Future Generation Computer Systems I (1NIN) IRE-EEE

journal homepage: www.elsevier.com/locate/fgcs TS

Contents lists available at ScienceDirect

Future Generation Computer Systems

FiGICIS!

Run-time environment for the SARL agent-programming language:

the example of the Janus platform

Stéphane Galland **, Sebastian Rodriguez®, Nicolas Gaud ?

2 LE2I, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France

b GITIA, Universidad Tecnolégica Nacional, San Miguel de Tucumdn, CPA T4001JJD, Argentina

HIGHLIGHTS

We propose a service-based architecture for the Janus framework.

We presents the fundamentals of the SARL agent-programming language.
We define the features that should be supported by a run-time environment for any SARL program.
We propose to adapt the Janus agent framework for becoming a SARL run-time environment.

We evaluates the performances of the Janus framework when it is running a SARL program.

ARTICLE INFO ABSTRACT

Article history:

Received 24 June 2017

Received in revised form 10 October 2017
Accepted 12 October 2017

Available online xxxx

Keywords:

SARL agent-programming language
Run-time environment

Janus platform

agent platform.

SARL is a general-purpose agent-oriented programming language. This language aims at providing the
fundamental abstractions for dealing with concurrency, distribution, interaction, decentralization, reac-
tivity, autonomy and dynamic reconfiguration that are usually considered as essential for implementing
agent-based applications. Every programming language specifies an execution model. For SARL, this run-
time model is supported by a SARL run-time environment. The goals of this paper are to highlight the
key principles for creating a SARL run-time environment, and its concrete implementation into the Janus

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In past years, multi-agent systems (MAS) have taken their
place in our society. Application fields include robotics, artificial
intelligence, cinema, video games. This evolution is the answer
to increasingly complex projects, which require “intelligent” sys-
tems. Multi-agent systems allow to implement solutions with in-
telligence, capable of reasoning, learning and interacting between
different agents. These systems represent a totally different way of
looking at things. This way of designing systems resulted in new
tools, methodologies and architectures, better suited to MAS mod-
eling, e.g. ASPECS [1], MaSE [2] or even Gaia [3]. These methodolo-
gies are complemented by agent platforms for supporting the run-
time execution of the designed models. There are several dozens,
e.g. Jade [4], NetLogo [5], GAMA [6], or Janus [7].

On one hand, these solutions are highly interesting because
they frame and provide tools for the development of agent-
based systems. On the other hand, these systems are very com-
plex to implement, and the conventional programming languages

* Corresponding author.
E-mail address: stephane.galland@utbm.fr (S. Galland).

https://doi.org/10.1016/j.future.2017.10.020
0167-739X/© 2017 Elsevier B.V. All rights reserved.

(Java, etc.) are not suited. There is therefore a real need for pro-
gramming languages dedicated to MAS, which would offer more
clarity to developers, and simplify developments. Several agent-
programming languages have been proposed. Most of them are
domain-specific languages, e.g. GAML [6], MARS [8], or Jason [9].
Several of these languages are general-purpose, e.g. SARL [10].
SARL [10] is a new general-purpose agent-oriented programming
language (APL). SARL tries to set up adaptive and modular princi-
ples for developing multi-agent systems.

Every programming language specifies an execution model,
and many implement at least part of that model in a runtime
system [11]. For a SARL program being executed, a specific run-
time environment must be defined. The goals of this paper are to
highlight: (i) the key principles for creating a SARL run-time envi-
ronment, and (ii) its concrete implementation within the Janus agent
platform [7]. Neither the relationship between the above method-
ologies and SARL, nor the one between these methodologies and
Janus are the purpose of this paper. Our motivations are:

(i) to enable Researchers, Engineers and Students to create
a run-time environment for SARL. The key principles and

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

https://doi.org/10.1016/j.future.2017.10.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:stephane.galland@utbm.fr
https://doi.org/10.1016/j.future.2017.10.020

2 S. Galland et al. / Future Generation Computer Systems I (11IR) INI-EN1

member of P>

0. X 1.*
- innerContext 1 SpaceSpecification
Context Space
1 1.% - spec + create(id : SpacelD, params : Object[]) : Space
o
0.* | - skills]
- - <<extension>>
H Skill Event-driven
h EventSpace
1 . .
i + install() : void + emit(e : Event, s : Scope) ificati
: (.) K + uninstall() : void + emit(e : Event) EventSpaceSpecification
. PR (S
1 : 1
1 1 1
1
. v v |L§
1 .
- > <<|nterfa_ce>> Action Prototype <<exgension>> Event
Capacity tils
1.* - source : Address
OpenEventSpace
T + register(e : EventListener) : void

<<interface>>
Scope

+ unregister(e : EventListener) : void

+ matches(element : T) : boolean

Fig. 1. UML Class Diagram defining the major concepts in the SARL meta-model.

features to be considered for designing this run-time envi-
ronment are provided to them; and

(ii) to give a proof of concept based on the Janus platform. This
platform already provides an implementation for holonic
multi-agent systems, which are also a core concept within
SARL. In this paper, the Janus meta-model and software ar-
chitecture are updated in order to fit the SARL requirements.

This paper is structured as follow. Section 2 explains the funda-
mentals of the SARL language. Section 3 presents the compilation
and execution tool-chain for SARL. Section 4 details the key prin-
ciples for creating a SARL run-time environment that handles any
SARL program. Several existing agent platforms are presented in
Section 5. Section 6 gives details on the re-implementation of the
Janus platform in order to create a SARL run-time environment.
Section 7 describes the performance evaluation of the Janus im-
plementation. Finally, Section 8 concludes this paper and provides
perspectives to this work.

2. SARL agent-programming language

SARL' is a general-purpose agent-oriented programming lan-
guage [10]. It aims at providing the fundamental abstractions for
dealing with standard agent features: concurrency, distribution,
interaction, decentralization, reactivity, autonomy and dynamic
reconfiguration. The main perspective that guided the creation
of SARL is the establishment of an open and easily extensible
language. Such language should thus provide a reduced set of
key concepts that focuses solely on the principles considered as
essential to implement a multi-agent system. The major concepts
of SARL are explained below, and illustrated in Fig. 1.

2.1. Action

An action is a specification of a transformation of a part of the
designed system or its environment. This transformation guarantees
resulting properties if the system before the transformation satis-
fies a set of constraints. An action a € A is defined by its prototype
and its body, as illustrated by Eq. (1). The prototype is composed
by the name n, of the action, a sequence P, of formal parameters,

1 Official website: http://www.sarl.io.

and the type r, of the returned values. The body B, is a sequence
of expressions - a subset of the language constructs for describing
evaluable expressions - that represents transformations. These
two parts of the action’s definition are represented respectively by
the Action Prototype and Action in Fig. 1.

a = (ng, Pq, 14, Bg). (1

For pedagogical reasons, the SARL action concept could be
linked to method concept into the object-oriented paradigm: both
concepts represent the same language construct.

2.2. Capacity and skill

A capacity ¢ € C is the specification of a collection P, of actions’
prototypes, as defined in Eq. (2). A capacity could be used to specify
what an agent can do, and what a behavior requires for its execu-
tion.

c = (S, P, F). (2)

This specification makes no assumptions about its implemen-
tation. So that, the bodies of the actions are not defined into the
capacity: Vp € P. € A, B, = {. The capacity ¢ could inherit a
part of its definition from another capacities S.. The fully expanded
set F, of actions that are defined into the capacity c is defined by:
F. =P U{F/s € S:}.

Askill s € S is a possible implementation of capacities C; fulfilling
all the constraints of these specifications, as defined by Eq. (3).

s =(Ss, G5, As, F). (3)

A is the set implementations of the actions from the capacities
G, such that Va € A;, B, # ¥ and A; C .. Fe. Similarly to a
capacity, a skill s could inherit a part of its definition from another
skill s;. The fully expanded sequence F; of actions that are defined
into the skill s is defined by: F; = As U F,. Skill s provides an
implementation for each capacity action: a € F;/Va € A¢, V¢ € C..

An agent can dynamically evolve by learning or acquiring new
capacities. It can also dynamically change the skill associated to
a given capacity [1,12]. Acquiring new capacities also enables an
agent to get access to new behaviors requiring these capacities.
This provides agents with a self-adaptation mechanism that allow
them to dynamically change their architecture according to their
current needs and goals.

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

http://www.sarl.io

S. Galland et al. / Future Generation Computer Systems I (R1IN) INI-ENR 3

2.3. Context and spaces

A space p € P is the support of the interaction between agents,
respecting the rules defined in an associated space specification.
SARL natively defines a particular type of space, namely the event
space to provide a support to event-driven interactions. Within an
event space, agents communicate using events. Nevertheless, it is
possible to define programmatically new types of spaces that are
not event-based. Eq. (4) provides the definition of a space p. M, is
the set of agents, which are participating to the interaction within
the space, i.o.w. the members of this space. R, is the functional
definition of the interaction mechanism that is supported by the
space. It may be a routing algorithm of messages between the
space’s participants, or the interaction specification among agents
and artifacts [13].

p=(Mp,Ry). (4)

A context ¢ € O defines the perimeter/boundary of a sub-system,
and gathers a collection S, of spaces, as defined in Eq. (5).

¢ = (Sc, dc). (3)

Since their creation, agents are incorporated into a context called
the default context (see the upper part of Fig. 2, level n). The notion
of context makes complete sense when agents are considered
composed or holonic (see Section 2.6 for details).

In each context, there is at least one particular space d, € S,
called default space, to which all agents in context ¢ belong. This
ensures the existence of a common shared space to all agents in the
same context. Each agent can then create specific public or private
spaces to achieve its personal goals.

The concept of environment, as defined by Weyns et al. [14]
could be linked to the concept of context in SARL. The spaces into
a context become views to the environment [15]. Consequently,
spaces restrict how agents perceive and act in the environment.
Rodriguez et al. [16] have proposed to model the environment
by defining a context, a space, and specific agents that are sup-
porting the endogenous dynamics of the environment. This last
type of agent is mandatory because there is no syntactic way
within SARL for defining a context: only spaces and agents could
be programmed.

When an agent is created, it belongs to a context, named its
default context. During its life, an agent may join or leave other
external contexts, as illustrated by Fig. 2 with agent A. The invariant
condition is each agent belongs to a default context, whenever this
default context is not the one in which the agent was created.
Fig. 1 illustrates this membership relation by the “member of”
association between Agent and Space. In other words, an agent
belongs to a context if, and only if, it is member of the default space
of this context. The direct relation between the agent and context
concepts is related to the inner context, which is detailed in Section
2.6.

2.4. Agent and behavior

An agent a € T is an autonomous entity having a set B, of
behaviors, and a set S, of skills to realize the capacities it exhibits. It is
defined in Eq. (6), and represented by the Agent type in Fig. 1.

a= (Bm Saa M, da7 Caaia)~ (6)

Agent a has a set S, of individual skills that may be used for
building the agent’s behaviors. Agent a defines the mapping M, :
C — S from one capacity to a single skill implementation. From
this definition, the agent a is able to determine which skill should
be used when a capacity’s action is invoked. A set of capacity-
skill pairs, named the built-in capacities (BIC) is defined into the

SARL specifications [10]. They are considered as essential to respect
the commonly accepted competences of agents, such autonomy,
reactivity, pro-activity and social capacities. The full set of BICs are
presented in Section 4 because they must be implemented into,
and provided by the SARL run-time environment.

Among these BICs, the DefaultContextInteractions and
ExternalContextAccess capacities are defined. They give re-
spectively the access to the agent’s default context d,, and the set
C, of contexts in which the agents belong to, such that d, € C,. i,
represents the internal context of the agent, which is detailed in
Section 2.6.

Another BIC is the Behaviors capacity. It enables an agent to
incorporate a collection B, C B of behaviors that will determine
its global conduct. A behavior b € B maps a collection of perceptions
represented by events to a sequence of actions. Op : E — P(A) is the
mapping function in Eq. (7).

b = (Op). (7)

An agent has also a default behavior directly described within its
definition. It is illustrated by the relationship between Agent and
Action typesin Fig. 1.

By default, the various behaviors of an agent communicate
using an event-driven approach. An event e € E is the specification
of anything that happens in a space s, and may potentially trigger
effects by a listener, e.g. agent, behavior.

2.5. Example of SARL program

For clarity reasons, let the definition of an agent, named
FactorialAgent thatis able to compute a factorial. This example
is simple enough for illustrated the basics properties and features
of the SARL language. Nevertheless, more complex implementation
of multi-agent systems with SARL could be found in [17-24].

FactorialAgent agent waits for other agent’s request to
calculate (Calculate event) a factorial. Once computed, it is
notifying the result using the ComputationDone event.

event Factorial {

2 var upto : int
var number : int
4 var value : int
}

6 event Calculate {
var number : int

8 }
event ComputationDone {
10 var result : int
}

12 agent FactorialAgent {
uses Lifecycle, Behaviors,
DefaultContextInteractions
14 on Factorial [occurrence.number <
occurrence .upto | {
wake(new Factorial => |

16 upto = occurrence.upto
number = occurrence.number + 1
18 value = occurrence.value * (

occurrence .number + 1)
)
20 }
on Factorial [occurrence.number ==
occurrence .upto | {

22 emit(nmew ComputationDone => [result =
occurrence.value |)
killMe

24 }

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

4 S. Galland et al. / Future Generation Computer Systems I (1111) IN1-1E1

on Calculate {

26 wake(new Factorial => |
upto = occurrence.number
28 number = 0
value = 1
30 1)
}
32 1}

Listing 1: Computation of Factorial with a SARL Agent

An agent is declared with the agent keyword (line 12). In the
agent’s body block, we can declare mental states (in the form of
attributes), actions (or functions and event handlers). Actions that
an agent can perform could be specified by capacities or natively
inside the agent definition. Keyword uses imports the actions
defined in capacities, so that, they can be accessed directly as an
agent native function.

Agent perceptions and the sequence of actions the agent
wants to perform for each perception are defined. This is
achieved using the clause on <perception> [<guard>] {<body>}

. FactorialAgent declares three behavioral event handlers
(lines 14, 21, and 25). Perceptions for SARL agents take the form
of events, and they can be declared using the event keyword. For
instance, the Calculate event is defined at line 6 . An event can
carry information, in our case the number we want the factorial
for.

When the Calculate event is perceived (line 25), the agent
can access the event’s instance using the occurrence keyword. At
line 27, it sets the upto attribute using the information for the
Calculate event occurrence.

From this point, the agent starts computing the factorial. The
Behaviors built-in capacity provides the agent with mechanisms
to (un)register new behaviors, and fire new internal events (wake

action). For calculating the factorial, the agent fires an internal
event of type Factorial using the wake action.

Two behaviors are declared for Factorial event (lines 14
and 21). When an event is perceived, SARL agents execute all their
behaviors for that event type concurrently. Behaviors can declare
guards to prevent their execution if required. So, the behavior at
line 14 is only executed if occurrence.number < occurrence.upto
evaluates to true . This behavior simply calculates the factorial for
the nextinteger, and firesa Factorial event again. Asillustrated,
the guard’s expression may reference the received event or any of
its attributes. Nevertheless, any variable that is declared into the
enclosing type (agent, behavior, etc.) of the guard, or any statically
accessible variable or function may be referenced too.

Likewise, when the factorial for the requested number (stored
inupto attribute) is found, the behavior at line 21 is executed. The
emit action fires an event in the default space of the default context
for notifying the computation is finished. After that, the agent
stops its execution using the ki11Me action from the Lifecycle
capacity.

It is necessary to clearly understand the difference between
wake and emit actions. Wake fires an internal event within the
agent that may be perceived by its own behaviors, and its members
when it is composed by other agents. Enit action enables to fire
an event in a given space that is outside the agent itself.

2.6. Recursive agent and hierarchical multiagent system

In 1967, Koestler coined the term holon as an attempt to con-
ciliate holistic and reductionist visions of the world. A holon rep-
resents a part-whole construct that can be seen as a component
of a higher level system or as whole composed of other holons
as substructures [25]. Holonic systems grew from the need to
find comprehensive construct that could help to explain social

phenomena. Since then, it came to be used in a wide range of
domains, including philosophy [26], manufacturing systems [27],
and multi-agent systems [28].

Several works have studied this question, and they have pro-
posed a number of models inspired from their experience in dif-
ferent domains. In many cases, the idea of agents composed of other
agents could be found. Each researcher gives a specific name to this
type of agent. Ferber [29] discusses individual and collective agents.
Meta-agents are proposed by Holland [30]. Agentified Groups are
taken into account in the works of Odell et al. [31]. All of these
are examples of how researchers have called these “aggregated”
entities that are composed of lower level agents. More recently,
the importance of holonic MAS has been recognize by different
methodologies such as ASPECS [32] and O-MASE [33].

In SARL, we recognize that agents can be composed of other
agents. Therefore, SARL agents are in fact holons that can com-
pose each other to define hierarchical or recursive MAS, called
holarchies. In order to achieve this, SARL agents are structures that
compose each other via their contexts. Each agent defines its own
internal context, called inner context and it is part of one or more
external contexts. For instance, in Fig. 2, agent A is taking part of two
external contexts,i.e. Default Context and External Context
1.The same agent has its own inner context where agents B, C, D and
E evolve. Because, an agent may belong to a default and an external
context at the same time, the resulting structure in not a simple
hierarchy of agents (agent composed by agents). It is a directed
graph of agents, with membership relations among them. In the
SARL meta-model (Fig. 1), these relations are formally supported
by the “Member of” relation between an agent and a space.

3. SARL tool-chain

The SARL tool-chain is the set of programming tools that are
used to perform a multi-agent system with SARL. As illustrated by
Fig. 3, three types of tools are used in sequence in order to create
and run an agent-based system:

o SARL compiler: The SARL compiler transforms the source SARL
language to the target language. Several target languages may
be considered by this compiler. Because most of the agent
frameworks are written with the Java language, the SARL com-
piler targets this object-oriented programming language by de-
fault, but not restricted to (a Python generator is also provided
as proof-of-concept). The SARL compiler translates SARL state-
ments into their object-oriented equivalent statements. Three
different implementations of the SARL compiler are provided:
a specific command-line tool (sarlc), the Eclipse development
environment plugin, and a Maven plugin.

e Java compiler: The files generated by the SARL compiler are
standard Java files. They must be compiled with one of the
standard tools that are available: eclipsec? javac; gcj;* or jikes?
The result of the Java compilation is a collection of binary files
(a.k.a. byte-code files) that may be run by a virtual machine.

e SARL Run-time Environment: The SARL Run-time Environ-
ment (SRE) is a collection of tools that enables running of an
agent-based application written with SARL. Such an SRE must
provide the implementation for each service and feature that
are assumed to be provided by the run-time environment.
Usually, a Java-based SRE is composed by the Java Run-time
Environment (JRE) and a Java framework that supports the
execution of the agents upon the JRE.

2 Eclipse eclipsec: https://www.eclipse.org.

3 Oracle JDK: http://www.oracle.com/technetwork/java/javase/overview/index.
html.

4 GNU Java Compiler: http://gcc.gnu.org.
5 IBM jikes: http://jikes.sourceforge.net.

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

https://www.eclipse.org
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://gcc.gnu.org
http://jikes.sourceforge.net

S. Galland et al. / Future Generation Computer Systems I (R1IN) INI-ENR 5

DefaultContext

ExternalContext 1

rCo

Level n-1

Default Space

tAddr-4—Addr-5}—

ddr-3}—fAddr-6l—(Addr-7}5

L) U

(Holonic group)

@lAddr- Addr-9 Other Spaces
[J [J (Production groups)

Fig. 2. A Holon or a recursive agent in SARL.

1010
9 SARL J Java i SARL Run-time
SARL Compiler Java Compiler Java Environment
program program Bytecode
Eclipse with Eclipse ecl, Janus, ...
SARL plugin, javac, jikes,
Maven SARL i or J# compiler
plugin, Python
sarlc compiler
program

Fig. 3. Compilation and Run-time Toolchain for SARL.

In order to create a valid SRE, it is mandatory to define the core
features that are expected into a SRE implementation. Section 4
describes the key elements that should be considered for solving
this specific point.

In order to give a Proof-of-Concept, a specific SRE implementa-
tion based on the Janus platform [7] is provided in Section 6. Janus
is a Java application, i.e. a Java virtual machine is used for running
the program upon a specific Java library that provides the features
dedicated to the SARL agents. Janus was selected because, since
its creation in 2008, it provides the key features for implementing
holonic multi-agent systems. Therefore, it is the best candidate for
becoming a SRE.

4. Key points for SRE creation

In this section, the major key points that should be considered
for creating a SARL Run-time Environment are explained: support
to the agent’s life-cycle, and implementation of the built-in capac-
ities.

4.1. Agent’s lifecycle

SARL does not imposes a specific agent’s control loop. Indeed,
when agents are spawned, the SRE is in charge of creating the
agent instance and installing the skills associated to the built-in
capacities into the agents. Then, when an agent is ready to begin
its execution, SRE fires an Initialize event occurrence. This
occurrence contains the initialization parameters for the agent’s
instance. Likewise, when the agent has decided to stop its own
execution (using the killMe action from the Lifecycle ca-
pacity), SRE fires an Destroy event occurrence. It enables the
agent to release any resource it may still hold. It is important to

notice that agents cannot kill other agents, not even those that
they have spawned. One of the key characteristics of an agent is
its autonomy. From its definition, no other agent should be able
to stop its execution without its consent. The MAS designer is
free to implement any control or authority protocol for their own
application scenarios.

4.2. Built-in capacities

Every agent in SARL has a set of built-in capacities (BIC) consid-
ered essential to respect the commonly accepted competences of
agents. These capacities are considered the main building blocks
on top of which other higher level capacities and skills can be
constructed. They are defined in the SARL language specifications,
but the skills implementing them are provided by the SRE. This
latest is in charge for creating the BICs’ skills, and injecting them
into an agent, before its execution begins. Therefore, when the
agent receives the Initialize event, they are already available.
The current eight defined BICs, and the actions they provide along
their action signatures are:

e ExternalContextAccess provides access to the contexts
that the agent is a part of, and the actions required to join
and leave new contexts. The external context of the agent A
is shown at the top right part of Fig. 2.

e InnerContextAccess provides access to the inner context
of the agent. This is keystone for holonic agent implementa-
tion. The inner context of the agent A is shown at the bottom
part of Fig. 2.

e Behaviors As previously described, agent can dynam-
ically (un)register behaviors and trigger them with the
wake action. This capacity is closely related to the

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

6 S. Galland et al. / Future Generation Computer Systems I (1111) IN1-1E1

Table 1

Mapping of the SARL concepts to the existing agent platforms.
SARL key concepts Jade [4] NetLogo [5] GAMA [6] Janus [7]
Application type General purpose Simulation Simulation General purpose

Agent type definition Extension of Agent type
Java API

Extension of Behavior type -

Mailbox with messages Stigmergy

Overriding of the setup

function

Overriding of the takeDown -

function

One thread per agent

Agent behavior definition
Interaction mechanism
Agent initialization

Agent destruction

Agent execution

Hierarchical multiagent system None None

Definition of species, no public

Specific statement to setup

Synchrone execution

Definition of species Extension of Agent type

- Organizational model [32]
Mailbox with messages Mailbox with messages
Overriding of the __init__ Overriding of the start
function function

- Overriding of the end function

Synchrone execution,
__step__ function calls

One thread per agent and
synchrone execution, both need
overriding of the 1ive function

Hierarchy of agents Holarchy

InnerContextAccess to enable a high-level abstraction
on holonic MAS development.

e Lifecycle provides actions to spawn new agents on dif-
ferent external contexts (peers), and the inner context (as
holonic members). It also provides the kil1Me action to
stop the agent execution.

e Schedules enables the agent to schedule tasks for future
or periodic execution.

e DefaultContextInteractions is actually provided for
convenience. It assumes that the action is performed on
the agent’s default context (upper left part of Fig. 2) and its
default space. For instance, the emit action is a shortcut for
defaultContext.defaultSpace.emit(..) . Therefore, it
is actually created on top of the other BICs.

e Logging provides the agents for writing messages on the
agent’s log. The messages may be shown according to a
severity level, e.g. information, warning, error.

e Time provides the agents for accessing to the current time.
The time may be the operating system time, or a simulation
time, depending on the implementation of the BIC within
the SRE.

4.3. Parallel execution

In most of the agent frameworks, e.g. Jade [4] and Janus [7]
(before its adaptation to SARL), each agent is run on a separate
execution resource, i.e. a thread. This design choice enables each
agent managing its own execution resource, and participates to its
autonomy. On several other platforms, e.g. TinyMAS? the agents
are executed in turn in a loop. The parallel execution of the agents
is therefore simulated.

SARL encourages a massively parallel execution of agents and
behaviors. An agent entry point is a part of the agent behavior that
is invoked from the outside of the agent. In SARL, the entry points
are the behavior event handlers, specified by the on keyword. Each
of these entry points is associated to a separate thread. Parallel
execution of the pro-active behaviors of an agent is supported by
the tasks that are launched with the Schedules built-in capacity.

Whatever the agent execution mechanism used by a SRE
(thread-based or loop-based), a SARL developer always assumes
that the agent’s entry points are executed in parallel when he is
writing the event handlers.

5. Selection of an agent framework as SRE candidate
SARL language specifies a set of concepts and their relations.

It defines on top of them a collection of Built-In Capacities for
agents. However, the SARL project does not impose a particular

6 TinyMAS Platform: http://www.arakhne.org/tinymas.

execution infrastructure. We consider that many different imple-
mentations of these concepts can be provided, and it can help
SARL be developed faster. In this section, four Java-based agent
platforms are considered as candidates for implementing a SRE:
Jade [4], NetLogo [5], GAMA [6], and Janus [7].

According to the key points that are described in Section 4,
several criteria are used to compare these agent frameworks:

e Application type: Multi-agent systems have a very wide scope
of application, including 3D simulation, geography simulation,
social simulation, video game.

o Agent type definition: Definition of a new agent may need to
extend an existing feature or use specific language statements.

o Agent behavior definition: Definition of a new agent behavior
may need to extend an existing feature or use specific language
statements.

e Interaction mechanism: This criterion indicates the type of
interaction mechanism that is used by the agent framework:
message exchanges, event-based interaction, stigmergy...

o Agent initialization: This criterion indicates how an agent
may be initialized.

e Agent destruction: The destruction of an agent causes the re-
lease of resources. This criterion specifies the means for imple-
menting a release function.

e Agent execution: Agentexecution mechanism is a key module
of the agent platform. The type of mechanism may be syn-
chronous; i.e. agents are run in a loop, or multi-threaded.

o Hierarchical multiagent system: Hierarchical systems, and
specifically holonic systems are a key principle behind the SARL
agent programming language. This criterion indicates if, and
how, a hierarchy of agents is supported by the agent framework.

Table 1 provides an overview of our agent framework com-
parison. Jade and Janus are both general purpose platforms: they
could be used for building any agent-based application, including
embedded system and simulation applications. NetLogo and GAMA
are simulation platforms because they enables to build simulation
software. We advocate that a general purpose platform fits better
the needs for the SARL agents. Indeed, SARL does not target a
specific application domain. It is defined for enabling the building
of embedded and simulation-based applications, for instances.

All the existing platforms that are included in this comparison
provide a message-based interaction mechanism: agents are send-
ing messages to other agents. The receiving agents decide to get
the messages from their mail boxes. This approach corresponds to
a pro-active behavior: consuming a message is a direct and explicit
decision of the agent. The messages are not given to the agent as
part of its reactive behavior. It does not fit the reactive interaction
behavior, based on events, that is expected by the SARL developers.
The creation of an SRE, based on all the above frameworks needs a
complete recast of the data exchange mechanism.

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

http://www.arakhne.org/tinymas

S. Galland et al. / Future Generation Computer Systems I (R1IN) INI-ENR 7

Agents
InnerContext InternalEventBus Behaviors Lifecycle
DefauItContext ExternaIContext Schedules Logglng MicroKernel
‘ Distributed data Executor Logging Spawn ‘
‘ Context space ‘ ‘ Network ‘ ‘ Kernel Discovery ‘
‘ Infrastructure ‘

Virtual Machine

Operating System

Fig. 4. Architecture of the Janus platform.

The agent’s life-cycle is almost supported in the same way by
all the above platforms. Initialization and destruction functions are
invoked at the beginning and end of the agent’s life. In between,
the agent’s life is supported by a specific function that is called
regularly by the agent framework. SARL specification does not as-
sume the existence of this function. In order to make each platform
compliant with SARL, this agent running function should read the
agent mailbox and fires corresponding events, for example.

Agent execution is another key feature of an agent framework.
The existing frameworks use a single thread to each agent. Ac-
cording to the execution mechanism that is expected by SARL,
the execution mechanism should be adapted to enable threaded
execution of the event handlers. Or, this parallel execution should
be simulated in order to give the illusion to the agent’s code that
the event handlers are executed in parallel. Regarding the agent
execution function mentioned above, it considered as the place
where to specify the execution mechanism mapping.

The last criterion focuses on the support of hierarchical systems.
Two agent frameworks support explicitly such systems, i.e. GAMA
and Janus. Only Janus fully supports the concept of holon.

According to all these assessments, we have decided to adapt
the Janus platform in order to create a run-time environment
for the SARL applications. Indeed, Janus is the framework, which
covers the largest amount of features that are expected by SARL
developers. The key element that has been considered for taking
this decision is the support of holonic multi-agent systems, which
is the best within Janus, from our point of view. This decision is also
taken according to the software development effort to be spent for
creating a SRE: lower is the amount of code to be written, higher is
our interest to the SRE candidate.

6. The Janus platform as a SARL run-time environment

The Janus platformy is re-designed and re-implemented in
order to serve as the software execution environment for the SARL
programs. This revised version of Janus implements all the re-
quired infrastructure to execute a MAS, which is programmed us-
ing SARL. It fulfills the SARL requirements, such as fully distributed
execution of the agent’s behaviors, and the automatic discovery of

7 Official website: http://www.janusproject.io.

kernels. Janus adopts best practices in current software develop-
ment, such as the Inversion of Control? It also benefits from new
technologies like Distributed Data Structures? The main purpose
of this work is to adapt Janus to become a SRE, and therefore
provides an implementation to each of the built-in capacities.

6.1. General service-based architecture

A service-oriented architecture (SOA) is a style of software
design where services are provided to the other components by ap-
plication components. The basic principles of SOA are independent
of vendors, products and technologies [34]. A service is a discrete
unit of features that can be accessed remotely, acted upon, and
updated independently, such as retrieving a credit card statement
on-line.

A service has four properties according the definition given by
the Open Group'® : (i) it logically represents a business activity
with a specified outcome; (ii) it is self-contained; (iii) it is a black
box for its consumers; and (iv) it may consist of other underlying
services. Different services can be used in conjunction to provide
the functionality of a large software application [35]. So far, the
definition could be a definition of modular programming in the
1970s. Service-oriented architecture is less about how to modular-
ize an application. It is more about how to compose an application
by integration of distributed, separately-maintained and deployed
software components. SOA is enabled by technologies and stan-
dards that make it easier for components to communicate and
cooperate.

According to these principles, the Janus platform is redesigned
in order to provide eight services. As illustrated by Fig. 4, these ser-
vices constitute the basis of the built-in capacity implementation.
The Janus services are aggregated into two categories:

8 Google Guice: https://code.google.com/p/google-guice/.
9 In-Memory Data Grid like Hazelcast: http://www.hazelcast.com.

10 Service-Oriented Architecture ~ Standards:
standards/soa.

http://www.opengroup.org/

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

http://www.janusproject.io
https://code.google.com/p/google-guice/
http://www.hazelcast.com
http://www.opengroup.org/standards/soa
http://www.opengroup.org/standards/soa

8 S. Galland et al. / Future Generation Computer Systems I (11IR) INI-EN1

1. infrastructure services, which are managing the relationship
with the underlying operation system and the virtual ma-
chine.

2. services that are managing features that are accessible to the
built-in capacities.

These services are detailed in the following sections according
to the given presentation template:

Description: Goal and activities that are carried by this service out.

Start-up: Description of the activities that are executed at the start-up
of the service.

Shut-down: Description of the activities that are executed at the
shut-down of the service.

Functions: Descriptions of the functions that are provided by the service
in its public interface.

Events: List of the events that are fired by the service, and that could

be listened by external objects.

The rest of this section provides details on the height services
defined within the Janus framework.

6.1.1. Infrastructure service

Description: Manages the resources that are provided by the Java Virtual
Machine or the operating system.

Start-up: Start up the Hazelcast manager (http://www.hazelcast.com).
Hazelcast is an in-memory data grid library that is used to
create and manage data structures distributed other a
computer network.

Shut-down: Shut down the Hazelcast library.

Functions: -

Events: -

6.1.2. Logging service

Description: Enables an agent to output messages in a specific log, with
associated emergency level. The service implementation is
based upon the Oracle Logging API, included into all the Java
run-time environments.

Start-up: -

Shut-down: -

Functions: debug , info ,warning and error functions. They take
the message to be logged as argument.

Events: -

6.1.3. Executor service

Description: This service provides the functions for launching tasks in
parallel. The implementation is based on the Java
Executors utility class, which provides tools for launching
single-run and periodic tasks.

Create and initialize a Java executor service for single-run
tasks, and one for periodic tasks.

Stop the Java executor services.

Start-up:

Shut-down:
Functions:
e execute(r) : execute the task r in parallel.
e executeMultipleTimesInParallelAndWaitFor
Termination(r,n) : execute n instances of the task in
parallel.
e schedule(t, r) : execute the task r in t milliseconds.
e scheduleAtFixedRate(t, r) : execute the task r every t
milli-seconds.
e scheduleAtFixedDelay(t, r) : execute the task r
infinitely, and wait t milliseconds between each run.
Events: -

6.1.4. Context-space service

Description: This service is in charge of maintaining the repositories of
the agent contexts and the agent interaction spaces that are
created in the system. This service is also in charge of routing
the events between agents through the spaces. The agent
execution unit in Janus is the event handler: the part of the
SARL agent that is executed when a specific event is
received. Each of these units are executed in parallel to the
other units, even within the same agent.

Synchronization of the context and space repositories with
other Janus instances over the computer network.
Shut-down: -

Functions:

Start-up:

e createContext(id) : create a context with the given
identifier.
e removeContext(id) : remove the context with the given
identifier, and destroy all the spaces inside the context.
e getContexts() : return all the existing contexts.
e getContext(id) : return the context with the given
identifier.
e createSpace(c, id) : create a space in the context ¢ with
the given identifier.
e removeSpace(c, id) : remove the space with the given
identifier from the context c.
e getSpaces(c) : return all the existing spaces in the
context c.
e getSpace(c, id) : reply the context with the given
identifier in the context c.

Events:
e ContextCreated ,ContextDestroyed when a context
was created or destroyed.
e SpaceCreated , SpaceDestroyed when a space was
created or destroyed.

Janus enables the distribution a SARL program over a network
of (virtual) machines—(V)M'’s. From the SARL agent point of view,
this distribution over (V)M’s is hidden. Indeed, we argue that any
SARL program runs on a big virtual machine that is covering all the
connected (V)M'’s. These low-level machines are not visible to the
SARL agent. Consequently, a context is seen as a single entity over
the (V)M’s by the agents. From the Janus point of view, each context
instance is a shared object over the (V)M’s. Thanks to the underly-
ing Hazelcast in-memory data grid library, the different context
instances are replicated and dynamically synchronized over the
(V)M’s. Spaces are also shared upon the same infrastructure.

A safety question arises when enabling (V)M communication:
what happens when two (V)M’s cannot communicate any more?
Thanks to the Hazelcast library, no data is removed from the
shared data structures (context list, space list, agent list, etc.) It
means that the agents can continue to send events to agents that
are at the other side of the lost connection. But, Janus does not
send the events to the remote agent because of the connection
loss. According to the Janus specification, there is no warranty
that an event is delivered to another agent into a remote (V)M.
Consequently, the agent communication protocol should take care
of any loss of event. When the (V)M'’s connection is back, Hazelcast
library synchronizes the local instances of the data structures with

the remote instances.

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

http://www.hazelcast.com

S. Galland et al. / Future Generation Computer Systems I (R1IN) INI-ENR 9

6.1.5. Spawning service

Table 2
Mapping between the built-in capacities and the Janus services.

Description: This service is in charge of managing the agent’s life-cycle. It
creates instances of agents, and registers them to the other
services of the framework. This service provides the
functions for stopping the agents. An agent can be killed only
if it has no member agent inside (see Section 2.6). The
service ensures that the agent’s life-cycle events are fired to
the agent: Initialize and Destroy events.

Start-up: -

Shut-down: Stop all the running agents.

Functions:

e spawn(t,n) : create n instances of agent of type t.
e killAgent(id) : destroy the agent when the given
identifier.

Events:

e AgentSpawned when an agent was created.
e AgentDestroy when an agent was destroyed.

6.1.6. Networking services

Three networking services are provided by the Janus platform:
kernel discovery, distributed data, and network event routing ser-
vices.

Name: Kernel discovery

Description: The kernel discovery service is in charge of maintaining a
up-to-date list of the Janus kernels that are alive on a local
computer network. This service uses the Hazelcast library,
which is already maintaining a list of the Hazelcast nodes
over the network.

Start-up: Advertise the current kernel over the computer network.

Shut-down: Notification of the disappearance of the current kernel to the
other Janus kernels.

Functions:

e getKernels() : return the list of the Janus kernels.

Events:

e KernelDiscovered when a Janus kernel was detected.
e KernelDisappeared when a Janus kernel is no more
reachable.

Name: Distributed data structures

Description: The distributed data service provides functions to create data
structures (hash tables, lists, etc.) that are accessible and
synchronized over the computer network. This service uses
the Hazelcast library.

Start-up: -

Shut-down: -

Functions: newMap(id) and newList(id) are provided to create the
data structures with the given identifiers. These functions
replicate the data structures in all the kernel thanks to the
Hazelcast library.

Events: -

Name: Network event routing

Description: The network event routing service is in charge of routing the
events that are fired by the agents to the agents that are
hosted on a remote computer. This service opens a socket
channel, based on the ZeroMQ library? to each remote Janus
kernel. This channel will be used for sending events to the
remotely hosted agents.

Start-up: -

Shut-down: -

Functions: -

Events:

e EventReceived when an event is received from a remote
Janus kernel.

2 ZeroMQ: http://zeromq.org/.
6.2. Built-in capacity implementation
SRE creates and injects the BICs in an agent before its ex-

ecution begins. Janus platform provides an implementation for
each BIC described in Section 4.2. Table 2 provides the mapping

Built-in capacity Janus services

ExternalContextAccess Context-space

InnerContextAccess Context-space
Behaviors Context-space, Executor
Lifecycle Spawning, Context-space
Schedules Executor
DefaultContextInteractions Context-space
Logging Logging
Time Executor
To -
Environment sends
perceptions to
all agents o
Ta £
Agents conduct [
their algorithms 2
Th =S
3
Sends ready @
events 9
T =
Wait for
slowest agents
Ty

Fig. 5. An overview of the time measurement in our experiments.

from a BIC to the Janus services that are used for its implemen-
tation. Indeed, the BICs call the Janus services in order to real-
ize there behaviors. The concrete implementation code may be
found on Github: https://github.com/sarl/sarl/tree/master/sre/io.
janusproject/io.janusproject.plugin.

7. Performance evaluation

In order to be able to measure the performance of the new Janus
implementation, we created a very simple stigmergy-inspired
ping-pong application [17]. A central agent representing the agent
environment, as defined by Weyns et al. [14] and Galland and
Gaud [23], is introduced as the mean of communication between
the other agents. Consequently, two agent types are considered:
(i) the application agents, which are sending the ping-pong events,
and (ii) the environment agent, which represents the environment
in which the application agents are located. The times Ty, T1, Ta, Tg,
Tc and Tp mentioned below are simulated application time values.

In the time period starting at Ty, every application agent has
20% probability to emit a ping message to X other agents where
X ~ Uniform(1 : 100). The message needs to be delivered in the
time period T; ~ Uniform(T; : T.) where T, denotes the end of
simulated time. The measured time is illustrated in Fig. 5. Where
To and T; denote the start and the end of the interval. T, denotes the
end of the reception of the events sent by the environment agent
to the application agents. Tj is the end of “application level payload
work” done by the simulation agents. And finally, T, is the end of
delivering of the AgentIsReadyEvent events to the environment
agent. For every time period, the amount of emitted messages
is computed together with the total amount of time needed to
execute this time period. Experiments are realized for 200 agents
on a Linux Ubuntu 14.04LTS laptop with 8 GB memory and a Intel
Core i5-4210M CPU 2.60 GHz x 4. The number of time periods that
are simulated is 2 500.

Experimental results are illustrated in the graph represented in
Fig. 6. In our experiments, all the application agents have the same
actions to do. Consequently, they have approximately the same
execution time. It is clear to see that the execution time follows
a constant tendency, and hence seems to be independent of the
number of processed events over the full range of observations. The

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

http://zeromq.org/
https://github.com/sarl/sarl/tree/master/sre/io.janusproject/io.janusproject.plugin
https://github.com/sarl/sarl/tree/master/sre/io.janusproject/io.janusproject.plugin
https://github.com/sarl/sarl/tree/master/sre/io.janusproject/io.janusproject.plugin

10 S. Galland et al. / Future Generation Computer Systems I (11IR) INI-EN1

800

700 -

600

500

400 ;

Execution time for iteration (ms)

300 [

T T
Total amount of events handled
tendency

200 ! -
0 2000 4000

6000 8000 10000

Total amount of Events handled by All Agents

Fig. 6. Graph that represents the total amount of events handled in a specific iteration (x-axis) against the total execution time for that iteration in ms (y-axis) for the case

of 200 agents and 2 500 iterations [17].

execution time for a single period between two consecutive incre-
ments of simulated time includes: perception of the environment,
application specific payload work and end-of-period notification.
The duration required for the payload work in the experiment
is negligible. The large variance of the execution time masks the
expected dependency on the number of events.

8. Conclusion and perspectives

SARL is a general-purpose agent-oriented programming lan-
guage. This language aims at providing the fundamental abstrac-
tions for dealing with essential agent features: concurrency, dis-
tribution, interaction, decentralization, reactivity, autonomy and
dynamic reconfiguration.

Every programming language specifies an execution model, and
many implement at least part of that model in a runtime system. In
the case of SARL programs, the SARL run-time environment (SRE)
provides the tools and the features that are mandatory for running
such a program. In this paper, we present the adaptation of the
Janus platform for becoming the official and default SRE. Janus
adopts the best practices in current software development, such
as Inversion of Control, and benefits from new technologies like
Distributed Data Structures.

The major perspectives of this work are listed below. First, Janus
platform is a standard Java application for which the performances
must be analyzed in detail, in order to be optimized accordingly.
A comprehensive and systematic comparison of the existing agent
frameworks and the new version of Janus will be realized.

Migration of agents over the different Janus kernels is not yet
supported. A specific service will be added into Janus, and a built-
in capacity provided within the SARL AP, in order to query to
migrate.'!

Other agent-based platform may serve as SRE. GAMA plat-
form [6] is a possible candidate for creating a simulation en-
vironment for spatial and geographic applications. Gazebo plat-
form [36,37] is another candidate for creating simulators of robots,
including drones.

Finally, most of the embedded systems cannot execute a Java
application. The need of a specific SARL compiler, which generates

11 Agent migration feature: https://github.com/sarl/sarl/issues/747.

C/C++ program arises. A perspective of this work is to extend
the SARL compiler for embedded systems, cloud platforms, and
computer clusters, which are specific run-time environments.

Acknowledgments

We would like to thank Glenn Cich and Luk Knapen, who have
highly contributed to the performance evaluation of the new Janus
platform [17].

References

[1] M. Cossentino, S. Galland, N. Gaud, V. Hilaire, A. Koukam, How to control emer-

gence of behaviours in a holarchy, in: The Int. Workshop on Self-Adaptation

for Robustness and Cooperation in Holonic Multi-Agent Systems (SARC-2008)

at the Second International Conference on Self-Adaptive and Self-Organizing

Systems, (SASO 2008), IEEE Computer Society, Venice, Italy, 2008.

S.A. DeLoach, The MaSE Methodology, Springer US, Boston, MA, 2004, pp. 107-

125.

M. Wooldridge, N.R. Jennings, D. Kinny, The gaia methodology for agent-

oriented analysis and design, Auton. Agents Multi-Agent Syst. 3 (3) (2000)

285-312.

F.L. Bellifemine, G. Caire, D. Greenwoord, Developing Multi-Agent Systems

with JADE, John Wiley & Sons, 2007.

U. Wilensky, NetLogo, Tech. Rep., Center for Connected Learning and Computer-

Based Modeling, Northwestern University, Evanston, IL, 1999.

A. Grignard, P. Taillandier, B. Gaudou, D. Vo, N. Huynh, A. Drogoul, GAMA 1.6:

Advancing the art of complex agent-based modeling and simulation, in: G.

Boella, E. Elkind, B. Savarimuthu, F. Dignum, M. Purvis (Eds.), PRIMA 2013:

Principles and Practice of Multi-Agent Systems, in: LNCS, vol. 8291, Springer

Berlin Heidelberg, 2013, pp. 117-131.

S. Galland, N. Gaud, S. Rodriguez, V. Hilaire, Janus: another yet general-purpose

multiagent platform, in: The 7th Agent-Oriented Software Engineering Tech-

nical Forum (TFGAOSE-10), Agent Technical Fora, Agent Technical Fora, Paris,

France, 2010.

D. Glake,]. Weyl, C. Dohmen, C. Hiining, T. Clemen, Modeling through model

transformation with MARS 2.0. in: International Springer Simulation Confer-

ence, 2017. http://dx.doi.org/10.22360/springsim.2017.ads.005.

R.H. Bordini,].F. Hiibner, M. Wooldridge, Programming Multi-Agent Systems

in AgentSpeak using Jason, first ed., Wiley, ISBN: 978-0-470-02900-8, 2007.

[10] S. Rodriguez, N. Gaud, S. Galland, SARL: a general-purpose agent-oriented
programming language, in: Web Intelligence (WI) and Intelligent Agent Tech-
nologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on, Vol. 3,
2014, pp. 103-110.

[11] A.V.Aho, M.S.Lam, R. Sethi,].D. Ullman, Compilers: Principles, Techniques, and
Tools, second ed., Pearson Education, Inc., ISBN: 0-201-10088-6, 2006.

2

[3

[4

[5

[6

(7

[8

[9

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

https://github.com/sarl/sarl/issues/747
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb5
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb5
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb5
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb6
http://dx.doi.org/10.22360/springsim.2017.ads.005
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb11

S. Galland et al. / Future Generation Computer Systems I (R1IN) INI-ENR 11

[12] S.Rodriguez, N. Gaud, V. Hilaire, S. Galland, A. Koukam, An analysis and design
concept for self-organization in holonic multi-agent systems, in: The Inter-
national Workshop on Engineering Self-Organizing Applications, (ESOA’06),
Springer-Verlag, 2006, pp. 62-75.

[13] A.Ricci, M. Viroli, A. Omicini, Programming MAS with artifacts, in: International
Workshop on Programming Multi-Agent Systems, Springer Verlag, 2005.

[14] D.Weyns, A. Omicini, J. Odell, Environment as a first-class abstraction in multi-
agent systems, Auton. Agents Multi-Agent Syst. (ISSN: 1387-2532) 14 (1)
(2007) 5-30.

[15] S. Galland, F. Balbo, N. Gaud, S. Rodriguez, G. Picard, O. Boissier, A multi-
dimensional environment implementation for enhancing agent interaction,
in: R. Bordini, E. Elkind (Eds.), 14th Int. Conf. on Autonomous Agents and
Multiagent Systems, (AAMAS15), [FAAMAS, ACM In-Cooperation, Istanbul,
Turkey, ISBN: 978-1-4503-3413-6, 2015, pp. 1801-1802 URL http://www.
aamas2015.com/en/AAMAS_2015_USB/aamas/p1801.pdf.

[16] S. Rodriguez, S. Galland, N. Gaud, A new perspective on multi- agent envi-
ronment with SARL, in: International Workshop on Communication for Hu-
mans, Agents, Robots, Machines and Sensors, Procedia Computer Science,
Elsevier, Belfort, France, 2015, pp. 526-531 ISSN 1877-0509 URL http://www.
sciencedirect.com/science/article/pii/S1877050915017275, best Paper Award.

[17] G. Cich, S. Galland, L. Knapen, A.-U.-H. Yasar, T. Bellemans, D. Janssens,
Addressing the challenges of conservative event synchronization for the SARL
agent-programming language, in: The 15th International Conference on Prac-
tical Applications of Agents and Multi-Agent Systems, Springer, 2017.

[18] D. Lizondo, P. Araujo, A. Will, S. Rodriguez, Multiagent model for distributed
peak shaving system with demand-side management approach, in: 2017 First
IEEE International Conference on Robotic Computing, IRC, 2017, pp. 352-357.
http://dx.doi.org/10.1109/irc.2017.50.

[19] M. Feraud, S. Galland, First comparison of SARL to other agent-programming
languages and frameworks, in: International Workshop on Agent-based Mod-
eling and Applications with SARL (SARL 2017), Procedia Computer Science,
Elsevier, 2017. http://dx.doi.org/10.1016/j.procs.2017.05.389.

[20] S.Galland, F.Balbo, G. Picard, O. Boissier, N. Gaud, S. Rodriguez, Environnement
multidimensionnel pour contextualiser les interactions des agents, Appl.
Simul. Trafic Routier Urbain 30 (1-2) (2016) 81-108 Special Issue on Multi-
agent Systems of the “Revue d’'Intelligence Artificielle”.

[21] G. Cich, L. Knapen, S. Galland,]. Vuurstaek, A. Neven, T. Bellemans, Towards
an agent-based model for demand-responsive transport serving thin flows,
in: The 5th International Workshop on Agent-Based Mobility, Traffic and
Transportation Models, Methodologies and Applications (ABMTRANS 2016),
Procedia Computer Science, Elsevier, 2016.

[22] G.Basso, M. Cossentino, V. Hilaire, F. Lauri, S. Rodriguez, V. Seidita, Engineering
multi-agent systems using feedback loops and holarchies, Eng. Appl. Ar-
tif. Intell. (ISSN: 0952-1976) 55 (2016) 14-25. http://dx.doi.org/10.1016/j.
engappai.2016.05.009. URL http://www.sciencedirect.com/science/article/pii/
$0952197616300999.

[23] S. Galland, N. Gaud, Organizational and holonic modelling of a simulated and
synthetic spatial environment, in: E4MAS 2014 - 10 Years Later, in: LNCS, vol.
9068(1), 2015, pp. 1-23 URL http://www.springer.com/us/book/9783319238
494,

[24] S. Galland, F. Balbo, N. Gaud, S. Rodriguez, G. Picard, O. Boissier, Contextualize
agent interactions by combining social and physical dimensions in the en-
vironment, in: Y. Demazeau, K. Decker, F. De la prieta, J. Bajo perez (Eds.),
Advances in Practical Applications of Agents, Multi-Agent Systems, and Sus-
tainability: The PAAMS Collection, in: Lecture Notes in Computer Science, vol.
9086, Springer International Publishing, 2015, pp. 107-119. http://dx.doi.org/
10.1007/978-3-319-18944-4.9.

[25] A.Koestler, The Ghost in the Machine, Hutchinson, 1967.

[26] K. Wilber, Sex, Ecology, Spirituality: The Spirit of Evolution. Shambhala,
ISBN: 9781570627446, 2000.

[27] E.van Leeuwen, D. Norrie, Holons and holarchies [intelligent manufacturing
systems], Manuf. Eng. 76 (2) (1997) 86-88.

[28] C. Gerber,]. Siekmann, G. Vierke, Holonic Multi-Agent Systems, Tech. Rep.
DFKI-RR-99-03. Deutsches Forschungszentrum fiir Kiinztliche Inteligenz -
GmbH. Postfach 20 80, 67608 Kaiserslautern, FRG, 1999.

[29] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intel-
ligence, Addison-Wesley, 1999.

[30] J.H. Holland, Hidden Order: How Adaptation Builds Complexity, Addison-
Wesley, Reading Mass, 1995.

[31] J. Odell, M. Nodine, R. Levy, A metamodel for agents, roles, and groups, in: J.
Odell, P. Giorgini, J. Miiller (Eds.), Agent-Oriented Software Engineering V,
in: LNCS, no. 3382, Springer, Berlin Heidelberg, 2005, pp. 78-92.

[32] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam, ASPECS: an agent-
oriented software process for engineering complex systems - How to design
agent societies under a holonic perspective, Auton. Agents Multi-Agent Syst.
2(2)(2010) 260-304.

[33] D. Case, S. DeLoach, Applying an O-MaSE compliant process to develop a
holonic multiagent system for the evaluation of intelligent power distribu-
tion systems, in: M. Cossentino, A. El Fallah Seghrouchni, M. Winikoff (Eds.),
Engineering Multi-Agent Systems, in: LNCS, no. 8245, Springer, Berlin Heidel-
berg, 2013, pp. 78-96.

[34] Service-Oriented Architecture, Springer Berlin Heidelberg, Berlin, Heidelberg,
ISBN: 978-3-540-38284-3, 2007, pp. 89-113 URL http//dx.doi.org/10.1007/
978-3-540-38284-3_5.

[35] A.T. Velte, Cloud Computing: A Practical Approach, McGraw Hill, 2010.

[36] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey, S. Paepcke,
J. Rivero, J. Manzo, E. Krotkov, G. Pratt, Inside the virtual robotics challenge:
simulating real-time robotic disaster response, IEEE Trans. Autom. Sci. Eng.
(ISSN: 1545-5955) 12 (2) (2015) 494-506.

[37] N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source
multi-robot simulator, in: IEEE/RS] International Conference on Intelligent
Robots and Systems, Sendai, Japan, 2004, pp. 2149-2154.

Stéphane Galland supports a Ph.D. thesis in 2001 at the
High National School of Mines of Saint-Etienne, France.
He proposed a methodological approach for the design
and the implementation of agent-based simulation of dis-
tributed industrial systems. In 2002, he integrated the
Computer Science department of the Belfort-Montbéliard
University of Technology, France, where he continues his
research tasks on the topic of agent-based modeling and
simulation of complex systems with a large scale and a
multiview perspectives. In 2004 and 2005, Stéphane Gal-
land is responsible of the courses of the doctoral school for
his University. From 2007 to 2008, he is responsible of the courses of the specialty
“Image, Interaction and Virtual Reality” of the Computer Science department. In
2013, Stéphane Galland obtains a French Accreditation to Supervise Research with
the title “Methodology and tools for the agent-based simulation in virtual worlds”.
Stéphane Galland is one of the authors to the ASPECS methodology, the SARL agent-
programming language, and the Janus agent platform. Since 2016, Stéphane Galland
is the French Head of the ARFITEC exchange program named “Energy, Transport,
Industry, Challenges for Tomorrow”. In January 2017, Stéphane Galland integrates
the Electronic, Computer Science and Imagery Laboratory (LE2I) as the Head of the
Research team on “Intelligent Environments”.

Sebastian Rodriguez is a Full Professor at the Depart-
ment of Computer Science, Universidad Tecnolégica Na-
cional (UTN), Argentina. He is also the founder and Head
of the Advanced Informatics Technology Research Group
(GITIA) and an associate researcher of the Systems and
Transportation Laboratory at the University of Technol-
ogy of Belfort-Montbéliard (UTBM), France. He received
a Computer Engineer degree from Universidad Nacional
de Tucuman, a M.Sc. degree in computer science from
the University of Franche-Comté and a Ph.D. degree in
computer science of the UTBM.

Nicolas Gaud received his Ph.D. in Computer Science
from the University of Technology of Belfort-Montébliard
(UTBM) in 2007. In 2005, he received his engineering
degree in computer science from the UTBM and a M.Sc.
in Computer Science, Automatic and Manufacturing Sys-
tems from the University of France-Comté (UFC). He is
now Associate Professor at the UTBM and full researcher
at the Systems and Transport Laboratory of the research
institute on Transport, Energy, and Society (IRTES-SeT), he
is also an external member of the GITIA. His main research
interests deal with the modeling, analysis and simulation
of complex systems using Agent-Oriented Software Engineering (AOSE), Holonic
Multiagent Systems and Multiagent-based simulation. He is also involved in vari-
ous industrial projects dealing with the simulation of virtual entities (pedestrian,
transportation systems, etc.) in virtual environments.

Please cite this article in press as: S. Galland, et al., Run-time environment for the SARL agent-programming language: the example of the Janus platform, Future Generation

Computer Systems (2017), https://doi.org/10.1016/j.future.2017.10.020.

http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb12
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb13
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb13
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb13
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb14
http://www.aamas2015.com/en/AAMAS%5F2015%5FUSB/aamas/p1801.pdf
http://www.aamas2015.com/en/AAMAS%5F2015%5FUSB/aamas/p1801.pdf
http://www.aamas2015.com/en/AAMAS%5F2015%5FUSB/aamas/p1801.pdf
http://www.sciencedirect.com/science/article/pii/S1877050915017275
http://www.sciencedirect.com/science/article/pii/S1877050915017275
http://www.sciencedirect.com/science/article/pii/S1877050915017275
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb17
http://dx.doi.org/10.1109/irc.2017.50
http://dx.doi.org/10.1016/j.procs.2017.05.389
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb20
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb21
http://dx.doi.org/10.1016/j.engappai.2016.05.009
http://dx.doi.org/10.1016/j.engappai.2016.05.009
http://dx.doi.org/10.1016/j.engappai.2016.05.009
http://www.sciencedirect.com/science/article/pii/S0952197616300999
http://www.sciencedirect.com/science/article/pii/S0952197616300999
http://www.sciencedirect.com/science/article/pii/S0952197616300999
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://www.springer.com/us/book/9783319238494
http://dx.doi.org/10.1007/978-3-319-18944-4.9
http://dx.doi.org/10.1007/978-3-319-18944-4.9
http://dx.doi.org/10.1007/978-3-319-18944-4.9
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb25
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb29
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb29
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb29
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb30
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb30
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb30
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb33
http://dx.doi.org/http//dx.doi.org/10.1007/978-3-540-38284-3\relax \special {t4ht=_}5
http://dx.doi.org/http//dx.doi.org/10.1007/978-3-540-38284-3\relax \special {t4ht=_}5
http://dx.doi.org/http//dx.doi.org/10.1007/978-3-540-38284-3\relax \special {t4ht=_}5
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb35
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36
http://refhub.elsevier.com/S0167-739X(17)31341-9/sb36

	Run-time environment for the SARL agent-programming language: the example of the Janus platform
	Introduction
	SARL agent-programming language
	Action
	Capacity and skill
	Context and spaces
	Agent and behavior
	Example of SARL program
	Recursive agent and hierarchical multiagent system

	SARL tool-chain
	Key points for SRE creation
	Agent's lifecycle
	Built-in capacities
	Parallel execution

	Selection of an agent framework as SRE candidate
	The Janus platform as a SARL run-time environment
	General service-based architecture
	Infrastructure service
	Logging service
	Executor service
	Context-space service
	Spawning service
	Networking services

	Built-in capacity implementation

	Performance evaluation
	Conclusion and perspectives
	Acknowledgments
	References

