
  
Abstract— Many applications are turning to Cloud Computing to 

meet their computational and data storage needs. Effective Cloud 
Computing is possible, however, only if resources are scheduled 
well. Nowadays, Internet of Things (IoT) paradigms, management of 
such huge number of job processing systems is a challenging 
problem. In addition, heterogeneity is a typical characteristic of 
today’s cloud (caused by incremental upgrades and combinations of 
computing architectures). This paper presents a multi-agent model for 
job scheduling in Cloud Computing Systems. We created a model 
based on the multi-agent systems paradigm. Then we got the model 
executed in NetLogo and the simulation input is Google Cluster 
Workload Traces data set. The model consist of group of autonomous 
agents and has an ability to cooperate with the other agents in the 
system. Due to these abilities of agents, the structure of the system is 
more suitable to handle dynamic changes and load as number of 
machines and requests increase. We compare different parameters for 
the scheduling model for hybrid and proposed multi-agent based 
architecture. Our simulation results indicate that a distributed 
architecture with multi-agent system and local blackboards for agent 
groups holding the cluster state yield 30% better average end-to-end 
resource utilization and 10% delay performance than the hybrid 
architecture. 
 

Keywords—Agent-Based Job Scheduling, Multi-Agent Systems, 
Job Scheduling, Cluster Scheduling, Internet of Things (IoT).  

I. INTRODUCTION 
HE amount of data in our world is exploding, and this is 

due to the extensive use of applications based on 
multimedia and social media. Analyzing such large data sets 
has become a key basis of competition. Cloud Computing (or 
simply cloud) infrastructure enables to transforms such 
information and data into actionable insights. Mell and Grance 
[1] define Cloud Computing as a model for enabling 
ubiquitous, convenient, on-demand network access to a shared 
pool of configurable computing resources (e.g., networks, 
servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction. 

Job Scheduling is a vital activity of the Cloud Computing 
[2]. The management of the cloud resources requires making 
scheduling decisions involving cloud resources assigned to 
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users’ jobs. The scheduling problem deals with the 
coordination and allocation of resources so as to efficiently 
satisfy the users’ needs. Cloud users send their applications to 
the Cloud Computing System. Applications consist of specific 
number of jobs. Tasks are created per job and they may or may 
not depend on each other. Tasks generally require the use of 
different kinds of resources, e.g., computation, memory, 
communication (network), internal/external storage resources, 
GPU, or specific instruments.  

The goal of the Cloud Scheduler is to meet user demands in 
terms of cost and response time while increasing providers’ 
profit and resource utilization [3]. Due to the novelty of the 
Cloud Computing field, there is no standard task scheduling 
approach to handle the dynamic workload of users [2]. Limited 
communication bandwidth is preventing the current algorithms 
to be applied in cloud. The scheduler does not have control 
over the resources or the jobs. The complexity of cloud 
applications, the diverse user requirements and the system 
heterogeneity would result in inefficient scheduling in the case 
of a manual procedure. So the scheduler must make best-effort 
decisions to utilize the resources and provide best response to 
users’ jobs.  

The architecture of the schedulers has evolved over the last 
few years moving from monolithic design to more flexible, 
distributed and hybrid design (monolithic, two-levels, shared-
state, distributed, and hybrid scheduling) [4], [5], and [6]. The 
monolithic schedulers are working in determined space and 
have the supervision to define the assignment over all 
available resources. All workloads are handled by the same 
scheduler and all tasks run through the same scheduling policy. 
The scheduling policy is simple and uniform, but this has led 
to increasingly sophisticated schedulers developed. To address 
these problems, a two-level schedulers have been developed 
by separating resource allocation and task placement [7]. This 
allows the logic of the task placement to be customized in the 
form of queues supporting the different users’ applications. 
This approach has a drawback that the task allocation system 
cannot see all possible options and hence be subject to degrade 
the performance of the tasks execution. Shared-State 
schedulers share an out-of-date copy of the cluster state to the 
task allocation systems. This is resulting in conflicted and 
rejected requests to schedule tasks that may happen between 
schedulers due to dynamically changes to the resources. On the 
other hand, fully distributed schedulers have no coordination 
between them at all. In distributed architecture, schedulers are 
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assigning resources to the workload [5]. Each scheduler has its 
own allocation policy and hence it is difficult to support 
complex jobs with specific policies. Hybrid schedulers seek to 
handle all the above issues by combining both monolithic and 
distributed architectures in one system. Two types of 
schedulers are in the system; a distributed scheduler for the 
short or low priority tasks and a centralized scheduler for 
complex and services (long duration) tasks.  

The application of intelligent agent technologies is 
considered a promising approach to improve system 
performance in complex and changeable environments [8]. 
Thus, employment of multi-agent systems simulation can 
optimize the total system output. In this paper, we propose a 
multi-agent simulation model for the job scheduling in Cloud 
Computing. We are running our experiments using data of one 
cell cluster of more than 12 thousands machines and more than 
52 thousands jobs with millions of tasks. We are using google 
cluster data [9] for our experiments. Finally, we compare the 
results of the proposed model with the hybrid architecture. 

The remainder of this paper is organized as follow, in 
Section II we provide literature review on related work. In 
Section III, we discuss the proposed multi-agent model while 
in Section IV we present and analyze the experiments results. 
Finally, Section V concludes the study.  

II. BACKGROUND 

A. Cloud Job Schedulers 
Christodoulopoulos et al. [10] and Schopf [11] mentioned 

that scheduling in such dynamic environments can be viewed 
as hierarchical problem with two levels. The first level finds 
the resources needed for the task execution. There are many 
variations in this level; such as selecting the resources based 
on the best-fit manner, using prediction to estimate availability 
of the resources, and using prediction to estimate load of other 
tasks running on the resources machines.  At the second level, 
tasks are assigned to the selected resource for execution. At 
this level, tasks may wait for the resources to be available or 
other tasks with lower priority can be preempted for the higher 
priority tasks to run. Each scheduler should take in 
consideration the possible expand of needed resources by the 
tasks to avoid high rate of failure. In addition, Schopf [11] 
discussed subtasks that describe the detailed behavior of each 
level.  

Salot [2] did a survey of various scheduling algorithms in 
Cloud Computing environment. There are main two categories 
of scheduling algorithms; Static Scheduling algorithms and 
Dynamic Scheduling algorithms. Static Scheduling algorithms 
assume a prior information about all machines in the cluster 
and scheduling decisions are made before execution of the 
tasks. Singh et al. [12] did a survey on the different approaches 
in Static Scheduling such as Homogeneous Distributed 
Computing System (HMDCS), Heterogeneous Distributed 
Computing System (HTDCS), Monte Carlo Algorithm (MCA) 
… etc. If there are changes to the machines, then the static 
scheduler must know the changes to avoid failure in 

scheduling decisions. This approach depends heavily on the 
assumption that all machines share their status globally with 
the scheduler on a real-time basis. This is not efficient from the 
practical side. On the other hand, Dynamic Scheduling 
algorithms study the cluster state for scheduling decisions 
before assigning tasks and during application execution. 
Kumar and Balasubramanie [13] did a survey in their related 
work on different dynamic scheduling approaches. 

Also, Salot [2] went through further categorization of these 
two types of scheduling algorithms as: First Come First Serve, 
Round Robin, Min-Min, Max-Min, Most-Fit, and Priority. 
Each of these subcategories has their own advantages and 
limitations. First Come First Serve is fast and simple but will 
reduce the efficiency of the scheduler in response to higher 
priority tasks in front of the long low priority tasks. Round 
Robin is based on the First Come First Out approach to be fair 
in handling users’ jobs. But long tasks will suffer from high 
rate of interruptions and if there is no way to backup and 
restore the tasks results then long tasks will be delayed for a 
long time. Min-Min is biased towards small tasks to be 
executed at first but this will delay long tasks with high 
priority. In addition, high priority tasks will be kept waiting for 
execution for a long time if system has a stream of short tasks. 
Max-Min is biased towards the large tasks which is an 
opposite of the Min-Min. Most-Fit is working on the 
assumption that each task should have a most-fit set of 
resources available in the system for execution. Tasks in this 
technique are suffering from low rate of success. Priority 
schedulers are based on giving a priority for each task and get 
queues for each priority to process them in First Come First 
Out manner. Local priority can be given to the task for serving 
within the machine that accepted the task assignment. All these 
algorithms were handled as policies applied to the resources 
queues in the cloud scheduling system. First Come First Serve 
is the most common policy with applied priorities.  

Dave et al. [14] listed the main performance metrics of 
scheduling algorithms; makespan, execution cost, job rejection 
ratio, execution time, and user satisfaction level. Makespan is 
the time at which all the work in the workload was completed. 
Execution cost is the total cost of execution of the job tasks. 
Job rejection ratio is defined as the total rejected jobs to the 
total number of jobs submitted. Execution time is the time 
from when the job tasks are scheduled till it gets its final 
results. User satisfaction level is defined as how far the 
scheduler system satisfy the terms defined by the service 
provider to users. Burkimsher et al. [15] added flow and peak 
in-flight count metrics. Flow can be defined as the count of 
number of jobs completed over the makespan. Peak in-flight 
count is the maximum number of in-flight jobs at any time. For 
more discussions about these metrics check [15]. 

On the other hand, various schemes are used to decide 
which particular task to run [8]. Parameters that might be 
considered including task priority, resource availability, 
license key if job is using licensed software, execution time 
allocated to user, number of simultaneous jobs allowed for a 
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user, estimated execution time, elapsed execution time, 
availability of peripheral devices, occurrence of prescribed 
events, task dependency, file dependency, and operator prompt 
dependency.  

B. Schedulers Architecture 
Cloud Scheduler has multiple goals: using the cluster’s 

resources efficiently, working with user-supplied constraints, 
scheduling applications, and having the acceptable level of 
fairness. To reach these goals, there are five main scheduler 
architectures: monolithic, two-level, shared-state, distributed, 
and hybrid. 

Monolithic Schedulers like Google Borg [3] are a 
centralized and static schedulers that make scheduling 
decisions by one and only one scheduler. These types of 
schedulers do not support parallel tasks. Google Borg runs 
everything in the cloud so it is very complicated. Borg has two 
priorities bands High and Low and all jobs are statistically 
scheduled. 

Two-Level Schedulers like Apache YARN [7] and Mesos 
[16] are centralized and static schedulers that separate the 
resource allocation from the task management operations. In 
such schedulers, systems have one resource manager that 
grants resources to multiple independent schedulers, in which 
each scheduler has certain policies for resources queuing for 
resource allocation based on the user preferences. This type of 
schedulers are less complex than the Monolithic ones as they 
delegate the pre-application scheduling work to the 
applications themselves while managing the distribution of 
resources between applications and enforcing fairness.  

Shared-State Schedulers like Google Omega [4] are 
centralized and static schedulers with a shared state of the 
cluster state. They are a successor to the two-level schedulers 
and they take the resources offered one degree further. All 
resources available in the cluster are offered to the applications 
and conflicts are resolved at task execution time. All 
applications schedulers have the same view of the cluster 
resources which increase the scheduling performance and 
resources utilization. Applications with high priority are 
allowed to preempt lower priority and stay within the limited 
number of jobs and resources assigned to the application. 

Distributed Schedulers like Sparrow [5] are like multiple 
isolated schedulers to serve the incoming workload. Each one 
of these schedulers works with its local, partial, and often out-
of-date view of the cluster. That’s why it is difficult to enforce 
global fairness. More or less, supporting complex-applications 
and specific applications policies are more complex than other 
architecture of schedulers.  

Hybrid Schedulers like Microsoft Mercury [6] try to address 
all the drawbacks of the previous architectures. Two 
approaches are incorporated to handle the workload, group of 
distributed schedulers for very short and/or low-priority tasks 
and one centralized scheduler for the rest of workload (high 
priority tasks and/or long tasks like system services).  

C. Multi-Agent Systems for Cloud Resource Management 
The multi-agent systems features (dynamic, flexibility, 

autonomy, and learning) are exactly the same features that a 
Cloud Computing System needs for the self-management of its 
resources. The scheduling decision process is complex, due to 
the variability of the demand for services and the lack of 
information on the resources. This is why the agent-based job 
scheduling is suitable for the efficient allocation of resources 
enabling the dynamic and automatic adaptation.  

Some of the essential characteristics of Cloud Computing 
include resource pooling and resource sharing. In cloud, 
computing resources are pooled to serve multiple users, and 
data are shared by a broad group of cross-enterprise and cross-
platform users. Sim [17] mentioned that resource pooling and 
sharing involve (1) combining resources through cooperation 
among cloud providers; (2) mapping, scheduling, and 
coordination of shared resources; and (3) establishment of 
contracts between providers and consumers. In Agent-Based 
Cloud Computing, cooperation, negotiation, and coordination 
protocols of agents are adopted to automate the activities of 
resource pooling and sharing in clouds. All the above-
mentioned challenges provide the motivations for adopting 
autonomous agents to allocate resources taking in 
consideration the dynamically changing resource demands. 

In addition, Sim [7] discussed Agent Based Cloud 
Computing as agents do cloud service discovery, service 
negotiation, service composition, and cloud crawlers. Agent 
Based Cloud Service Discovery is to run a query to cloud 
services registered to match consumer functionality. Agent 
Based Service Negotiation is to establish SLAs (Service Level 
Agreements) between consumers and brokers. Agent Based 
Service Composition is to group related services from different 
suppliers into a single bundle of services. Agent Based Cloud 
Crawlers are agents that collect information about the cloud 
service providers.  

Gąsior and Seredyński [18] discussed a decentralized 
implementation of multi-agent system for job scheduling. But 
they are focusing on scheduling jobs based on a security model 
to avoid dispatching jobs to untrustworthy resources. The 
security model incorporates awareness during the scheduling 
operation to match job’s security requirements by the user with 
security guidelines defined for each Cloud site. Kanmani and 
Sukanesh [8] discussed an optimization of the scheduling 
using the multi-agent system paradigm and genetic algorithm 
for hybrid cloud. They are looking for improving the quality of 
service to the end user of the cloud system. They are adding an 
extension to CloudSim [19] for their experiments. They are 
normalizing the resource allocation using multi-agent genetic 
algorithm which takes action to change the resources 
allocation rates depending on the current behavior of the 
system.  

D. Cloud Simulators 
Cloud Simulation is used in evaluating architectures, 

algorithms, and strategies that are under research and 
development tackling many issues such as resource 
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management, application scheduling, and workload execution 
[19]. As the exact cloud production environment may not be 
accessible to the developers at the early stages of 
development; simulations give an overall idea on the related 
parameters, resource requirements, performance, and output. 
In addition, due to the complexity of the schedulers, Cloud 
Simulators are become much important [20]. 

Cloud Simulators are quite generic like CloudSim [19] and 
EmuSim [21]. But some of them tend to be more focused on 
simulating specific functions like peer-to-peer and overlay 
networks as PeerSim [22] and OverSim [23]. Suryateja [20] 
provided a comparative analysis of cloud simulation tools. 

III. THE PROPOSED MULTI-AGENT MODEL 
User applications submit jobs to the scheduler system. 

Each job consists of one or more tasks that need to be 
scheduled to consume the cloud resources for a specific period 
of time. The time needed for the task is based on the task 
execution pattern. During the task execution time, resources 
assigned to the task are reserved for the task event if not totally 
consumed.  

Scheduling a task can be defined in terms of the following 
agents: 

1- Applications Agents: a set of applications agents 
created by the users.  

a. Application Class includes ID, Username, 
and User Preferences fields.  

b. Application Agents do submit the jobs and 
do report the status of them back to the user. 

2- Job Agents: a set of jobs agents submitted by users’ 
applications.  

a. Job Class includes ID, Application ID, User, 
and Job Name fields.  

b. Job Agents do submit the tasks for resources 
assignment. In addition, they are responsible 
for reporting the status and result of the tasks 
back to the job agent.  

3- Task Agents: each job is consisting of a set of tasks 
agents. Tasks are the objects that can be assigned to 
resources.  

a. Task Class includes ID, Job ID, Attributes, 
Priority, Resources Requests, and Requested 
Start Time fields.  

b. Task Agents are responsible for reporting 
task status back to the parent job agent.  

4- Machines Agents: a set of machines that hosts the 
resources for assignment.  

a. Machine Class includes ID, Name, 
Resources Set, and Attributes fields. 

b. Machine Agents are responsible for reporting 
the health and other statistics of the machine 
and to the cloud service manager. 

5- Queues Agents: a set of resources queues. Each queue 
has a policy for sharing resources between 
applications.  

a. Queue Class includes ID, Policy, and Queue 
Data Structure fields.  

b. Queues Agents are responsible for reporting 
the queue status back to the cloud service 
manager. 

6- Scheduler (s) Agents: a set of schedulers. Each 
scheduler has an algorithm to handle the scheduling 
decisions.  

a. Scheduler Class includes ID, algorithm, and 
metrics data fields. 

b. Scheduler Agents are responsible for 
handling scheduling decisions and report 
back performance statistics back to the cloud 
service manager. 

 
Other Classes: 
1- Hard Constrains: a set of constrains which must not be 

violated by the scheduler. Such as running the data 
tasks near to the data source to avoid exhausted 
network channels. Hard Constrain Class includes ID, 
Constrain Type, and Constrain Value field. 

2- Soft Constrains: a set of constrains that can be relaxed 
if necessary to improve the scheduler performance. 
Such as avoiding resources unfairness, minimizing 
machines fragmentation, and reducing the ratio of 
evicted tasks. Soft Constrain Class includes ID, 
Constrain Type, and Constrain Value field. 

3- Resources: a set of available resources to which tasks 
can be assigned. Resource Class includes ID, Type, 
and Value field.  

 
Fig. 1 shows the agents and classes of the proposed 

scheduler model. Arrows are showing the relationship between 
the classes. A group of local blackboard spaces is kept shared 
between all agents with an up-to-date state of the cluster 
resources. Each machine agent is responsible for updating the 
nearest blackboard with the machine updates. If machine agent 
failed to communicate the updates to the blackboard for a 
specific period of time then the machine is considered as lost 
and all tasks running at that machine is marked as lost. 

 
Fig. 1 Proposed System Agents and Classes 

IV. 3BRESULTS AND DISCUSSION 

A. 9BTechnical Characteristics of the Simulator and Google 
Cluster Data 

The model is developed using NetLogo 5.3 [24]. We 
preferred accuracy of the modeling over execution time. So the 
early development versions of the model took long time for 
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simulation. We followed the instructions from Railsback et al. 
[25] to improve execution time of the model and to detect the 
bottlenecks. We have extra lessons learned to add to the 
checklist for NetLogo simulation of complex and large scale 
models: (1) avoid using filtration with “with” keyword for the 
agent sets. Instead use the “ifelse” block inside the agent set 
operations, (2) avoid looping in a list within the agent set 
block. It is showing slow performance compared to checking if 
the item is a member of the list or not, (3) nested operations of 
two or more groups of agent sets will draw the performance of 
the simulation model at all, and finally (4) avoid showing 
updates in the simulation view as this will slow down the 
model execution. 

We used Google Cluster Trace Data [26] as input for the 
workload of the simulation model. The data set consists of 
more than 40GB of row text data collected from one cell in 
Google Data Center of 12,583 machines over 29 days. 552 
users were submitting applications with 350,926 unique jobs. 
The data set includes users’ jobs, tasks and heterogeneous set 
of machines. Machines, jobs and tasks events include when 
machines were added or removed from the cluster, when jobs 
were submitted, and full details about the tasks attribution and 
execution. Tasks per job are ranging from one task per job 
(low priority and short task) to more than 20 thousands tasks 
(long term service) per job. Google normalized the machines 
resources to specific ranges for privacy aspects and we saw no 
reason from our side to rescale back the values. Fig. 2 shows 
the state transitions of a task in the data set. More analysis and 
details about the data set are provided by [27] and [28]. Tasks 
start with Un-submitted state. Once the task is submitted, it is 
moved to the Pending state. When the task is scheduled and 
assigned to a machine, the state is changed to Running. If the 
task failed, killed, machine lost, then the task state will be 
changed to Dead.  If the task is evicted due to a higher priority 
task then the task state is changed to Evict. Dead and Evict 
tasks will be resubmitted to be in the Pending state. Once the 
running task finish, it is moved to the “Complete” state. 
Finally, the task is cleaned and removed from the system. 

 
Fig. 2 State Transitions of a task in Google Cluster Trace Data 

 
To reduce the amount of data loaded to the model, we went 

through some actions to cleanse the trace data. We have 
removed jobs and tasks that were added before the trace 
window and are still running. The trace data has all jobs with 
tasks with the same requirements. In addition, the tasks 
execution details included are for the version of Google Borg 
deployed at the cluster by the time the records extracted. So 

we eliminated the millions of duplicate records for the job 
tasks into one record per job including the number of tasks and 
tasks requirement for the job. This resulted in one record per 
job and removed records of all tasks in the data set. 

B. Features of the Proposed Model 
Our proposed model handles the assignment of the tasks 

into two phases. Phase one is to select the feasible machines. It 
starts with selecting random machines that satisfy the resource 
requirements of the task. Phase two is to calculate score for 
each selected machine based on the E-PVM formula 
mentioned in [29]. Then select the machine with the lowest 
score to assign the task to it. In our model, we are grouping 
machines by score so that selecting machines from the highest 
scores is trivial. This is supported by the local group 
blackboard. Local blackboard rather than a global blackboard 
to reduce the communication overhead through the network. 
This also reduces the fragmentation of the job tasks as being 
assigned to a specific group of resources in one area. Our 
model is biased towards getting highest priority tasks complete 
first. In case of resources shortage, low priority tasks are 
subject to be preempted to secure resources for higher 
priorities tasks.  

We ran our experiments for several times using different 
seed numbers for random number generator. In all of our 
experiments, we measure task throughput, job throughput, 
preemption rate, and resources utilization. Reported metrics 
can be extended easily in the proposed model. Fig. 3 (a, b, c, 
and d) show values of the scheduling metrics. To stress the 
model and reach the machines limit, we’ve selected to run the 
experiments with 500 out of the 12 thousands machines 
available machines. 

The user interface of the model includes parameters for the 
simulation. Table I shows the model parameters. 

 
Table I Proposed Model Parameters for Job Scheduling 

Parameter Range Value Description 
Number of 
Schedulers 

1 - ∞ 5 This is the number of active 
schedulers agents to run in 
parallel to schedule the tasks. 

Trace Time 
Map 

1µs - ∞ 1000 
µs 

This is to map the simulation 
tick (time) to the timespan 
from the trace data. Time in the 
trace data is in micro seconds. 

Number of 
Machines 

1 - 12561 500 A random sample of specific 
size of all available machines 
to be involved in the resource 
assignments. Machines are 
selected randomly from the 
available set of machines.  

Percent of 
resources 
per 
Machine 

0.1 – 0.9 0.5 Percent of allowed resources 
per machine for assignment. 
Assigned tasks must not 
consume all resources available 
in the machine. Machine OS 
and machine agent should have 
some computation power and 
memory space to operate. In 
addition, high priority tasks 
have the possibility to burst 
and request more resources 
within the same machine it is 
running at. 
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Parameter Range Value Description 
Task Max 
Length 

1 tick - ∞  3 ticks Max length of any task 
generated during the 
simulation. 

Tasks 
Queue Size 

1 - ∞   50000 Maximum number of tasks 
assigned to each queue in the 
system. 

Minimum 
number of 
machines 
feasible for 
scoring 

1 - ∞    20 Minimum number of machines 
randomly selected for 
feasibility check before 
scheduling. 

Marginal 
Cost Rate 

0.1 – 0.9 0.3 The rate in calculation of the 
cost of scheduling the task to 
the machine based on the 
available resources in the 
machine and the number of 
tasks running in the machine. 

Fig. 3.a shows the available and assigned memory to tasks 
over time. Due to an out-of-data status of the cluster resources, 
hybrid schedulers were not being able to find more resource 
for the tasks to run. The same is applied to the assigned CPUs 
as per Fig. 3.b. Resource consumption kept in the range of 
40%. 50% is the parameter of the maximum allocated to tasks 
as hard constrain and the 10% is the range in which no task fit 
the available resources in machines. Resource utilization is 
improved by 30% in the proposed agent-based model. Fig. 3.c 
simply shows the status of the jobs compared to the submitted 
jobs during the experiments window. As improved throughput 
of tasks and utilized resources, we’ve got more jobs finished 
earlier. Fig. 3.d shows the tasks per status for the hybrid and 
proposed agent-based architectures. We’ve got 60 thousands 
tasks in the queue as per the limit parameter. Remaining tasks 
are kept un-submitted until tasks were cleaned from the queue. 
10% improvement in tasks throughout due to improved 
resources utilization. This is resulted in more tasks complete 
and less number of tasks in the pending state. The figure does 
not show the lost tasks as it is the same for both architectures. 
When a machine is lost due to some reasons, all the tasks 
agents assigned to them will not send their status back to the 
job agent. After a specific timeout (1 tick in our simulation) 
the tasks were considered dead and resubmitted again to the 
queue. In summary, our simulation results indicate that a 
distributed architecture with multi-agent system and local 
blackboards for agent groups holding the cluster state yield 
30% better average end-to-end resource utilization and 10% 
delay performance than the hybrid architecture. 

 
Fig. 3.a Machines Memory 

 
Fig. 3.b Machines CPUs 

 
Fig. 3.c Jobs Status 

 
Fig. 3.d Tasks Status 

V. CONCLUSION AND FUTURE WORK 
Due to the developing rate of trade, industry, and science 

world; scheduling is considered as one of the main discussions 
in cloud environment. As providing scheduling approaches 
which can minimize tasks runtime and increase operational 
power has remarkable importance in these categories. This 
paper presents a multi-agent model for job scheduling in Cloud 
Computing. Scheduling user applications is performed as a 
means to balance the load of the cloud system resources in 
order to improve the performance and throughput of the 
system. We have developed a NetLogo model with the 
proposed multi-agent model behavior and got Google Cluster 
Trace Data as input to the simulation. We got the experiments 
results shown and analyzed comparing the hybrid and 
proposed multi-agent based scheduler architectures. In 
addition, we analyzed the performance metrics of the proposed 
system. The proposed model is extendible to get more 
constrains on assigning resources applied as access to local 
group resources is applicable at any time. We consider this 
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research to be the first step towards more adoption of the 
multi-agent paradigm in the job scheduling domain. We are 
going to get the communication, negotiation and scheduling 
decisions improved by adopting machines learning algorithms 
for the scheduling agents.  
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