolbe et al. (2015) created a model of New York City based on 26 different data sets 
from the New York City Open Data Portal, comprising all buildings, land parcels, 
roads, parks, the digital terrain model, and water bodies – all with 3D geometries 
and between 10 and 80 thematic attributes. At the national level the Working 
Committee of the Surveying Authorities of the States in Germany (AdV) is pre-
scribing a uniform and nationwide dissemination of building models in Germany by 
the mapping agencies. In Germany, almost all of the existing buildings are currently 
available in LoD1. This comprises more than 50 million single building objects. As 
of December 31st, 2016 models in LoD2 for the total building stock are available 
for the German states North Rhine-Westphalia, Rhineland-Palatinate, Saarland, 
Saxony, and Saxony-Anhalt with most other german states to be completed by 2018 
(Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik 
Deutschland (AdV): Produktblatt  – 3D-Gebäudemodelle LoD2 2016). At the 
European level, a unified and standards-based availability of building models is 
determined by the Infrastructure for Spatial Information in the European Community 
(INSPIRE) directive (INSPIRE: EU Directive 2007). As one of 34 themes, the 
theme Buildings is covering building specific data for different use cases. Gröger 
et  al. (2013) are proposing a CityGML-based encoding for the INSPIRE Data 
Specification on buildings allowing their use as CityGML buildings and thus bridg-
ing the gap between political requirements and data availability for semantic 3D 
city models.

The upper part of Fig. 9.3 shows some examples of the large number of interna-
tional cities such as Singapore, Paris, Zurich, Vienna, London, New York, Vancouver, 
Montreal, and Helsinki that provide and maintain a semantic 3D city model. The 
federal German state North Rhine-Westphalia and the city of Berlin are even distrib-
uting their city models at no charge for both commercial and non-commercial use to 
foster the usage of the data and accelerate the development of new applications. 
These applications cover, amongst others, energy demand and production estima-
tion, noise immission simulation and mapping, real estate and urban facility man-
agement and vulnerability analysis and disaster management. To ensure, that these 
tools can be applied in cities all over the globe, a common understanding of the most 
important urban features and standardization of the underlying data model and 
exchange format is required. This enables software developers to design tools for a 
broader audience and facilitates data exchange between software components of 
different domains and development teams based on the objects of the city model.
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9.3  Applications of 3D City Models: An Overview

Today, 3D city models are used in a wide range of applications covering diverse use 
cases and application domains. The work of Biljecki et al. (2015) gives an extensive 
overview on the current utilization of 3D city models and introduces a hierarchical 
terminology for their segmentation, which is briefly recapped in the following.

According to Biljecki et al., the biggest issue, avoiding a straight forward inven-
tory of applications of 3D city models, are many undefined terms in the context of 
3D spatial information like use case, application, or operation. Even the definition 
of 3D city models is not consistently used. Hence, a well-defined categorization of 
3D city model applications based on application domains, use cases and spatial 
operations is not feasible as these terms are overlapping.

Therefore, the authors decided to focus on the listing of use cases. Additionally, 
applications for a better understanding of the individual use case are collected. 
When trying to find a taxonomy for use cases, that is both mutually exclusive (a use 
case can only be part of one category) and collectively exhaustive (all categories 
cover all use cases) the only valid criteria that could be identified is the visualization 
aspect. Hence, use cases are categorized into the two following groups.

One the one hand, non-visualization use cases are described, which require visu-
alization neither of the 3D city model nor the results of the spatial operations the use 
case comprises. For instance, the solar potential analysis discussed in Sect. 9.4, an 
application of the use case of estimating solar irradiation, falls into that category. 
The simulation results can be visualized, but this is not essential to achieve the pur-
pose of the use case. The information the simulation generates is meant to be used 

Fig. 9.3 Semantic 3D city models serve as information hub for different application scenarios 
from various disciplines. The CityGML standard harmonizes access to the most common urban 
features. Thus, applications that are based on the standard are guaranteed to work among different 
cities
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for the identification of suitable areas for solar energy generation. As the results are 
written to a database, this task can be performed using a query without 
visualization.

On the other hand, the authors delineate visualization-based use cases. They 
include cases, where visualization is very important but not essentially required. An 
example for this is navigation, which works fine with state-of-the-art text to speech 
software, but greatly benefits from visualization. Second, visualization-only use 
cases, like virtual reality or communication of urban information are covered by that 
category. This categorization is consistent with the separation into visual 3D models 
and semantic 3D city models as described in Sect. 9.1.

In an extensive literature review, the authors identified more than 29 use cases 
including more than 100 applications, which are arranged into these categories. The 
non-visualization use cases comprise the estimation of solar irradiation, energy 
demand estimation, aiding positioning, determination of floorspace and classifica-
tion of building types and is much smaller than the visualization-based use cases 
category, that includes more than 20 entries. A complete list of the use cases and a 
brief description of the included applications can be found in the original work of 
Biljecki et al. (2015). A brief summary of the most important use cases grouped in 
four topics is given in the following.

The topic energy comprises the use cases of estimating solar irradiation and 
building energy demands. To compute the insolation on a building the geometric 
information of the city model building surfaces like the inclination, orientation and 
area is taken as input for solar empirical models to evaluate its suitability for solar 
energy generation (photovoltaics (PV) or solar thermal collector (ST)). Please find 
a detailed application example in Sect. 9.4. For the estimation of the energy demand 
of a building both geometric and thematic properties of the city model are taken into 
account. The combination of a buildings’ volume, shared wall surface areas and its 
construction year allows the estimation of its heating energy demand, as discussed 
in the detailed example given in Sect. 9.6.

The second topic is homeland security and vulnerability. One of its central use 
cases is visibility analysis, where the Line of Sight (LoS) between two points is 
computed based on the geometries of the city model. For instance, this information 
is used for optimizing the placement of security cameras (Yaagoubi et al. 2015) or 
evaluating the hazards of sniper terrorism (Vanhorn and Mosurinjohn 2010). 
Another relevant use case in this context is emergency response. 3D city models 
contribute valuable information for the preparation for emergency situations and 
quick response scenarios like building entry points (doors and windows) or even 
detailed indoor models for improving evacuation planning or fire fighter ladder 
positioning (Chen et al. 2014; Kwan and Lee 2005; Tashakkori et al. 2015). Becker 
et  al. (2011) use 3D city models including utility networks (Kutzner and Kolbe 
2016) for estimating cascading effects of critical infrastructure failure in cases of 
disasters or emergency situations. Moreover, an application example applying a 
Computational Fluid Dynamics (CFD) simulation for the assessment of blast effects 
in an urban context based on the thematic and geometric information of 3D city 
model buildings is discussed in Sect. 9.5.
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The most relevant use cases for the third category, traffic and mobility, are visu-
alization for navigation and routing. 3D city model objects like buildings are of- ten 
familiar landmarks that help users with orientation in navigation applications. The 
3D geometry representation of city models is more realistic than the symbolic rep-
resentation provided by 2D maps and contains more navigation cues (Oulasvirta 
et al. 2009; Schilling et al. 2005). Moreover, semantic 3D city models allow for 
optimizing the 3D view based on the thematic information they provide (Mao et al. 
2015; Nedkov 2012). 3D city models have gained interest for routing purpose as 3D 
navigation techniques become available (Hildebrandt and Timm 2014) and they 
contain objects that, are not available in 2D maps like steps and ramps, that, for 
instance, influence the navigable space for pedestrians (Slingsby and Raper 2008). 
If the 3D city model contains information on the interior of buildings, this informa-
tion can be use for way finding and accessibility applications (Khan Aftab and 
Kolbe Thomas 2013; Khan and Kolbe 2012; Khan et al. 2015; Liu and Zlatanova 
2011; Thill et al. 2011).

Climate and environment is the fourth topic. Its most prominent use cases are the 
estimation of noise propagation and CFD simulations for various phenomena 
including flooding. The estimation of noise propagation benefits from 3D geome-
tries, as the noise level varies for different height levels due to refraction (Kubiak 
and Ławniczak 2015). Seman tic information’s can be used to obtain noise propaga-
tion simulation parameters like traffic density, as the work of Czerwinski et  al. 
(2006), (2007) shows 3D city models are a common basis for CFD simulation. Most 
applications are found in field of microclimate analysis for e.g. evaluation of air 
quality and pollutant dispersion (Ujang et al. 2013), wind comfort (Janssen et al. 
2013) or the urban thermal environment (Maragkogiannis et al. 2014). Estimating 
the extend and impact of flood events can be enhanced compared to 2D methods 
using 3D city models as well (Schulte and Coors 2008). The multi-resolution flood 
simulation approach developed by Varduhn et al. (2015) utilizes the drainage sys-
tem of a City Geography Markup Language (CityGML) city model to include pipe 
network interactions an allow predictions for individual buildings. As discussed in 
Sect. 9.5, the exchange of semantic information between simulation system and city 
model can be beneficial for both sides.

9.4  Estimation of Solar Irradiation Using Semantic 3D City 
Models

Solar irradiation is a clean, silent, secure and abundantly available energy source. 
Due to decreasing costs and improvements in technology and acceptance, 
Photovoltaics (PV) and solar thermal collectors (STs) are going to play a key role in 
the future energy production, especially in urban areas where a significant portion 
of the energy is consumed. In 2010, the EU Directive 2010/31/EU introduced the 
Nearly Zero Energy Buildings concept, requiring that the local energy production of 
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all new buildings after the year 2020 covers their local energy demand. PV and ST 
systems foster this concept of decentralized energy production due to their high 
modularity. Furthermore, transmission and distribution losses are avoided, as the 
energy is produced at its point of use (Brito et al. 2012; Redweik et al. 2013).

To meet the requirements of EU legislation, in the future much larger areas for 
PV will be required. As facades are much larger than roofs in modern cities and are 
mostly devoid of building installations and infrastructure like chimneys, dormers, 
air conditioning units or elevator engines and usually present better maintenance 
conditions than PV panels on roofs, as vertical surfaces do not accumulate so much 
dust and are usually free of snow in the winter, they increasingly gain interest for 
deployment of PV in residential areas (Redweik et al. 2013). Moreover, the combi-
nation of energy production with other building functions like heat insulation, clad-
ding or illumination with semi–transparent photovoltaic modules may offer 
interesting benefits (Catita et al. 2014). For the successful deployment of PV and ST 
systems in the urban area, the local potential of roofs and facades needs to be inves-
tigated, taking influencing variables like the local meteorological and climate condi-
tions and shadowing effects of the surrounding topographic features into account. 
Semantic 3D city models are an ideal data source for such assessment as they com-
bine a detailed representation of the cityscape with visualization and analytic 
capabilities.

9.4.1  Estimation of Urban Solar Energy Potential for Facades 
and Roofs

The method for estimating solar irradiation in urban areas introduced in this section 
is based on the Master’s Thesis of Wolfgang Zahn (2015). His work has been revised 
and implemented in Java, as a plugin for the 3DCityDB Importer/Exporter, the stan-
dard database management utility for the 3DCityDB for CityGML (3DCityDB). 
The application has been enhanced for increased performance and functionality 
with the main objective to develop a user-friendly tool that enables non-expert users 
to perform and evaluate solar potential analysis for city models of arbitrary size.

The model computes the direct and diffuse solar irradiation and the SkyViewFactor 
(SVF) for roofs and facades considering shadowing effects of buildings and a 
Digital Terrain Model (DTM) while ignoring the influence of reflected radiation. 
Ground features are not being processed, as those areas are usually not available for 
solar energy generation in cities and would needlessly increase runtime. The only 
input data required is a 3D city model in Level of Detail 2 (LoD2) according to the 
City Geography Markup Language (CityGML) standard, where building roofs and 
facades are modeled as thematic surfaces (Gröger et al. 2012). Optionally, a DTM 
can be integrated as well.

The direct solar irradiation is modeled using a combination of the transition 
model developed by Fu and Rich (1999) and an algorithm for computing the position 
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of the sun from the work of Grena (2012). First, the sun positions for 1 year are 
computed for a freely selectable observation point with geographic coordinates 
given in Latitude (LAT)/Longitude (LON) and height above sea level. Usually, the 
center of the city model is being used. Time intervals between the sun positions can 
be configured in steps of hours and days where typically an 1-h-interval is selected, 
considering performance and quality aspects. The sun positions are described by two 
angles, one for orientation (azimuth α) and the other for height (zenith θ) relative to 
the observation point applying an algorithm introduced by Grena (2012) providing a 
maximum error of 0.19°. The resulting sun positions are stored as point features in a 
radius of 100,000  km around the observation point in the Coordinate Reference 
System (CRS) of the city model in the 3DCityDB with their radiation power as attri-
bute. Second, the radiation power [kWhm−2] of each sun point is calculated using a 
simplified transition model based on Fu and Rich (1999) considering the transmis-
sivity (τ) of the atmosphere depending on the height of the sun point and the relative 
optical path length m (θ).

For robustness against regional atmospheric differences the transmissivity and 
the fraction of the diffuse irradiation of the global irradiation are calibrated using 
freely available data from the NASA Atmospheric Science Data Center. 
Implementing an iterative approach, both parameters are adjusted until they match 
22 year mean values of the NASA Surface meteorology and Solar Energy (SSE) 
mission (Langley Research Center 2016), which are queried online by LAT/LON 
coordinates for each simulation run, allowing a worldwide application of the tool 
with sufficient result quality.

The diffuse irradiation and the SVF are computed using a simplified approxima-
tion of the sky dome with points, where each point represents a spherical segment. 
The azimut (orientation) and zenit (height) angle distance between the points and 
the azimut angle offset between individual zenit angle layers can be configured 
enabling the creation of a hemisphere, where each point represents the same frac-
tion of the area, which produces the best results according to Zahn (2015). Moreover, 
hemispheres with variable point density can be created to adapt to performance and 
quality requirements of the given use case. To compute the radiation power of the 
hemisphere points the Standard Overcast Sky (SOC) model according to Fu and 
Rich (1999) is used. Analog to the sun points, the hemisphere points are created in 
a 100,000 km radius around the observation point as point features in the 3DCityDB 
with their radiation power as an attribute.

For the creation of a computational basis on roofs and facades a regular point 
grid is placed on the building surfaces. Each point represents the same fraction of 
the area of the building surface which is determined by averaging. The points are 
used as reference points for the estimation of the solar irradiation and are stored in 
the 3DCityDB with the inclination and orientation of the surface they belong to as 
attributes. Considering performance and quality criteria the density of the point grid 
can be configured. To prevent the points from intersecting the surface they are 
placed on during the ray tracing, the point grid is created with a small offset 
(5–20 cm) in direction of the surface normal. As this slightly increases the field of 
vision, rays with a incidence angle smaller than 0° according to Eq. 9.1 have to be 
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filtered, depending on the position of the sun and the inclination and orientation of 
the surface.

 
AngIn G G Gz z aq a q q a, arccos cos • cos sin • sin • cos= ( ) ( ) + ( ) ( ) -( )( )

 
(9.1)

The shadows cast by the surrounding constructions are considered by perform-
ing a visibility analysis applying a ray tracing approach. For each building point 
rays to all sun and hemisphere points are created which are tested for intersection 
with building geometries and the DTM using a ray/triangle intersection test accord-
ing to Möller and Trumbore (2005). Therefore, all building geometries are triangu-
lated using the Java3D library (Oracle: Java 3D Project Website 2016) in advance. 
The resulting triangles are stored in a bounding volume octree index structure sig-
nificantly decreasing the number of expensive intersection tests. Both ray creation 
and intersection test are implemented using a thread pool allowing to process sev-
eral surfaces in parallel to increase scalability. The influence of the visibility analy-
sis can be observed in Fig. 9.4. Points in narrow corners and close to the ground 
receive less irradiation than points at roof tops or at unobstructed walls.

For the processing of large models (e.g. whole cities) a tiling strategy has been 
implemented. The simulation domain is split into cells with an edge length that can 
be defined in the configuration. Each cells is loaded individually for processing to 
avoid memory leaks. For the visibility analysis the cell, that is currently being evalu-
ated and its eight neighbor cells are included.

Fig. 9.4 Yearly irradiation sum (kWh/m2/year) for building points at the TUM campus and sur-
rounding buildings
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9.4.2  Results

The output estimates of the application are the direct, diffuse and global irradiation 
energy values and the SVF. All of them are presented in different spatial and tempo-
ral aggregation levels. First, all results are computed for each building point by 
summing up the values for direct and diffuse irradiation and the fraction of the area 
of the hemisphere respectively for each non intersected ray. The results per point are 
aggregated per month (kWh/m2month) and are written to a new database table in the 
3DCityDB.  They can now be evaluated based on spatial and attributive criteria 
using Structured Query Language (SQL). The global irradiation is calculated by 
summing up direct and diffuse irradiation. An example of the yearly sum of the 
global irradiation per point is shown in Fig. 9.4.

Besides the point results, aggregates for each building surface and building are 
computed in monthly (kWh/month) and yearly (kWh/year) time resolution using 
the Java 8 Streams API for parallelization (Urma et al. 2015). Therefore, the results 
per point are summed up for each surface or building respectively. The aggregated 
parameters are stored in the city model with the features they belong to using the 
Generic Attributes extension mechanism of the CityGML standard. Thus, they are 
available for visualization and analysis tools of the CityGML framework. The the-
matic surface and building instances of the city model are persistently semantically 
enriched with the results of the solar potential analysis allowing for data fusion with 
other information like the energy demand estimation describes in Sect. 9.6 increas-
ing the utility value of the city model.

9.4.3  Evaluation and Discussion

For the accuracy evaluation of the method two solar potential analysis have been 
conducted based on the CityGML city models for Weihenstephan near Munich and 
Potsdam. As part of a Bachelor’s Thesis by Benjamin Eberle (2015) their results 
have been compared to ground truth data series from pyranometers by Deutscher 
Wetter Dienst (DWD) ranging from 1983 to 2005 having a maximum measurement 
inaccuracy of ≤±5% for an hourly and monthly temporal resolution.

The monthly resolution shows relatively low deviations between measured and 
estimated solar irradiation. The direct irradiation is overestimated during winter and 
underestimated during summer, resulting in an absolute underestimation of the 
global irradiation sum per year of ~25 kWh/m2/year for both test cases which cor-
responds to a relative deviation of less than ~3%. Comparing the NASA data to the 
DWD data has shown, that these deviations correlate with the deviations of the 
transition model compared to the DWD data. Hence, they are likely caused by the 
calibration of the transition model with the NASA data. A calibration of the transi-
tion model with high quality data from ground measurements could further improve 
the accuracy of the model.
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The comparison of the hourly resolution between DWD and transition model 
shows significant deviations. Generally, the solar irradiation is underestimated in 
the morning and evening and overestimated at noon. Those inaccuracies are caused 
by an incorrect calculation of the relative optical path length (m (θ)), especially for 
low sun positions with azenit angle (θ) of more than 80°, as Eberle found in his 
study (Eberle 2015). Hence, the transition model does currently not deliver accurate 
estimates for a temporal resolution of 1 h, in contrast to daily, monthly or yearly 
aggregated values. A model including correction factors for the refraction of the 
sunlight for low sun positions could help to increase the quality of the results.

Another factor influencing the quality of the solar irradiation estimation is related 
to the current practice of data acquisition for 3D city models. Today, most models 
are derived in automated processes from Light Detection and Ranging (LiDAR) 
point clouds and official geographic base data using predefined roof shapes. The 
application of these roof shapes may cause a slight change of roof inclinations, 
which can strongly influence the amount of radiation power a surface receives. 
Additionally, installations and building infrastructure on roofs and facades are not 
included in the model, which decrease the usable area for solar energy generation 
significantly.

The approach for the estimation of solar irradiation based on CityGML city mod-
els described in this section delivers reliable results for a wide range of applications. 
It can be applied to models of arbitrary size. In a test scenario, the roofs of the 
CityGML model of the London Borough of Barking and Dagenham containing 
89,000 buildings have been calculated successfully. The work of Kausika et  al. 
(2016) presents a case study for the city of Utrecht, Netherlands where the tool has 
been used to support decision making in the planning of the cities new railway sta-
tion. The simulation can be controlled with a Graphical User Interface (GUI) and 
the results can be visualized and analyzed using a cloud-based 3D web client (Yao 
et al. 2014, 2016).

This enables non expert users to perform, visualize and evaluate the sun potential 
analysis.

9.5  Simulation of Detonations in Urban Space Based 
on Semantic 3D City Models

The second detailed usage example introduced in this section is about the simula-
tion of explosions in urban space using a semantic 3D city model as data exchange 
platform. The following summary is based on the results published in Willenborg 
et al. (2016).
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9.5.1  Introduction

Urban regions are characterized by dense population and a high concentration of 
infrastructure and businesses. Thus, they are highly vulnerable to destructive events 
cause by humans or nature. One of the most threatening scenarios endangering 
those regions are explosions caused by catastrophic events, accidents, or terrorism. 
Computational Fluid Dynamics (CFD) simulation tools support planning and deci-
sion making in the field of explosive safety and building construction and allow 
strategic and conceptual preparation for individual blast scenarios (Trometer and 
Mensinger 2014). These applications are tailored to efficient simulation of explo-
sions and blast waves, but do not provide interactive access to simulation results. 3D 
city models and their frameworks offer comprehensive tools for visualization and 
result analysis even for non-expert users. They represent a reliable and growingly 
available data source for both geometries and semantics in an urban context.

When trying to perform CFD simulations based on semantic 3D city models we 
encounter two substantially different modeling paradigms: 3D city models, on the 
one hand, are modeled object based. According to the ISO 19109 definition of geo-
graphic objects (ISO 19109:2005(E) 2005), the city model objects are decomposed 
following logical criteria which can be observed in the real world. Their shape, 
orientation and location in the model is derived from their real world counterpart. 
CFD simulation tools on the other hand, operate on field-based models. The simula-
tion domain is subdivided into e.g. a regular grid of finite volume elements or vol-
ume pixels (voxels). Real world objects are approximated by an accumulation of 
these cells.

The central challenge is to allow information exchange between both models and 
to develop an automated workflow that allows non-expert users to configure, per-
form, visualize and analyze blast simulations based on semantic 3D city models 
according to the international standard City Geography Markup Language 
(CityGML). An example of the desired information flow is given in Fig. 9.5. A field 
based representation of the city objects needs to be derived that allows the usage of 
the semantic information of the city model for the simulation and the back referenc-
ing of the simulation results to their corresponding city model entities.

9.5.2  Derivation of a Voxel Model from CityGML Geometries

The derivation of the voxel representation from CityGML city models is performed 
using the Open Source 3D geodatabase 3DCityDB running on a Post greSQL/
PostGIS installation. The process is implemented as Procedural Language-/
PostgreSQL (PL/pgSQL) database functions, hence only lightweight function calls 
have to be transferred between the main application and the database. User interac-
tion and workflow control is implemented in Java as a plugin for the 3DCityDB 
Importer/Exporter. The application comes with an easy-to-use Graphical User 
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Interface (GUI), where all required configuration can be handled interactively. For 
the derivation of the voxel model the desired CityGML layers and the simulation 
domain as a Bounding Box (BBox) need to be selected. Furthermore, the edge 
length of the voxels needs to be specified. This parameter is crucial for the perfor-
mance of the application and should be adjusted depending on the quality require-
ments of the scenario.

The voxel model is computed in two steps. First, the voxels located in the simula-
tion domain need to be created. Therefore, the observed area is divided into a regu-
lar grid according to the voxel edge length, starting from its lower left bottom. The 
resulting integer IJK coordinate system for the grid cells can now be used for the 
voxel creation. Based on the origin of the grid, the voxel edge length and the grid 
coordinates a PL/pgSQL functions creates all voxels in the domain as Post 
Geographical Information System (PostGIS) spatial objects of type 
PolyhedalSurfaceZ in the Coordinate Reference System (CRS) of the city model 
using PostGIS spatial operations. Second, each voxel is queried for spatial relation 
with the city model objects using the PostGIS 3D intersection test procedure. 
Thereby, the GiST index structures provided by the database system are used 
(Hellerstein et al. 1995). They implement an R-Tree spatial index which increases 
query performance using a tree data structure for bounding box comparisons 
(Guttman and Stonebraker 1983). All voxels having a spatial relation to a city object 
are added to the field-based representation. An example of a voxel model derived 
from a CityGML model of the campus of the Technical University of Munich is 
illustrated in Fig. 9.5.

Fig. 9.5 Information exchange between the semantic 3D city model and the voxel representation 
of the simulation tool
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9.5.3  Information Exchange Between City and Voxel Model

Besides its geometric representation, for each voxel overlapping a CityGML geom-
etry its logical reference to the intersecting city model object is stored in the data-
base, where a voxel is uniquely identified by its grid coordinates and a CityGML 
object by its GMLID. The resulting n:m relationship between voxels and city model 
objects can be used to exchange information between both systems using standard 
database join operations.

Figure 9.6 shows an illustration of a CityGML building consisting of four 
WallSurface, two RoofSurface and one GroundSurface objects, its overlain voxel 
representation and the logical links between both of them. The semantic informa-
tion (e.g. material, color, area) attached to the highlighted WallSurface W4 is linked 
to the highlighted voxels and can be utilized by the simulation tool. The other way 
round, results delivered by the simulation software in the field based model (e.g. 
highlighted voxels) can be referenced to their corresponding city objects (e.g. 
WallSurface W4).

Consequently, simulation results can be aggregated per city model object. Using 
the Generic Attributes extension mechanism of the CityGML standard the simula-
tion results can be stored with their corresponding objects in the city model. The 
persistent semantical enrichment of the city model objects makes the simulation 
results available for visualization and analysis tools of the CityGML framework. 
Moreover, the information generated by the simulation can be combined with other 
data enhancing the analytic capabilities of the model and therefore increases its 
value.

Fig. 9.6 Field based voxel approximation of an object based CityGML building. The logical rela-
tions between WallSurface W4 and the voxel model are highlighted in blue color
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9.5.4  Example Usage Scenario: Blast Simulation 
with the Apollo Blastsimulator

In the following section the proposed approach for the integration of CFD simula-
tion tools and 3D city models is evaluated for the example of a blast simulation with 
the APOLLO Blastsimulator. The work described in this section is based on the 
Master’s Thesis of Willenborg (2015). The Apollo Blastsimulator is a CFD simula-
tion tool developed at Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-
Institute (EMI) in Freiburg, Germany. It is mainly used for risk analysis and 
combines good usability, versatility and computational efficiency by tailoring the 
methodological concepts to the application of explosions and blast waves (Klomfass 
2016).

For evaluation purpose a fictive test scenario has been created. We assume, that 
an unexploded bomb from World War II has been uncovered during ground working 
in the inner court of the Technical University of Munich. Only the CityGML build-
ing layer has been used, all buildings have been translated to a plane.

First, the computational mesh the Apollo Blastsimulator operates on needs to be 
generated with the method described above. It is passed to the application in the 
form of a text file. After a simulation run, the Apollo Blastsimulator returns two 
types of results. Besides physical quantities (e.g. overpressure, overpressure 
impulse) a set of probability values for various damage categories (e.g. glass, 
masonry or concrete wall, eardrum damage, lethality) is provided. Using the logical 
link between the voxel and the city model the simulation results are aggregated and 
stored as Generic Attributes with the wall and roof surface objects in the city model.

Visualization and analysis tasks can now be performed with the cloud-based 3D 
web client developed at the Chair of Geoinformatics of the Technical University of 
Munich. The browser based application uses the Cesium Virtual Globe Viewer to 
visualize the 3D city model using state of the art WebGL technology for rendering 
and the glTF format for exchanging 3D visualization files (Yao et al. 2016). The 
well known interface of the 3D globe allows intuitive navigation and exploration of 
city models. Thematic information is distributed via cloud services like Google 
Spreadsheet TM or Google Fusion Tables TM, that allow analytic tasks with spread-
sheet calculations. To demonstrate the analytic capabilities of the 3D web client we 
will identify all walls, where windows are likely to break if the bomb cannot be 
defused and needs to be detonated on site. First, we need to setup the query in the 
attribute panel of the web client. As shown in Fig. 9.7, we enter the required filter 
criteria to query only wall surfaces with a maximum glass breakage probability of 
>70  % (see enlarged entries). After issuing the query, all matching surfaces are 
highlighted (yellow) in the 3D view. Further analytic tasks on the selected objects 
can be performed directly in the client with its aggregation operations. For example, 
by summing up the area of all currently selected surfaces we are able to determine 
the total affected wall surface area. By multiplication with factors for window area 
per wall and window price we can perform a rough cost estimation for broken 
windows.
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9.6  Estimation of Building Heat Energy Demands

In Sect. 9.4 the importance of energy policies in the context of CO2 saving potential 
was discussed. An essential component of the global energy demand, which is 
responsible for a huge amount of emitted CO2, is required for the heating of living 
spaces. The goal is to reduce the energy demand by appropriate planning actions 
and, thus, to reduce the emission of greenhouse gases. To initiate these actions in 
terms of optimization and refurbishment of residential buildings and to frame politi-
cal funding instruments it is essential to simulate the current and future energy 
demand, so it is possible to virtually play through different scenarios and compare 
their impacts on the build environment. In Kaden et al. (Kaden and Kolbe 2013; 
Kaden et al. 2013) the authors have shown that virtual semantic 3D city models 
combined with other data from official statistics serve as an ideal information base 
to support the calculation of heating, electricity, and hot water energy demands. The 
following summary is based on these publications. The calculation of heating 
energy demand of residential buildings is presented and the added value of semantic 
3D city models is shown. The current German Energy Saving Regulation envisages 
the building simulation methods according to DIN V 18599 (2010) for calculating 
the heat energy demand of buildings. This standard specifies the method for calcu-
lating the monthly net, final, and primary energy demand for heating, cooling, ven-
tilation, domestic hot water, and lighting. Besides information about the type of use 
of the buildings and their refurbishment state, especially information on the build-
ing geometry and building construction are crucial for the calculation of heat energy 

Fig. 9.7 Evaluation of a fictive blast scenario on the campus of the Technical University of Munich 
with the cloud-based 3D web client: wall surfaces with a glass breakage probability >70 % are 
highlighted in yellow color in the 3D view
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demands. By component-related calculations, it is possible to identify saving poten-
tials of refurbishment measures.

Figure 9.8 illustrates the coherence between the geometric properties of the vir-
tual building models and the input values needed for the energy demand estimation. 
On the left of the figure a building is shown in City Geography Markup Language 
(CityGML) Level of Detail 2 (LoD2). The building is subdivided into its parts (roof 
surface, wall surface and ground surface). Thus, it is possible to meet the require-
ments of DIN V 18599 (2010) to use it for a component-related calculation. On the 
right side of the figure the main parameters that can be calculated based on the 
geometric and semantic representation of the building are listed. Besides the build-
ing volume the energy reference area can be calculated using the ground surface 
area and the number of full stories. The shared wall surface area is a significant 
parameter for calculating the heat energy demands of buildings. Heat losses through 
walls require a drop of temperature from the inside to the outside of the building. 
The shared wall surface area is the portion of the total wall surface area that is adja-
cent to another surface that belongs to a heated building or building part and, thus, 
is not affected by heat losses. This ratio can be calculated using the topology of the 
virtual 3D city model.

Information on the building construction and the renovation state of a building 
are not officially provided by administration departments in Germany, thus this 
information has to be linked to the buildings by the integration of statistical infor-
mation from statistics agencies. The heat transfer coefficients are determined based 
on the age class of a building. These coefficients can be adopted from the values of 
the predominant building type in each age class. It is however possible, if accurate 
values for the building parts are available, to use the precise values instead of the 

Fig. 9.8 Relation between building characteristics and required parameter for heat energy demand 
estimation
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estimated values. Another important step towards more agile urban planning is the 
ability to simulate planning scenarios. Figure 9.9 depicts how the 3D city model can 
be used in combination with an interactive cloud-based 3D web client (Yao et al. 
2014, 2016) for the evaluation of refurbishment measures. The example shows all 
buildings in a street in Berlin, which have been previously selected by the attribute 
street name. To estimate the impact of an energetic refurbishment measure accord-
ing to the Energy Saving Regulation 2009 we summed up the heating energy 
demand in kWh per year for all buildings. For the example in Fig. 9.9 the estimated 
total heat energy demand for all buildings is 11.38 GWh per year prior to the refur-
bishment measure. Adjusting the values of the heat transmission coefficients accord-
ing to the requirements of the German Energy Saving Regulation 2009 (see step 2 in 
Fig. 9.9) triggers an immediate recalculation of the heat energy demand for each 
individual building. Summing up the heat energy demand values of all buildings in 
the street leads to a total estimated heat energy demand of 5.57 GWh per year. This 
corresponds to a reduction by half.

9.7  Discussion and Outlook

This article provides a review of what 3D city models are and how especially seman-
tic 3D city models contribute to a better understanding of the city as a complex 
system. After giving an overview on the current state of 3D city model applications 
and how their use cases can be categorized, three practical examples were described 
in detail, covering the estimation of solar irradiation, the simulation of detonations, 
and the estimation of building heating energy demand.

Fig. 9.9 Virtually improving the energy efficiency of all buildings in a road according to the 
German Energy Saving Regulation 2009 using a cloud-based 3D web client
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As demonstrated with these use cases, semantic 3D city model are an ideal inte-
gration platform for many kinds of applications around the city system supporting 
decision making and planning. They combine a detailed geometric representation of 
the real world with rich thematic information for the most common features of cities 
and rural areas. This facilitates the virtual mapping of complex processes of the city 
system that need to be comprehensible and predictable to maintain good living con-
ditions in the urban area in the future.

As, delineated in Sect. 9.3, 3D city models are widely used today and there are 
many future applications to come. Recent advances in augmented and virtual real-
ity, the integration of Geographical Information System (GIS) and Building 
Information Modeling (BIM) and advances in procedural modeling appear as a 
promising sources for future use cases and applications (Biljecki et al. 2015).

However, semantic 3D city models need further developments for future chal-
lenges. Regarding the examples discussed in Sects. 9.4 and 9.5 a significant 
improvement would be the inclusion of dynamic attributes to enable the storage of 
the time dependent result data of the simulations directly within the city model. This 
issue is currently researched by Chaturvedi et al. (Chaturvedi and Kolbe 2015).

The quality of 3D city model data available today is still an issue. A frequent 
problem for instance, is that the outer shell of volumetric city model geometries is 
not closed, avoiding sound volume computation, which is a relevant spatial opera-
tion for many applications (see Sect. 9.6). Research is done on that topic by e.g. 
Sindram et al. (2016) and Steuer et al. (2015).

Another important challenge in the context of complex city systems is the cou-
pling of planning actions and the analysis of their effects. While Sindram and Kolbe 
(2014) are developing a model for describing planning actions, Elfouly et al. (2015) 
are working on a framework for evaluating their effects on Key Performance 
Indicators (KPIs). To compare different scenarios Chaturvedi et al. (2015) are cur-
rently working on a concept for the versioning of entire 3D city models that will, for 
instance, allow the comparison of different planning stages.
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Chapter 10
An Automatic Approach for Generalization 
of Land-Cover Data from Topographic Data

Frank Thiemann and Monika Sester

Abstract The paper presents an approach for the automatic generalization of large 
land-cover datasets from topographic data using fast generalization algorithms. The 
generalization approach is composed of several steps consisting of topologic clean-
ing, aggregation, feature partitioning, identification of mixed feature classes to form 
heterogeneous classes and simplification of feature outlines. The workflow will be 
presented with examples for generating CORINE Land Cover (CLC) features from 
the high resolution German authoritative land-cover dataset of the whole area of 
Germany (DLM-DE). The results will be discussed in detail.

10.1  Introduction

10.1.1  Project Background

The European Environment Agency (EEA) collects the Coordinated Information on 
the European Environment (CORINE) Land Cover (CLC) dataset to monitor the 
land-cover changes in the European Union. The member nations have to deliver this 
data every few years. Traditionally this dataset was derived from remote sensing 
data. However, the classification of land-cover from satellite images in shorter time 
intervals becomes more cost intensive.

Therefore, together with the federal mapping agency (BKG) an approach of 
deriving the land cover data from topographic information was investigated. The 
BKG collects the digital topographic landscape models (ATKIS Base DLM) from 
all federal states. The topographic base data contains up-to-date land-use informa-
tion; the update rate being one year. This data is transformed to a high resolution 
land-cover dataset called DLM-DE. After this transformation there are still some 
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differences between DLM-DE and CLC, mainly concerning the resolution in 
 geometry and semantics. Table 10.1 summarizes the main characteristics of the two 
datasets.

10.1.2  CORINE Land Cover (CLC)

CORINE Land Cover is a polygon dataset in the form of a planar partitioning (or 
tessellation): polygons do not overlap and cover the whole area without gaps. The 
scale is 1:100 000. Each polygon has a minimum area of 25 ha and a minimum 
width of 100 m. There are no adjacent polygons with the same land-cover class as 
these have to be merged.

Land cover is classified hierarchically into 46 classes in three levels, for which a 
three digit numerical code is used. The first and second level groups are:

1xx artificial (urban, industrial, mine)
2xx agricultural (arable, permanent, pasture, heterogeneous)
3xx forest and semi-natural (forest, shrub, open)
4xx wetland (inland, coastal)
5xx water (inland, marine)

In CLC there are four aggregated classes for heterogeneous agricultural land- 
cover. Such areas are composed of small areas of different agricultural land-cover. 
In Germany only two of these four classes occur. Class 242 is composed of alternat-
ing agricultural covers (classes 2xx). Class 243 is a mixture of agricultural and 
(semi-) natural areas.

10.1.3  From Basis DLM to DLM DE-LC

The land cover (LC) layer of the Digital Landscape Model (DLM) of Germany (DE) 
is a product of Germany’s national mapping agency (BKG). DLM-DE LC is derived 
by a semantic (model) generalization of the Authoritative Topographic Cartographic 

Table 10.1 Comparison of ATKIS DLM and CORINE Land Cover

Dataset CORINE LC ATKIS basis DLM

Scale 1:100 000 >1:10 000
Source Satellite images Aerial images, cadastre
Min. area size 25 ha <1 ha
Min. width 100 m <10 m
Classes of heterogeneous 
agricultural cover

4/2 relevant Marginal, mostly separated in its 
homogeneous components

# of classes 46/37 relevant 155 relevant
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Information System (ATKIS) which is Germany’s large scale topographic land-
scape model (Arnold 2009). After selecting all relevant features from ATKIS (e.g. 
water-bodies, vegetation, settlement areas but not administrative bodies or areas on 
bridges or in tunnels) the topological problems like overlaps and gaps are solved 
automatically using appropriate algorithms. The reclassification to the CLC nomen-
clature is done using a translation table which takes the ATKIS classes and their 
attributes into account. In the cases where a unique translation is not possible, a 
semi-automatic classification from remote sensing data is used. The scale of the 
DLM-DE is approx. 1:10 000. The minimum area for polygons is less than one 
hectare.

10.1.4  Automatic Derivation of CLC from DLM-DE LC

The aim of the project is the automated derivation of CLC data from ATKIS. This 
derivation can be considered as a generalization process, as it requires both the-
matic selection and reclassification, and geometric operations due to the reduction 
in scale. Therefore, the whole workflow consists of two main parts. The first part is 
a model transformation and consists of the extraction, reclassification and topologi-
cal correction of the data. The derived model is called DLM-DE LC. The second 
part, the generalization part, which will be described in more detail in this paper, is 
the aggregation, classification and simplification for the smaller scale. For that pur-
pose a sequence of generalization operations is used, which will be executed in a 
fully automatic way. The operators are dissolve, aggregate, split, simplify and a 
heterogeneous class filter. The program computing the generalization is called 
CLC-generator.

The classification of agricultural heterogeneous areas to 24x-classes in the case 
that a special mixture of land-covers occurs is one of the main challenges. The dif-
ficulty is to adequately model these classes and separate these areas from homoge-
neous as well as from other heterogeneous classes.

10.1.5  Scalability

Another challenge of the project is the huge amount of data. The DLM-DE LC con-
tains ten million polygons. Each polygon consists in average of thirty points, so one 
has to deal with 300 million points, which is more than a standard PC can store in 
main memory. While fast algorithms and efficient data structures reduce the required 
time for the generalization, we have developed a partitioning and composition strat-
egy in order to overcome problems due to memory limitations when processing 
large data-sets (Thiemann et al. 2011). We store the source data for the generaliza-
tion process in a spatial database system and divide it into smaller partitions, which 
can efficiently be handled by the CLC-generator on standard computers. The 
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resulting CLC-datasets for the individual tiles are then composed into one dataset 
within the database.

The generalization operations typically have local or regional effects, which lead 
to different results at the boundaries of the tiles. To ensure consistency, i.e. to get 
identical results from partitioned and un-partitioned execution, some redundancy is 
added to the partitions in the form of overlapping border regions. This redundancy 
is removed in the composition phase and geographic objects residing at the border 
of different partitions are reconciled.

The amount of redundancy added can be controlled by the width of the border 
regions. As bigger regions cause longer running times of the generalization, we are 
interested in using values as small as possible while still ensuring consistency. 
Another parameter influencing performance is the number of partitions. The tiles 
have to be small enough to avoid memory limitations but a fine-granular partition-
ing leads to more composition overhead.

10.2  Related Work

CORINE Land Cover (Büttner et al. 2006) is being derived by the European States 
(Geoff et al. 2007). In order to link the topographic database with the land-use data 
the Federal Agency of Cartography and Geodesy has developed a mapping table, 
including transformation rules between CLC and ATKIS objects (Arnold 2009). In 
this way, the semantic mapping has been established by hand, introducing expert 
knowledge. There are approaches to automate this process, e.g. Kuhn (2003) or 
Kavouras and Kokla (2008). Jansen et al. (2008) propose a methodology to integrate 
land-use data.

As described above, the approach uses different generalization and interpretation 
steps. The current state of the art in generalization is described in Mackaness et al. 
(2007). The major generalization step needed for the generalization of land-cover 
classes is aggregation. The classical approach for area aggregation was given by van 
Oosterom (1995), the so-called GAP-tree (Generalized Area Partitioning). In a 
region-growing fashion areas that are too small are merged with neighboring areas 
until they satisfy the size constraint. The selection of the neighbor to merge with 
depends on different criteria, mainly geometric and semantic constraints, e.g. simi-
larity of object classes or length of common boundary. This approach is imple-
mented in different software solutions (e.g. Podrenek 2002). Although the method 
yields areas of required minimum size, there are some drawbacks: a local determi-
nation of the most compatible object class can lead to a high amount of class changes 
in the whole dataset. Also, objects can only survive the generalization process, if 
they have compatible neighbors. The method by Haunert (2008) is able to overcome 
these drawbacks. He is also able to introduce additional constraints e.g. that the 
form of the resulting objects should be compact. The solution of the problem has 
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been achieved using an exact approach based on mixed-integer programming 
(Gomory 1958), as well as a heuristic approach using simulated annealing 
(Kirkpatrick 1983). However, the computational effort for this global optimization 
approach is very high.

Collapse of polygon features corresponds to the skeleton operation, which can be 
realized using different ways. A simple method is based on triangulation; another is 
medial axis or straight skeleton (Haunert and Sester 2008). Displacement is needed 
to allow all object to be perceived as separate. The problem has been solved using 
optimization methods (Sester 2005).

The identification of mixed classes is an interpretation problem. Whereas inter-
pretation is predominant in image understanding where the task is to extract mean-
ingful objects from a collection of pixels (Lillesand and Kiefer 1999), also in 
GIS-data interpretation is needed, even when the geo-data are already interpreted. 
E.g. in our case although the polygons are semantically annotated with land-cover 
classes, however, we are looking for a higher level structure in the data which 
evolves from a spatial arrangement of polygons. Interpretation can be achieved 
using pattern recognition and model based approaches (Heinzle and Anders 2007).

Partitioning of spatial data has extensively been investigated in the area of paral-
lel spatial join processing. In Zhou et al. (1998) a framework for partitioning spatial 
join operations in a parallel computer environment is introduced and the impact of 
redundancy on performance is studied. Other work (Meng et al. 2007) presents an 
improved join method for decomposing spatial datasets in a parallel database sys-
tem. Spatial joins only need to collect partition-wise results, maybe including elimi-
nation of duplicates. An approach for partitioning in a distributed processing 
framework using Hadoop has been presented (Thiemann et al. 2013), which takes 
adequate context dependence into account.

10.3  Generalization Approach

10.3.1  Data and Index Structures

An acceptable run time for the generalization of ten million polygons can only be 
reached with efficient algorithms and data structures. For topology depending oper-
ations a topologic data structure is essential. For spatial searching a spatial index 
structure is needed; furthermore, also structures for one-dimensional indexing are 
used.

In the project we use an extended Doubly Connected Edge List (DCEL) as topo-
logic structure. A simple regular grid (two-dimensional hashing) is used as spatial 
index for nodes, edges and faces. For the DLM-DE a grid width of 100 m for points 
and edges (<10 features per cell) and 1000 m for faces (40 faces per cell) leads to 
nearly optimal speed.
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10.3.2  Topological Cleaning

Before starting the generalization process, the data has to be imported into the topo-
logical structure. In this step we also look for topological or semantic errors. Each 
polygon is checked for a valid CLC class. Small sliver polygons with a size under a 
threshold of e.g. 1 m2 will be rejected. A snapping with a distance of 1 cm is done 
for each inserted point. With a point in polygon test and a test for segment intersec-
tion overlapping polygons are detected and also rejected. Holes in the tessellation 
can be easily found by building loops of the half-edges which not belong to any 
face. Loops with a positive orientation are holes in the dataset.

10.3.3  Generalization Operators

Dissolve
The dissolve operator merges adjacent faces of the same class. For this purpose the 
edges which separate such faces will be removed and new loops are built.

Aggregate
The aggregation step aims at guarantying the minimum size of all faces. The aggre-
gation operator in our case uses the simple greedy algorithm by van Oosterom 
(1995). It starts with the smallest face and merges it to a compatible neighbor. This 
fast algorithm is able to process the dataset sequentially. There are different options 
to determine compatible neighbors. The criterion can be:

• the semantic compatibility (semantic distance),
• the geometric compactness
• or a combination of both.

The semantically nearest partner can be found using a priority matrix. We use the 
matrix from the CLC technical guide (Bossard et al. 2000) (Fig. 10.1). The priority 
values are from an ordinal scale, so their differences and their values in different 
lines should not be compared. The matrix is not symmetric, as there may be differ-
ent ranks when going from one object to another than vice versa (e.g. settlement → 
vegetation). Priority value zero is used if both faces have the same class. The higher 
the priority value, the higher is the semantic distance. Therefore the neighbor with 
the lowest priority value is chosen.

As geometric criterion the length of the common edge is used. A shorter perim-
eter leads to better compactness. So the maximum edge length has to be reduced to 
achieve a better compactness.

The effects of using the criteria separate are shown in a real example in Fig. 10.2. 
The semantic criterion leads to non-compact forms, whereas the geometric criterion 
is more compact but leads to a large amount of class change. The combination of 
both criteria allows merging of semantically more distant objects, if the resulting 
form is more compact. This leads to Eq. 10.1.
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The equation means that a b-times longer shared edge allows a neighbor with the 
next worse priority. The base b allows to weight between compactness and semantic 
proximity. A value of b = 1 leads to only compact results, a high value of b leads to 
semantically optimal results. Using the priority values is not quite correct; it is only 
a simple approximation for the semantic distance.

Another application of the aggregation operation is a special kind of dissolve that 
stops at a defined area size. It merges small faces of the same class to bigger com-
pact faces using the geometric aggregation with the condition that only adjacent 
faces of the same class are considered.

Fig. 10.1 Small extract of the CLC priority matrix

Fig. 10.2 (left to right) Original situation, the result of the semantic, and geometric aggregation
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Split
In addition to the criterion of minimal area size also the extent of the polygon is 
limited to a minimum distance. That demands for a collapse operator to remove 
slim, elongated polygons and narrow parts. The collapse algorithm by Haunert and 
Sester (2008) requires buffer and skeleton operations that are time consuming. 
Therefore – as faster alternative – a combination of splitting such polygons and 
merging the resulting parts with a geometric aggregation to other neighbors is used. 
Instead of shrinking the slim parts to their medial axes we split it at suited points and 
use the aggregation step to merge the slim polygons with another neighbor.

To find the narrows we use a constrained Delaunay triangulation of the polygon. 
Each triangle is checked for edges and heights smaller than a threshold. These edges 
or heights will be used for splitting (see Fig. 10.3).

“24x-Filter” for Identification of Heterogeneous Classes
In CORINE land-cover there is a group of classes which stands for heterogeneous 
land-covers. The classes 242 and 243 are relevant for Germany. Class 242 (complex 
cultivation pattern) is used for a mixture of small parcels with different cultures. 
Class 243 is used for land that is principally occupied by agriculture, with signifi-
cant areas of natural vegetation.

Heterogeneous classes are not included in the DLM-DE.  To form these 
24x-classes an operator for detecting heterogeneous land-cover is needed. The 
properties of these classes are that smaller areas with different, mostly agricultural 
land-cover alternate within the minimum area size (actually 25 ha in CLC). For the 
recognition of class 242 only the agriculture areas (2xx) are relevant. For 243 also 
forest, semi- and natural areas (3xx, 4xx) and lakes (512) have to be taken into 
account.

The algorithm calculates some neighborhood statistics for each face. All adjacent 
faces within a distance of the centroid smaller than a given radius and with an area 
size smaller than the target size are collected by a deep search in the topological 
structure. The fraction of the area of the majority class and the summarized fractions 
of agricultural areas (2xx) and (semi-) natural areas (3xx, 4xx, 512) are calculated. 

Fig. 10.3 Data before and after a 100 m split operation
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In the case the majority class dominates (>75%) then the majority class becomes the 
new class of the polygon. Otherwise there is a check, if it is a heterogeneous area or 
only a border region of larger homogeneous areas.

For that purpose the length of the borders between the relevant classes is sum-
marized and weighted with the considered area. A heterogeneous area is character-
ized by a high border length, as there is a high number of alternating areas. To 
distinguish between 242 and 243 the percentage of (semi-natural) areas has to be 
significant (>25%).

Simplify
The simplify-operator removes redundant points from the loops. A point is redun-
dant, if the geometric error without using this point is lower than an epsilon and if 
the topology does not change. Therefore we implemented the algorithm of Douglas 
and Peucker (1973) with an extension for closed loops and a topology check.

Enlargement and Displacement
Displacement is an operation aiming at generating graphical clarity. Objects are 
shifted apart and/or deformed in order to guarantee that the can be perceived as 
separate objects. This operation mostly is needed, when small objects had to be 
enhanced to allow their visibility, such as narrow objects that have to be widened 
(roads, rivers), after which they may overlay neighboring objects. In the case of 
land-use/land-cover classes, this can occur in the presence of small, elongated 
objects.

10.3.4  Process Chain

In this section the use of the introduced operators and their orchestration in the pro-
cess chain is shown. The workflow for a target size of 25 ha is as follows:

 1. import and clean data and fill holes
 2. dissolve faces <25 ha
 3. split faces <100 m
 4. aggregate faces <1 ha geometrically (base 1.2)
 5. reclassify faces with 24x-filter (r = 282 m)
 6. aggregate faces <5 ha weighted (base 2)
 7. aggregate faces <25 ha semantically
 8. simplify polygons (tolerance 20 m)
 9. dissolve all

During the import step (1) semantic and topology is checked. Small topologic 
errors are resolved by a snapping. Gaps are filled with dummy objects. These objects 
will be merged to other objects in the later steps.

A first dissolve step (2) merges all faces with an adjacent face of the same CLC 
class which are smaller than the target size (25 ha). The dissolve is limited to 25 ha 
to prevent polygons from being too large (e.g. rivers that may extend over the whole 
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partition). This step leads to many very non-compact polygons. To be able to remove 
them later, the following split-step (3) cuts them at narrow internal parts (smaller 
than 100  m). Afterwards an aggregation (4) merges all faces smaller than 1  ha 
(100 × 100 m) to geometrically fitting neighbors. As small isthmuses were elimi-
nated in the split-step, all objects were wide enough to be visualized appropriately, 
thus, no displacement was applied in this process.

The proximity analysis of the 24x-filter step (5) re-classifies agricultural or natu-
ral polygons smaller than 25 ha in the 25 ha (corresponding to a radius of 282 m) 
surrounding as heterogeneous (24x class).

The next step aggregates all polygons to the target size of 25 ha. First we start 
with a geometric/semantically weighted aggregation (6) to get more compact forms, 
second only the semantic criterion is used (7) to prevent large semantic changes of 
large areas.

The simplify step (8) smoothes the polygon outlines by reducing the number of 
nodes. As geometric error tolerance 20 m (0.2 mm in the map) is used. The finishing 
dissolve step (9) removes all remaining edges between faces of same class.

10.4  Experiments and Results

10.4.1  Runtime and Memory Use of the Generalization Step

The implemented algorithms are very fast but require a lot of memory. Data and 
index structures need up to 160 Bytes per point on a 32 bit machine.

The run-time of the generalization routines was tested with a 32 bit 2.66 GHz 
Intel Core 2 processor with a balanced system of RAM, hard disk and processor 
(windows performance index 5.5). The whole generalization sequence for a 45 × 
45 km dataset takes less than 2 min. The most time consuming parts of the process 
are the I/O-operations which take more than 75% of the computing time. We are 
able to read 100 000 points per second from shape files while building the topology. 
The time of the writing process depends on the disk cache. In the worst case it is the 
same as for reading.

10.4.2  Semantic and Geometric Correctness

To evaluate the semantic and geometric correctness we did some statistics compar-
ing input, result and a CLC 2006 reference dataset, which was derived from remote 
sensing data.

Figure 10.4 shows the input data (DLM-DE), our result and the CLC 2006 of the 
test area Dresden. The statistics in Fig. 10.5 verifies that our result matches with 
DLM-DE (75% of area) better than the reference dataset (60%). This is not surpris-
ing as for CLC 2006 different data sources were used. Because of the removing of 
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the small faces our generalization result is a bit more similar to CLC 2006 (66%) 
than CLC 2006 to the input dataset.

The aim of the geometric generalization is to reduce the number of vertices and 
polygons while preserving the structure. Table 10.2 shows some metrics on the data-
sets. The number of polygons was reduced during generalization, but is 50% higher 
than the number of polygons in the reference dataset. The complexity of the poly-
gons (number of points per polygon) is a bit smaller (62 vs. 75); also the compact-
ness of the polygons is smaller (29% vs. 33%), which means that they are a bit more 
elongated.

Fig. 10.4 Extract (20 × 25 km) of test dataset Dresden from left to right: input DLM-DE, our 
result and CLC 2006 as reference

Fig. 10.5 Percentage of area for each CLC class (bars) and percentage of matching area (A0, area 
with the same class) and κ-values for the Dresden dataset
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The percentage of the CLC classes is similar in all datasets (Fig. 10.5). This is 
also indicated by the structure indices diversity and homogeneity, which means that 
the structure was well preserved. Diversity (H) is calculated by Shannon’s index and 
also known as entropy. Its smallest value is zero for only one land use class (k = 1). 
Its maximum Hmax for k classes would be reached when all classes have the same 
probability pi. While the diversity is decreasing with the number of classes, homo-
geneity or equitability E is the normalized diversity to values between zero and one.

 Compactness C A P= 4 2p /  (10.2)
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 Homogeneity E H H= / max  (10.5)

There are some significant differences between the DLM-DE and CLC 2006 
within the classes 211/234 (arable/grass land) and also between 311/313 (broad- 
leaved/mixed forest) and 111/112 (continuous/discontinuous urban fabric). We 
assume that this comes from different interpretations and different underlying data 
sources. The percentages in our generated dataset are mostly in the middle. The 
heterogeneous classes 242 and 243 are only marginally included in the input data. 
Our generalization generates a similar fraction of these classes. However, the auto-
matically generated areas are often not at the same location as in the manually 
generated reference dataset. We argue though that this is the result of an  interpretation 
process, where different human interpreters would also yield slightly different 
results.

Input (DLM-DE) and the result match with 75%. This means that 25% of the 
area changes its class during generalization process. This is not an error; it is an 
unavoidable effect of the generalization. The κ-values 0.5–0.65 which stand for a 
moderate up to substantial agreement should also not be interpreted as bad results, 
because it is not a comparison with the real truth, or with a defined valid generaliza-
tion, respectively.

Table 10.2 Statistics of the test dataset Dresden (45 × 45 km)

Dataset DLM-DE Result CLC 2006

# Polygons 91,717 1244 876
# Points per polygon 23 62 75
Avg. compactness (C) 50% 29% 33%
Diversity (H) 2.8 2.7 2.6
Homogeneity (E) 60% 61% 57%
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10.4.3  Stability of Generalization Results

To test the influence of the generalization parameters to the result we made some 
experiments with our test datasets. To get an impression of its influence and to opti-
mize the generalization, we changed each parameter separately in small steps. The 
result of the changed generalization was then compared with the input data and the 
CLC reference dataset. Also the statics (Table 10.2) was taken into account.

To simulate an update process and its effects on the generalized data, we used 
two different versions of the DLM-DE (a test version with data from 2006 and a 
refined version with data from 2009) (see Fig. 10.6). The land-cover of these two 
datasets differs in nine percent of the area (ground truth). Both datasets were gener-
alized with the same parameters; the land-cover of the generalization results differs 
in 13% of the area. Twenty percent of these differences in generalized data are 

Fig. 10.6 Two versions of input DLM-DE (left), their generalization results (right) and the differ-
ences between the versions (below). Nine percent changes of the input data produce 13% differ-
ences in the generalized data
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 correct and 20% are false (different classes). The other 60% are false positive – they 
occur at areas where no differences are in ground truth. Thirty percent of the real 
changes are missing (false negative) (see Fig. 10.7).

This example shows that changes in the input data produce more and also differ-
ent changes in the generalized data. The causes of these changes are the classifica-
tion and the aggregation step. In these generalization operations decisions are made 
based on thresholds. A small change can switch between the states under or over the 
threshold and produce a very different result. Because of the local decisions of the 
generalization algorithms this often leads also to changes in the local environment. 
Changes of the input data have only an influence in a limited environment.

10.5  Conclusions and Outlook

In this article, the so-called CLC-generator was described, which allows for a com-
pletely automatic production of CORINE LC data from a topographic data set, 
DLM-DE. The necessary operations and their suitable sequencing were described.

The classification of heterogeneous areas, in particular their demarcation from 
homogeneous areas, proved to be difficult with our rule-based approach. Better 
results may be achieved through supervised machine leaning.

Another challenge is to derive the CORINE land cover change layer from differ-
ent versions of DLM-DE. The change layer cannot be generated by intersecting 
CORINE land cover datasets, due to the minimum mapping unit of the change layer, 
which is only five hectare in contrast to 25 ha for the land cover dataset. The EEA 
is only interested in real changes and not in so called technical changes (changes 
that are produced by the generalization). Resulting from our experiments in Sect. 
4.3, we plan to intersect versions of the high resolution data DLM-DE and then to 
filter and aggregate the detected changes.

Fig. 10.7 Overlay of the differences between input and output data
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Chapter 11
Epilogue

Denise Pumain

This book marks a major milestone on the way towards a clever use of geographical 
data for solving various urban and regional problems. This is important because in 
many circumstances scientists do have an immense responsibility when facing 
choices for improving the human way of inhabiting the planet and especially when 
advising planners and stakeholders.

The authors in this book share strong intellectual and ethical requirements for a 
sound scientific approach in proposing new analytic methods and modeling 
approaches. Martin Behnisch and Gotthard Meinel in chapter 1 give a broad over-
view of the challenges and opportunities that are brought by a new era of immense 
data availability and computing power. They first underline the importance of start-
ing from relevant theoretical perspectives for extracting information from data as 
well as in model building. The recent surge and explosion of geo-referenced data is 
both a great boon for spatial analysts but also a real challenge to transform them in 
meaningful knowledge and inject them in useful tools. On this topic, the book intro-
duces new methods of data mining and exploration of new sources of data. Methods 
for playing with available data are becoming more effective, such as presented in 
Chap. 2 by Galen Maclaurin and Stefan Leyk who plea for developing processes 
aiming at improving the extraction of the information contained in remote sensing 
images. They suggest using machine learning tools for spatial extrapolation or tem-
poral extension of land use data. In Chap. 3, Bin Jiang reminds us about the funda-
mental heterogeneity of geospatial data. Power laws and lognormal distributions are 
the rule because they are generated by the dynamics of non linear processes in 
complex systems. Since long geographers have admitted in an implicit or explicit 
way the spatial dependence in socio-spatial interactions that sustains the emergence 
of accumulations of very unequal sizes. The chapter is an invitation to consider 
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 scaling effects and fractal organizations as the ordinary references for any spatial 
distributions and to use related methods which were elaborated during the last 
decades for processing these data.

The question of relying on a safe theoretical background for meeting the new 
challenges about what to do with big data has become an even more acute issue 
when not only material traces but social characteristics and practices as well are 
involved. Facing the proliferation of geo-tagged communication traces on a variety 
of media, mixing quantitative and qualitative approaches is as usual very promising, 
including combinations of spatial and temporal with a semantic analysis for data 
mining. That is why a specific attention can be dedicated to Chap. 4 where Quan 
Yuan et al. propose a rich state of the art demonstrating that much progress is cur-
rently made in this research area. They enumerate a large number of different situa-
tions where knowledge about various uses of these new functionalities can be 
extracted.

It is however interesting to remark that traditional data sets and old ways of col-
lecting information such as censuses have not gone completely out of style. In Chap. 
5 Fernando Bação et al. illustrate the usefulness of census data at fine geographical 
resolution for enriching the concept of quality of life in a “smart city”. They use 
algorithms of self-organizing networks for analysing the recent urban changes at 
block level in Lisboa, observing some hundred variables and thousands of local 
units at two dates and classifying them in reduced meaningful categories. This 
methodology in which both statistical similarities and spatial proximities are com-
bined for a significant grouping of neibourhoods is also used by Julian Hagenauer 
and Marco Helbich in Chap. 6 for a socio-economic analysis of the city of Chicago. 
Indeed, the urban concepts that are behind the clustering do not differ much from 
those that were in use during the 1960s and 1970s when Brian Berry and John 
Kasarda tried to formalize the spatial distribution of the major socio-economic and 
demographic or ethnic processes identified by the patient field work of the previous 
“Chicago school” of sociologists deciphering the “urban ecology”. But the method-
ological improvement brought about by powerful computing and visualization tools 
is now of considerable help for exploring spatial data, especially when different 
algorithms can be compared.

The next decades certainly will celebrate the arrival of interactive simulation 
models on the desk of urban planners and stakeholders. Solutions are actively inves-
tigated to face problems of reproducibility of simulation experiments and reliability 
of model predictions. Jonatan Almagor, Itzhak Benenson and Daniel Czamanski 
imagine in Chap. 7 a competitive process between urban developers whose ability 
to concentrate urban rent may be affected by the way planners make their decisions, 
whereas in Chap. 8 Andreas Koch tests on the city of Salzburg an agent based model 
on the location decision of residents leading to more or less segregated patterns. The 
resulting pattern at macro-scale is analyzed according to a variety of realistic behav-
ioral rules (including interdependences between residents and with urban institu-
tions) that have been added to the classical Schelling model, which makes the results 
more detailed and meaningful.

D. Pumain
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No less than 14 authors have collaborated in Chap. 9 to summarize the lessons 
from comparative experiments of land use change analysis. They certainly will cre-
ate unanimity while reviewing the main challenges in mapping as being data selec-
tion, choice of resolution and categories identification. However, their 
recommendation to separate calibration and validation exercises in modeling could 
be discussed in the light of new computing developments enabling to couple both, 
such as made available on the OpenMOLE simulation platform for instance. 
However, the authors propose a very useful review of many models that are in use 
for that field of spatial analysis and we applaud their strong recommendation to 
provide precise measurements of their degree of uncertainty with any result given to 
the final users of the models. They wisely insist on the ability to learn with models 
which is an essential dimension of their usefulness.

Great advances in modeling also emerge from the improvement of visualization 
tools, such as the applications presented in Chap. 10 by Bruno Willenborg, 
Maximilian Sindram and Thomas H Kolbe for the estimation of solar irradiation, 
the simulation of detonations and the estimation of building heating energy demand. 
The 3D mapping techniques together refine the computation of indicators related to 
the physical dimensions of buildings and enrich the models with a powerful sense 
of realism that is more liable to ensure firmness of conviction. Another question that 
frequently arises is about the generalization procedure enabling to simplify the 
details of mapping according to the scale of documents. Frank Thiemann and 
Monika Sester propose in Chap. 11 a method enabling to automatize this delicate 
exercise in the case of producing land cover maps from a topographic database in 
the area of Dresden and explain all steps that have to be recognized in the process.

Making more explicit the very sophisticated methods that are now in use for col-
lecting, processing, modeling and visualizing the old and new geo-tagged data is an 
urgent need for all planners and territorial stakeholders. This book really paves the 
way for improving our confidence in the present and future ability of spatial scien-
tists to meet the challenge.

11 Epilogue
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