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ABSTRACT

We present a preliminary version of the MAICS (Multi-
Agent Introduction to Computer Science) framework, which
is a new approach for revitalizing introductory undergrad-
uate or high school computer science curricula through the
deep integration of agent-based modeling (ABM) and multi-
agent systems (MAS) perspectives. We have developed a
suite of educational agent-based models highlighting several
key ideas of computer science. We discuss the merits of using
multi-agent systems as a lens for conceptual understanding
across disciplines, and how this approach can be beneficial
for exploring topics that computer science educators might
not normally consider to fall under the heading of ABM
or MAS. We show that this perspective offers insights for
many sub-fields, including searching, sorting, optimization,
graphics, machine learning, networks/security, and operat-
ing systems. In particular, we highlight several areas where
parallel, distributed, stochastic, and emergent methods can
be incorporated fruitfully into early computer science curric-
ula that too often focus solely on serial, deterministic, and
centralized algorithms. It is our belief that an ABM/MAS
paradigm can also improve accessibility of content for stu-
dents, by providing motivating example models, and a ‘glass-
box’ approach that encourages both understanding and ex-
perimentation. Furthermore, bringing disparate topics in
computer science together through the common focus on
emergent systems can promote a broader, more accurate,
view of the field as a whole.

Categories and Subject Descriptors: K.3.2 [Comput-
ing Milieux]: Computer and Information Science Education

— curriculum.

General Terms: Human Factors

Keywords: Computer Science Education, Agent-Based Mod-

eling, Multi-Agent Systems, Curricular Models, Computa-
tional Thinking

1. MOTIVATION

Last year, Rick Rashid, a senior vice president for re-
search at Microsoft, asked the rhetorical question of whether
computer science is a dying profession [29]. Indeed, shrink-
ing undergraduate computer science enrollment and concern
about the underrepresentation of both women and minori-
ties in computer science has been the subject of much spec-
ulation, concern, and debate, particularly in North Amer-

ica [18, 22, 20]. Diversifying the introductory curriculum is
one approach for reaching a broader audience (see, e.g., [18,
17, 19]), which has met with some success. In this paper,
we present the MAICS (Multi-Agent Introduction to Com-
puter Science) framework as a new and powerful method
for diversifying the introductory computer science curricu-
lum. Through the MAICS framework, we demonstrate the
potential to address many conventional topics of computer
science (such as searching, sorting, optimization, graphics,
machine learning, networks/security) in a unconventional
way, through an agent-based modeling (ABM) and multi-
agent systems (MAS) perspective. The framework focuses
on two central goals. First, it seeks to enrich early (“low-
level”) computer science courses by engaging students with
conceptually rich “high-level” topics. Second, it emphasizes
the role of distributed, decentralized systems; a concept that
has strong implications both within and far beyond the do-
main of computer science.

More specifically, the first strand of our research aims
to address the enrichment of early (“lower level”) computer
science courses with a series of dynamic agent-based mod-
els coupled with compelling and interactive visualization.
While an ABM/MAS approach can easily reach out to in-
terdisciplinary examples from fields such as biology, eco-
nomics, physics, sociology, biomedicine, and others, for the
purposes of this paper we chose to stay primarily within
the bounds of computer science. This approach provides
the additional benefit of offering a survey of several con-
ventionally “higher-level” topics, and gives introductory stu-
dents a broader intellectual taste of what computer science
has to offer, beyond “hello world”, sorting algorithms and
syntax errors. Concepts of elementary programming can
be covered concurrently through experimentation with the
provided source code, and through extending the model or
writing new agent-based models from scratch.

The second strand is based more on the technical content
of computer science education and our vision of the future
of computing. In recent years, computing and computer sci-
ence have been undergoing an important shift toward par-
allelism. This includes the current prevalence of multiple
and multi-core processors, the ubiquity of high performance
computing clusters in academia and industry alike, cloud
computing, massive peer-to-peer networks, social network-
ing and Web 2.0 applications, increased deployment of mas-
sively parallel supercomputers for research, consumer-grade
GPUs (graphical processing units) that deliver a teraflop of
parallel computing power, as well as parallel languages and
language features to accompany these developments. We



are not advocating that CS101 students need to be learning
GPGPU programming techniques or dealing with mutual ex-
clusion semaphores for accessing shared memory. The point
is a broader one: that it is time to re-examine whether the
prevalent focus in contemporary introductory computer sci-
ence courses on centralized, deterministic, serial algorithms
is best preparing our students in the long run, when they will
eventually need to face a world of computation that is ubig-
uitously distributed, potentially stochastic, and increasingly
parallel. Our work is further motivated by the larger goal
of providing universal instruction in “computational think-
ing” (as described by Wing [37]), wherein students across
all disciplines become fluent in computational methods and
models. The MAICS framework is a step in this direction,
both in supporting a broader view of computer science, and
working to increase the accessibility of computational con-
cepts for a larger audience.

Toward addressing these two concerns, we have developed
a suite of educational agent-based models highlighting sev-
eral key ideas of computer science, which illustrate the ideas
of the MAICS framework. Since the word “agent” connotes
different meanings to different audiences, we should men-
tion that we interpret “agent” somewhat broadly to include
very simple elements acting with a small fixed set of rules,
and we do not limit its use only to agents that use highly
sophisticated decision-making processes. Furthermore, the
agents used in the suite of models we present here are all
fairly simple agents, which we believe is appropriate for an
introductory course on computer science, and also beneficial
for developing skills in decentralized thinking.

The paper is structured as follows. We first discuss re-
lated research in computer science education, and argue for
the merits of using agent-based modeling (ABM) as a “lens
for conceptual understanding” when exploring topics that
computer science educators might not traditionally consider
to be in the domain of ABM or MAS. Next, we explore
three example curricular models in some detail, and discuss
how they may be used to promote understanding of multi-
agent systems while learning about computer science topics.
We also offer a brief overview of each of the other models in
the suite. We conclude with some remarks about potential
implementation considerations and discussion of our future
work.

2. RELATED WORK

There have been many suggested approaches for revital-
izing computer science education. In this brief review we
list only a few, for comparison to our own ideas and ap-
proach. Specifically, we believe that introducing agent-based
modeling to introductory computer science curriculum ad-
dresses many calls in the computer science education liter-
ature to engage students in motivating consequential tasks
and to highlight the interdisciplinary nature of computer sci-
ence and its applications. Additionally, we believe that the
ABM/MAS paradigm is particularly amenable to introduc-
ing computer science topics at not only the collegiate level,
but also to students at the secondary level and earlier.

Some proposed changes to help promote understanding,
motivation, and retention in the introductory computer sci-
ence sequence include the integration of design-first pro-
gramming [25], pair programming[16], and robotics [11]. Oth-
ers argue that attention to content delivery techniques should
complement efforts to promote students’ own relationship

with computer science material: Naps et al. [26] discuss the
role of visualization in CS courses, and in particular argue
that “[visualization] technology, no matter how well it is de-
signed, is of little educational value unless it engages learners
in an active learning activity.” We argue that agent-based
modeling offers an excellent approach for addressing these
issues. Specifically, a curriculum designed around the ideas
of ABM/MAS can provide an effective coupling of advances
in computer science education methods (e.g., visualization
technology) with the more general goals of active engage-
ment and intellectual inquiry on the part of students.

In addition to local changes to the core computer sci-
ence curriculum, many have argued for computer science
to be better integrated into a broad curriculum centered
around science and technology. In response to declining CS
enrollment, Denning and McGettrick [18] call for a “recen-
tering” of computer science, lamenting that in the public
mind “computer science” has become narrowly associated
with the job of “programmer”; and suggest an introductory
CS sequence with a theme of technological “innovation.” Our
suggestion to use ABM/MAS as an introductory theme is
a less radical change, particularly since learning the art of
computer programming remains a central piece of our ed-
ucational framework (students will simply be programming
multi-agent simulations, rather than, for example, writing
programs for counting prime numbers). However, we do
agree that early computer science courses often provide too
narrow a view of what it means to be a computer scientist,
and suggest that our approach will offer broader exposure
to “upper level” topics.

Cushing et al. [17] suggested broadening introductory CS
by offering interdisciplinary courses with math and science
(such as ecology) as a means to improve retention and in-
crease interest in the field. We believe that the ABM/MAS
paradigm is especially conducive to such interdisciplinary
integration, and one particularly powerful interdisciplinary
idea is that of emergence — how the interactions between
agents each exhibiting simple behavior at the individual
level can result in surprising and complex aggregate-level
phenomena that appears to be “more than the sum of its
parts.” [21, 36] Emergence is a key conceptual bridge to a
multitude of disciplines (including chemistry [23], materials
science [12], electromagnetism [32], and biology [35]), and we
believe it is equally important for it to be an ingredient in
computer science education. In Section 3 we illustrate how
emergence is a key component of many of the models in the
MAICS suite. With the MAICS framework we have chosen
to focus on topics that are considered within the discipline
of computer science in order to provide a broad survey of
higher level computer science topics, but at the same time
the ABM/MAS paradigm allows us to make connections to
a wide array of interdisciplinary endeavors.

This notion of core concepts within and between disci-
plines is also why we refer to ABM/MAS as a “lens for
conceptual understanding” in computer science. Often, sub-
jects such as neural networks, particle systems, genetic algo-
rithms, sorting and searching, are organized topically within
the computer science curriculum, and are thus taught sepa-
rately, without making conceptual connections between them.
In contrast, an ABM paradigm uses concepts such as agents
and micro/macro level phenomena in order to highlight the
similarities and differences between the mechanisms at work,
rather than focusing primarily on the subject area.



Model Name | Topic |

PageRank Searching
Painted Desert Challenge Sorting

Virus on a Network Network Security
Simple Genetic Algorithm Optimization
Particle Swarm Optimization | Optimization

Artificial Neural Net
Particle Systems Flame
Flocking 3D

Dining Philosophers

Machine Learning

Computer Graphics
Computer Graphics
Operating Systems

Table 1: MAICS suite models and related computer
science topics, listed by order of appearance in this

paper.

Finally, while most introductory sequences in computer
science are offered at the college or university level and we
present this framework primarily in that context, we also
acknowledge the important role of computer science educa-
tion at the pre-collegiate level [28]. Just as in college, en-
rollment in high school computer science courses is low, and
there have been calls for a more diverse, integrated computer
science curriculum [20]. We suggest that an ABM/MAS
paradigm, and the MAICS framework specifically, is also a
powerful way to introduce computer science to a younger
audience. In support of this assertion, we note that the
NetLogo modeling environment [34], and even several of the
agent-based models discussed specifically in this paper, have
been successfully used in workshops and educational inter-
ventions as early as primary school (as well as with industry
professionals and academic researchers both familiar and un-
familiar with computer programming).

3. THE MAICS FRAMEWORK

The MAICS framework is situated to address several goals,
including the enrichment of early CS courses with a broader
range of content, improving students’ understanding of par-
allel, non-deterministic, and distributed systems, and offer-
ing a more exciting and dynamic introduction to the field.
We have developed a wide collection of agent-based models
(available for download from the NetLogo Models Library
http://ccl.northwestern.edu/netlogo/models/), and for the
purposes of this paper and the MAICS framework we se-
lected a cross-section of those models that relate to impor-
tant or motivating topics in computer science. The suite of
models we describe herein consists of nine models spanning
seven topics, as shown in Table 1. Some of these models
have been used with great success in short workshops, or
introductory courses on multi-agent modeling, but we have
yet to implement an entire course using this approach. We
present here a cohesive framework for such a design that we
hope will be refined through trial, as well as feedback from
others working in this area.

This is certainly not intended to be a comprehensive list
of topics in computer science that could benefit from re-
examination from an agent-based perspective. Instead, we
seek to highlight several examples where parallel, distributed,
stochastic, and emergent methods can be incorporated fruit-
fully into early computer science curricula that too often
focus solely on serial, deterministic, and centralized algo-
rithms. Furthermore, this list contains only fully imple-
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Figure 1: A screenshot from the PageRank model.
Larger nodes represent higher PageRanks.

mented and documented models that are presently ready for
educational use. More models could certainly be added to
this list, highlighting other important ideas. Some of these
topics (such as searching and sorting) are similar to those
traditionally covered in an introductory CS sequence while
others (such as particle swarm optimization) are more typi-
cally found in upper-level undergraduate or even graduate-
level courses. Due to space constraints, we will discuss only
the first three example models in detail, and then briefly
explain the scope and purpose of each of the others.

These models were all implemented using the NetLogo [34]
agent-based language and integrated modeling environment,
which permits interactive modification of the model’s pa-
rameters and the code itself. The NetLogo language, follow-
ing the Logo tradition [27], has also been designed to be easy
to read and easy to learn, and the integrated modeling envi-
ronment contributes to a low barrier for entry [33]. Equally
important, NetLogo is no “toy language”; it is a real language
currently being used by researchers across the globe, offering
a wide range of control structures and data types, and it is
extensible via the Java programming language if access to
additional libraries is required. In addition, NetLogo’s built-
in facilities for model visualization provide students with a
convenient graphics library. In short, even if our curriculum
was not based around a multi-agent perspective (which is
NetLogo’s predominant feature), NetLogo would still be a
suitable choice for a first course in computer programming.
We also wish to emphasize the “glass box” nature of the
suite of models: besides the visual interfaces (shown in fig-
ures below), each model comes complete with educational
documentation and full source code that students can easily
edit and run within the NetLogo modeling environment.

3.1 Searching: PageRank model

Traditional computer science curricula invariably include
discussions of searching, often starting with students learn-
ing to do a sequential search in an array of numbers of
strings. Later on, they are often taught how to perform
a binary search of sorted data, and to search other data
structures such as trees or graphs, perhaps using depth-



first search, breadth-first search (or perhaps Dijkstra’s al-
gorithm). While we have no desire to debate the merit of
these venerable and classic algorithms, we note that they are
all designed to run deterministically on a single processor
accessing an unchanging data set. It seems prudent to bal-
ance this with a decentralized algorithm designed for search-
ing massive quantities of constantly changing data, i.e. the
World Wide Web. Furthermore, we suspect students may
be more motivated to learn about how Google “magically”
returns relevant search results about their favorite curling
team, as opposed to discovering how to find the position of
“milk” in an alphabetized grocery list. The PageRank model
[6] (see Figure 1) is based on the now famous PageRank algo-
rithm developed by the founders of the Google search engine
in the late 1990s [14]. PageRank is not technically a search
algorithm, but rather a ranking algorithm, which provides a
basis for ranking the information on one page as being more
useful/important /relevant than the information on another
page. The algorithm assigns a PageRank score to each web
page, based on its relationship to other pages determined by
the hyperlink structure of the web. Our PageRank model
actually demonstrates two distinct agent-based methods for
calculating the PageRank of a directed network (such as the
web), though the two methods result in the same limiting
behavior, and ultimately would assign the same PageRank
scores to each page.

Method 1: Random Web Surfers. In this case, we
assume there are “page” agents which are connected to each
other in a directed network of hyperlinks, and there are also
“web surfer” agents, which operate using these simple rules.
They start at a random web page, and begin wandering the
web. To wander, they either click on a link from the cur-
rent page and travel to a new page, or they may (through
some unspecified means — perhaps a TV commercial, typing
in a web address, an email from a friend, etc) jump directly
to a random page somewhere on the web. If they run into
a dead end page, they also jump to a random page. The
probability with which they follow a link versus jump to a
random page is controlled by a parameter called “damping
factor” (typically set at 85% chance of link-following). As
these agents, move, the model records the number of times
a web surfer has visited each page. One definition for the
PageRank metric is given by the probability of a single ran-
dom web surfer being at that page at a given instant. Using
the random web surfers model, this can be easily calculated
by dividing the number of visits for each page by the total
number of visits. In more formal mathematical terminology,
this can be viewed as finding the stationary distribution for a
certain Markov Chain, where each page is a state, and there
are transitional probabilities specified between each pair of
states. However, introductory CS students do not need to
have acquired this level of mathematical formalism to ap-
preciate the emergent behavior of the agent-based model.

Method 2: Diffusion of PageRank Scores. In this
case, the primary agents in the model are the web pages
themselves. Each page starts off with an equal amount
of PageRank score. At each time step, pages divide their
PageRank up equally, and send it off as a gift to each the
web page that they link to. (Pages with no out-bound hyper-
links are treated as if they linked to every single other page
in the web.) Each page then receives PageRank gifts from
each of the pages that link to it. Also, each page receives a
certain amount of PageRank, just for existing (determined

Figure 2: “Before” and “after” from the Painted
Desert Challenge model, demonstrating the reduc-
tion in entropy caused by the agents’ behavior.

by the “damping-factor” parameter). This redistribution of
PageRank via diffusion is carried out repeatedly, and over
time the PageRanks converge toward the correct PageRank
value. Mathematically, this method is related to the “power
method” for finding the dominant eigenvector of a modified
adjacency matrix for the directed graph formed by the hy-
perlinks.

Beyond the clear benefits of exploring and understand-
ing this classic algorithm that is so instrumental in mak-
ing information accessible on the web, our PageRank model
also provides an excellent launching point for students to
experiment by creating their own distributed link analysis
and/or ranking algorithms. For example, students could
endow the “random surfer” agents with more sophisticated
behavior (use of the “back” button, bookmarks) and see how
the rankings would be affected. A broader discussion about
emergent search techniques could also encompass ant for-
aging mechanisms, or the search of fitness landscapes per-
formed by genetic algorithms (making a connection to the
Simple Genetic Algorithm model also included in our suite).

3.2 Sorting: Painted Desert Challenge model

Sorting algorithms are another staple of early computer
science education, inevitably including at least several of
the following collection: bubble sort, selection sort, insertion
sort, merge sort, quick sort, heap sort, bucket sort, shell sort,
and radix sort. Again, a common theme is the determinis-
tic single-threaded and serial aspects of sorting (although
many of these algorithms can be at least partially paral-
lelized). As a counterpoint, we wish to present a messier,
distributed, and stochastic view of sorting, in the Painted
Desert Challenge model [7]. While it may strike some as an
incredibly inefficient approach to sorting, one should note
that it is intrinsically parallel, reasonably robust, and could
be applied in situations where the data is shifting during the
sorting process, as a result of noise. However, it is important
to keep in mind that we are not interested here in arguing for
the merits of this particular sorting algorithm, but instead
we are arguing for the merits of the ideas that students will
be exposed to by exploring this model. The Painted Desert
Challenge model offers insight into emergent systems, and in
particular ant colony and other problem solving techniques
inspired by nature.
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Figure 3: A screenshot from the Virus on a Network
model.

The inspiration of this model goes back to a problem posed
to participants in a study on decentralized thinking [30],
where it was prefaced by a short whimsical vignette about
insects that live in a painted desert and want to sort out
each of the colors of sand after a windstorm mixed all the
sand together. In this model, each termite follows the same
set of very simple rules. It wanders in a 2D grid, wherein
each grain of sand occupies one grid square. If it runs into
a grain of sand, and it isn’t already holding one, it picks it
up. It continues to wander. If it runs into a grain of sand
that is the same color as the one its carrying, it drops its
grain in an adjacent location. The emergent result of this
random wandering and picking up and dropping is shown
in Figure 2. This is, however, just one possible set of rules.
We do not expect students to learn computer science by pas-
sive observation, any more than we expect people to learn
to bicycle by watching the Tour de France on television. It
is imperative that they get their hands dirty in the code,
take the model apart and put it together again. For in-
stance, a simple extension would be to have the sand shift-
ing while the termites are working, and measure the rate
of entropy-reduction the termites are capable of. A more
complicated extension would be to give the termites greater
vision and more intelligence, and test if more complicated
rules yield more efficient sorting. On the more theoretical
side, we might ask students to try to prove that the algo-
rithm will eventually yield a complete separation of each
of the different colors. It is worth noting that there are
other emergent sorting algorithms (e.g., Brueckner’s sorting
networks [15]) that could also be discussed in class and/or
implemented as student projects.

3.3 Security: Virus on a Network model

Discussions about computer networks and security are not
particularly common in introductory CS classes, which often
focus more on programming and data structures. However,
many computer science graduates go on to pursue careers
in information technology where security is of paramount
concern, which provides motivation for bringing this type of
material into earlier coursework.

Rather than focusing on lower-level details of security,
such as open ports or overrun buffer exploits, the Virus on
a Network model [3] (see Figure 3) is concerned with secu-
rity on a grander scale. In particular, worms and viruses
that self-propagate from computer to computer through the
Internet form a grave risk for today’s society due in part
to the creation of large “botnets” capable of acting in uni-
son to carry out destructive distributed denial-of-service at-
tacks, or other illicit activities. Virus on a Network is an
abstract model, based on the SIR (Susceptible, Immune, Re-
sistant) models found in epidemiology. The setup consists
of nodes (i.e. computers) on a network, and links between
them, which could represent a variety of different connec-
tions depending on the attack vector of the virus (e.g., email
contacts, shared network drives, shared USB keys, external
hard drives, or floppy disks, etc). Nodes start as suscepti-
ble, except for some specified number that are infected with
the virus. With some probability (which is controlled by
an adjustable model parameter), a node that is infected by
the virus can spread that virus to each of its neighboring
nodes. Infected nodes also have a chance of recovering (e.g.,
an antivirus program removed the virus but didn’t close up
the vulnerability), and they have a chance of recovering and
becoming resistant to future attacks (e.g., an antivirus pro-
gram inoculated the computer against this virus).

Through exploration of the model, students can learn about
how the parameters affect the rapidity with which the virus
moves through the network, as well as the lifetime of the
virus, and the extent to which vaccination of a few nodes
can or cannot prevent a widespread epidemic. The Virus on
a Network model also has potential connections to other dis-
ciplines (such as medicine, marketing, or sociology), and pro-
motes high-level discussions about computer security prac-
tices, the structure of social and computer networks, and
the Internet. This also leads naturally to student projects
and extensions of the model. For instance, the default net-
work structure found in this model is based on spatial prox-
imity of the nodes, with nodes that are closer together in
the 2D plane having a high probability of being linked,
whereas there are no long-distance links. Students can dis-
cuss whether such a configuration is plausible for virus con-
tagion! and write code to generate other types of network.
A few other possible extensions include allowing the virus to
mutate and evolve, and thus be able to reinfect computers
which had become immune to a previous version of the virus,
or to allow for coordinated (botnet) attacks by groups of in-
fected nodes, or two have multiple different viruses present
in the network. There are always opportunities for ambi-
tious students to take this type of work further, and spin it
off into summer research projects.

3.4 Remaining Model Suite Overview

The remaining six models in our model suite (shown in
Figure 4) cover topics from an additional four areas of com-
puter science. The Simple Genetic Algorithm model [5]
and the Particle Swarm Optimization model [4] both of-
fer an introduction to the area of stochastic optimization
algorithms. While these topics are not usually covered un-

!Generally speaking, it is not. Real-world networks usually
display a power-law degree distribution and “small-world”
structure where long-distance links are present. We pur-
posefully chose this spatially-restricted structure to benefit
visualization of the processes at work.
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Figure 4: Model screenshots. Top row: Simple Genetic Algorithm, Particle Swarm Optimization, Artificial
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til much later in a traditional computer science curriculum
(probably an upper-level elective course), we believe they are
thoroughly accessible to introductory-level students through
the ABM/MAS perspective that is being cultivated through
this framework. Additionally, the brevity of the code and
the visualizations included in the models enhance the acces-
sibility of content for these topics. Both of these examples
show how very simple agents, acting with limited intelligence
and information, can result in a population of agents mov-
ing toward a goal. In the Simple Genetic Algorithm model,
this progress is measured by plotting the fitness and diver-
sity levels in the population over time, as well as showing
a visual representation of the best individual agent solution
found in each generation. In the Particle Swarm Optimiza-
tion, the progress towards a goal can be viewed as agents
traverse a 2D fitness landscape, searching for a global opti-
mum. These two models also offer interdisciplinary connec-
tions to evolutionary biology and particle physics. Artificial
neural networks are also amenable to elucidation through an
agent-based perspective, as we hope to demonstrate to stu-
dents through exploration of the Artificial Neural Net model
[2]. Each perceptron can be conceived as an agent, which
follows certain rules during the training phase, and then an-
other set of rules when it is being tested. This is another
fairly advanced topic, which admittedly may take some ef-
fort for students to understand and appreciate. However, we
should remind the reader that it is not necessary for students
to understand every detail of the back-propagation training
algorithm or what the nice mathematical properties of a
sigmoid function are — such things can wait. The important
thing is for students to gain a qualitative understanding of

how the agents are activating each other, and that by au-
tomatically modifying the weights of connections between
agents, it is possible for the system as a whole to “learn”
pattern recognition skills. A class side-discussion compar-
ing and contrasting this agent-based model with the neu-
ral networks found in humans should also prove provocative
and educational. Agent-based modeling is useful in com-
puter graphics as well, and is being increasingly explored
as a means of automatically creating realistic procedural
animations of systems with many interacting creatures or
objects. Through the Particle System models? [1] students
can get a taste of the classic “particle systems” approach
sometimes used in cinematic animation to create the illu-
sion of water, fire, or smoke. While each particle is fairly
passive, being pushed or pulled by an externally determined
force field, it is still useful to think of each particle as one
agent of a distributed multi-agent system, and it is not dif-
ficult to modify the code to make the agents take a more
active and/or intelligent role in their movement patterns.
For instance, more sophisticated agent behavior is exhibited
in the “Boids” algorithm [31] for creating realistic-looking
flocks of animated creatures, which is the inspiration for our
Flocking model [8] . As the Flocking screenshot in Figure
4 shows, the NetLogo modeling environment also has a 3D
version that allows development and visualization of models
in three dimensions, which provides students with an early
glimpse into programming in 3D environments as they work
to extend, modify, or create their own multi-agent computer

2Particle Systems is actually composed of four distinct mod-
els — Basic, Flame, Fountain, and Waterfall — but they all
express the same fundamental idea.



animations. We mentioned above that part of the motiva-
tion for the MAICS framework was the increasingly parallel
nature of computing, such as the shift to multi-core and
multi-processor machines. In reaction, multi-threaded and
multi-process programming will become more pervasive, and
it seems quite appropriate to include in the curriculum an
agent-based model that addresses issues of resource sharing.
The Dining Philosophers model [9] introduces a classic case
study in the synchronization of concurrent processes, posed
as a puzzle about philosophers sitting around a table eating
spaghetti that requires two forks to eat with, but having to
share forks between them. Through this metaphor, concepts
such as deadlock and resource starvation are explained.

4. DISCUSSION AND FUTURE WORK

Our intention here is to offer a window into an alternative
introduction to computer science. In practice, we would not
expect this approach to be used to the complete exclusion of
other curricula. We emphasize that in many cases it would
be most beneficial to compare and contrast centralized and
decentralized approaches to the same topic. Furthermore,
the introductory course can still have a strong emphasis on
learning to write computer programs. However, starting
with existing programs (in this case, agent-based models)
provides an opportunity for students to explore, to modify,
and to learn to read the language at the same time as they
learn to write it.

One important thing to note is that the MAICS frame-
work, and an ABM/MAS approach in general, still allows for
the integration of a number of other techniques shown to be
beneficial for computer science education. There is no rea-
son, for example, that the pair programming approach [16]
or the integration of robotics [11] cannot be implemented
successfully within the context of MAICS. Indeed, the Net-
Logo programming environment includes interfaces to vari-
ous physical devices and a variety of “bifocal modeling” [13]
activities, which allow users in a variety of contexts to com-
pare computational agent-based models with real-world data
collected using robotic sensors and actuators. The VBot cur-
riculum [10], designed primarily for middle school students,
engages users in programming independent robot agents,
which can then interact with one another in a shared context
(such as a robot soccer arena).

Several avenues present themselves for future work. One
interesting consequence of integrating ABM and MAS into
introductory level computer science courses is that students
are encouraged to think about multiple programming lan-
guage paradigms. Specifically they are encouraged to con-
sider how centralized and decentralized systems can be used
to solve different problems, or even to solve the same prob-
lems differently. This is exciting in light of recent work that
shows that even students with no formal computer science
training are able to reason about concurrency, and some even
to develop both decentralized and centralized solutions for
problems involving concurrent systems [24]. However, the
questions of when and how students should be introduced to
multiple paradigms (e.g., agent-based programming, object-
oriented programming, functional programming) in the com-
puter science sequence deserves further attention. While
teaching a wide range of paradigms in early courses offers
students with a variety of choices to better solve different
problems, there is the danger of leaving students afloat in
a sea of shallowly understood paradigms. Additionally, im-

plementing the MAICS framework would provide a context
for additional cognitively motivated research about the affor-
dances and constraints of decentralized thinking for students
with regard to the principle ideas of computer science.

Another key piece of future work is to perform a concrete
implementation of this framework in the form of an introduc-
tory level computer science course, or two-course sequence.
We suggest that an implementation will provide empirical
support for the theoretical underpinnings of the MAICS
framework, as well as offer new insights about the poten-
tial for introducing students to computer science through
an ABM/MAS paradigm. NetLogo and NetLogo models
have been successfully introduced to and used by novice pro-
grammers in a variety of domains, and we expect that doing
so in the context of computer science education using the
MAICS framework will produce similar results. Specifically,
we would evaluate how this implementation affects three
major goals: (a) student engagement and retention rates,
(b) student ability to exhibit distributed thinking when pre-
sented with problems that can benefit from it, (c) student
knowledge of programming fundamentals (such as basic con-
trol structures, recursion, loops, variables, etc.). Previously,
we have evaluated both student engagement and distributed
thinking skills with positive results, but this was in the con-
text of undergraduate and pre-collegiate computer science
courses and workshops that focussed on modeling and simu-
lation, rather than as a first course on computer science. In
preparation for this work, we encourage discussion regarding
implementation concerns and potential pitfalls for integrat-
ing agent-based modeling into computer science curriculum.

Through the MAICS framework we are offering a first
attempt at producing a coherent introductory computer sci-
ence curriculum centered around a series of agent-based mod-
els spanning a variety of topics. We believe that this frame-
work addresses recent calls by computer science educators to
introduce widely applicable, engaging curricula early in the
computer science sequence that focus on the notion of “com-
putational thinking”, rather than specific algorithms and
techniques. There unquestionably remains much room for
improvement in this framework, and we hope that feedback
on the selection of appropriate models or multi-agent sys-
tems that highlight important areas of computer science, as
well as a broader discussion of the ideas we have proposed,
will enable us to further refine these ideas.
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