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Abstract

We test a bubbles and crash model (Friedman & Abraham, 2008) in a controlled lab-

oratory environment. The experiment uses agent-based modeling to create a virtual

financial market where human subjects act as stock market traders alongside auto-

mated robots. We use the experimental data to first test whether humans adjust their

exposure to risk in response to a payoff gradient and to test second whether humans

perceive risk by responding to an exponential average of their losses. We find that

humans do not exactly follow a gradient but are very close. We also find that humans

strongly respond to losses putting more weight on the most current losses. However,

how they respond to losses depends on the frequency and predictability of crashes.
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1 Introduction

Despite their intrinsic interest, financial bubbles and crashes as yet have no widely accepted

theoretical explanation. In response, Friedman & Abraham develop an out of equilibrium

agent-based model focusing on portfolio managers who adjust their exposure to risk in re-

sponse to a payoff gradient. Bubbles and crashes occur for a wide range of parameter con-

figurations in extended models incorporating an endogenous market risk premium based on

investors’ historical losses and exponential averaging. Even though the simulations confirm

bubbles and crashes, simulation models are more valuable when they work in tandem with

empirical studies and/or laboratory experiments with human subjects. Therefore, we devise

an experiment where human subjects interact with automated robots to test the assumptions

driving Friedman & Abraham’s model.

2 Experimental Design

We conducted an experiment at University of California, Santa Cruz’s Learning and Exper-

iment Economic Projects (LEEPS) lab using the Hubnet feature of NetLogo. NetLogo is a

cross-platform multi-agent programmable modeling environment. HubNet is a technology

that lets you use NetLogo to run participatory simulations. In a participatory simulation,

a group can take part in enacting the behavior of a system as each human controls a part

of the system by using an individual device. The LEEPs’ laboratory has 14 computers each

linked to Hubnet via a server where subjects interact in a virtual market as seen in Figure

1.

A typical experiment lasted 90 minutes and involved 5 inexperienced human subjects re-

cruited by email from a campus-wide pool of undergraduate volunteers. Humans silently

read the instructions and then listened to an oral summary by the conductor. After a couple

of practice rounds, they played about 12 periods. Humans subjects are paid based on the

average of their wealth achieved at the end of each trading period which is redeemed at a

couple of cents of real money, typically between $15 and $25.

During the trading period each human acts as a trader in a stock market alongside other

humans and automated robots. Their objective is to maximize their wealth by buying and
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selling shares of a single stock at price P,

P = V ūα, (1)

where V is the fundamental value, ū is the mean distribution of allocation choices among

robots and humans, and α is a positive parameter that measures sensitivity to buying pres-

sure. Humans do not know the price equation (1) nor the values of V , ū, or α. However,

as shown in Figure 1, they can see the current price and price plot. We do tell them that

price is determined by the growth rate, interest rate, and buying and selling pressure. More

specifically, we tell them the growth rate is zero, the interest rate is three percent, and that

no one individual can move the stock price, but collectively, net buying pressure increases

the price and net selling pressure decreases the price.

Each trading period consists of 20 ”years,” where the computer screen updates the trades

and wealth on a weekly basis as shown in Figure 1. Before each trading period begins

humans are endowed with five hundred dollars and seventy shares of stock. Their wealth at

any point in time is equal to their cash plus their number of shares owned times the stock

price. Human cash and wealth change based on several factors. First, humans earn interest

on cash savings as well as pay interest if they borrow. Margin buying is allowed up to a

limit that depends on their current wealth. Second, a buy reduces their cash position by the

amount purchased times the stock price plus a transaction cost. A sell increases their cash

position by the amount sold times the current stock price minus a transaction cost. Third,

human shares grow based on the growth rate.1 In addition, humans can go bankrupt. If a

human goes bankrupt, they are banned from trading and incur a loss of $500 for the period.

However, they are allowed to resume trading in the next period.

Humans view events on the monitor screen and respond by clicking one of seven buttons

called adjustment-rates. Of the seven adjustment-rates, 3 accumulates shares at a very fast

rate, 2 accumulates at a medium rate, 1 accumulates shares at a slow rate, 0 refrains from

trading, -1 sells at a slow rate, -2 sells at a medium rate, and -3 sells at a fast rate. A message

box reminds them which button is active. In addition, there exists monitors to view their

1Shares do not grow in the base case where the growth rate is zero.
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holdings of cash, shares, wealth, transaction cost, and rate of return.

2.1 Treatments

We use two types of treatments. The first type varies the number of traders who participate

in a market. The second type involves information about the other participants:

• Number of humans and robots. As the population size declines price volatility and

the frequency of crashes increase. The three different population treatments include

(1 human and 29 robots), (5 humans and 25 robots), and (5 humans and 5 robots).

Each experiment runs four blocks. We run three blocks of each treatment where the

fourth block repeats the treatment run in the first block. For every experiment we

rotate block order so the final data set contains the same number of observations per

treatment.2 In addition, all blocks are known to everyone.

• Information. Depending on the experiment, humans are able to see (or not see) a

graphics window, density of traders plot, and a landscape plot as shown in Figure 2

(or not, as in Figure 1). The graphics window displays automated robots as small

triangles and human traders as round dots where humans can identify themselves by a

specified color. The graphics window allows humans to see the ratio of stock position

to wealth of every human and robot. The density of managers chart is a histogram

of the horizontal position of all traders, automated and human. The landscape chart

shows the return rate (profit before transactions costs) each week for traders at every

horizontal position (stock position relative to wealth).

The baseline configuration values in the simulated model are R0 = dR = 0.03, g = 0.0,

σ = 0.2, τ = 0.7, η = 0.7, β = 2, α = 2, λ = 1, d = 1, rate = 1.3, and c = 1. We

use the same parameter values for the experiments except we increase σ to 0.3 to induce

sufficient variability so that humans cannot predict future price movements. Humans are

not specifically told parameter values. The meanings of these parameters are described on

our websites.
2For example, the first experiment ran (1 human and 29 robots), (5 human, 5 robots), (5 human and

25 robots), and (1 human, 29 robots). The second experiment ran (5 human, 5 robots), (5 human and 25
robots), (1 human and 29 robots), and (5 human, 5 robots). And the third experiment ran (5 human and
25 robots), (1 human and 29 robots), (5 human, 5 robots), and (5 human and 25 robots).
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2.2 Integrating Robots & Humans

The humans’ shares and wealth are translated into an appropriate u and z. Humans’ risk

allocation, uj, equals one minus the ratio of their cash to wealth and the portfolio size, zj,

changes based on their gross return, inflow rate, and outflow rate3,

uj = 1− (
cashj
wealthj

), (2)

żj = [Ro + (R1 −Ro − tj − δL̂j + ρzoe
λR̂j ]zj. (3)

where j refer to humans and t refers to the transaction cost. The human’s initial zj is

equal to 1 and subsequently changes based on equation (3). The robots receive their initial

risk allocation, ui, and portfolio size, zi, randomly via a uniform distribution in the (u, z)

rectangle [0.2, 1.4] × [0.4, 1.6], set via the sliders. The u and z possible range is between

0 and 4. The distinction between how portfolio size changes for a robot and a human is

that robots receive an idiosyncratic shock and do not pay transaction costs where as humans

pay transaction costs and do not receive an idiosyncratic shock. The transaction cost is

determined as,

tj = c(adjustment−ratej)2, c = constant. (4)

As in real markets humans face transaction costs where larger orders incur larger trading

costs. The constant, c, is set to 1 such that trading at a fast rate incurs a transaction cost of

25%, a medium rate incurs a cost of 6.25%, and a slow rate incurs a cost of 1.6%. Humans

are able to see a monitor that tracks their transaction costs. For every trade transaction

costs reduce humans’ cash savings. We use transaction costs for humans in order to analyze

whether humans are sensitive to market frictions or whether they thrash between buying

and selling at fast rates. Another integration issue involves buying and selling. The buttons

-3, -2, -1, 0, 1, 2, 3 shown on the interface were chosen for ease of viewing. The actual rates

are 0.125 for a slow rate, 0.25 for a medium rate, and 0.5 for a fast rate. These rates were

chosen based on the standard deviation of the robot’s chosen gradient, 0.125, in an all robot

simulation using a baseline configuration. We then scale the adjustment rates up in order to

3See Bubbles & Crashes (2008) for an explanation of the inflow and outflow rate.
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accurately affect human cash and share holdings.

Figure 1: Human Interface

Figure 2: Human Interface With Graphics Window, Landscape, and Density Chart

3 Results

To investigate these assumptions from Friedman & Abraham (2008) , and to check their

robustness, we analyze data from all five experiments. We define a crash as as a decline in

price P of at least 50% from its highest point within the last half year.
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3.1 Do Humans React to an Exponential Average of their Losses?

In order to investigate whether humans react to an exponential average of their losses we

run the following regression,

adjustment−rateht = β0 + β1 ∗ cashht + β2 ∗ sharesht + β3 ∗ wealthht + β4 ∗ returnt + β5 ∗ h5−r25

+β6 ∗ h1−r29 + β7 ∗ L̂ht + beta8 ∗ L̂ht−h5−r25 + β9 ∗ L̂ht−.15cm−h1−r29 + β10 ∗ crash−period+ ε.

(5)

where h refers to human data and the dependent and explanatory variables have the following

meanings,

• The dependent variable, adjustment−rateht , is the average rate at which humans choose

to trade at time t.

• Cashht represents the level of average cash holdings at time t.

• Sharesht represent the average number of shares at time t.

• Wealthht represents the level of average wealth at time t.

• Returnt is the log first difference in price.

• L̂ht is the average of humans’ exponential average of losses at time t.

• The intercept represents the base treatment, (5 human, 5 robot).

• h5-r25 is an indicator variable that assigns a 1 to the (5 human, 25 robot) treatment

and 0 otherwise.

• h1-r29 is an indicator variable that assigns a 1 to the (1 human, 29 robot) treatment

and 0 otherwise.

• Crash-period is an indicator variable that assigns a 1 to the time period of a crash and

0 otherwise.4

4The crash period is determined as the point near the top of a bubble to where crash detection ends,
where crash detection is a decline in price P of at least 50% from its highest point within the last half year.
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The dependent and explanatory variables are determined using an equally weighted average

at each week. 5 The L̂ht is determined by setting η equal to 1.3 because regression results

show that the model specification where L̂ht is calculated using an η between 1.3 and 3

produces the highest R-square. Lastly, the interaction variables, L̂ht -h5-r25 and L̂ht -h1-r29,

tell us how humans respond to an exponential average of losses relative to the L̂ht , (5 human,

5 robot) baseline treatment.

Table 1: Human OLS Regression: All Experiments

Parameter Estimate Standard Error Pr > |t|
Intercept -0.085 0.0035 <0.0001∗∗
Cashht 0.0001 0.0000012 <0.0001∗∗
Sharesht 0.0022 0.000022 <0.0001∗∗
Wealthht -0.0001 0.00001 <0.0001∗∗
Returnt 1.014 0.027 <0.0001∗∗
h5-r25 0.056 0.003 <0.0001∗∗
h1-r29 0.057 0.002 <0.0001∗∗

L̂ht 0.188 0.028 <0.0001∗∗

L̂ht -h5-r25 -1.368 .128 <0.0001∗

L̂ht -h1-r29 -1.002 .034 <0.0001∗
Crash-period -0.026 0.008 0.0026∗∗

∗ significant at 5%; ∗∗ significant at 1%

The results in Table 1 indicate humans do respond to losses. However, how they respond to

losses depends on the treatment. Humans responded to losses by buying in the (5 human, 5

robot) treatment and selling in the (5 human, 25 robot) and (1 human, 29 robot) treatments.

The theory says that as losses accumulate humans should sell. Results from the (5 human,

25 robot) and (1 human, 29 robot) treatments confirm the theory but the (5 human, 5

robot) treatment does not. One reason the (5 human, 5 robot) treatment does not is due to

the number and predictability of crashes. After the first period in the (5 human, 5 robot)

block, humans realized that a crash was inevitable and therefore waited for a crash in order

to accumulate shares at low prices. Lastly, the crash-period estimate reveals humans sold

5The (1 human, 29 robot) treatment, obviously does not average the human data since each human
participates in its own virtual market, therefore those observations stand alone.
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modestly during crashes.

3.1.1 Do Humans Follow a Gradient?

Figure 3: Frequency of Adjustment-Rates

Figure 3 shows how frequently humans choose one of the seven adjustment rates. The

distribution of choices is relatively symmetric with humans choosing to hold 45% of the time.

This provides evidence that humans are sensitive and aware to market frictions. Humans do

not jump back and forth between buying at a fast rate and then selling at a fast rate which

confirms gradient dynamic behavior versus adaptive dynamic behavior.
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In order to test whether humans follow a gradient similar to robots we assume humans see

the same gradient as do robots, and regress their choices, adjustment−rateh, on the gradient

evaluated at the humans’ current uj, called gradienth. Theoretically, if humans are exactly

following a gradient then the gradienth estimate should equal 1.00. However, comparing the

gradienth estimate to 1.00 is not appropriate in our study. By design the gradienth estimate

will be less than 1.00 because humans can only choose seven different adjustment-rates and

not a continuous set of adjustment rates. In order to find a more appropriate comparison

estimate, we run the same regression using robot data where the explanatory variable is

the robots’ actual chosen gradient, gradientr, and the dependent variable is the robots’

actual gradient translated into one of the seven adjustment-rates humans face. We translate

the robot’s gradient by using midpoints to construct seven ranges that correspond to the

seven adjustment-rates. We then assign an adjustment-rate to each of the robots’ gradient

depending on which of the seven ranges their gradient falls into.6 Results from Table 2 report

the appropriate comparison estimate ,gradienth, is .69 and not 1.00. Therefore, the closer

the estimated coefficient using human data is to the coefficient using robot data, 0.69, the

more evidence that humans follow a gradient.

Table 2: Human’s Adjustment Rate vs. Human’s Gradient

Parameter Estimate Standard Error Pr > |t| Rsq

gradienth 0.32 0.0035 <0.0001∗∗ .10

gradientr 0.69 0.0016 <0.0001∗∗ .82

∗ significant at 5%; ∗∗ significant at 1%

According to Table 2 humans are not exactly following a gradient but are very close. In

addition, the ability to view the graphics window plays a role. We achieve a gradienth

estimate of 0.47 using only data from the graphics window experiments.

We also ran an additional regression to the one in equation (5) using robot data in order to

compare estimates between the human and robot regressions. The regression results indicate

the signs and level of significance for all estimates are the same. Robots and humans only

differ in the magnitude of the estimates. For example, humans actually respond stronger

to losses than do robots and robots sell ten times more aggressively that humans during

6For example, if a robot chose a gradient of 0.1 then that choice would be defined as a slow buy, 0.125,
since it is between 0.0625 and 0.1875.
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crashes.

4 Conclusions

We conduct one of the first studies to integrate agent-based modeling and experimental

economics. The experiment consists of a virtual financial market that includes automated

robots who follow a gradient (but are distinct in that each receives an idiosyncratic shock)

and humans subjects. We use the experimental data to test two important questions: do

humans react to market frictions by following a gradient and do humans perceive risk by

reacting to an exponential average of their losses? From our analysis we can conclude several

results. First, humans do respond to losses by generally selling. However, when crashes are

more frequent and predictable, humans respond to losses by buying. Overall, since bubbles

and crashes are not predictable the analysis of experimental data provides evidence that an

exponential average of losses can be used as a way to measure the perception of risk. In

addition, humans tend to weight the most current losses heavily. The model specifications

using a high η to calculate L̂ performed better than the ones using a low η. Second, humans

do not exactly follow a gradient as compared to robots but are very close to following one. In

addition, humans follow a gradient more closely when allowed to view all market participants

in the graphics window. Lastly, experiments where humans are able to view other market

participants in the graphics window tend to herd around each other and hardly ever disperse

very far from the group. It is interesting how humans do not follow the robots, who drive

the majority of the price dynamics in two of three population treatments.

There is still more work to be done. We would like to use the experimental data to test the

assumptions of other agent-based financial models in order to determine which agent-based

model fits the experimental data better. In addition, we would like to ask whether humans

are a stabilizing or destabilizing force. Moreover, we would like to run more experiments

with different constants on the transaction costs to see how human behavior changes as we

reduce transaction costs.
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