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Abstract
S.A.M.P.L.E.R. (Abrahamson & Wilensky, 2004a, 2004b) is a computer-based classroom
learning-environment built in the NetLogo (Wilensky, 1999a) and HubNet (Wilensky & Stroup,
1999) modeling environments. S.A.M.P.L.E.R. is the statistics component of ‘ProbLab’
(Abrahamson & Wilensky, 2002) a middle-school curricular unit built at The Center for
Connected Learning and Computer-Based Modeling as part of the ‘Connected Probability’
project (Wilensky, 1993, 1995, 1997a). We report results from an implementation of
S.A.M.P.L.E.R. (two Grade 6 classrooms, total n = 38), and frame our analysis of student
discussion in terms of two novel design-research constructs: ‘learning axes’ and ‘bridging tools.’
A bridging tool (Abrahamson, 2004; Fuson & Abrahamson, 2005) is a classroom artifact
designed to tap students’ previous mathematical knowledge and situational intuitions and help
students build understanding of new mathematical concepts that are linked to symbols,
procedures, and vocabulary. A learning axis is a space of potential learning extending between
two competing perceptual interpretations of a bridging tool—students construct new concepts
through reconciling the tension created by this dual interpretation. We discuss some tradeoffs
inherent in the design of learning environments that use this approach.

“Such problems [—especially problems like that of
composing a poem, inventing a machine, or making
a scientific discovery—] are intimations of the
potential coherence of hitherto unrelated things, and
their solution establishes a new comprehensive
entity, be it a new power, a new kind of machine, or
a new knowledge of nature” (Polayni, 1967, p. 44).

“Not that I mean as sufficing for invention the
bringing together of objects as disparate as possible;
most combinations so formed would be entirely
sterile. But certain among them, very rare, are the
most fruitful of all” (Poincaré, 1903/2003, p. 51).

1 Introduction

1.1 Objective
This paper is about a specific learning environment for mathematics and about a theory of
learning that evolved through analysis of data from iterative implementations of the design. The
                                                  
1 The research reported on in this paper was funded by NSF ROLE Grant no. REC-0126227. The
opinions expressed here are those of the authors and do not necessarily reflect those of NSF.
2 This paper expands on the AERA 2004 paper titled S.A.M.P.L.E.R.: Statistics As Multi-
Participant Learning-Environment Resource.
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design, S.A.M.P.L.E.R. (Abrahamson & Wilensky, 2002, 2004a, 2004b), Statistics As Multi-
Participant Learning-Environment Resource, is a computer-based probability-and-statistics
learning environment created at The Center for Connected Learning and Computer-Based
Modeling. S.A.M.P.L.E.R. is embedded in the NetLogo (Wilensky, 1999a) agent-based
modeling environment and makes use of the NetLogo extension HubNet (Wilensky & Stroup,
1999) architecture.3 S.A.M.P.L.E.R. is part of ProbLab (Abrahamson & Wilensky, 2002, 2004c),
a suite of probability-and-statistics interactive models and construction activities that extend
Wilensky’s ‘Connected Probability’ project (1993, 1995, 1997a). The theory, “learning axes and
bridging tools,” is a theoretical–pragmatic lens that we are using both to frame our design
rationales and to interpret student interaction with our design. This theory extends Abrahamson’s
(2004) work on bridging tools (see also Fuson & Abrahamson, 2005). We will first explain the
design of S.A.M.P.L.E.R. and then demonstrate student interaction with this design through the
lenses of the proposed theoretical model.

1.2 Design Problem: Student Difficulty With Probability and Statistics
‘Connected Probability’ is an attempt to respond to a century of theoretical and empirical studies
reporting and analyzing student difficulty in the domain of probability and statistics (von Mises
1928/1957; Piaget, 1952; Hacking, 1975, 2001; Simon & Bruce, 1991; Shaughnessy, 1992;
Konold, 1994; Wilensky, 1993, 1995a, 1997a; Biehler; 1995; Papert, 1996; Gigerenzer, 1998;
Maher, Speiser, Friel, & Konold, 1998; Henry, 2001). Authors have critiqued as detrimental to
student learning the symbolical notation of the domain (Gigerenzer, 1998), embedded
assumptions in learning environments regarding randomness (e.g., Henry, 2001; Maher, Speiser,
Friel, & Konold, 1998), and a general disconnect in most mathematics curricula between student
real-world experiences and formal mathematical expressions (Wilensky, 1997a; Pratt, 2000). Our
reading of this body of literature is that there are challenging dualities inherent in the
domain—pairs of juxtaposed subconstructs such as theoretical- vs. empirical probability
(Abrahamson & Wilensky, 2003; Hacking 2001), dependent- vs. independent events
(Abrahamson, Berland, Shapiro, Unterman, & Wilensky, 2004), exploratory data analysis vs.
probability (Biehler, 1995), single events vs. expected values (von Mises, 1928/1957; Hacking,
2001), and the ultimate tenuousness of statistical measurement vs. “true” population properties
(Abrahamson & Wilensky, 2004a).

We regard these dualities as defining the core learning issues that students must face if they are
to master the domain of probability and statistics. Further, we propose that student difficulty with
these learning issues could be treated not as ‘confusions’ indicating poor learning but as
‘tensions’ that could be generative of inquiry and deep understanding. We call the learning
potential defined by a conceptual duality a learning axis, to emphasize the conceptual space
extending between two juxtaposed subconstructs, e.g., between ‘theoretical probability’ and
‘empirical probability.’ Moreover, we regard each pair of juxtaposed subconstructs as inter-
defining in a dialectical semiosis: ‘theoretical probability’ has little if any meaning without some
understanding of ‘empirical probability,’ and vice versa. The new ideas that students have to
construct, e.g., ‘distribution,’ are conceptual capstones that bridge this semiosis. We propose to
leverage the potential inherent in learning axes by building bridging tools that evoke the tension
along learning axes and stimulate students to construct new understandings that resolve this
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tension. In this paper, we describe some of the bridging tools we designed for the domain and
interpret classroom episodes in terms of students’ conceptual constructions that are grounded in
these tools.

1.3 Previous Learning Designs for Probability and Statistics
The promise of the computer as a medium for learning environments for mathematics, in general,
and for probability and statistics, in particular, has long been discussed by Papert (1980, 1996)
and others (e.g., Wilensky, 1993; Konold, 1994; Finzer, 2000). Oft-cited advantages of the
computer environment are high-speed errorless data processing, dynamic-visualization
capabilities, and interactive facilities that can support exploration and the testing of conjecture
(e.g., Pratt, 2004).

In order to contextualize the learning-environment designs we discuss in this paper, we will now
look at two of probability and statistics learning environments, TinkerPlots (Konold, 2004) and
Fathom (Finzer, 2000), both products of multi-year development process that incorporate state-
of-the-art technology and are achieving penetration into the education market.

TinkerPlots , designed by Cliff Konold and Craig Miller, is a dynamic data exploration
environment for Grades 4 through 8. The developers introduce their software package as follows
(Konold, 2004):

Students can begin using TinkerPlots without knowledge of conventional graphs or
different data types, without thinking in terms of variables or axes. By ordering, stacking,
and separating data icons, students gradually organize data to answer their questions.
Students can analyze data that come with the program, that they download from the
Internet, or that they enter themselves. Using the construction set of basic operations,
students create a wide variety of graphs, including standards like pie charts, histograms,
and scatterplots, and novel graphs of their own invention. Because plot are built up in
stages, students can deconstruct unfamiliar plot to learn how to interpret them. Students
can save the current plot configuration as a new command ("skyline graph") to later
recreate that plot type in one step. To perceive variability in data, TinkerPlots offers more
than position along axes; it also offers differences in icon size, color, and sound. These
additional modalities allow students to detect covariation in powerful and intuitive ways.

Fathom Dynamic Statistics (Finzer, 2000) is a powerful and versatile environment for studying
statistics from a data-driven perspective. Fathom integrates data analysis with mathematical
modeling and is targeted at secondary-education students. The environment enables users to start
from data or from scratch. Features of this software include: direct manipulation of mathematical
objects (axes, sliders, lines, and data) and synchronous update off all dependent objects during
dragging operations; parameterization with sliders; omnipresence of algebraic formulas; and ease
of data import (Finzer, 2000). A typical use of Fathom might begin with importing a data set and
follow with the testing of hypotheses through manipulation-based generation of various graphs,
histograms, scatterplots, etc. as well as tables, all interlinked with equations. The user can also
build and run simulations of probability experiments.

Both TinkerPlots and Fathom incorporate dynamic visualization elements that support student
learning of mathematical representations of probability and statistics. We will now explain the
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rationale of using NetLogo,  as a software platform for the study discussed in this paper. As we
will explain, the parallel-processing architecture of the NetLogo environment enables an
‘embodied’ probability, thus helping students to ground the concepts of probability and statistics
in personal experiences of chance. That is, our choice of NetLogo, an agent-based environment,
was informed by a reconceptualization of the domain of probability and statistics—a
reconceptualization that foregrounds the micro-level of probabilistic events as well as the macro-
level of summative mathematical representations. We now explain the agent-based
conceptualization of the domain.

1.4  Connected Probability: Agent-Based Computer Models for Learning
Probability and Statistics

In this section we discuss the ‘Connected Probability’ project, and, specifically, how agent-based
computer models may contribute to student learning of probability and statistics. We then briefly
overview the ProbLab curricular suite of models and classroom activities, and situate ProbLab
within the Connected Probability project. This design will be explained in further detail in a later
section of this paper.

1.4.1 What is Agent-Based Modeling?
Computer-based modeling has become a standard research method in academe and industry—it
enables researchers to think through complicated phenomena and visualize innovative ideas. One
form of modeling is agent-based modeling (e.g., NetLogo, Wilensky, 1999; Repast, Collier &
Sallach, 2001; Swarm, Langton, & Burkhardt, 1997). An “agent” is a computational entity that
can represent an object that is being studied, e.g., a “coin.” Agents are often associated with an
icon that appears on the computer interface and possibly moves there, e.g., the coin could “flip.”
The modeler “creates” agents, assigns properties to them, and defines rules that the agents follow
when the computer procedures are activated. These rules govern the agents’ interactions with
each other and with elements in their environment. Papert (1980) argued that modeling from the
agent’s perspective enables students to draw on their personal resources to make sense of
mathematical concepts—students embody the agent by tapping their kinesthesia and sense of
spatial orientation/navigation. A sense of chance, too, we will see later, can be embodied in
agent-based modeling.

Following educational reformers call to harness the computer in education, education researchers
have collaborated with computer developers to build computer-based learning environments that
are accessible to students with little or no background in programming (e.g., LOGO, Papert,
1980; StarLogoT, Wilensky, 1997b). Students use the modeling environments to express
hypotheses and then run simulated experiments to examine these hypotheses (Hoyles & Noss,
1992; Wilensky & Reisman, 2005). For instance, a young student using a computer to simulate
the trajectory of a missile may learn about ballistics when her rocket descends in straight lines
instead of along an arc.

Modeling from the perspective of the agent, e.g., an ant, rather than from the perspective of the
aggregate, e.g., a colony, is conducive to understanding mechanisms underlying phenomena
involving multiple interacting agents. For instance, an entomologist studying ant colonies might
wish to assign rules to “ants” and then observe whether their interactions emulate what she has
observed in the field. To support such research, multi-agent parallel-processing modeling
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environments have been developed (e.g., NetLogo, Wilensky, 1999a; Swarm, Langton &
Burkhardt, 1997; Repast, Collier & Sallach, 2001).

Note that when a multi-agent simulation is activated, each agent follows its rules independently.
Often, the simulation consists of repeated iterations of procedures, with each iteration’s output
feeding in as input into the subsequent iteration. Whereas the agents follow the same rules, the
agents often behave differently one from another, for several reasons: (1) Each agent may
interact with objects in its immediate spatial environment that possibly differs from other agents’
immediate environment; (2) The modeler may incorporate randomness to modify agents’
behaviors, and agents’ random values are independent and (3) Agents may repeatedly update
their properties based on their experience in each iteration of the procedure. The aggregate result
of all these behaviors can be quantified and represented in mathematical notation on the screen.
For instance, if 1,000 coins flip, a monitor might show that 529 coins “landed” on ‘heads.’ A
subsequent run of this simulated experiment may yield different outcomes, e.g., 478 ‘heads,’ and
a graph could track the outcomes of repeated iterations. We will return to agent rules and
aggregate quantification later when we discuss our design.

1.4.1.1  What is NetLogo?
The learning environments described in this paper are embedded in the NetLogo (Wilensky,
1999a) multi-agent modeling-and-simulation environment. NetLogo is a more mature successor
to StarLogoT (Wilensky, 1997b). NetLogo is designed to suit the needs both of young learners
and practicing researchers (the “low threshold—no ceiling” principle). Middle-school students
can build NetLogo simulations that enhance their understanding of the natural sciences, and an
increasing number of researchers uses NetLogo to simulate experiments in a wide range of
subject matter. For both young and mature practitioners, the iterative process of building a
model, running experiments, and adjusting the model has helped achieve deeper understanding
of the phenomena being modeled (e.g., Abrahamson & Wilensky, 2003; Abrahamson, Berland,
Shapiro, Unterman, & Wilensky, 2004; Wilensky, 1999b; Wilensky & Reisman, 2005).

1.4.2 Rationale
NetLogo was authored with the vision of enabling students to participate actively in rigorous and
engaging inquiry. The pedagogical motivation of these environments was articulated in
Wilensky’s (1993) doctoral thesis, in which he critiqued the inadequacy of prevalent
mathematics curricula to support students’ ‘connecting’ to knowledge. Wilensky (1993, 1997a)
diagnosed mathematics curricula as both ahistorical and “acognitve”—they do not provide
students with opportunities to decipher mathematicians’ historical progress from intuition to
formal structures; that therefore students’ use of formal structures is not grounded in their own
intuition; that therefore students do not engage in learning mathematics; and that therefore
students suffer from epistemological anxiety (Wilensky, 1997a)—they have little if any meaning
for the solution procedures they are taught to use. This diagnosis has led Wilensky to design
environments for students to connect to mathematical constructs by building from their intuitions
towards mathematical articulation of these intuitions.

Arguably, the historical development of probability has been constrained by the availability of
suitable computational media and devices. For example, an abacus is not a suitable or powerful
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enough tool to generate and monitor large numbers of random outcomes. At the same time, even
young students have intuitions about chance (Piaget & Inhelder, 1975; Fischbein, 1975).
Wilensky’s project, ‘Connected Probability,’ was to use the computer environment so as to
nurture students’ intuition of chance towards fluency with the fundamental concepts of the
domain—randomness, sampling, and distributions.

1.4.3 Previous Connected-Probability Work
Phenomena involving probabilistic behaviors can be viewed both from “micro” (agent) and
“macro” (aggregate) perspectives, and connecting these perspectives is a key to understanding
probability (Wilensky, 1993, 1995, 1997a). Therefore, multi-agent computational environments
are conducive to the study of probability: each agent “rolls its own die” (micro perspective), and
these random outcomes can be viewed as a single distribution (macro perspective). Students who
explore simulations of probability experiments have opportunities to study, discuss, and
understand the relation of micro and macro perspectives and to thus deepen their understanding
of probability (Wilensky, 1995; Papert, 1996; Pratt, 2000; Abrahamson & Wilensky, 2005a). The
Connected Probability project has recently been extended through the ProbLab (Abrahamson &
Wilensky, 2002a) curriculum under development.

It is worthwhile to dwell here on a difference between agent-based and other approaches to
simulations of probability experiments. To do so, we will consider a generic case of flipping 100
“coins” on a computer screen. The agent-based approach is to have each coin land on ‘heads’
with a probability of, say, .5. The aggregate approach is to have a normally-distributed-around-
50 number of the coins land on ‘heads.’ For the naïve viewer, there is no difference between
these approaches—in each case roughly 50 of the coins will land on ‘heads.’ Moreover, over
repeated samples of 100 coins, either approach will eventually lead to an accumulation of sample
means that is normally distributed around 50 coins, or .5 of the sample. Yet, the agent-based
approach, we argue, is more loyal to student intuition of chance, whereas the aggregate approach
is couched in terms of a mature understanding of the concept (Wilensky, 1997a). That is, a
student who is building a simulation of a probability experiment could only author such an
“aggregate” procedure if the student already understood distributions. Student-authentic
procedures are crucial if one believes, as we do, that the procedures underlying the simulations
should be “glass boxes” rather than “black boxes.”(Wilensky, 2001). In this sense, agent-based
modeling of probability experiments nurtures a simple notion of chance so as to sustain the
credibility of the simulation. Moreover, the agency of the coins supports a tension between the
agent-based phenomenology of chance (a group of individual coins is flipping) and its aggregate
quantification (e.g., .54 of the coins fell on ‘heads’). This tension, we believe, can engender
student self-construction of probability-and-statistics constructs, e.g., ‘distribution,’ that are
grounded both in the agent and the aggregate meanings and bridge these meanings. Therefore, as
compared to strictly aggregate modeling of probability, agent-based modeling is possibly more
student driven rather than concept-driven.

1.4.4 ProbLab: Connected-Probability Curricular Suite of Models
Earlier Connected-Probability computer-based models were authored in both the StarLogoT and
NetLogo environments. For instance, in the library of sample models that comes with NetLogo,
models simulate Galton’s Box and the “Monty Hall paradox.” ProbLab (Abrahamson &
Wilensky, 2002a) extends this approach by packaging a suite of NetLogo models and classroom
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construction activities designed to help students experience probability and statistics from micro
and macro perspectives and to relate these perspectives. ProbLab has been implemented in a
sequence of design-research studies with elementary and middle-school students who worked as
individuals, in focus groups, and in urban classrooms. In these studies, student participation in
ProbLab activities stimulated classroom discussions of combinatorial analysis and its relation to
sampling and distribution (Abrahamson & Wilensky, 2004a-c, 2005a-e).

1.4.4.1 NetLogo Models
The ProbLab interactive simulations are authored and run in NetLogo. NetLogo models typically
include a “graphics window”—the visualization space where the agents are embodied as icons,
various sliders, switches, and choice buttons for setting the simulation parameters and activating
the simulation, and monitors, graphs, and histograms that show current-state values from the
simulation, e.g., the total number of coins that fell on ‘heads.’ Students can study the code—the
program procedures that underlies the agents’ behavior, they can modify this code to extend the
model, or author their own model. NetLogo models also include “info windows” with texts that
explain the content of the model and how to operate it as well as suggested activities that
scaffold students’ learning paths.

1.4.4.2 Participatory Simulations and HubNet
Participatory simulation activities (“PSA,” Wilensky & Stroup, 1999a) are group activities in
which learners take part in simulating a phenomenon they are studying. For instance, students
embody gas molecules and move around in the classroom space to simulate Brownian motion.
Wilensky and Stroup (1999b) developed the HubNet technological infrastructure to enable
computer-based PSA. In HubNet, instead of acting the role of agents physically, students each
operate a computer-based agent. The shared space of agent activity is not the classroom physical
space but the interface of the facilitator’s computer—the “server.” The server interface is
projected onto a large classroom overhead screen, so that students can view the shared space.

Using a “client” that can be a laptop personal computer, a calculator, or some other handheld
device, students control agents that share a common space. For instance, in the “Disease” PSA,
the teacher “infects” one of the student–agents, and that student–agent chases and infects other
student–agents, who, in turn, infect yet more student–agents. A graph records the total number of
infected agents over time (the aggregate perspective). Typically, this graph is S-curved, because
the overall rate of infection rises gradually at first, accelerates in the middle and then tapers off
as all students are infected. Students initiate experiments to explore these aggregate
mathematizations. To simulate these experiments, students use interface features to change the
parameter values that modify the output of the program’s procedures. Students can also
download back to their client information from the shared interface.

1.4.4.3 S.A.M.P.L.E.R.
S.A.M.P.L.E.R. (Abrahamson & Wilensky,  2002b), Statistics As Multi-Participant Learning-
Environment Resource, is ProbLab’s statistics component. S.A.M.P.L.E.R. is a PSA that runs in
HubNet. In the current version, the clients are laptop computers. In S.A.M.P.L.E.R., students
take samples from a hidden “population.” Each student take his/her own sample, uses that
sample data to estimate the population statistics, and inputs this estimated statistic into the
common histogram that accumulates all students’ guesses. This PSA has been implemented with
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10-, 12-, and 14-year-old students, who had opportunities to ground rich discussion of
mathematical content in their collaborative sampling activities (Abrahamson & Wilensky, 2004a,
2004b).

Having overviewed the rationale of the Connected-Probability project and specifically of the
ProbLab experimental unit, we will now overview the theoretical component of this paper. In
later sections, we will explain the ProbLab activities and models in further detail so as to
contextualize a subsequent elaboration of the theory in terms of student work in ProbLab.

1.5  Learning Axes and Bridging Tools: A Theoretical–Pragmatic Approach to
Design for Learning

Learning axes and bridging tools are theoretical–pragmatic constructs for design-research in
mathematics education. The two constructs are inter-defining, with a learning axis being more
about the cognition of mathematics, and a bridging tool—more about the design of learning
environments. These two constructs that have emerged through our studies of student learning in
diverse mathematical domains enable us to articulate our design rationales in terms of our
understanding of how students learn mathematics, and, in turn, to couch students’ mathematical
learning in terms of their interactions with our designs.

X  X  X
X  X  X

Figure 1. A bridging tool anchoring student construction of the commutative property of
multiplication. Attending alternately to 2 rows of 3 X’s or 3 columns of 2 X’s—two competing
disambiguations of this ambiguous figure—may stimulate an understanding of commutativity.

Figure 1 is an example of a picture that could serve as a bridging tool in a mathematics-education
design. The picture can be attended to in many ways—it affords (Gibson, 1977) different
perceptions. Two of the possible interpretations of this picture—the picture’s meanings—are as 2
rows each made up of 3 X’s or as 3 columns each made up of 2 X’s. For the learner to build new
understanding with these contrasting meanings, s/he would need to be aware of some quality of
the picture that is conserved or remains constant across the competing perceptions—in this case
the constant is the cardinality of the group (6 X’s) or the ‘object permanence’ of the picture
(knowing that the picture does not really change).

Between two alternate meanings for a single object extends the learning axis, a space of potential
learning. The potential learning is evoked when the coexistence of two competing perceptions is
foregrounded and problematized, stimulating the learner to construct a logical reconciliation (a
“bridging”) of these competing perceptions. In this case, one might construct the commutative
property of multiplication (a*b = b*a) as a rule that relaxes the tension inherent in the object’s
ambiguity. In later sections, we elaborate on these constructs, situate them within the broader
literature, and further demonstrate them in the analysis of classroom data.
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1.6 Summary of Introduction
We began this section by discussing students’ difficulty in studying probability and statistics. We
analyzed the domain as configured by dualities of subconstructs. After an overview of some
previous designs for probability and statistics, we discussed agent-based modeling-and-
simulation environments, focusing on the Connected Probability project and the NetLogo
software, and we suggested that these environments hold potential for students to bridge the
challenging dualities of the domain. Specifically, we explained the structure of ProbLab, the
experimental unit for probability and statistics that we are currently developing. Next, we
introduced two theoretical constructs, learning axes and bridging tools, that help us design
classroom learning artifacts in light of our domain analysis and inform our analysis of classroom
data.

In Section 2, Design, we will elaborate on ProbLab’s NetLogo models and construction
activities. Specifically, we will explain one activity design {?}that culminates with the
S.A.M.P.L.E.R. PSA. Section 3, Theory, builds on Section 2 to ground ‘learning axes’ and
‘bridging tools’ in the context of our design. Section 4 details the methodology of an
implementation of ProbLab in two Grade 6 classrooms, and Section 5 presents results from that
implementation. Section 6 is an analysis of students learning through the learning-axes and
bridging-tools theoretical lenses. We conclude the paper in Section 7 with an evaluation of our
design-research perspective, implications to mathematics education, and pointers to future work,

2 Design
In this section we will elaborate on the design rationale and activities of ProbLab (Abrahamson
& Wilensky, 2002a), a computer-based experimental unit that extends the Connected Probability
project (Wilensky, 1997a). Specifically, we will overview the activities that, in the current
version of the unit, lead up to the S.A.M.P.L.E.R. participatory simulation activity.  Explaining
the earlier activities will contextualize both an explanation of the design of S.A.M.P.L.E.R., in
this section, and discussions of our theory and of classroom data, in later sections.

2.1 ProbLab: Overview and Design Rationale
ProbLab was designed as an attempt to untangle and restructure the domain of probability and
statistics so as to make it accessible to middle-school students. We view the domain as a set of
three interleaved sub-constructs, or ‘pillars,’ that students need to coordinate: theoretical
probability, empirical probability, and statistics (see Figure 2, below, on left). These pillars are
not target cognitive constructs. Rather, this tripartite structure is a theoretical–pragmatic
framework organizing our domain analysis, design space of learning tools and classroom
activities, communication with teachers, and data analysis. The semiotic interdependency
between these pillars is one reason probability and statistics can be hard to teach and to learn.

In teaching probability and statistics, it is tempting for educators to focus on one pillar or another
and then move sequentially to the next pillar. A teacher may plan a unit as an orderly sequence
of concepts, e.g., “theoretical probability” and then “empirical probability,” but the students
might remain with disconnected pockets of procedural knowledge or even not understand these
pockets at all. Yet, it is also intractable to teach these pillars all at once, because we would then
foster understanding that is muddled and undifferentiated. Our response to this dilemma is to
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design bridging tools (Abrahamson, 2004; Fuson & Abrahamson, 2005). A bridging tool is a
mathematical object that can be viewed from different activity-driven perspectives (in Figure 2,
below, the names of some of these bridging tools are in the overlapping areas of the circles on
the left, and some of these tools are pictured on the right). Each classroom-activity context, e.g.,
theoretical or empirical probability, lends pillar-specific meaning to that object, and, moving
between these frames, a student is stimulated to construct around the object a conceptual
structure that coordinates the competing frames coherently. In this sense, bridging tools are what
Papert has called “an object to think with.”

Design Structure Classroom Tools
Figure 2. The ProbLab experimental curricular unit in probability and statistics.

ProbLab activities cohere around the ‘9-block’ (see Figure 2, above, and see Figure 3, below).
The 9-block is what we call the math-thematical object of the ProbLab unit—it is the pivotal
bridging tool of the design that features in each of ProbLab’s classroom activities. The 9-block is
a 3-by-3 array of little squares, each of which can be either of some ‘target color,’ such as green,
or some ‘other color,’ such as blue. Framed from the theoretical-probability pillar, a given 9-
block is one of all 512 (29) green/blue permutations in its combinatorial sample space (see Figure
3a, for a student’s worksheet in which she created different 9-blocks; see Figure 3b, for a “9-
Block Deck” of cards). Framed from the empirical-probability pillar, if you “roll” a 9-block in a
computer model, you get different green/blue permutations. So the 9-block functions as
ProbLab’s computer-based counterpart of a coin or a die that are traditional mechanical
probability objects serving in traditional probability curricula (see Figure 3c, for a fragment of a
NetLogo model, in which 9-blocks are generated randomly and accumulated into a “histogram”).
Framed from the statistics pillar, a 9-block is a sample out of a population of thousands of
green/blue squares (see Figure 3d). Yet as a computational artifact, the 9-Block is a more
powerful ‘object to think with’ than traditional stochastic devices such as a coin or a pair of dice.
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    a          b                   c     d

Figure 3. The 9-block: bridging theoretical probability, empirical probability, and statistics;
bridging concrete and virtual media

The following sections explain further the classroom activities of ProbLab. Each section
highlights how the activities help students to bridge between the domain’s pillars. The unit
begins with students building the combinatorial sample space of all green/blue 9-blocks (the
combinations tower). Next, students work with computer microworlds in which they conduct
simulated experiments: they randomly generate 9-blocks and then analyze patterns in the
distribution of these random samples. Finally, students work in S.A.M.P.L.E.R., in which they
take and analyze 9-block samples from a hidden population of thousands of green and blue
squares. (For other objects, models, and activities and for further references, see
http://ccl.northwestern.edu/curriculum/ProbLab/). Note that whereas we work with teachers to
structure the ProbLab experimental unit according to lesson plans, the activities could be used in
a more exploratory fashion.
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2.2 The Combinations Tower

    
a      b c

   
d           e

Figure 4. The ‘combinations tower’ ProbLab activity

ProbLab activities use traditional as well as computer-based media.4 In the ProbLab activity
combinations tower, students use paper, crayons, scissors, and glue to build the combinatorial
sample space of all possible green/blue 9-blocks (see Figure 4a, b, and c, above). Abrahamson &
Wilensky (2005b, 2005c, 2005d) report on how a 6th-grade classroom self organized to engineer,
strategize, and produce this challenging mathematical object. Sixth-grade students create
collections of 9-blocks (Figure 4a, above), with particular attention to avoiding duplicates.
Students are then guided to construct this sample space in the shape of a histogram according to
the number of green squares in the 9-blocks (see Figure 4d, above, for a clear view of the
histogram). The heights of the histogram columns correspond to the coefficients of the binomial

                                                  
4 see Abrahamson & Wilensky, 2005e, for the marble scooper, a device, shaped as a 9-block, for
sampling sets of nine marbles out of a box of marbles with known or unknown ratio between
marbles of different color
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distribution: 1, 9, 36, 84, 126, 126, 84, 36, 9, and 1. For example, there is only a single (1)
combination with no green squares, there are 9 different combinations with exactly one green
square, 36 with exactly two green squares, and so on. Although students do not yet understand
binomial distribution functions, they do notice the symmetry and general emerging shape of the
distribution and use this knowledge to inform their search for new combinations. Students paste
the 9-blocks they have created onto a poster, grouped according to the number of green squares
in each column and without duplicates (Fig. 4b). This histogram—the combinations tower—
grows into a narrow and very tall poster that begins near the floor and soars up to the ceiling
(Figure 4c, above). The students and teacher refer to this display in subsequent activities, as we
will discuss in a later section.

Note the resemblance in shape of the pictures in Figure 4d and 4e (see above). Figures 4d and 4e
are fragments from two NetLogo models: Figure 4d is the combinatorial sample space of 9-
blocks (a combinations tower), created in the ProbLab model ‘9-Block Stalagmite’ (Abrahamson
& Wilensky, 2002c). Figure 4e shows the frequency distribution of randomly generated 9-
blocks, created in the ProbLab model ‘9-Blocks’ (Abrahamson & Wilensky, 2002d). So in
content, the combinations tower is a combinatorial sample space, and, in shape, it shows the
frequency distribution one would get if one were to generate large numbers of 9-blocks
randomly. This hybrid or ambiguous property of the combinations tower is a hallmark of
pedagogical bridging tools, designed artifacts that elicit student engagement in and negotiation
between two or more action models that are complementary in understanding a domain. Thus,
the combinations tower is poised to stimulate student thinking along the learning axis ‘theoretical
probability  empirical probability’ and students’ construction of ‘probability’ as the
mathematical concept that bridges this axis.

We find the juxtaposition of theoretical and empirical probability a fruitful pairing, generative of
the domain’s most ‘powerful idea,’ if to use Papert’s (1980) term. We wish to emphasize that it
is in student negotiating between two subconstructs of a domain that the most profound ideas can
potentially be grasped (see Abrahamson, 2004, for evidence from the domain of ratio and
proportion; see Abrahamson & Wilensky, 2004b, for evidence of students using this design to
connect theoretical and empirical probability; see Episode Three in section 6.3 in this paper).

2.3 NetLogo Models
ProbLab interactive computer-based simulations are authored and embedded in NetLogo
(Wilensky, 1999a). Each model constitutes a small microworld, an environment with built-in
constraints that foregrounds target aspects of phenomena and invites users to engage in
exploratory discovery-through-construction activities; the user constructs new knowledge
through understanding the environment’s constraints and adapting to them (for a discussion of
constructivism, learning, and computers, see Forman & Pufall, 1988). Learners’ exploration is
facilitated through a set of modifiable parameters that shape both the environment and the
behavior of elements within it. The model’s parameters and their range of values define the
parameter space of the model. Working within this space, students examine connections between
the parameter space and experimental results. Users set the values of these parameters either
through the interface or by accessing and altering the computer procedures. Given appropriate
support, the users also write new procedures, such as assigning new properties to elements in the
environment or initiating extensions of the model.
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ProbLab models range along several dimensions, including specific content, the number of
experimental parameters that the user can modify from the interface, and whether there currently
are activities outside of the computer environment that relate to aspects of the simulation. To
characterize the content of the models, we apply the learning-axes and bridging-tools
perspective. For instance, the model 9-Block Stalagmite (Abrahamson & Wilensky, 2002c)
bridges the theoretical probability and empirical probability spaces, and the model 9-Blocks
(Abrahamson & Wilensky, 2002d) bridges between independent events and dependent events.
Other models bridge out of the domain of probability and statistics, e.g., Dice (Abrahamson &
Wilensky, 2002e) bridges concrete and computer-based random-outcome generators, Equidistant
Probability (Abrahamson & Wilensky, 2002f, 2003) bridges geometry and empirical probability,
and ProbLab Genetics (Abrahamson & Wilensky, 2005f) bridges Mendelian genetics and
probability, and so these models are beyond the scope of this paper (see
http://ccl.northwestern.edu/curriculum/ProbLab/index_models.html). We will now demonstrate
with one of these models, 9-Blocks, that was used in the study reported in this paper.

9-Blocks (see Figure 5, below) was designed to help students understand outcome distributions
obtained in empirical-probability experiments. The procedure generates a random 9-block by
having each of the nine squares choose independently between green or blue (in the default
version of the model, there is an equal chance of getting each of these colors). The user watches
as, one by one or all at once, the squares each become green or blue: the one-by-one option
enhances the independence of each of the nine outcomes, whereas the concurrency option
suggests visually as though the procedure were selecting from the sample space of all 512
different 9-blocks. By the latter interpretation, each 9-block event is not a collection of
independent outcomes but a single outcome.

Once the 9-block is all colored, the procedure treats the 9-block as a compound event: It counts
up how many green squares are in the 9-block and records this number in a histogram. For
instance, if the 9-block has 6 green squares in it (see Figure 5a, below), the sixth column from
the left will rise up one unit. The histogram grows as the experiment runs and gradually takes on
a stable shape—a normal (discrete) distribution (see, in Figure 5a, below, a histogram after 5,120
trials). The shape of the stable distribution resembles the combinations tower (compare Figure
5a, below, to Figure 5b). Why is this so? Recall that in the combinations-tower activity, the
totality of 512 different 9-blocks was arranged in columns according to the number of green
squares in each 9-block (see Figure 5b, below). In the 9-Blocks model, the histogram is, in form
and function, the traditional mathematical representations—it represents diagrammatically a
count of random outcomes by type. So how does a random procedure produce a distribution
identical in shape to a form derived through combinatorial analysis? The answer lies in
considering independent probabilities as well as numbers of combinations.
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a. b.
Figure 5. Interface of ProbLab interactive simulation “9-Blocks”

There is an equal chance, 1/(2^9), that the program will produce any specific 9-block (e.g., the 9-
block in Figure 5a, above), because each square has a 1/2 chance of being green and a 1/2 chance
of being blue. However, the procedure does not tally the occurrence of specific 9-blocks but of
classes of possible outcomes—a total of ten classes defined by the number of green squares in a
9-block. These classes (sets) of outcomes differ in probability because they differ in the number
of members in each class. For example, there is a higher chance of getting a 9-block with a single
green square as compared to the chance of getting a 9-block with no green squares, because there
are 9 different 9-blocks with a single green square (it can be in 9 different locations), but only a
single 9-block with no green squares. Similarly, there is a higher chance of getting a 9-block with
2 green squares as compared to getting a 9-block with 1 green square, because there are more
combinations with 2 green squares (36 combinations) than with just 1 (9 combinations). Of
course, this is the logic that led historically to the development of traditional formulas for
computing binomial distributions, e.g., for determining the chance of getting n green squares in 9
independent trials. However, students in primary, secondary, and tertiary school and even experts
often cannot explain the logic underlying these formulas (Wilensky, 1997a). The pedagogical
objective of ProbLab is to help students build understandings so that eventually they can connect
to the mathematical knowledge expressed in these formulas.
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By allowing the user to view the 9-blocks appearing either square by square or all at once, the 9-
Blocks interactive model provides opportunities for students to discuss differences between
independent and dependent outcomes. By incorporating a histogram that resembles the
theoretical-probability structure, the 9-Block empirical-probability activity is designed to help
students bridge theoretical and empirical probability. Specifically, students who have
participated in combinations-tower activities should have an experiential basis for understanding
outcome distributions in terms of combinatorial analyses and random selection.

2.4 S.A.M.P.L.E.R.: ProbLab’s HubNet Computer Participatory-Simulation Activity
The ProbLab experimental unit, which begins with combinatorial-analysis activities and
continues with empirical-probability experiments, culminates with S.A.M.P.L.E.R., a statistics
activity. S.A.M.P.L.E.R., Statistics As Multi-Participant Learning-Environment Resource
(Abrahamson & Wilensky, 2002), is a participatory-simulation activity (Wilensky & Stroup,
1999) built in NetLogo (Wilensky, 1999a) and is extended through the HubNet technological
infrastructure (Wilensky & Stroup, 1999a) to include a classroom of students who share aspects
of the same data, act upon it simultaneously, and inform each other’s actions (see the
methodology section for further explanation of the classroom setting and the technology
supporting S.A.M.P.L.E.R.).

We will begin by explaining the S.A.M.P.L.E.R. interface and then discuss students’ work with
S.A.M.P.L.E.R. Whereas this activity could function as a standalone, we will contextualize the
activity design in light of students’ earlier work in ProbLab. Such contextualization will allow us
to highlight the opportunities we are designing for students possibly to achieve deeper
understanding by bridging between the pillars of the domain, theoretical probability, empirical
probability, and statistics. In a later section, we will discuss classroom data so as to focus on
these connections between the pillars, which students may be building.
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2.4.1 S.A.M.P.L.E.R.  Interface: Population, Samples, and Distributions

a           b             c

d
Figure 6. Selected features of the S.A.M.P.L.E.R. computer-based learning environment.

In S.A.M.P.L.E.R. (see Figure 6, above), students take individual samples from a population so
as to determine a target property of this population. The “population” is a matrix of thousands of
green or blue squares (Figure 6a) and the target property being measured is the population’s
greenness, i.e., the proportion of green in the population. A feature of the activity is that
population squares can be “organized”—all green to the left, all blue to the right (Figure 6b).
This “organizing” indexes the proportion of greenness as a part-to-whole linear extension that
maps onto scales both in a slider (above it) and in a histogram of students’ collective guesses
(below it). Students participate through clients (in the current version of S.A.M.P.L.E.R., these
clients run on students’ personal computers). These clients are hooked up to the facilitator’s
server. Students take individual samples from the population (Figure 6c), and analyze these
samples so as to establish their best guess for the population’s target property. (Note that whereas
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all students sample from the same population, by default each student only sees their own
samples, unless these are “pooled” on the server.) Students input their individual guesses and
these guesses are processed through the central server and displayed as a histogram on the
server’s interface that is projected upon the classroom overhead screen (Figure 6d).

The histogram shows all student guesses and the classroom mean guess and interfaces with the
self-indexing green–blue population. Note the small gap (Figure 6d, middle) between the
classroom mean guess and the true population index. Because a classroom-full of students takes
different samples from the same population, the histogram of collective student input typically
approximates a normal distribution and the mean approximates the true value of the target
property being measured. The students themselves constitute data points on the plot (“I am the
37”… “So am I!”… “Oh no… who is the 81?!”). So students can reflect both on their individual
guesses as compared to their classmates’ guesses and on the classroom guess as compared to the
population’s true value of greenness. Such reflection and the discussion it stimulates may be
conducive to understanding typical distributions of sample means.

S.A.M.P.L.E.R. can constitute a standalone set of activities, yet the general framework of
ProbLab is that students will participate in activities that interleave and juxtapose the statistics
component, the theoretical-probability component, and the empirical-probability component. The
9-block plays a pivotal role in students’ bridging between S.A.M.P.L.E.R. and the other pillars of
ProbLab. The 9-block features in S.A.M.P.L.E.R. as samples of size 3 by 3. Students taking 3-
by-3 samples from the S.A.M.P.L.E.R. population may construe the greenness of the population
in terms of 9-blocks, and this interpretation may help students bridge from statistics to both
theoretical and empirical probability.

Students may bridge between statistics and theoretical-probability by comparing between the
S.A.M.P.L.E.R. population and the combinations tower. Specifically, students may construe a
S.A.M.P.L.E.R. population as a collage from “the right side” (more green than blue) or “the left
side” (more blue than green) of the combinations tower.

Students may bridge between statistics and empirical-probability using 9-block distributions: the
act of sampling a 9-block from the S.A.M.P.L.E.R. population is meaningfully related to
generating a random 9-block, e.g. in the 9-Blocks interactive model. Both in S.A.M.P.L.E.R. and
in the 9-Block model, the user expects to receive a 9-block but does not know which 9-block will
appear on the interface. So students may think of the S.A.M.P.L.E.R. population as a collection
of many 9-blocks. This may support students in developing and using sophisticated techniques
for evaluating the greenness of the S.A.M.P.L.E.R. population. Specifically, students may attend
to each 9-block sample individually, and learn to use histograms so as to record sample values as
distributions. Otherwise, students often count up all the green little squares they have exposed
and then divide this total by the total number of exposed squares, in order to determine the
greenness of the population. Such a strategy, albeit effective, misses out on a learning
opportunity, because it does not mathematize the variety of samples as a distribution—it
“collapses” the variation.

2.4.2 Learning with S.A.M.P.L.E.R.
Whereas participatory simulation activities (PSA, Wilensky & Stroup, 1999)) may take many
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trajectories, depending on facilitators’ goals and learners’ age and interest, we have found it
useful to describe “typical” implementations of our PSAs when we have a clear idea both of the
age group and the broader curricular context (see HubNet participatory-simulation guides at
http://ccl.northwestern.edu/netlogo/hubnet.html). Such descriptions have helped teachers, and in
particular teachers who are new to networked classrooms, prepare for facilitating the PSA in
their own classrooms. The following description is based on focus-groups- and pilot-classroom
studies of S.A.M.P.L.E.R. (Abrahamson & Wilensky, 2004b) and a ProbLab implementation that
included S.A.M.P.L.E.R. (Abrahamson & Wilensky, 2005a-e).

The implementation of S.A.M.P.L.E.R. follows three stages: introduction (server only), student-
led sampling and analysis (server only); and collaborative simulation (clients and server).
Typically, the first two stages take between half an hour and an hour, depending on student age
group. The third stage may take between one and three periods, depending on student
engagement and the teacher’s flexibility in “weaving into” the PSA other ProbLab activities,
such as NetLogo models, that may challenge students to reason carefully and thus deepen and
enrich the discussion.

Introduction. The activity begins with the facilitator showing students a population of green and
blue squares (the population is entirely exposed). Even before the nature of the activity has been
introduced or relevant vocabulary has been explained, the facilitator asks students to describe
what they see. We find it useful to elicit students’ ideas, whether fanciful or mathematical, even
before we explain the activities. First, collecting student ideas allows us furnish future facilitators
with potential points-of-departure for classroom discussion—these teachers may wish to consider
student ideas prior to the lessons so as to anticipate the mathematical content in these ideas and
thus be prepared to facilitate classroom discussions. Second, student spontaneous ideas help us
improve the learning environment by providing students with tools for pursuing their ideas.
Third, student ideas may point to necessary changes in the design’s activity plan so as to enable
students to pursue learning paths that depart from their intuitive understandings. Fourth, allowing
students to express ideas that, traditionally, are not considered mathematical, enables greater
inclusion in this mathematics lesson, because students who do not consider themselves
mathematically able may feel more comfortable when there is does not appear to be a “correct
answer” and ideas need not be couched in terms of numbers. Fifth, by crediting students for
expressing what they see, we hope to instill in students a greater trust of their perception
judgment, because such judgment is an important personal resource in these activities that
include visualization displays of proportional relations between colored areas.

Students offer their interpretations of what they are seeing. The teacher then asks students how
green the population is, and students discuss the meaning of the question, offer intuitive
responses, reflect on the diversity of responses in their classroom, articulate personal strategies,
and develop more rigorous strategies and suggest how they could be implemented in the
computer environment. The teacher facilitates the discussion by reminding students of
mathematical content they had studied in the past that appears relevant to students’ intuitive
strategies. In doing so, the teacher introduces mathematical vocabulary that will help students
communicate during the activity. For instance, a student might say, “It’s too much to count all of
the little squares—if only we could just look at one little place and decide with that,” the teacher
may respond, “So you want to focus on just a sample of this entire population of squares—how
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should we decide what a good sample is that will allow us to make a calculated guess or predict
the greenness in the entire population?”

Student-led sampling and analysis. The teacher creates a new population that is not exposed. A
student uses the teacher’s computer, which is functioning as the “server” of the activity, to take a
single sample from the population. To determine the size of this sample and its location in the
population grid, the student–leader takes suggestions from classmates, asking individuals to
warrant their suggestions. Once the sample is taken, by clicking with the mouse on a selected
point in the population, students discuss the meaning of this sample in terms of the goal of
determining the population’s greenness. For example, if a 5-by-5 sample has 4 green squares and
21 blue squares, students may want first to describe it mathematically, e.g., “The ratio is 4 to 25”
(correct), and then draw conclusions from this sample, e.g., “There are 16 green squares on the
whole screen, because 4/25 is like 16/100” (partially correct). Students then debate over the
location and size of another sample, further discussion ensues based on this new sample, and
then yet more samples are taken. The teacher encourages students to keep a record of the data
and to draw conclusions from the accumulated data. For instance, let us assume that students
have taken ten samples each of 25 squares and have received the following data, couched in
terms of the number of green squares in each sample: 8, 4, 4, 9, 21, 6, 4, 8, 9, 7. What are we to
do with these data? Sum them all up? Decide that the answer is “4,” because “4” occurred more
than any other number? Ignore the “21,” because it does not fit with the others? Calculate the
average—8—and state that 8% of the population is green? Perhaps we should conclude that,
seeing as the samples are inconsistent, these data are useless? The teacher guides students
towards effective procedures by recording all the ideas and then exposing the population and
discussing with students which procedure yields the best results over repeated trials.

Collaborative simulation. The teacher creates a new unexposed population and, through the
server’s interface, enables students’ sampling functionalities. Students each take samples. The
total number of little squares students may expose is limited by a “sampling allowance,” for
instance a total of 125 squares, that is set by the facilitator, from the server. This allowance is
“replenished” between rounds. To optimize the gain from their limited sampling allowance,
students each strategize the size and number of their individual samples as well as the location of
these samples on the population grid. Figure 7 (see below) illustrates two different strategies
students often use. One student (see Figure 7a) worked in the “few–big” strategy, spending the
allowance mostly on a single location where the student took an 11-by-11 sample (a 121-block).
Students who operate thus often say they are trying to create a reduced picture of the entire
population. Some of these students choose to take the large sample from the center of the
population (and not from a corner as in Figure 7a) and say that the center is the most
representative location for the whole population. They also suggest that they can more readily
calculate the proportion of green in their samples if they take just one sample and not many.
Another student (see Figure 7b) worked in the “many–small” strategy, spending the sampling
allowance by scattering samples of size 3-by-3 (9-blocks) and 1-by-1 (1-blocks) in a more-or-
less uniform pattern across the population. Students operating thus often say they are trying to
cover as much ground as possible, in case there is variance in the population that could not be
found through a single large sample. Also, the “many–small” students are more likely than the
“few–big” students to use averaging methods in analyzing their sampling data. Classroom
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discussions address individual techniques for maximizing the utility of the limited sampling
resources and for making sense of the data.

a. b.
Figure 7. Examples of student sampling strategies: “few–big” and “many-small.”

At the end of each round, students use a slider to indicate their guess for the population’s
greenness, e.g., 83%, and press a button to input this guess to the server. A histogram that shows
all students’ guesses is thus projected on the overhead screen. Often, this histogram
approximates a bell shape. The teacher exposes the population and then “organizes” it so that the
population’s true value of greenness is evident. Whereas individual students may be up to 20 or
more percentile points off mark of the true value, the mean of the histogram—the “class
guess”—is often less than 5% away. Moreover, often no student has input the value of the
classroom mean guess—it is indeed only the guess of the classroom as a whole.

An optional feature of S.A.M.P.L.E.R. is that students begin each round with 100 personal
“points.” When students input their guess, they also commit either to their personal guess or to
the classroom mean guess. Once students have input their guesses, each student has some points
deducted according to the error of the guess they had committed to. For instance, based on her
samples, Maggie input “70%” and committed to her personal guess. Assuming the true value of
greenness turns out to be 50%, Maggie will lose 20 points. But, assuming that the class’s mean
guess is 55%, had Maggie committed to the class guess, she’d have only had 5 points deducted.
The juxtaposition of personal and pooled accuracy often engenders a pivotal moment in the
activity: as individuals, students each can view themselves as a single data point on the
histogram, but as an aggregate, the classroom embodies a distribution. It could be that this
identity tug-of-war, “me vs. classroom,” that is stoked by personal stakes in the guessing game
and by social dynamics around this game, provides opportunities for students to ground the ideas
of distribution and mean.

Once the classroom guesses have been plotted as a histogram and the true value of greenness has
been exposed, volunteer students go up to the front of the classroom, explain the histogram,
analyze the accuracy of the classroom guess, and respond to their classmates’ questions. In
particular, students share their personal sampling- and data-analysis strategies in a collaborative
attempt to improve on the accuracy of the classroom mean guess on a subsequent round.
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Following several practice rounds, the facilitator may challenge students by decreasing the
sampling allowance so that students each have limited personal information about the
population. Some local as well as classroom-level spontaneous conversation may emerge,
through which students coordinate their sampling so as to maximize the total exposed area in the
population (because it would be redundant to take multiple samples from the same location). If
students conclude that it is better, individually, to “go with the group guess,” can the group
somehow collaborate to ensure higher accuracy?

Some students believe that, once a new population is created and students have taken samples, it
is better first to discuss their estimations and then input guesses rather than first to input their
guesses and then discuss the distribution. These students argue that by first discussing, the group
can decide on a single guess, thus minimizing the range and variance of the distribution and thus,
ostensibly, achieving higher accuracy.

With the description of the S.A.M.P.L.E.R. participatory simulation activity—in theory and in
practice—we have completed the Design section. The next section, Theory, will refer back to the
Design section as context for elaborating on our learning-axes and bridging-tools theory.

3 Theory
In this section we further explain our constructs ‘learning axes’ and ‘bridging tools,’ using
ProbLab’s activities as context. This elaboration will address some of the intellectual roots of
these constructs. Also, we will discuss, from the perspective of these constructs, dimensions of
student resources that factor in student construction of understanding, e.g., perception and
classroom dynamics and discourse culture.

3.1 Learning Axes
The National Council of Teachers of Mathematics (2004) standards state that:

Instructional programs from prekindergarten through grade 12 should enable all students
to
• recognize and use connections among mathematical ideas;
• understand how mathematical ideas interconnect and build on one another to produce

a coherent whole;
• recognize and apply mathematics in contexts outside of mathematics.

This focus on building concepts by making connections is one of five NCTM meta-content foci,
along with problem solving, reasoning and proof, communication, and representation (NCTM,
2004). Building connections as a way of learning was the focus of Wilensky (1991, 1993,
1997a), who critiqued prevalent mathematics-education pedagogy for not enabling students to
connect to new mathematical knowledge using their previous mathematical knowledge or “extra-
school” experiences. This thesis resonates with the constructivist perspective on learning (Piaget,
e.g., 1952) and it’s implications to mathematics education (e.g., Papert, 1980, 1991; von
Glasersfeld, 1987). Essentially, each student has to construct individually—using previous
knowledge—an understanding of mathematical concepts; designers and teachers can help by
providing learning environments that foster student mathematical reasoning and by supporting
students’ navigation in these environments and group discussions towards a broad set of learning
goals.
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The learning-axes design approach to students’ mathematical learning is a one possible design
operationalization for Wilensky’s (1993) connected mathematics project, and specifically, the
connected probability project. The learning-axes approach is an attempt to strike a balance
between, on the one hand, under-specifying target content of learning environments to the extent
that students may not avail of useful learning paths inherent in these environments, and, on the
other hand, over-specifying content to the extent that students do not have opportunities to
achieve deep understanding through “re-inventing” the mathematical constructs. Given
supportive learning environments, young learners are inclined to reinvent core aspects of
commonly-used mathematical, computational, and, in general, quantitative–symbolical artifacts
and procedures (Papert, 1980; diSessa, Hammer, Sherin, & Kolpakowski, 1991; Bamberger,
1991; Abrahamson, Berland, Shapiro, Unterman, & Wilensky, 2004; Abrahamson & Wilensky,
2005c). The learning-axes approach attempts to leverage students’ capacity to reinvent
mathematics by articulating domain-analysis principles for locating the conceptual ingredients
that may foster student reinventing of target concepts, as we now explain.

A plausible route towards designing learning environments that strike a balance between under-
and over-specifying mathematical content begins with conducting a domain analysis, in which
the researcher deconstructs a mathematical concept into its ingredients. By “ingredients” we do
not mean graphic constituents of the concept’s symbolical notation, as in, “A fraction has a
numerator that is written on top of a line and a denominator that is written below the line,” nor
do we mean an operational/functional definition, as in, “A fraction, marked a/b, is a quotient
expressed in terms of the dividend, a, and the divisor, b.” Rather, by “ingredients” we are
referring to the cognitive constructs—schemas, implicit cognitive skills, or ways of seeing and
operating on the world—that would need to be adjusted so as to construct the novel concept. For
instance, to understand the meaning of a fraction, a student might need to successfully align her
counting skills and measuring skills in some context requiring accuracy—she would need to
account for the partial units of measure that hinder a straightforward quantification of some
extensive substance in terms of a standard unit of measure. ‘Counting’ and ‘measuring’ serve, in
terms of our approach and in terms of this specific learning situation, as two edges of a learning
axis—these edges define a space of potential learning in which a student may reconcile these
locally-competing schemas so as to construct the concept of fractions, given suitable context.

In some respects, by searching for psychological ingredients of mathematical concepts, we are
looking for the historical antecedents, dialectics, and contexts that engendered the invention of
new mathematical knowledge that became our cultural heritage. Our hindsight enables us to
choose for our classrooms the ingredients and activity contexts that may be most conducive to
students’ replication of aspects of this historical process. Specifically, we attempt to create for
students a problem space for which two different notions each appears useful, but it is not
initially clear how these notions may be combined to solve the problem. For instance, in the
context of an engineering-and-construction activity, a student may want to use a 1 centimeter-
long stick to measure the exact length of a longer stick of a length that is greater than 3
centimeters but less than 4. To measure the length of the longer stick, the student might count
how many times the shorter stick fits into it. A problem may rise when the student cannot name
the remainder beyond 3 centimeters in terms of the centimeter-unit stick. The student might
describe this remainder as a partial unit, e.g., “a bit,” and might mark the shorter stick to indicate
the length of this partial unit. Conceivably, such a scenario may contribute towards this student



24

being predisposed to appropriate millimeter units as a useful enhancement of her invention. So
problem spaces that give rise to learning axes include objects that both contextualize the problem
and stimulate the complementary notions that will contribute to the solution of the problem.
Therefore, learning axes are anchored within concise and shared classroom objects of
manipulation and discourse. When a single object evokes two or more conceptual
ingredients—when it stimulates student reasoning along a learning axis, we call such an object a
bridging tool.

We now further explain how we use the learning-axes approach to inform the design of bridging
tools, and then we broaden the discussion by examining perceptual and social dimensions that
contribute to student learning probability and statistics w/ bridging tools.

Figure 8: Learning axes and bridging tools: Student construction of mathematical concepts is
viewed as a problem-driven reconciliation of competing interpretations afforded by a single

bridging tool. Bridging tools are designed through domain analysis of mathematical concepts.

3.2 Bridging Tools
‘Bridging tools’ (Abrahamson, 2004a, 2004b; Fuson & Abrahamson, 2005) are classroom
pedagogical artifacts and activities that tap and stimulate students’ previous mathematical
knowledge, situational understandings, and kinesthetic schemas and link these reciprocally to
formal mathematical representations. Figure 8 (above) uses the apprehending-zone model,
(Abrahamson, 2004a; Fuson & Abrahamson, 2005), a mathematics-education model of design,
teaching, and learning, as a theoretical framework for illustrating bridging tools. A bridging tool
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is created in the Design Tools Space (see Figure 8, lower tier). Through participating in the
Classroom Activity Space (see Figure 8, middle tier), students construct meanings for the
bridging tool and link these meanings. A unique attribute of bridging tools is that each bridging
tool is designed to evoke at least two meanings that are complementary in understanding the
target concepts. Each of these meanings is an affordance of the tool within some activity context,
and each affordance supports a subconstruct of the target domain (see Figure 8, the dashed
arrows rising from the bridging tool). Students negotiate and reconcile these complementary
meanings to construct a new mathematical concept in their Internalized Space (see Figure 8, top
tier; note vertical axis). For example, students interpreted the multiplication table either as
columns composed through repeated adding of fixed values (e.g., +3, +3, +3, etc.) or,
traditionally, as a tool for locating products through cross-product referencing (factor x factor =
product). These alternative interpretations were conducive to students’ grounding in the
multiplication table an additive–multiplicative understanding of multiplication and, through that,
an additive–multiplicative understanding of ratio and proportion (Abrahamson, 2004; Fuson &
Abrahamson, 2005; the term ‘additive–multiplicative’ was first introduced in Fuson, Kalchman,
Abrahamson, & Izsák, 2002).

Our design of bridging tools is informed by cognitive, pedagogical, and socio-constructivist
assumptions and motivations that have led us to regard learning tools as more than ‘computation
devices’ for carrying out solution procedures or ‘scaffolds’ towards some alleged ‘abstract’
understandings. We assume that mathematical instruments can play pivotal roles in mediating to
students a cognition of the domains in which the instruments are applied. Specifically, bridging
tools can potentially embody and convey dilemmas and solutions inherent in a mathematical
domain. Using bridging tools, students may potentially emulate thought processes that the
designer sensed are conducive to the construction of central ideas for the target domain.

By focusing on bridging tools as organizing mathematics-education learning environments rather
than on the mathematical concepts, we wish to foreground a design principle that learning
environments should create opportunities for students to construct new ideas, and that presenting
students with completely “baked” ideas may defeat the objective that students themselves
construct the concepts (see, e.g., von Glasersfeld, 1990). The classroom activities and classroom
episodes that we present in this paper attempt to convey the plausibility of designing for learning
opportunities rather than designing directly for concepts. Bridging tools play a pivotal role in
suspending a concept-driven pedagogy of definitions, formulas, and word problems. Using
bridging tools, students are to experience the challenges inherent in understanding mathematical
concepts and initiate discussion of these challenges. So bridging tools are ‘precocious,’ in the
etymological sense of the adjective—they are ‘under cooked’ or ‘half baked’ and require
learners’ active participation to become “well done” as new mathematical constructs—personal
understandings that are sufficiently shared in the classroom (see also Cobb, Gravemeijer, Yackel,
McClain, & Whitenack, 1997, on the emergent perspective on learning).

One assumption of our design framework, coming from Abrahamson (2004) is that students can
construct mathematical concepts as reconciliations of the dual interpretations inherent in a
bridging tool. The idea of learning as reconciliation is not new. In 1837, William Whewell wrote
the following words about students’ intuitive understanding of the fundamental axioms of
geometry: “The student’s clear apprehension of the truth of these is a condition of the possibility
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of his pursuing the reasoning on which he is invited to enter” (Whewell, 1837/1989, p. 40).
Learning, according to Whewell, is the process of individual students grounding formalisms in
their intuition, and this learning process is fostered through discourse. Following Whewell, we
attempt to help students ground formal ideas in their perception and implicit understandings
(Wilensky, 1993; Abrahamson, 2004). The idea of understanding-in-action that is a hallmark of
constructivist pedagogy (e.g., von Glasersfeld, 1987) can be seen as rooted in phenomenology
(e.g., Heidegger, 1962) and in Gibson’s (1977) construct ‘affordance’ that is widely used in the
learning-sciences literature. We wish to extend the idea of learning as reconciliation by
submitting that reconciliation can transpire not only between intuition and formalism but also
between two intuitions grounded in one and the same object—the learning occurs as
constructions when learners attempt to reconcile two competing interpretations of a phenomenon
in the context of some designed activity (see Poincaré, 1903/2003, Polanyi, 1967, and Steiner,
2001, on the “mental combinatorics” of mathematics creativity; see also Piaget, 1952, on how
the idea of volume arises in conservation tasks; see Minsky, 1985, on hierarchies in mental
structures; see Case & Okamoto, 1996, on central conceptual structures). The object, and, later,
an internalized image of this object, is an “external representation” of a target concept in that the
object carries the reconciled coordination between the rival intuitions (see diSessa & Sherin,
1998, on coordination classes).

Following, we demonstrate students’ two catalysts for potential learning that is enabled by the
bridging tools and activity contexts we designed for ProbLab: perceptual schemas and cultural
practices.

3.3 Perceptual Schemas and Cultural Practices That Catalyze Bridging
We have discussed the domain of probability and statistics in terms of the inherent dualities of
the domain that may account for its challenges. Also, we have explained ‘learning axes’ and
‘bridging tools,’ the analytic–pragmatic constructs that inform our design of mathematics
learning environments. These learning environments, and specifically, student interaction with
bridging tools within a designed activity context, are to foster tension between competing action-
based interpretations of such tools, so that student learning may play out as reconciliation
between these competing interpretations. This section brings together and elaborates on our
theory and design: We demonstrate how cognitive tension can be fostered either by stimulating
competing perceptual schemas afforded by bridging tools or by stimulating competing personal
and interpersonal motivations stemming from the classroom activities and interacting with tacit
classroom microcultural practices. A later section will present data of student behavior that can
be interpreted through these theoretical lenses.
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Figure 9. The S.A.M.P.L.E.R. population stimulates both global and local judgments.

An example of perceptual schemas stimulated by the design of S.A.M.P.L.E.R. is student
responses to the S.A.M.P.L.E.R. population (see Figure 9, above). The S.A.M.P.L.E.R.
population is designed so as to afford an immediate global gauging of its ‘greenness’ value just
by virtue of gazing at the population and mapping the greenness onto a 0-through-100 scale. For
instance, the population in Figure 8 “looks” about 60% green. Yet one could attend closely to the
population and count its squares one at a time. That is a different type of affordance of one and
the same visual display. In particular, the grid that is superimposed on the population renders the
otherwise amorphous blobs enumerable. So the global and local types of attending are each
stimulated by the design. These affordances compete for the user’s attention. Both are useful for
the task at hand—determining the population’s greenness—but it is not initially clear how these
interpretations may coexist. In and of themselves, there may be little learning gain for students
who engage either in eyeballing the gestalt or in counting up little squares. But these two
competing interpretations of the perceptual data define a learning axis—in between them lies a
potentiality of learning. Thus, the design creates a tension and a possible negotiation between the
bottom-up measuring (enumeration) of elements in the population and the top-down sense of the
population’s central tendencies. The construct that bridges the global and local interpretations of
the population is the ‘sample’ (see dark frame in Figure 8). In S.A.M.P.L.E.R., the ‘sample’
feature anchors the mathematical construct that emerges from the negotiation of the dual
affordances of the population. The ‘sample’ both focuses/hones the tension between these
complementary schemas and paves the way to reconciling these tensions: a sample can “feel”
mostly green, but it can also be counted up so that this feeling (the proportional judgment) can be
corroborated using basic counting skills.

It is not imperative for the bridging-tools design framework that students’ mental action of
bridging be instantiated in a new element that is introduced into the bridging tool, e.g., a
‘sample.’ That is, the learning activity need not be ‘reified’ (see also Confrey & Costa, 1996).
Rather, bridging can result in new ways of attending to a bridging tool. By foregrounding aspects
of the tools and coordinating these, bridging is a new way of seeing mathematical tools.
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An example of personal and interpersonal interdependencies that play out in S.A.M.P.L.E.R. is
students’ concern for their own stakes in the S.A.M.P.L.E.R. game: how their data contribution
compares to those of their classmates and how these comparisons reflect on their social status.

Students in a classroom do not operate in a social void. Learning is ultimately an individual
experience, yet it is set within and stimulated by the interpersonal space (what Brousseau, 1986,
calls the milieu) wherein taken-as-shared ideas are constructed (Cobb & Bauersfled, 1995).
However, this web of meaning making that is largely self-organizing may be porous—some
students may be left behind. Students know about the importance of teamwork. They play
competitive group games, and the importance of collaboration in non-sporty spaces is often
preached in the form of slogans. Yet how often does a classroom have impact on straggling
individuals? If they do not participate, one cannot diagnose their difficulty let alone engage them
in conversation. One way of inviting struggling students into the classroom activity is to use
tools that equalize all students’ voices and demand all students’ attention and contribution in a
single classroom venture. The HubNet technology attempts to do just that (see Abrahamson &
Wilensky, 2005c).

Participatory simulations are specifically designed to leverage the classroom social dynamics in
joint inquiry into mathematical or scientific phenomena. In particular, HubNet participatory
simulations use technology to process individual students’ actions onto a central processor and to
project these onto the classroom screen in the form of mathematical representations. Thus, the
social and conceptual spaces are superimposed.

Figure 10. Fragment from the S.A.M.P.L.E.R. interface showing the histogram of student
guesses.

The S.A.M.P.L.E.R. histogram (Figure 10, above) collects students’ individual guesses. Each
student samples from different locations in the population, and so each student is likely to have a
different estimate for the population’s greenness value. Unless a student has erred in a
calculation, any guess is a valid reflection of that student’s data. So variability in the
S.A.M.P.L.E.R. population is mirrored in the student distribution—students are plotted onto the
histogram, so to speak, and each data point contributes to the overall accuracy of the classroom
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guess. The “classroom = distribution” analogy is an authentic reflection of collaborative
statistical practice that is simulated in S.A.M.P.L.E.R.

The histogram portrays the overall profile of classroom work (the distribution and its mean). At
the same time, it is also a trace of each student’s sampling and compiling of data (e.g., Maggie’s
guess, see Figure 9, above). Individual student actions that differ from the emergent “normal”
behavior—for instance a guess of 81% that is several standard deviations away from the
classroom mean—stand out as “deviant” mathematical actions and invite interpretation and
evaluation. Such student commentary is articulated in terms of working in S.A.M.P.L.E.R.: Is it
possible that this student in fact worked well?; Did this student hinder or help the overall
accuracy of the class?; Can a student both be “way off” and at the same time have contributed to
the accuracy? Thus, the S.A.M.P.L.E.R. the classroom interpersonal dynamics stimulate
attention shifts: the histogram is viewed one moment as a collection of individual guesses and
then as an integral entity. The histogram operates as a bridging tool on the axis between
individual and collaborative action to support student construction of distribution, range, and
mean.

This section concluded the expanded introduction of our design and theory. Following, we
delineate the methodology of our study and then present results from an implementation of
ProbLab in a middle-school classroom. The discussion will present data episodes from
S.A.M.P.L.E.R. in terms of the learning-axes and bridging-tools perspective.

4 Methodology
The implementations were opportunities to study students learning probability and statistics. At
the same time, these were opportunities for us to test our design. Specifically, analysis of
students’ spontaneous actions and discussion informed iterative modification of the design (see
Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, on the rationale of design-based
experiments).

4.1 Participants
S.A.M.P.L.E.R. was enacted in two 6th-grade classrooms (n = 20; n = 18) in a Grades 6 – 8
middle school in a very heterogeneous urban/suburban district (school demographics: 47.6%
White; 35.1% African–American; 15.2% Hispanic; 2% Asian; .2% Native American; 29.3%
free/reduced lunch; 4.7 ESL). At our request, the teacher informed us of the students’
mathematical achievement as based on schools tests, grouping students into “high-,” “middle-,”
and “low-“ achievement groups. Although students’ work in ProbLab was not expected
necessarily to reflect their work in traditional curricula, these groupings pointed out to us some
of the students we would want to pay special attention to. Also, these groupings allowed us to
evaluate whether our design enables students who had been struggling in traditional curricula to
participate with understanding in our activities (see Abrahamson & Wilensky, 2005b, 2005c).
The S.A.M.P.L.E.R. lessons took place during the second of two weeks of implementing
ProbLab in each of these classrooms (first week: 2 * 80 min. periods work on the combinations
tower interspersed with work on NetLogo models; second week: 3 * 80 min. periods work on
S.A.M.P.L.E.R., for a total of five double-period lessons per classroom). In these
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implementations, NetLogo models were operated by the teacher and discussed by the students.5

The teacher was a Caucasian female teacher in her third year as a teacher, with a background in a
health-related field. The research team on site included four graduate students completing their
doctoral studies in the Learning Sciences. The first author who was also the lead designer of the
ProbLab activities, took an active role in co-facilitating the lessons with the teacher. The other
team members’ roles included collecting video data and field notes, eliciting student ideas
through on-the-fly interviews during classroom activities, and addressing software and hardware
issues that often occur in technology-based pilot studies.

4.2 Procedure
The first author ran the activities, and was helped by the teacher in facilitating discussion and by
two design-research colleagues in technical support and data collecting. Other than introductions
and summaries that were facilitated by the leader, lesson time was dominated by individual and
group work, with occasional classroom discussions, some of which were spontaneous and others
initiated by the facilitators. Students were encouraged to lead discussion from the front of the
classroom, using a pointer to explain the computer interfaces projected on the overhead screen
and calling on other participating students.

   
a     b c

Figure 11. Optional classroom layout in S.A.M.P.L.E.R.

4.3 Technical Issues
The classroom was arranged for this implementation in a horseshoe shape, with the opening
towards the front of the classroom (see Figure 11a, above, for a view of the classroom from the
back-left corner). Twenty students seated in a horseshoe shape at individual laptop computers
were connected through a switch to the facilitator’s computer. In the center of the horseshoe we
positioned the facilitator’s laptop, angled so as to allow eye contact with most of the students
(see Figure 11a, on left). The facilitator’s laptop computer was wired via a 24-port switch to all
students’ laptop computers, Macintoshes running OS9 operating system. The switch was in a
shelf of a wagon (see Figure 10a, left of center), and on top of the wagon was the overhead
projector, also connected to the facilitator’s computer. We ran S.A.M.P.L.E.R. in NetLogo
1.3.1.6 The facilitator, whether teacher, researcher, or student, often stood at the opening of the
horseshoe to present the overhead projection (Figure 11b). During the lesson, the facilitator had
                                                  
5 In later implementations of ProbLab, students operated the NetLogo models individually.
6 The current NetLogo environment that is in its 2.x generation does not support Macintosh
computers that predate OSX.
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access to all students, and they could consult each other (Figure 11c). So all students and the
facilitators could see each other and the overhead projection, and only a single electrical cable,
running from the horseshoe center to a socket on the wall, was within the area students moved in.
This cable was secured to the floor with duct tape.

4.4 Data Collected
Two video cameras filmed all lessons: one was carried by a researcher to capture student work
and discussion and the other one was typically positioned on a tripod at the back of the
classroom as a backup but occasionally carried by another researcher. During individual work,
the researchers interacted with students, asking them to explain their strategies, actions, and
thoughts. Every day, the design team wrote extensive field notes during and immediately after
the lessons and during a first run through the video data (as the tapes were being digitized).
Verbal and electronic communications within the design team and with the teacher were
recorded to track the rationale of day-to-day modifications of the design. A posttest was
administered as another measure of students’ understanding and so as to elicit students’ feedback
on the experimental unit.

4.5 Data analysis
Four individual researchers examined the videotaped classroom data and the daily field notes.
Each researcher marked in the tapes episodes they sensed could be of significance for
understanding and improving the learning potential of students participating in the classroom
activities. In research meetings, we discussed our selected episodes, many of which were chosen
by more than a single researcher. These episodes tended to portray students who either had
difficulty understanding the activities or made insightful comments about the meaning of
mathematical representations. Our discussions resulted in a delineation of facilitation emphases
for clarifying and enhancing the activities (see Abrahamson & Wilensky, 2005e for a subsequent
study that applied these conclusions). Also, we came to articulate student insight as resulting
from a negotiation between competing meanings either of a single design element or coming
from two different elements. Building on the bridging-tools approach and on our emergent
domain analysis, we further developed the learning-axes approach reported in this paper.

5 Results
In this section, we first discuss student entrance understanding as reflected in their initial
sampling strategies. Next, following a brief report of posttest results, we show that some
students’ limited fluency in multiplicative concepts and procedures constrained their learning in
S.A.M.P.L.E.R.

5.1 Students’ Initial Understandings and Sampling Strategies
The S.A.M.P.L.E.R. activities began after students had participated in the combinations-tower
activity, in which students created and assembled 9-blocks, and after students had observed the
NetLogo simulations that included randomly generated 9-blocks. So the 9-block had become
contextualized by different activities in different media, and participating students often referred
to 9-blocks in classroom discussions. (See in section 2.4, explanations of the S.A.M.P.L.E.R.
design and a typical lesson scenario.)
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In the introduction of the S.A.M.P.L.E.R. activity, the teacher showed a revealed population and
asked students for their interpretations. Students’ interpretations ranged from fanciful to
“mathematical.” Fanciful interpretations included “Superman,” “a mushroom house,” “a man
with a shield,” “a messed-up face,” a “teddy bear with eyes,”  “a mountain,” and “an elephant
with a nose.” Mathematical interpretations used the 9-block as a reference point. For instance,
students said that the population could be thought of as a collection of many 9-blocks. Students
wondered how many 9-blocks might fit into the population. This stimulated a discussion of
methods for determining the number of squares in the population. Thinking in a different
direction, one student suggested that we look at the entire population as a single “1000-block,”
and that what we were looking at was just one of many different combinations of this 1000-
block. This interpretation appears to apply ideas that arose from the combinatorial-analysis and
empirical-probability activities to the entire population of squares..

Next, to introduce the sampling activity feature, the facilitator used a population that was entirely
revealed but for which the greenness value was not disclosed. The facilitator asked the students
how one could determine the greenness of the population. Students said that, in principle, one
could count up all the green squares in the population and divide this number by the total number
of squares in the population. However, students said, there are too many little squares to count,
making this strategy unfeasible. Other students suggested that it might be useful to focus on a
single area of the population and count up the green squares in it. The facilitator reiterated this
idea, calling that area a “sample.” The question on the table then became, “If we could only take
a single sample, where should we take it from?” The following transcription illustrates classroom
discussion about sampling.

Student 1: It would be better if there were a way to get a random spot. [for the sample]
Researcher: A random spot?
St. 1: Yeah, because if you chose somewhere, you might think, “Mmm, this one has a lot

of green, let’s do it there.”
Res: But what if randomly the computer gives me a place with a lot of green or a lot of

blue?
St. 1: Well, then that’s what you’ve got to guess on.
St. 2: [You should put the sample] in the middle, a little higher… it seems a little sort of

balanced.
St. 1: But that’s just what I’m saying. If you try to find something balanced, it’s going to

be around 50% no matter what.

These students’ exchange reflects a pivotal quandary of statistics—is the sample sufficiently
representative of the population, and what measures can we take to ensure that it is? A feature of
the design that supported this conversation was that the facilitator could toggle between a view
of the whole population and a view of different samples. Thus, students could gauge whether
various suggested samples were sufficiently representative of the population. Most students did
not use proportion-based mathematical vocabulary, possibly because they were not fluent in its
application to novel situations (see section 5.3, below). Yet, the visualization features of the
learning environment enabled these students to communicate about proportionality qualitatively.
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a.  b.
Figure 12. During student individual work, the teacher speaks with each student.

The lesson continued with students working on their individual computers. Students took
samples from the population, inputted their guesses to the server, and examined results once the
population and its true greenness value was revealed. The teacher worked with individual
students as they participated in these activities. In Figure 12a, above, the teacher is working with
one of the students she had listed as high achieving in mathematics. They are interpreting that
student’s guess for the population’s greenness as compared to the true value. In particular, the
student is showing the teacher that she had guessed correctly—the green–blue partition in the
population is precisely where the student had predicted it would be. The student explains to the
teacher her sampling strategy. In Figure 12b, above, the teacher is working with one of the
students she had listed as low achieving in mathematics. The student had taken samples from the
population and had input a guess that did not seem to reflect all the samples he had taken. The
teacher is discussing with the whether it would help for him to consider all samples in
determining the greenness of the population. These classroom data demonstrate both that the
S.A.M.P.L.E.R. activity enables immediate feedback to the teacher and helps the teacher elicit
specific student difficulty. Also, these data demonstrate one way that PSA integrate group- and
individual work: the framework of the activity is collaborative, but to participate successfully in
this collaboration, students must each achieve an understanding of the activity.

5.2 Post-Tests
Students’ responses on the post-intervention questionnaire revealed a wide range in classroom
experiences in the unit. Responding to an item requesting their favorite sampling strategy, many
students said they enjoyed spreading their samples all over the screen and then counting up the
total number of green squares, dividing this number by the total number of exposed squares, and
calculating this quotient as a percentage. Of these students, some thought that it is better to take
single-square samples so as to maximize the spread of squares. Other students said that
distributing their samples “randomly” was a better strategy as compared to distributing them
systematically. Many students thought it is highly efficient to divide the sampling task between
many students by allocating specific sampling areas to specific students—this strategy, they
wrote, maximizes the total exposed squares.

Another item asked students whether it is better to commit to one’s own guess or to commit to
the group guess. That is, which of these two strategies ensures better long-term results? Students’
answers varied, and they depended on the students’ mathematical ability. High-achieving
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students preferred going alone, unless they were very unsure of themselves, whereas lower-
achieving students preferred to trust the group guess. So the lower-achieving students were those
who believed that the compiled guess is a more accurate measure of the statistical data as
compared to an individual guess. This finding is somewhat counter-intuitive. One might expect
that the higher-achieving students and not the lower-achieving students would be those who gain
this mathematical insight. Possibly, the higher-achieving students are those who more often
suffered from their classmates’ “wayward guesses,” i.e. off-mark input that resulted from
incorrect analysis. So the accuracy of students’ individual guesses resulted both from a random
factor—the specific samples each student exposed—and from a skill factor, students’ individual
mathematical competency reflected in their ability to calculate a percentage. In section 5.3 we
elaborate on this point.

In their written responses, all students referred in one way or another to the distribution and
range of the guesses, couching these in terms of ‘left,’ ‘right,’ average, and balancing (“it evens
out”). We interpret this finding as indicating that the S.A.M.P.L.E.R. activities created a shared
classroom artifact that carried shared meanings, experiences, and vocabulary. Such shared
mathematical images could serve as helpful anchors in future classroom discussions.

Yet another item asked students whether one should first input a guess and only then discuss the
input or first discuss and then guess. Many students thought that discussing first might either
confuse you or bias the group guess—that a wider distribution guaranteed more accuracy of the
classroom group guess. We interpret this finding as indicating that students experienced how an
aggregation of random outcomes can nevertheless effect higher accuracy than would a
“centralized command” (see also Wilensky, 1997a, 2001; Surowiecki, 2004).

Finally, students varied in what they considered to be a “good guess.” Some students were happy
to be several percentage points off the true value, whereas other students were more critical of
their guesses (for a more detailed report on students’ spontaneous sampling strategies, see
Abrahamson & Wilensky, 2004a).7

                                                  
7 For a report on student responses to the probability data, see Abrahamson and Wilensky
(2005a).
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5.3 Mathematical Fluency as a Bottleneck in Students’ Mathematizing Their
Intuitions

Figure 13. Students use mathematical calculation to determine the greenness of the population
based on the samples.

Many students’ initial methods for using samples to compute the population’s greenness were
naïve, and students’ calculation procedures were cumbersome. For example, one student counted
the number of squares in the top row to be 62. She then counted and found the number of green
squares in that row to be 27. She stated that the top row appeared representative of other rows,
and so she would base her prediction for the population’s greenness on that row. Finally, rather
than stating the population greenness directly on the basis of this 27:62 ratio, she performed a
calculation that appeared to confuse the procedures for adding fractions and for multiplying
fractions: first multiplied the 27 and the 62 each by 62, got the equivalent ratio 1674:3844, and
then restated this ratio as a percentage, to get 43.5% (see Figure 13, above).

Figure 14. Histogram of student guesses supporting discussion of central-tendency indices.

Many of the other students in this 6th-grade classroom initially had difficulty understanding the
difference between the absolute and relative (proportional) number of green squares in their
samples. For instance, a student who guessed 11% as the population greenness had found 11
green squares out of a total of 200 squares he had exposed. These students also had difficulty in
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calculating equivalent fractions. So S.A.M.P.L.E.R. activities constitute opportunities both to
ground proportional reasoning and to practice calculating proportional equivalencies.
Similarly, students for the most part did not understand the concept of ‘mean’ beyond knowing
to calculate it. Specifically, they did not know whether, given a set of values and their mean,
there should necessarily be an equal number of values lesser than and greater that the mean. The
classroom was discussing a histogram (see Figure 14, above) that plotted all students’ guesses as
well as the mean of those collective guesses (the tall thin line). The facilitator asked students
whether there should necessarily be the same number of students who guessed above (to the right
of the mean) and below it (to the left of the mean). We expected students to be able to
differentiate between the constructs ‘median’ and ‘mean,’ but students could not do so in the
context of a histogram. S.A.M.P.L.E.R. activities are opportunities to contextualize and discuss
differences between central-tendency indices. In Figure 14 (above) there are 9 guesses lesser
than the mean and 11 greater than it. The long thick diagonal line is a pointer that a presenting
student is using to explain this display to the classroom. As it turned out, the mode (the tallest
column) was very close to the correct answer—closer than the mean or median were.

The variety of tasks performed by a group of students who produce individually and then share
statistical data affords opportunities for examining the unique function of these indices. For
example, in Abrahamson and Wilensky (2004b), students elected to calculate the mean of
eighteen samples taken from the same population, but when the necessary calculations were
performed by ten students and four different means were reported, students elected to trust the
mode of these means...

This remainder of this paper focuses on five learning axes in the S.A.M.P.L.E.R. design, the
bridging tools designed to stimulate dilemmas along these axes, and the statistics ideas students
construct in reconciling these dilemmas: (a) local-vs.-global interpretation of the S.A.M.P.L.E.R.
population stimulates the construction of ‘sample’; (b) theoretical-probability- vs. statistical
interpretation of a collection of 9-blocks stimulates the construction of ‘sample distribution in the
population’; (c) theoretical- vs. empirical-probability interpretation of the combination tower
stimulates the construction of ‘sample space’; (d) range-vs.-cluster interpretation of a histogram
stimulates the construction of ‘variance’ and ‘balance’; and (e) individual-vs.-social
interpretation of a histogram stimulates the construction of ‘sample mean’ and ‘distribution.’ For
each learning axis, we demonstrate through classroom data students’ negotiation between the
poles of the axis. The paper ends with a summary of our approach, a brief discussion of tradeoffs
inherent in the learning-axes approach to design, and a “recipe” for designing effective bridging
tools.

6 Discussion: Analysis of Student Learning Through the Theoretical
Lenses of Learning Axes & Bridging Tools
In earlier sections, we have demonstrated how we use the learning-axes theoretical framework in
our analysis of mathematical domains and how this analysis, in turn, informs our design of
bridging-tools for classroom activities. In this section we demonstrate how the learning-axes-
and bridging-tools perspective also can be used as lenses for analyzing classroom data. Using the
same lenses both towards classroom implementations and following these implementations helps
us evaluate the efficacy of our activity design. In particular, we select episodes in the data that, to
our judgment, demonstrate student insight and inventiveness, and we work to articulate this
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insight in terms of the bridging tools the students were working with, the underlying learning
axis stimulated by this bridging tool, the statistical construct that the axis potentially coheres as,
and the activity that contextualized the student’s work. Following, we will examine five brief
classroom episodes so as to explain five of the learning axes, bridging tools, and statistical
constructs that are enfolded in the design and are enabled through student participation in the
classroom activities. The structural elements of these episodes will be summarized in a table in
section 6.6.

6.1 Episode One: The Local–Global Learning Axis Coheres as a Sample
Within the design sequence, an introductory activity engages students in determining the
greenness of a population that is completely revealed (students see all of the tiny squares in the
green–blue mosaic). This activity occurs at a point before students have discussed sampling and
before the facilitator has enabled the model’s sampling functionality. Nevertheless, students
performed quasi-sampling actions. Students: (a) attended to selected spatial locations in the
S.A.M.P.L.E.R. population; (b) used counting actions to inform their sense of the greenness
within these selected locations; and (c) coordinated information from these samples so as to
determine the population’s global value of greenness.

Upon close attending to students’ verbal descriptions and gestures, it appears that their guesses
were informed both by counting tiny squares (“local” actions) and by eyeballing the entire
population and assigning to it a greenness value (“global” actions). So students were using two
different methods: local enumeration actions and a global perceptual judgment. Importantly,
students did not appear, initially, to be aware that they were using two different methods, nor did
they appear to coordinate these methods as complementary. Yet, through discussion with their
peers and the facilitator, students have opportunities to connect between these personal
resources, as the following transcription demonstrates.

Figure 15. Devvy explaining how he determined a value for the population greenness.

Researcher: [standing by the student, Devvy, who is working on his individual laptop
computer] What are you doing here?

Devvy: [gazing at the S.A.M.P.L.E.R. population, index finger hopping rapidly along
adjacent locations in the population; see Figure 15, above] Counting the squares.

Res: What did you come up with?
Dev: [hands off screen, gazing at screen; mumbles, hesitates] Around 60 or 59 percent.
Res: Sorry… so, show me exactly what you’re counting here.
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Dev: Green squares, [right index on screen, swirls in one location, then hops to another
location, unfurling fingers] ‘cause it says, “Find the percentage of the green
squares.”

Res: Uhm’hmm
Dev: So if you were to look at it [left hand, fingers splayed, brushes down the whole

population and off the screen] and sort of average it out, [touches the ‘input’ button]
it’d probably equ... [index on population, rubbing rapidly up and down at center,
using little motions and wandering off to the left and then down] it’d probably go to
59 or 60.

Res: And how did you get that number?
Dev: [index strokes population along diagonal back and forth] Because it’s almost even,

but I think there’s a little bit more green than blue.

Devvy’s actions are not statistically rigorous—he is not taking equally sized samples, nor is he
systematically counting the number of green squares in each sample or methodically averaging
values from these counts. But his actions are proto-statistical (see L. B. Resnick, 1992)—without
any formal background in statistical analysis, Devvy is going through the motions of statistical
analysis, if qualitatively: skimming the population, attending to selected locations, comparing
impressions from these locations, and determining a global value. Albeit, Devvy appears to
acknowledge the tenuousness of his methods in qualifying his suggested strategy as “sort of
average it out.”

Whereas Devvy’s spontaneous local and global methods are as yet disconnected, both methods
are grounded in the same object, the S.A.M.P.L.E.R. population. This ‘common grounds’
constitutes the platform or arena upon which Devvy may negotiate the competing mental
resources. Devvy may have already begun building a micro-to-macro continuum by attending to
mid-level clusters of tiny squares, i.e. “samples” (see Levy & Wilensky, 2004, on the role of the
mid-level constructions in student reasoning about multi-agent phenomena). Through
participating in the S.A.M.P.L.E.R. activities, Devvy’s proportional judgments could possibly be
connected to his acts of counting. Yet, at this point in the classroom activities, this student’s
limited fluency in applying proportional constructs does not enable him to quantify his
proportional judgment in terms of the local data. Therefore, he begins with a local narrative but,
when pressed for an exact answer, he switches to a global approximation.

In summary of this episode, 6th-grade students have personal resources that are relevant to
statistical reasoning. The S.A.M.P.L.E.R. PSA stimulates these resources and supports student
coordination between these resources. Specifically, in the context of determining the greenness
of the S.A.M.P.L.E.R. population—the bridging tool in this episode—students invent sampling
as an action that reconciles enumeration and perceptual judgment.
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6.2 Episode Two: The Theoretical–Statistical Learning Axis Coheres as a
Distribution

a.  b.
Figure 16. Students can learn about distributions by coordinating between a “population” of

green-or-blue squares (on left) and a related combinatorial sample space (on right).

Luke is seated to Devvy’s right.8 He, too, is looking at the S.A.M.P.L.E.R. population (see
Figure 16a, above). Luke responds to Devvy’s guess of 59%. In his observation, Luke refers to
the combinations tower that students had built during the previous week and is now attached to
the wall near him (see Figure 16b, above):

Luke: Ok, the reason I think ’50 percent’ is 'cause when you make that tower [turns in
his seat to face the combinations tower], it's gonna be equal for green and blue [equal
total numbers of green and blue squares]. So if this [the S.A.M.P.L.E.R. population]
were to be all of the combinations, it'll be equal green and blue—50%. [the correct
answer was indeed 50%]

The S.A.M.P.L.E.R. population and the combinations tower are physically distinct objects in the
classroom. Luke’s insight is that we can couch the S.A.M.P.L.E.R. population of thousands of
squares in terms of discrete 9-blocks. The connection that Luke builds between these objects is
not associated with any particular new object. It is grounded in and facilitated by the bridging
tool “9-block,” yet it is essentially not about 9-blocks per se but about the distribution of 9-
blocks in the population. This, at this point in the unit where ‘distribution’ had not been named
or otherwise symbolized. So combinatorics-based construal of a population may provide basic

                                                  
8 We chose to discuss two episodes that are consecutive in our video data so as to demonstrate
variability in student mathematical fluency coming in to the design. Also, the episode shows the
flexibility of the design in engaging and stimulating understanding at different levels.
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tools for statistical analysis.9 If Luke had not participated in constructing the combinations tower,
he may not have been able to use it as a resource for his insight (see project-before-problem,
Papert, 1996).

6.3 Episode Three: The Theoretical- vs. Empirical-Probability Axis Coheres as a
Sample Space

Figure 17. A student explaining why a probability experiment (on the left) produces a histogram
that resembles the representation produced through combinatorial analysis (in center).

On the last day of our intervention, we asked students to address what is perhaps the most
powerful idea of the domain of probability, the idea of prediction: distributions of randomly
generated outcomes gradually come to resemble the anticipated distributions produced through
theoretical analysis. Figure 17 (above) features the 9-Block model on the left and a compute-
generated picture of the combinations tower (center). As the 9-Blocks experiment ran, Emma
volunteered to explain why one of the central columns in its outcome distribution was growing
taller than most other columns.10

Emma: “Maybe because there’s more of that kind of combination. Just basically, because
if there’s 512 different combinations, and we know that there’s more [possible
combinations] in the middle columns, [then] even though there’re duplicates, there’s
still going to be more combinations in the middle columns. [The student is now using
a pointer to explain what the class is watching on the screen] Even though these
patterns [in the empirical live run, on left] may have duplicates in this [as compared
to the combinations tower, center], it’s still counting all the patterns, so it’s going to
have the same shape…. It’s going to be the same shape, because it’s basically the

                                                  
9 Luke’s combinatorial–statistical link also fits populations that deviate from 50% green: one can
speak of a 73%-green population as being “from the green side” of the combinations tower.
10 This specific episode from the implementation of ProbLab does not directly describe a
S.A.M.P.L.E.R. activity but is relevant to the discussion of learning axes and bridging tools.
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same thing. Because in the world there are more patterns of these than there are of the
other ones.”

Emma’s insight is that the tower and the distribution are alike in shape. Moreover, she explains
why these two representations should be alike in shape. This, despite the possibly confusing fact
that the empirically generated representation records many more samples than the 512 9-blocks
in the static combinations tower. Emma’s assertion that “in the world” there are relatively more
of one type of pattern as compared to the other suggests that she is attending to the proportions
between counts and not to the absolute difference between them. That is, in comparing between
the representations, Emma first came to think of the combinations tower as a theoretical-
probability tool. The combinations tower is not just the collection of all combinations. Rather, it
represents propensity—it is a template for gauging relative frequencies through multiplicative
comparison. It is thus a bridging tool for grounding the idea of a sample space.

6.4 Episode Four: The Range-vs.-Cluster Learning Axis Coheres as Variance
For the last day of enacting S.A.M.P.L.E.R., we designed a competitive game between the two
study classes. A monitor on the screen tracked the students’ average score from round to round
(how many “point” the classroom had on average), and the class that had the highest score at the
end of five rounds was to be the winner. Also, we disabled students’ choice between committing
to their own guess or the group guess—all students had to go with the group guess. These
combined circumstances engendered a higher-than-usual collaboration in the classroom. The
following conversation occurred during a third round in one of the classrooms.

All students had taken their full quota of samples and were discussing how to process the
collective classroom data. Becky has been walking around the classroom, observing her
classmates’ screens and adding up the total green squares on all of these screens. Now, she has
just rushed to the teacher, with the following idea: (1) students should each call out their personal
guess for the population greenness, but they should not input that guess; (2) someone should
calculate the average of these guesses; and (3) all students should input this average. This way,
Becky contends, the class as a whole would minimize the error, which she describes as the
collective distances from the true value in the population, and would thus minimize the loss of
points. Jerry replies that this strategy is redundant and error prone—that all students should just
input their own guess and let the computer calculate the mean automatically. [Technically
speaking, Jerry is correct—that is precisely what the procedure does.] Becky disagrees. She is
vehement, pensive. The question on the table is whether the error of the mean (Becky) is the
same as the mean of all errors (Jerry). In particular, Becky warrants her claim with her main
concern that outlying guesses would be detrimental to the mean of errors, whereas Jerry thinks
that the two calculations are commensurate. It is as though Becky is worried about the variance
of the distribution, whereas Jerry reckons that the variance is irrelevant for the task at hand.

Becky: If we're closer to the average, won't the average be closer and we'll [lose less
points?]

Jerry: It's the same thing, because this is just like adding up the whole classroom—we're
adding it up on the computer.

Becky: If we get this [= if we first calculate the class average independently of the
computer] and then people change their guess to be closer to the average…

Jer: [Change] our guess?
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Becky: Yeah.
Jer: No, [points to screen] [inaudible]
Becky: I'm adding up how many [blue] they have [and then subtracting to determine how

many green they have]
Jer: I know, but [the computer is finding the average] so it will be the same answer. It

will be more precise, though.
Becky: I’m adding up how many blues.
Jer: I know, but still, then we reverse it. [because the proportion of green and blue

complements 100%]
Becky: And then if they... and people can change their answer closer [to the average]
Jer: But then, well, if we all just put it in [= input our guesses], then since we're all going

with the group guess, it'll all... we'll all go with the average, so it'll be the same thing.
It'll be a precise average, down to the decimal.

Becky: Yes, but couldn't we get less points taken off if people changed their guesses so
it's closer to the average, since the average will be more precise?

Jer: It won't matter, 'cause we're going with the group guess, so they'll automatically
guess the average. We all are guessing the average, no matter what. We have no
choice—we're guessing the average, since we're going with the group guess, and the
group guess is the average. We're all guessing the average. We're all guessing exactly
the average, down to the millionth.

Becky: Ok, Jose got only 4 blue. His average will be really high up, won't that change the
average?

Jer: Yeah, but still, it still takes the average. [Becky rushes back to her seat]

What’s in a mean? Should it reflect the range of the sampling distribution? If both the mean and
the range are important in some activity, perhaps some new mathematical construct is needed
that captures both ideas? The context of the guessing game and in particular the high stakes
invested in the classroom mean created an opportunity to ground in the histogram, which served
as a bridging tool, the idea of variance, an index of the sampling distribution that had not been
discussed in the classroom forum. Students naively assume that the tighter the cluster of a set of
guesses, the higher its accuracy. Whereas this intuition is sensible and is reflected in statistical
measures of confidence, a dense and a sparse cluster of guesses may be as accurate as a whole,
and in fact a sparse set of guesses may be more accurate than a dense one. Even if these issues
are not resolved immediately, the issues are raised through cogent argumentation grounded in
personally meaningful mathematical reasoning—the conventional tools are problematized and
the domain is complexified.

6.5 Episode Five: The Personal–Social Learning Axis Coheres Around the
Histogram Mean
During the second day of implementing S.A.M.P.L.E.R., a unique moment of potential learning
occurred at a point where students had all input their guesses for the population’s greenness (see
Figure 18, below). Whereas most of the students’ guesses clustered around the classroom mean
of 47.2% (the tall thin line), there was a lone guess of 81% far off to the right. The true value of
the population was 50% green, as indicated by the contour between the colored areas
immediately above and to the right of the mean. So the outlying guess was instrumental in
“pulling” the classroom mean up, to the benefit of the many students who had committed to the
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group guess with the understanding that this mean is generally more accurate than their personal
guess. As it turned out, students were initially under a knee-jerk impression that the outlying
guess was detrimental to the precision of the group guess (“How can it be good if it’s way off?”).
This moment of potential learning is delicate—the facilitator must assess whether exposing the
outlying student may be conducive to classroom learning and in improving that student’s peer
esteem as a mathematician.

Figure 18. Histogram of students’ guesses for the greenness of a population.

Teacher: Do we know whoever that is for sure? [who guessed 81%]
Researcher: We can figure out. [walks over to facilitator’s computer to determine the

value of that guess—it turns out to be 81%, and Jade identifies herself as the guesser]
Teacher: Oh, it was Jade. Ok. [Jade had been identified by the teacher as low achieving

in mathematics]
Res: [to Jade] Ok, you put in 81. Now, this is something very interesting. This is really

really interesting. Now, on the one hand... so... ok, so... [addresses class] What do you
think of Jade's guess? .... More hands -- what do you think of that guess?

Jade: Terrible. [laughing, somewhat uncomfortably, preempting anticipated ridicule]
Riv: She probably just uncovered a lot of… more green than blue when she was clicking.
Res: Ok, I'll... let's get some more input... Jonathan?
Jonathan: I think that it's a good thing that she guessed so high, because otherwise the

average would have been lower.
Res: Could you come up and explain that? [Jonathan walks over to the screen, uses a

pointer, see Figure 18, above]
Jon: Uhhm... because the average includes everyone's guess, so that, say she guessed,

like, down here [on the far left side of the distribution] like in the 40's or the 30's, well
then the average would have been lower, and the average would have been farther
away from the actual thing. So like...'cause... if she moved it [her guess] like down
here [to the 40's], the average would have been lower, because the total before you
divide would have been lower. So, the lower the total before you divide, the lower the
number would be. The average would be, like, more down here -- it would be farther
away from the actual... from the actual guess... from the actual answer.

Res: So, so Jonathan, people who went with the group guess, what should they think
about Jade's guess?

Jon: They should, like, thank her for guessing so high, 'cause that's what got them—that's
what got them close enough to the actual answer.
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Students: Thank you Jade, thank you Jade.

Jade’s episode is an example of how a facilitator working in a networked classroom can tap the
classroom’s social dynamics to ground mathematical understanding in an authentic interaction.
The histogram serves as a bridging tool between Jade’s individual guess, which she constructed
within her computer environment, and the classroom distribution and mean. If it were not for the
entire distribution of guesses being available as a shared display—if, for example, we had been
working only with monitors showing various central-tendency outputs—this moment could not
have been spun through social tension into learning and new esteem for a student who,
apparently, struggles in mathematics. Also, based on students’ evidently limited understanding of
‘mean,’ coming into this design, Jade’s episode may have afforded the classroom an opportunity
to construe the mean in a new way that was more meaningful than the algorithm for computing
it.

6.6 Summary

Table 1.
Learning Axes, Bridging Tools, and Statistical Constructs in S.A.M.P.L.E.R.
Episode Learning Axis Bridging Tool Context Statistics Construct

1 Local vs. global Population Determine the
greenness

Sample

2 Theoretical
probability vs.
statistics

9-Blocks Determine the
greenness

Sample distribution
in the population

3 Theoretical- vs.
empirical probability

Combinations
tower

Explain
similarity

Sample space

4 Range vs. cluster Histogram Engineer group
guess

Variance, balance

5 Individual vs.
classroom

Histogram Judge outlying
guess

Sample-mean
distribution

We have discussed five classroom episodes that we have interpreted as cases of student and/or
classroom negotiation between some pair of affordances of designed objects within some activity
context (see Table 1, above). In each case, a different aspect of the design constituted a bridging
tool between these affordance antipodes. Student interaction with this bridging tool within the
classroom forum supported coordination between schemes, was instrumental in achieving the
design-facilitated classroom tasks, and reflects common domain-specific practices. Students’
mental constructions around the design-embedded bridging tools is the core objective of our
learning environments: these technology-facilitated environments tap, shape, and coordinate
students’ implicit skills by providing objects (artifacts) around which conceptual
structures—concepts-in-action—cohere as useful bits of knowledge.
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7 Conclusion
We conclude this paper with a discussion of tradeoffs of the learning-axes approach to design.
Following, we propose implications of the work for the design of learning environments. We end
by pointing to several future directions that we expect this work will take.

7.1 Tradeoffs of the Design
Designs that foster student learning as a negotiation between polar embedded affordances run the
risk of “congestion,” i.e. too many new tools and associated terminology that are liable to yield
confusion rather than learning. The structure of the ProbLab experimental unit is indeed a
complex design that involves concrete and virtual media, personal and collaborative problem
solving, art, artisanship, and arithmetical calculation. The designed bridging tools are given to
multiple interpretation, so many viewpoints co-exist in the classroom space that is bustling and
boisterous. The “free-range students” exchange fragments of information and within their
clusters invent fanciful topological and procedural constructs. Yet it is in this very richness—in
this complexifying of the classroom—that lies the greatest potentiality of collaborative learning,
and networking the classroom is one way of harvesting this richness, as we have attempted to
demonstrate. To harvest this richness, facilitators need to be comfortable in leading exploratory
discussion that uses the multi-media resources. Leading such exploration calls for a deep
understanding of the mathematical content and of possible learning trajectories enabled by the
learning environment.

7.2 Implications for Design in Mathematics Education
Learning mathematics is a process of coordinating mental action models into new schemas. On
these new schemas ride mathematical terminology, symbolical notation, and solution procedures.
The action models do not become coordinated haphazardly. Rather, the coordinating is grounded
in objects in the learning environment and stimulated by some task that problematizes the object.
A set of heuristics follow from the work reported herein for designers of mathematics learning
environments: (a) analyze the target mathematical domain to identify its key concepts; (b)
determine the action models and situational contexts inherent in making sense of these key
concepts; (c) formulate hypotheses as to the learning challenges inherent in reconciling different
domain-specific action models; (d) identify or create “ambiguous” (hybrid) objects affording
these competing action models; (e) embed these objects in activities that bring out the ambiguity;
and (f) design a learning environment that stimulates individual students to struggle with the
ambiguity and  facilitates student argumentation.
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     X  X  X
     X  X  X

a.  b.
Figure 19. Not every ambiguous figure is a bridging tool.

Note that not every ambiguous figure is a bridging tool in the sense that we have been using it to
discuss design for mathematics learning environments (see Figure 19, above). If I say ‘duck’ and
you say ‘rabbit’ (Figure 19a, above), we might learn something about visual perception. But if I
say “2 rows of 3 X’s” and you say “3 columns of 2 X’s” let’s not call the whole thing
off—rather, we might learn something about mathematics.

7.3 Future work
Future work on ProbLab, and specifically on S.A.M.P.L.E.R., is expected to introduce new
challenges as we work with schools to introduce our pedagogical perspectives: (a) Scheduling: A
design problem is to foster and support student engagement and re-inventing of central ideas for
our target domain of probability and statistics within a reasonable time frame; (b)
Responsiveness, generativity: A technological and research problem is to create a design that
anticipates as many student ideas as possible, so that responses to these ideas are embedded in
aspects of the design; and (c) Training, dissemination: A professional-development problem is to
provide teachers with an accumulated repertory of students’ ideas and valued suggestions for
nurturing these ideas as well as with opportunities to experience these learning environments
through participation in workshops.

Future theoretical development of the learning-axes and bridging-tools perspective will involve
further design work. Thinking of other mathematical domains in terms of pillars and learning
axes may suggest a need for new activities and new bridging tools. Also, we will attempt to
improve and elaborate on the current definitions of the construct. One direction will be in
understanding how different learning axes interact when they are grounded in the same bridging
tools. Learning axes may be orthogonal, but they may interact in complicated ways. For instance,
it may be useful to engage the individual-vs.-social learning axis in supporting students work
along the local-vs.-global axis. Finally, we have limited the present discussion of learning axes to
the domain of mathematics, but the learning-axes approach may be useful as meta-design
principles for other domains.
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