
Computers & Industrial Engineering 103 (2017) 300–309
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A simulation and optimization based method for calibrating agent-based
emergency department models under data scarcity
http://dx.doi.org/10.1016/j.cie.2016.11.036
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors at: Computer Architecture & Operating Systems,
University Autonoma of Barcelona, Bellaterra 08193, Spain.

E-mail addresses: lzhengchun@caos.uab.es (Z. Liu), emilio.luque@uab.cat
(E. Luque).
Zhengchun Liu a,⇑, Dolores Rexachs a, Francisco Epelde b, Emilio Luque a,*

aComputer Architecture & Operating Systems, University Autonoma of Barcelona, Barcelona, Spain
bMedicine Department, Hospital Universitari Parc Tauli, Barcelona, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 March 2016
Received in revised form 9 September 2016
Accepted 28 November 2016
Available online 2 December 2016

Keywords:
Simulation-based optimization
Model calibration
Agent-based model
Emergency department
To tackle the problem of efficiently managing increasingly complex systems, simulation models have
been widely used. This is because simulation is safer, less expensive, and faster than field implementation
and experimenting. To achieve high fidelity and credibility in conducting prediction and exploration of
the actual system with simulation models, a rigorous calibration and validation procedure should firstly
be applied. However, one of the key issues in calibration is the acquisition of valid source information
from the target system. The aim of this study is to develop a systematic method to automatically calibrate
a general emergency department model with incomplete data. The simulation-based optimization was
used to search for the best value of model parameters. Then we present a case study to particularly
demonstrate the way to calibrate an agent-based model of an emergency department with real data scar-
city. The case study indicates that the proposed method appears to be capable of properly calibrating and
validating the simulation model with incomplete data.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid growth of computational techniques, computa-
tional thinking brings researchers and practitioners into a new
dimension of traditional modeling and simulation tasks. That is,
the computational science transforms observed complex phenom-
ena into conceptual models. Then the models are formulated into
algorithms that can be executed to yield predictions and estimate
hidden parameters. This generates an additional understanding of
the phenomenon and leads to more specific models of the phe-
nomenon (Sloot & Quax, 2012). From a theoretical computation
perspective, the simulation of a system can be defined as an ‘‘imi-
tation (on a computer) of a system as it progresses through time”
(Robinson, 2004). Although a simulator is mostly designed for pre-
diction, the simulator should firstly be able to imitate the real sys-
tem. Generally, a simulator of a specific system is comprised of the
following: input (X), the model or transformation function (f ðXÞ),
and output (Y). For an accurate simulator, when we put the same
input as in a real system, the output of simulator should be close
enough to the output of the actual system. Since f ðXÞ is based on
abstractions, idealization, and many disputable assumptions, the
model must be fine-tuned according to some historical input-
output samples from the target system in order to get reliable sim-
ulation results.

The emergency department (ED) is a typical complex system,
which serves essential needs in society, delivering emergency
health care and simultaneously acting as a safety net provider
(Hoot, Epstein, Allen, & Jones, 2009). In recent years, simulation
has emerged as an increasingly effective tool to study ED related
problems and support making decisions to efficiently manage the
complex ED system. While these simulation models can be advan-
tageous to engineers, the models must be calibrated and validated,
i.e., the model should first be able to accurately imitate the real
system. Advances in computational technology, along with the
increased complexity of system design and management, have cre-
ated an environment in which microscopic simulation models have
become useful tools for managing complex system. Among which,
the Agent-based Model (ABM) is one of the most important tools
for exploring emergent behavior (a phenomenon that describes
the behavior of a system, which cannot be explained alone by
the sum of its parts Wagner, Cai, Lees, & Aydt, 2015), mostly
because it can provide a way to see the forest through the trees
and insight is often more important than sheer numbers (Gul &
Guneri, 2015; Heard, Dent, Schifeling, & Banks, 2015; Rudin, 2014).

The agent-based simulation models encompass numerous
independent parameters to describe the individual behavior of
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the system components. Reliable and complete real data from the
target system is obviously the precondition for setting up an accu-
rate simulator. Unfortunately, many of the parameters are either
unavailable in historical data or difficult to measure in a real situ-
ation, yet they can have a substantial impact on the model’s accu-
racy. Thus, when real data was incomplete to allow direct
estimation of the model parameters, a calibration process (also
known as tuning) has to be conducted to indirectly estimate good
values for those unknown parameters. However, the calibration of
model parameters for an ABM is a big challenge for standard cali-
bration techniques, due to the large parameter search-space, long
simulation runtime, uncertainties in the structural model design
and different observation levels upon which the model needs to
be calibrated (Fehler, Klügl, & Puppe, 2006). Given this, the model
parameter calibration problem can be formulated as a stochastic
programming problem whose objective function is an associated
measurement of an experimental simulation. Nevertheless, the
objective function is typically (a) subject to various levels of ran-
domness, (b) not necessarily differentiable, and (c) computation-
ally expensive to evaluate due to the complexity of the model.

Accordingly, conventional calibration, which is carried out man-
ually by using the trial-and-error method, is time consuming and
tedious. A systematic method to automatically search for the opti-
mal value of model parameters is promising. The simulation-based
optimization is an emerging field which integrates optimization
techniques into simulation analysis. The primary goal of
simulation-based optimization is to optimize the performance of
a system through simulation. More specifically, it is a way to find
the optimal set of parameters for a given criterion. Then the opti-
mal parameter set will enable the model to achieve a specific func-
tion optimally or the results of the simulation are close enough to
actual data. Therefore, if we set the model input the same as reality
and we consider the unknown model parameters as variables, and
the similarity between simulation output and actual system output
as objective, the optimization is a model calibration process. When
some of the model parameters are missing and impossible to get
from the real system, this optimization process will be able to find
the optimal values for setting up the model. Thus, the precondition
for the calibration process is a set of reliable input-output pairs
from the target system.

In this article, we will address a critical step in simulating a
complex system - the systematic model calibration in the face of
data scarcity. To the best of our knowledge, limited research has
been conducted on this thorny and critical problem of estimation
in the face of data scarcity. The simulation-based optimization
was conducted by using an existing tool (Gray & Kolda, 2006;
Griffin & Kolda, 2006; Kolda, 2006) developed by Sandia National
Laboratory. According to the practical requirements of evaluating
a simulation-based objective function, an initial distance-based
lookupmechanismwas proposed to further speed up the optimiza-
tion. The rest of the paper is structured as follows: Section 2 gives a
literature review on related work. The method to calibrate agent-
based ED model is given in Section 3. With the presented method,
Section 4 gives a case study which calibrates a general agent-based
model of an ED to simulate the ED of the Hospital of Sabadell (a
university tertiary level hospital in Barcelona, Spain) with incom-
plete data (missing duration of key services). This case study will
thoroughly demonstrate the way to calibrate an agent-based ED
model by using the presented method. Finally, Section 5 draws
the conclusions.
2. Related work

Model calibration is the task of adjusting an already existing
model to a reference system. Trucano et al. thoroughly discussed
the relation of calibration and validation in reference Trucano,
Swiler, Igusa, Oberkampf, and Pilch (2006). They identified some
technical challenges that must be resolved for successful validation
and calibration of a predictive modeling capability. Their findings
proved the possibility of validation and highlighted great practical
difficulties associated with model parameter calibration and vali-
dation. Hofmann (2005) introduced a formal approach to model
calibration, within the frame of the presented formalism it is
shown that the computational complexity of model calibration is
NP-complete. The author addressed the issue that for huge model
federations the complexity of parameter calibration could draw a
serious line with respect to the validation of the federation and
its cost-benefit ratio. This is mostly because in a huge model of a
complex system, no single person has an overview of the whole
simulation, and the interpretation of unexpected results is extre-
mely difficult. Therefore, a manual trial-and-error method does
not work for this kind of model (e.g., an agent-based model).

As described in Section 1, the model parameter calibration pro-
cess can be easily formed as a simulation-based optimization pro-
cess. Due to the complex behavior of the objective function,
Evolutionary Algorithms (EAs) are often used to efficiently explore
large parameter spaces. However, EA still takes a considerable
amount of time because it requires a large number of simulation
runs, and each run takes considerable length of time in simulation.
To this end, Wagner et al. (2015) proposed the use of complexifica-
tion to improve the performance of EAs as it emulates the natural
way of evolution. This method has been used for parameter esti-
mation of multi-agent based models. Zhong, Hu, Cai, Lees, and
Luo (2015) proposed an evolutionary framework to automate the
crowd model calibration process. In the proposed framework, a
density-based matching scheme is introduced. By using the
dynamic density of the crowd over time, and a weight landscape
to emphasize important spatial regions, the proposed matching
scheme provides a generally applicable way to evaluate the simu-
lated crowd behaviors. Besides, the authors also proposed a hybrid
search mechanism based on differential evolution to efficiently
tune parameters of crowd models. And in reference Zhong and
Cai (2015), Zhong et al. proposed another novel evolutionary algo-
rithm named differential evolution with sensitivity analysis and
Powell’s method (DESAP) for model calibration. The proposed
DESAP first applies an entropy-based sensitivity analysis operation
to dynamically identify important parameters of the model. Then,
Powell’s method is performed periodically to fine-tune the impor-
tant parameters of the best individual in the population. Finally, in
each generation, the evolutionary operators are performed on a
small number of better individuals in the population. Their new
search mechanisms are integrated into the differential evolution
framework to improve search efficiency. In summary, different
from conventional mathematical models, the calibration of
agent-based models has its own challenge and are attracting
researchers’ attention. However, all of these developed algorithms
are mostly focused on solving agent-based crowd behavior model
calibration problems with complete data, in which the system
metrics and objective function are different from the requirement
of tuning an agent-based ED model.

In contrast to traditional black box search methods, which only
consider the input and output of simulation model, Fehler et al.
(2006, 2005) proposed a promising white box calibration approach,
which uses the knowledge of the agent-based model to improve
the tuning process. In this, the idea is to reduce the parameter
space by breaking down the model into smaller sub-models. Each
of the sub-models is then calibrated before merging them back to
form the model. However, in this method, the division and fusion
operations are difficult steps and they require additional knowl-
edge about the model, and this knowledge may not be available
for simulation users (non-developer). Moreover, the fusion
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operation has to merge calibrated sub-models into a calibrated
higher model, which is not automatic.

In summary, although parameter calibration is critical and one
of the key steps in modeling & simulation work, and it can be easily
formalized as a simulation-based optimization problem, to the best
of our knowledge, such model parameter calibration problems
under data scarcity have not been explicitly addressed in the liter-
ature. No literature was found providing an automatic calibration
tool for simulation users to calibrate the general model for a new
system without the involvement of model developers. Having
shown that, the overall goal of this work is to provide a practical
calibration method to automatically calibrate an agent-based ED
model for simulating a new system.

3. A way to calibrate with data scarcity

Calibration is traditionally conceptualized as a step in model
validation. It involves systematic adjustment of model parameters
so that model outputs can accurately reflect the actual system
behavior (Trucano et al., 2006). To calibrate a model, three impor-
tant issues need to be addressed. The first issue is to select signif-
icant metrics to represent the emergent behavior of the target
system and to specify a general and effective fitness function to
measure the distance between a simulated scenario and the real
situation. The second issue is to reduce the computation time
because exhaustive search in parameter space is expensive (expo-
nential growth with the number of parameters). The third issue is
to obtain robust solutions for avoiding the over-fitting problem.
That is, the calibrated model is not only able to fit historical dataset
(dataset for calibration), but is also able to predict reliable result
with new input data. Due to the fact that all the services in an
ED are interdependent, it is unreasonable to characterize parame-
ters one-by-one or evaluate fitness process-by-process. To address
this issue, one way is to consider all unknown parameters as a set,
then simulate with the set and evaluate the similarity of system
metrics as a whole. That is to say, a full simulation has to be carried
out to evaluate one set of parameters, and changes to any of the
parameters will result in one new simulation scenario. The follow-
ing Sections 3.1–33 will detail all the issues and processes on cal-
ibrating the model parameters under data scarcity. A case study
will be given in Section 4.

3.1. Problem formulation

The goal of simulation is to imitate the behavior of a real system
so as to accurately predict system behavior under unknown scenar-
ios. Due to data scarcity, some of the model parameters are difficult
to obtain directly from actual data, we thus have to tune these
parameters indirectly with the goal of producing similar macro-
scopic behaviors as in real situation. Thus, the calibration process
of agent-based model of ED is defined as: Given an agent-based
model, a setting of parameter X to be calibrated, the task is to find the
global optimal X� that minimizes the fitness function. From an opti-
mization point of view, the calibration can simply be expressed as:

Minimize f fitness p1;p2; . . . ;pnð Þ ¼ K actual; simulationð Þ
Subject to :

p1;p2; . . . ; pn make sense in real situation

where K actual; simulationð Þ is a function to evaluate the similarity
between simulation results and actual data. The p1;p2; . . . ;pnf g is
the set of parameter values (also called scenario in this study).
However, there are two main challenges in solving this global opti-
mization problem. One is that the condition – make sense is difficult
to describe in the optimization model because these parameters
represent the behavior of a physical system (rather than sheer
numbers). The other challenge is that the fitness function is non-
convex, it has a very complex response surface, and it is computa-
tionally expensive to evaluate. However, if we decompose the con-
dition, i.e., only consider the lower/upper bounds of the parameters
(main part of the condition), though the optimization process is not
an absolute global optimization problem because the best fitness
parameters may not make sense in reality, it becomes solvable.
Therefore, a solution that gives the best of both worlds is: searching
for the local minimum points under boundary condition, then man-
ually checking if the solution makes sense in reality. Considering
the over-fitting problem and model validation, a systematic method
to calibrate and validate a general model is illustrated in Fig. 1.

It is worth noting that the proposed method focused on solving
the practical problem. The method is based on the assumption that
the calibration result is acceptable with a certain margin of error.
That is, the proposed method cannot guarantee finding the theo-
retical global optimum point, but it can find an acceptable point
in a practical application. As shown in Fig. 1, the reference data
(actual input-output pairs) was divided into three parts for train-
ing, test and validating respectively. The key difference between
test and validation processing is the feedback, i.e., simulator per-
formance on validation tests will not affect the calibration process,
while performance on test sets will affect the adjustment of the
parameter set and the Monte Carlo scheme (e.g., boundary con-
straints). The Monte Carlo method (under the boundary constraint,
e.g., as shown in Table 1) is used to generate initial value for the
optimization solver. To make the calibration process more auto-
matic, the proposed method will try to find a certain number of
local minimum points, then gradually eliminate on test and valida-
tion datasets, and only provide several candidates to carry out
manual checking. Thus, the simulation users only need to be
involved in the calibration at the end. More specifically, the k1 local
optimum points will be evaluated on testing and validation data-
sets in sequence, a fitness threshold should be fulfilled and top
kiði ¼ 2;3Þ candidates will be selected, if there is more than one
candidate left after evaluating validation datasets, the top k3 candi-
dates will be manually checked by experienced ED staff and one
which makes the best sense in reality will be chosen as the final
solution. If any of k2; k3; k4f g is zero (none can pass the threshold
nor make sense in reality), the calibration process will either return
to Monte Carlo to search more local minimum or re-divide the his-
torical datasets for training and testing, and start over again. This
depends on k1 and overlap ratio of optimum points (assessed with
inter-distance detailed in Section 3.3, as shown in Fig. 4a).
3.2. Evaluation metrics

As an agent-based model, the individual’s behaviors, e.g.,
behaviors of a single patient, are highly dynamic and stochastic,
matching these behaviors individually is usually unfeasible and
unnecessary. Namely, the similarity between simulator and actual
ED should be evaluated in a systematic manner rather than getting
entangled in each of the agents. Thus, to compare behavior of two
complex system, the selection of system key performance indica-
tors (KPIs) is crucial, and two issues must be addressed. On the
one hand, the selected KPIs should be able to significantly reflect
the macroscopic behavior of the target system. On the other hand,
it should be possible to retrieve from historical data, and the his-
torical data should be convincing for the KPIs. References Welch,
Augustine, Camargo, and Reese (2006) and Welch et al. (2011)
listed various metrics by which ED operations can be measured.
Among which, the LoS (length of stay), LWBS (percentage of
patients who leave without being seen), door-to-diagnostic evalu-
ation by a qualified medical professional (arrival time to provider
contact time, also known as ‘‘door-to-doctor” time) and ambulance



Fig. 1. The systematic model calibration and validation process. The k2 and k3 is what is left after applying threshold selection on test and validation datasets separately. The
cache checking modular is designed to avoid duplicate optimization from close starting points. The manual selection is designed for experienced ED staff, to eliminate some
solutions that could result in good fitness but make less sense in reality.

Table 1
The parameters to be calibrated for the general agent-based model of emergency departments, in order to imitate the Hospital of Sabadell’s emergency department. Note: LB and
UB denotes Lower and Upper Boundary respectively, TV represents the Typical Value; all the units of time are in minutes. The Identity column corresponds to the circled numbers
in Fig. 2 denote the type of service.

Identity Notation Description LB UB TV

1 Tregister
service

The parameter for registration service-time distribution model. 2 15 5

2 Ttriage
service

The parameter for triage service-time distribution model. 5 20 10

3 TnurseA
service

The average duration of service of nurses in area A. 8 30 16

4 TdoctorA
service

The average duration of service of doctors in area A. 8 30 18

5 TnurseB
service

The average duration of service of nurses in area B. 5 20 12

6 TdoctorB
service

The average duration of service of doctors in area B. 5 20 15

7 Timaging
service

The average duration for taking medical imaging. 20 40 25

8 Tlab
service

The average duration for taking laboratory test sample. 10 30 15

Z. Liu et al. / Computers & Industrial Engineering 103 (2017) 300–309 303
diversion (amount of time ambulances are diverted away from the
ED) are commonly used. All of those metrics are possible to extract
from the agent-based simulator. Given this, and considering that
patient-centered records are the real data we have, the records
include the time stamp of patients’ arrival and discharge, thus
the patients’ length of stay in the ED could be retrieved. Moreover,
the LoS is comprised of all the time on service and waiting/pend-
ing. It is one of the composite indicators which is able to indicate
patients’ flow as well as the system’s efficiency. Thus LoS was used
as the setting of metrics for system performance in this work.

Furthermore, patients’ LoS is one of the aggregate behaviors of
the ED system, when comparing simulated LoS with actual LoS,
the absolute difference of their average cannot fully represent their
differences because the same average may come from quite differ-
ent distributions (e.g., uniform versus exponential distribution). In
view of this, we analyze the actual LoS distribution by using a his-
togram. For each of the simulation outputs, we perform the same
analysis. Thus, we will get two distributions and the goal is to mea-
sure the similarity between them, and the similarity will be used to
evaluate the similarity between actual system and simulation
results.

3.3. Optimization method

As described in Section 3.1, the calibration process can be for-
mulated as a series of local minimum searching problems. There
are many ready-made methods for searching local minimum value
of a given fitness function. However, as explained in Section 1, dif-
ferent from a pure mathematic problem, the simulation is just such
a problem for which it is hard to formulate the relationship
between inputs and outputs. Thus the objective function has some
special character, e.g, non-convex, non-differentiable, computa-
tionally expensive. There are also some optimization methods for
finding the minimum of a function of several variables without cal-
culating derivatives. For example, Powell’s method (Powell, 1964),
which is an algorithm proposed by Michael J.D. Powell for finding a
local minimum of a function. The function need not be differen-
tiable, and no derivatives are taken. However, due to the nature
of Powell’s method, it is almost impossible to parallelize (parallel
asynchronous versions (Sutti, 1984) have strict condition to objec-
tive function). Since each of the fitness function evaluations needs
considerable computation time, Powell’s method results in very
long computation time. According to our tests, it takes around
50 h to find the closest local minimum point with a given initial
value. It is fairly unacceptable for our calibration because it needs
to find a considerable number of local minimum points.

Given this, a parallel optimization method is crucial for our
requirement. The APPSPACK (Gray & Kolda, 2006; Griffin & Kolda,
2006; Kolda, 2006), developed by Sandia National Laboratories,
implements an asynchronous parallel pattern search method that
has been specifically designed for problems characterized by
expensive function evaluations. The framework enables parallel
operations using Message Passing Interface (MPI), and allows mul-
tiple solvers to run simultaneously and interact to find solution
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points. While considering our practical requirements and initial
experiments, further optimization could still be conducted to
speed up the calibration process. Given that the parameters to be
calibrated represent the behavior of a practical agent, it is reason-
able to assume that slight changes to parameters would not lead to
a big difference in outputs. Considering that searching for a local
minimum is computationally expensive (hours for one process),
we cached the initial values by Monte Carlo, as well as the local
minimum found by APPSPACK, as a pair (initial-optimum pair) to
collection Cp ¼ init; optð Þi

� �
, thus when Monte Carlo generates a

new set of initial values for finding other local minimum points,
we firstly check the distance (d) between the new initial value
and each of the initial values in collection Cp (as shown in Fig. 1,
the Inquire Cache step). The process is explained as follows:

if 9P� 2 Cp : d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

P�
i � P�

i

�� ��2
vuut =n < e then : f P�ð Þ :¼ f P�ð Þ

ð1Þ
where P� is the initial value set of one pair (initial-optimum) in col-
lection Cp. P

� is the new initial value generated by the Monte Carlo
method, n is the number of parameters in pi, and e is the tolerance.
Therefore, as shown in procedure (1), if the new initial value set is
close to any of the solved pair (overlapped), it will be discarded and
call Monte Carlo to generate a new initial set. If there are consider-
able number of overlapped initial value sets found (searching space
is well covered), k1 in Fig. 1 should be considered as reduced. This
mechanism could avoid some duplicated optimization, especially
in small search-space. A similar cache mechanism is also applied
for fitness function evaluation (each one takes around 15 min), all
the scenarios (a set of parameter values) to fitness pair (scenario
- fitness pair) among all the optimization processes (which start
with different initial value) were cached to a collection
Cs ¼ scenario; fitnessð Þk

� �
. Thus, for a new scenario created by

APPSPACK, procedure (1) (in Cs instead of Cp) is performed before
invoking simulation. If the new scenario is close to any of the sce-
narios that have previously been evaluated, then the function
returns the fitness directly, thus no simulation need to be invoked.
Since there are several repetitions for one evaluation process, and
generally there are hundreds of evaluations per each optimization,
and many independent optimization processes needed for the cali-
bration, this global cache mechanism could save considerable time.
The experiments showed that around 10% of fitness function evalu-
ations were from cached value.

4. A case study

Typical EDs have common interacting elements such as doctors
(physicians), nurses, technicians, receptionists, beds, medical
devices that are interconnected via flows of patients, information
and processes (registration, triage, diagnostic, discharge). This sec-
tion gives the brief introduction of the system as well as the gen-
eral model. Firstly, Section 4.1 gives a brief introduction of the
system and model, then Section 4.2 describes the parameters
which are impossible to obtain from real data and need to be cal-
ibrated. Then, Section 4.3 gives the fitness function and Section 4.4
describes the design of the experiment for simulation based opti-
mization. At the end, the calibration results and discussion are
given in Section 4.5.

4.1. General process and model overview

As shown in Fig. 2, typically, a patient enters the ED through one
of two ways: by themselves or by ambulance. Upon arrival, walk-in
patients need to walk to the registration window, briefly give their
personal information to the registration staff. After that, they have
to stay in a waiting room until triage. Once the information system
assigns a triage nurse to the patient, they will go to the correspond-
ing triage box and interact with the nurse. Triage consists of a brief
assessment of the patient’s body condition and an acuity level will
be assigned to the patient according to their severity. Then,
patients will wait in the second waiting room before entering the
diagnosis & treatment area. For those patients who arrive by
ambulance, they are registered and triaged in the ambulance,
and thus go to the second waiting room directly. The Spanish scale
of triage is very similar to the worldwide Canadian Emergency
Department Triage and Acuity Scale (Bermejo et al., 2013;
Bullard, Unger, Spence, & Grafstein, 2008). The scale consists of 5
levels, with 1 being the most critical (resuscitation), and 5 being
the least critical (non-urgent). The triage process also determines
the order and priority with which the patient will be attended
and the treatment area where they will be treated. The registration
and triage service are first-come first-served (FCFS) for all the
patients, whereas entering the diagnosis & treatment area is
acuity-level-dependent FCFS (patients with acuity level 1 have
the highest priority).

With regard to the treatment area, as shown in Fig. 2, in most
Spanish EDs there are two treatment areas (labeled as A and B in
this study) which operate independently to provide a diagnosis &
treatment service. Area A is for those patients with acuity levels
1, 2 and 3, while area B is a dedicated stream of resources to pro-
cess lower acuity patients with levels 4 and 5 more quickly. Area A
is made up of careboxes, which is a small room that contains
essential medical equipment and supplies that could be used for
patients’ treatment. Patients attended in area A will stay in their
own carebox throughout the diagnosis & treatment phase, and
any transporting should be done by auxiliary staff. In area B, there
are several attention boxes in which doctors and nurses interact
with patients, and a large waiting room in which all patients will
remain while not having interaction with the ED staff. Note that
the doctors and nurses are specified for different areas, their
behavior is different, but medical image test-room and laboratory
testing services are shared by area A and B.

In the diagnosis & treatment phase, once the patient has got a
free space in the treatment area, the doctor will have an interaction
with the patient, then the doctor makes one of the following deci-
sions: (1) a patient needs to receive an imaging test (e.g., X-ray, B
ultrasound); (2) assign laboratory tests (e.g., blood test, urinalysis);
(3) discharge the patient and; (4) make out a prescription. If testing
was assigned, and when the results become available, the patient
needs to have an interaction with the same doctor who conducted
the consultation in order to receive a reassessment with their test
results. Notably, as shown in Fig. 2, some patients need to repeat
the consultation-test-reassessment/treatment more than once. In
summary, as marked by circled number in Fig. 2, there are 8 differ-
ent types of service (provided by different providers). In previous
studies (Liu, Cabrera, Rexachs, Epelde, & Luque, 2015; Liu,
Cabrera, Rexachs, & Luque, 2014; Liu, Cabrera, Taboada, et al.,
2015), the ED was modeled as a pure spatial agent-based model.
It is formed entirely from the rules governing the behavior of the
individual agents which populate the system, no higher-level
behavior is modeled. Thus, the system behavior emerges as a result
of micro-level actions and interactions. The full model has been
implemented in the NetLogo (Wilensky, 1999) simulation environ-
ment, which is an agent-based programming language and an inte-
grated modeling environment. The work proposed in this article,
on calibrating the general model to imitate a real ED, was chal-
lenged by the fact that the parameters for characterizing the
service-time distributions (eight in total marked by circled number
in Fig. 2) are not directly obtainable from historical data or a real
system.
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Fig. 2. Diagram of patient flow through the emergency departments. Eight service processes, marked by the circled number, drive all aspects of patient flow. Most of the
services are interdependent, the duration of service is different for each service. Note: area A and area B are designed for urgent and non-urgent patients separately, they have
different groups of staff and work independently.
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4.2. Model parameters

In this study, Hospital of Sabadell in Catalonia, is the target sys-
tem to imitate. It is a university tertiary level hospital in Spain that
provides care service to a catchment area of 500,000 people, and
attends more than 160,000 patients per year in the ED. In order
to calibrate our general model to imitate the Hospital of Sabadell,
we requested 12 months (Jan. 1st, 2014 - Dec. 31st, 2014) histori-
cal operation data from the information system’s database. The
missing values and invalid records have been carefully handled.
Taking into consideration that August is holiday period, lots of peo-
ple go on vacation, accordingly the configuration of ED is different
(e.g., fewer staff or fewer senior staff), so August’s operation
records are discarded for this calibration study.

The ABM requires numerous parameters to characterize the
behavior and features of each agent. Some of them can be retrieved
directly from actual operation data of the target ED system, such as
patients’ features, the number of medical testing, the number of
treatment processes and the number of doctor interactions with
one patient. However, the service time information was not
recorded by the information system (outside the scope of an infor-
mation system). Thus, the parameter for the entire service-time
models could not be determined directly with the real data. As
illustrated in Fig. 2, there are 8 service processes (marked by a cir-
cled number), all the service is carried out by interacting between
agents. According to the research findings in queue theory (Devore,
2011), exponential distribution is typically used to make mathe-
matically simplifying assumptions. Given this and the empirical
data from ED staff, an exponential distribution was used to fit
the duration of each type of service, but the parameters for these
distributions should be calibrated in accordance with the target
system.

More specifically, the service time is defined as the interval
actually spent on receiving service (i.e., the time differences when
the services started and ended). Note that in the agent-based ED
model, the duration of the service mentioned in this article only
represents the time spent on actually interacting, waiting time is
excluded because it is an emergent property of the system. In prin-
ciple, the time for a medical imaging test is composed of two parts,
the interaction between patient and the test-room technicians, and
time for processing test results. Given that the second part is deter-
minable, the key is to calibrate the duration for the interaction.
Similar to a laboratory test, which is composed of two parts, sam-
ples taken by a nurse and analyzing samples by machine. The sec-
ond part is easy to obtain from the machine’s specification, so only
the duration of interaction for taking sample needs calibration.

Accordingly, we have the model input (patient arrival and their
features), output (systemic performance indicator such as length of
stay), and part of the model parameters retrieved directly from real
data. With respect to the unknown parameters, empirical informa-
tion such as boundary constraints and typical value can be
obtained from experienced staff. Although the empirical informa-
tion is not accurate, it can dramatically reduce search space-size.
Table 1 lists all the parameters to be calibrated, as well as their
boundary constraints. Therefore, the task is to search for an opti-
mum set of parameters which can lead to good (acceptable) fitness
between the simulation results and actual data.

In summary, due to data scarcity, although the distribution of
specific service duration cannot be fitted by such standard tech-
niques as maximum likelihood estimation, we had some other
time stamps which enable us to derive an indirect approach to esti-
mate the service-time distribution parameters.

4.3. Fitness function

In view of the above-mentioned facts, a proper method has to
be applied to measure the similarity between actual LoS distribu-
tion and the simulated one. It is about comparing statistical char-
acteristics of empirical data against emergent behavior of
simulation models. In probability theory and statistics, the
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Jensen-Shannon Divergence (JSD) is a popular method of measur-
ing the similarity between two probability distributions (Endres
& Schindelin, 2003; Lin, 1991; Osterreicher & Vajda, 2003). Consid-
ering that patients in ED are classified in five categories (acuity
level, also known as emergency severity index) according to their
severity. Patients with different acuity levels have different routes
and priority in receiving service. Their LoS are quite different on
average. Accordingly, it is more reasonable to evaluate patients’
LoS separately due to their acuity level. Moreover, the number of
patients with different acuity level is quite different, it is about
1%, 8%, 32%, 44% and 15% respectively from acuity level 1 to 5.
According to the law of large numbers, when sample size is not
big enough, the statistical information would be less accurate.
Given this, as defined in Eq. (2), we used a weighted average to cal-
culate the overall fitness with JSD of the 5 categories of patients.
Proper weights could be determined by sample size and the stan-
dard deviation of actual LoS.

f fitness ¼
X5
j¼1

WjD
j
JS ð2Þ

Dj
JS ¼

1
2
DKL PjjQð Þ þ 1

2
DKL Q jjPð Þ ð3Þ

where Dj
JS represents the Jensen-Shannon Divergence (JSD) similar-

ity on LoS of patients with acuity level j;Wj is the weights according

to patient category (acuity level) and
P5

j¼1Wj ¼ 5 (there are five
patient categories), and DKL denotes the Kullback-Leibler divergence
(DKL), which is defined as (Endres & Schindelin, 2003; Lin, 1991;
Osterreicher & Vajda, 2003):

DKL PjjQð Þ ¼
Xn
i¼1

P ið Þlog2
P ið Þ
Q ið Þ ; DKL Q jjPð Þ ¼

Xn

i¼1

Q ið Þlog2
Q ið Þ
P ið Þ ð4Þ

where QðiÞ is the frequency/probability of LoS located in ith interval
extract from simulation results, and PðiÞ denotes the same informa-
tion extracted from real data. Having shown that, the range of f fitness
function value will be 0:0 to 5:0, The lower it is, the closer the dif-
ference between simulation and actual will be.

As described in Section 4.2, parameter constraint is defined by
boundaries, although each of the parameters is guaranteed to fulfill
the boundaries constraint, the combination of parameters may
become unreasonable for the model. This case may occur either
in the initial value set generated by the Monte Carlo method, or
an evaluation scenario requested by the optimization solver.
According to our primary experiments, some parameter sets cre-
ated by optimization algorithm may cause ED saturation, i.e.,
patients waiting in any of the waiting rooms increases day-by-
day. For example, the number of patients waiting to enter the
treatment area is greater than daily arrival. These scenarios cannot
result in good fitness because it is not a valid case. Since the com-
plexity of an agent-based model is proportional to the number of
agents in the simulation environment, system saturation will
result in much longer simulation time. Give this, when the system
is saturated, it is better to terminate the simulation evaluation and
return the worst fitness evaluation as a penalty.

Furthermore, the patient leaving-without-being-seen (LWBS) is
a common phenomenon and a crucial metric to EDs, so it has been
carefully considered as a possible decision patients may take in the
model (Ding et al., 2006; Johnson, Myers, Wineholt, Pollack, &
Kusmiesz, 2009; Kennedy, MacBean, Brand, Sundararajan, & McD
Taylor, 2008). As the real data does not include the LWBS records,
the final tuned simulator should not have patients who LWBS
(equivalent to those patients not going to ED). However, our pri-
mary results showed that some of the parameters set (either gen-
erated by Monte Carlo or created by optimization solver) resulted
in LWBS. Instead of discarding the evaluations that have LWBS,
which may result in a lot of failure in optimization and waste lots
of computing time, we added LWBS to the objective function as a
part of the penalty (i.e., the optimization solver should be allowed
to make mistakes). Our final experiments indicated the effective-
ness of considering LWBS in fitness function. As shown in Fig. 3,
most of the initial values that lead to LWBS could converge in less
than ten iterations. In summary, the final fitness function could be
defined as:

Ffitness Pð Þ ¼ f fitnessðPÞ þ kRlwbs ðsimulation succeedÞ
Fmax ðsystem saturatedÞ

�
ð5Þ

where P ¼ p1;p2; . . . ;p8f g denotes a parameter set from the Monte
Carlo method or the optimization solver, Rlwbs is the ratio of patients
LWBS (range from 0 to 1.0), k is an adjustable parameter which rep-
resents the weight of LWBS. Fmax is the maximum penalty to the sol-
ver, which is the maximum of Ffitness in the first case (simulation
succeed). Given this, if we set k as 5.0, that is to say, the DJS similar-
ity and LWBS have the same weight on the fitness evaluation, the
value of Ffitness will be between 0 to 10. The lower it is, the closer
it will be to actual data.

4.4. Design of experiment

As illustrated in Fig. 1, the real dataset was divided into three
subsets for training, testing and validating separately. To this
end, the 11-month historical data from the ED information system
database (Jan. - Dec. 2014, excluding August) has been randomly
divided into three parts. More specifically, six months for training
(training set), three months for testing (test set), and two months
for validation.

Considering that the patients’ LoS are statistics on patients who
attended the ED. Due to the statistical nature of this model, the
sample size should be guaranteed in order to provide reliable
LoS. The minimum number of patients for retrieving LoS depends
on deviation of LoS, confidence interval as well as margin of error,
and could be determined by Chebyshev’s inequality (Stewart,
2009). Therefore, multiple runs must be conducted for each sce-
nario in order to reduce stochastic variability and average perfor-
mance metrics will be used for evaluating the fitness by Eq. (5).
More specifically, the number of simulation replications are deter-
mined by deviation of LoS from the real dataset and the simulation
time. Namely, shorter time simulation will require more replica-
tions in order to meet the sample size requirements. In this study,
according to the statistic characteristics of LoS in real dataset, 4
random seeded runs were performed for each scenario in training
dataset, 8 replications were performed for each scenario on testing
dataset, and 12 replications for validation dataset.

The calibration was carried out on an 8-node cluster with total
number of 512 AMD OpteronTM Processor 6262 HE cores, and 2TB
RAM. All the nodes works in master/worker way, i.e., each one of
the node (worker) runs the parallel version of APPSPACK to find
the local minimum start from an initial value given by the master.
The APPSPACK evaluators, which takes input (the parameter set)
and returns fitness, were implemented with Python programming
language. In the evaluator, the NetLogo controlling API (which
comes with NetLogo.jar from the released version) was used to
invoke and control NetLogo by another Java program running on
the Java Virtual Machine. That is, for one fitness evaluation, the
Python program will first read the value of variables and invoke
several processes (the same as the number of repetitions) in order
to evaluate fitness with the same parameter but different random
seeds, then each of the processes will call a Java program via sys-
tem call with parameters as arguments. In the last step, the Java
program will initiate the model in NetLogo via NetLogo controlling



Fig. 3. Fitness optimization on training dataset with different initial value, fitness values versus iterations. One broken line represents one optimization process with a given
starting point from boundary constrained Monte Carlo.
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API and start the simulation. When all the simulations with the
same parameter have finished, the program will return to Python,
and a post-processing function will be called to analyze the system
metrics in order to calculate the fitness value (via Eq. (5)).

4.5. Results and discussion

Use Eq. (5) as fitness function, the iterations of optimization on
training dataset with different initial value is shown in Fig. 3.

It is clear to see from Fig. 3 that different initial values resulted
in a different number of iterations. Most optimums (the converged
fitness values) are in the same level (i.e., no significant global min-
imum). Some initial values have caused high LWBS, i.e., their initial
fitness is greater than 5 (maximum of f fitness part in Eq. (5) is 5:0),
and drop to normal after several iterations. Most optimization pro-
cesses are completed in less than 20 iterations. To analyze the loca-
tion of local optimum points we found, Fig. 4a shows the
distribution of Euclidean distance between optimums points (there
are k1 k1 � 1ð Þ=2 distance, where k1 is the total number of local
optimum points found, the same k1 as it in Fig. 1).
(a) Euclidean distance between optimum points.

Fig. 4. Training process analysis. The distribution of the number of fitness evaluations ne
distribution analysis of distance between optimal points.
From Fig. 4a, it is clear that most optimum parameter sets (note
that in order to make all the parameter values for APPSPACK on a
similar scale, here the parameter values represent the ratio to the
typical values in Table 1) are far from each other (due to the initial
value control by Eq. (1)), while there are some optimums that are
carried out by different initial values, converged to the same point
(distance could not be zero because of the random nature of the
simulator and the tolerance setting in APPSPACK). According to
the search scheme of APPSPACK (Gray & Kolda, 2006), each itera-
tion requires many fitness function evaluations in several direc-
tions, the number of fitness evaluations has direct influence on
optimization time. Fig. 4b shows the distribution of the number
of fitness evaluations. It is worth noting that, in each function eval-
uation, there are several replications on simulation with different
random seeds, i.e., 4, 8, 12 for training, testing and validation sep-
arately. In this study, when k1 ¼ 30; k2 ¼ 10; k3 ¼ 5; k4 ¼ 1, the
total time taken on the calibration is about 60 h with the above-
mentioned cluster.

By following the process illustrated in Fig. 1, one set of param-
eter values was selected manually from the k3 candidates. With the
(b) Number of fitness evaluation distribution.

eded in finding local minimum points starting from different initial values, and the



(a) Acuity Level 2 (b) Acuity Level 3

(c) Acuity Level 4 (d) Acuity Level 5

Fig. 5. The comparison of model prediction results (patient length of stay distribution) on the validation dataset. Results about patients with acuity level 1 are not illustrated
here because very few patients (less than 1%) attend to ED with acuity level 1, the sample size (in two months) is not enough for statistical comparison. The JSD denotes
Jensen-Shannon Divergence. Note that the statistical interval widths are: 30 min for acuity level 2 and 3; 10 and 5 min for acuity level 4 and 5 respectively.
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selected parameter set and input (patient arrival) from the valida-
tion dataset, the comparison (actual data versus simulation) of
patients’ LoS distribution, classified by patient’s acuity level, is
illustrated in Fig. 5. Considering that the validation dataset is com-
posed of two-month’s real data and, there are very few patients
(less than 1%, about 160 patients in two months) triaged with acu-
ity level 1, the sample size is not enough for statistical comparison,
thus the LoS distribution of patients with acuity level 1 was not
shown in Fig. 5.

Simulation results in Fig. 5 demonstrate that the proposed
framework is effective to calibrate the model parameters. As a
result of the small number of patients attending with acuity level

2, the fitness (the Dj
JS in Eq. (3)) of patients with acuity level 2

(Fig. 5a, D2
JS ¼ 0:0925) is not as good as the others. Since the cali-

bration process happens only once in the simulation, 60 h is
acceptable and further speedup can be reached via executing on
clusters with more computing nodes.
5. Conclusion and future work

An Emergency Department (ED) is a complex, stochastic envi-
ronment, which has time-dependent behavior. Advances in com-
putational technology give us the ability to simulate complex
models and analyze massive datasets. Given this, simulation has
become an effective method to improve policies on operational,
tactical and strategic decisions for EDs. However, the difficulty in
collecting reliable and complete data can subsequently lead to
invalid simulation results. To this end, this paper proposed a sys-
temic method to calibrate and validate a general model to imitate
an actual ED under data scarcity (missing duration of service). Our
final results indicated that the proposed approach can find the
model parameters accurately within an acceptable time frame.
With the parameter value we found, the general agent-based
model of EDs can carry out accurate predictions. Although our
work was focused on calibrating an ED model, we are confident
that the proposed method could also make some contribution to
calibrating other computationally expensive simulation models.

There are a number of limitations to our study, including the
use of exponential distribution for fitting all the duration of service.
Although it was commonly used in the conventional queue theory
method, further research should be carried out to consider the fea-
tures of service type in more detail. Another limitation is the selec-
tion of system KPIs for calculating fitness. In our method, we only
considered two indicators, i.e., patients’ length of stay and leave-
without-being-seen. Although both are commonly used in emer-
gency healthcare literature, further indicators such as door-to-
doctor time and patients’ length of waiting time should be investi-
gated in future improvements. Furthermore, as the proposed
method has only been tested in one institution though no
institution-specific assumption has been made, one of our future
studies will apply the method on another ED.

In summary, the proposed systematic method has been proved
to be able to find the parameters for fitting the duration of service,
with which the simulated results and the actual data were consis-
tent. The duration of healthcare staff’s service time is among the
most common missing pieces of information because it is out of
the scope of the information system. Moreover, an automatic cali-
bration tool released with a general ED model is promising for pro-
moting the application of simulation in ED studies. This tool will
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enable the simulation users, e.g., ED managers, to calibrate param-
eters for their own ED system without the involvement of model
developers.
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