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ProbLab, an experimental middle-school unit in probability and statistics, includes a
suite of computer-based interactive models authored in NetLogo (Wilensky, 1999). We
explain the rationale of two of the models, Stochastic Patchwork and Sample Stalagmite,
and their potential as learning supports, e.g., the temporal–spatial metaphor: sequences
of stochastic events (occurring over time) are grouped as arrays (laid out in space) that
afford proportional judgment. We present classroom episodes that demonstrate how the
Law of Large Numbers (many samples) can be mapped onto the classroom social space
(many students) as a means of facilitating discussion and data sharing and
contextualizing the content. We conclude that it is effective to embed the Law of Large
Social Numbers into designs for collaborative learning of probability and statistics.

Introduction

The mathematics domain of probability has been long regarded as challenging for
students of all ages (von Mises, 1981, Hacking, 1975, 2001; Konold, 1994; Biehler,
1995; Maher, Speiser, Friel, & Konold, 1998; Gigerenzer, 1998; Liu & Thompson,
2002). At the Center for Connected Learning and Computer-Based Modeling at
Northwestern University, we are creating software and computer-based activities to help
students learn probability. Specifically, based on our previous research on students’
challenges in understanding probability (“Connected Probability,” Wilensky, 1993,
1995, 1997), we have designed a group of curricular models in the domain of
probability. Our interactive models are written in NetLogo (Wilensky, 1999) and
incorporate interface features that allow students to run probability experiments under
different parameter settings. A strength of NetLogo is that it affords simulating many
random events concurrently because it uses parallel processing (it is ‘multi-agent’).
Also, students can examine and even modify the code in which the models are
programmed, partly because NetLogo code—its primitives and syntax—was specifically
designed to be easier to read and learn as compared to other computer languages (see
also Papert, 1980, on Logo). The NetLogo “models library” includes models from a
range of scientific and mathematical domains. Some of these models are grouped around
classroom curricular units. One of these groups is ProbLab (Abrahamson & Wilensky,
2002). This paper introduces ProbLab, focusing primarily on “Stochastic Patchwork”



In D. Pratt, R. Biehler, M. B. Ottaviani, & M. Meletiou (Eds.), the Proceedings of the Fourth
Conference of the European Society for Research in Mathematics Education.

and “Sample Stalagmite,” two of several models currently in ProbLab.1 We present and
analyze data from implementations in urban middle-school classrooms in which we
investigated dimensions of collaborative activity design around essentially individual
work with the simulations and vis-à-vis the specific content (for inherently collaborative
designs, see, for example, S.A.M.P.L.E.R., Abrahamson & Wilensky, 2004).

Computer Models as Learning Environments for the Domain of Probability

We are committed to help students ground mathematical content in meaningful
experiences (e.g., Wilensky, 1993, 1997; Freudenthal, 1986; Gigerenzer, 1998;
Abrahamson, 2004), and our lesson plans encourage a social construction of
knowledge in the classroom milieu (see Brousseau, 1997). In designing the ProbLab
models, we have endeavored to make probability an approachable domain for
middle- and high-school students. We submit that students’ biggest challenge with
the domain of probability is not so much that the conceptual constructs per se are
difficult but that the domain is difficult as seen through the lens of traditional
mathematical representations. Specifically, probabilistic processes occur over time,
and learners are challenged by the epistemological tension between, on the one hand,
individual outcomes, e.g., this flipping of a coin or this sample of coin flips, and, on
the other hand, phenomena as global events, e.g., the overall chance of the coin
falling on ‘heads’ (Liu & Thompson, 2002; Hacking, 2001). In ProbLab, we are
attempting to create models that allow students to move between and connect such
individual (micro-) and global (macro-) outcomes (see also Abrahamson & Wilensky,
2003; Papert, 1996).
Stochastic Patchwork

An important aspect of students’ connecting to the domain of probability through
working in technology-based learning environments is that students ground in
probability simulations the ideas inherent both in symbolical formats of the domain and
in formulae for calculating and communicating findings from probability experiments.
For instance, students should experience the meaning of a “.7” notation in probability
distribution functions or experimental outcomes. One objective of this paper is to present
and discuss a type of representation that may enhance students’ bridging between, on the
one hand, simple probabilistic events, e.g., flipping coins, and, on the other hand, the
corresponding formal representation, e.g., an overall “.7” chance of falling on ‘heads’
(for a biased coin). Specifically, these bridging representations may help students ground
an understanding of probability—what it means to say that a probabilistic mechanism
has a .7 chance of generating a favored event—in perceptual judgments of spatial
proportion (Resnick, 1992), i.e. seeing that .7 of an outcome array is red (see Figure 1).

                                                  
1 All ProbLab models are available for free download at http://ccl.northwestern.edu/ see also
http://ccl.northwestern.edu/curriculum/ProbLab/ for more models, further discussion, and a complete
list of our publications on design-based research, theory of learning, and equity.
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Figure 1. ProbLab: Stochastic Patchwork. Parameters are set so each square in the
graphics-window “mosaic” (total of 17^2 = 289 squares) has an independent .7 (or 70%)
chance of being red on each trial. Therefore, on each trial, the mosaic has approximately
.7 red squares, and after several hundred trials the histogram shows a normal distribution

converging on .7.

The ProbLab model Stochastic Patchwork (see Figure 1, above) is a bridging
tool (Abrahamson, 2004) between time-based probabilistic events and space-based
perceptual judgments. The probabilistic element in this model is a square “coin” that
has a red “side” and a green “side.” Instead of flipping this single coin many times,
we flip many clones of this coin all at once. The crux of this model is that if a single
coin has a .7 chance of falling on red, then the aggregate of a sufficiently-large
sample of these coins that flip all at once will approximate a .7 redness, i.e. most of
the time about .7 of the squares will be red. The objective of students’ interacting
with the model is that they understand how the model works and explore the effect of
modifying parameter settings—the size of the population and/or the bias of the
coin/square—on the sample space (size and appearance) and on the dynamics of the
emerging distributions.

Because the Stochastic Patchwork model simulates a probabilistic experiment,
outcomes vary, yet after a sufficiently large number of successive iterations in the
experiment the outcome distribution approximates a normal distribution converging on a
.7 probability as the mean, as displayed in a histogram that is part of the model (see
Figure 1, above). We have found that students as young as 10-years old working with
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ProbLab models interpreted experimental results using both enumeration-based
strategies (counting red and green squares in samples) and multiplicative strategies
(inferring proportions in populations by eyeballing red/green ratios in samples).

Sample Stalagmite

The ProbLab model Sample Stalagmite helps students understand histograms
of probabilistic outcome distributions by building the histograms from the outcomes
themselves. The model simulates the random generation of blocks of red/green
squares and their accumulation into columns according to the number of red squares
in each, e.g., 0 red squares, 1 red square, 2 red squares, etc. Figure 2a, below, shows
the entire combinatorial sample space of sixteen “4-blocks” (2-by-2 arrays of
squares). Figure 2b, below, shows the partial combinatorial sample space of five-
hundred-and-twelve “9-blocks” (3-by-3 arrays of squares). The model’s name comes
from the dynamics of the visualization: the blocks descend along the columns to
build a structure resembling a stalagmite (see, in Figure 2b, below, the descending 9-
block marked by an ellipse).

a.  b.
Figure 2. The NetLogo ProbLab model Sample Stalagmite: two fragments from the
graphics window in the model’s interface under different conditions of running the

probabilistic experiment.
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Sample Stalagmite accompanies students’ combinatorial analysis of all
possible 9-blocks (see our publications on the combinations tower). In this model, 9-
blocks are generated randomly. That is, at every run through the procedures, one of
the 512 possible arrays pops up on top of the graphics window and falls down a
histogram “chute” -- its corresponding column. For instance, if there are 2 red
squares in the sample, the sample will fall down the ‘2’ column (see falling 9-block
in the Figure 2b, on the previous page). The model can be set either to keep
duplicates or to reject them (in Figure 2 duplicates were rejected). So Sample
Stalagmite takes the combinatorial space of the 9-blocks and re-positions it as a
sample space. That is, each of the 512 arrays has the same chance (likelihood) of
being generated on each trial.

The histogramed combinatorial sample space is designed as a visualization
bridge for students to ground a sense of the likelihood of an event in combinatorial
analysis and proportional judgment. For instance (see Figure 2b), students, who are
comparing the column with 9-blocks that have exactly 4 red squares with the column
of 9-blocks that have exactly 3 red squares, literally see that the subgroup of 4-red is
more numerous and taller -- it occupies more space within the histogram as compared
to the subgroup of 3-red squares. This increased commonality is related directly to
the fact that there are more possible 4-red combinations (126) as compared to 3-red
combinations (84). Also, the shape of the stalagmite remains roughly the same
whether we keep duplicates or reject them. This visual resemblance demonstrates that
combinatorial analysis (theoretical probability) anticipates relative frequencies in
empirical-probability experiments.

Figure 3. Fragment from NetLogo ProbLab model Sample Stalagmite.
As the simulation searches for all items of a sample space, an accompanying

graph (see Figure 3, above) plots the number of discovered samples against the
number of attempts. This graph invariably shapes out logarithmically. The graph is
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designed to support inquiry into advanced aspects of probability: Why is it that all
searches for the combinatorial sample space of all 9-blocks invariably take on this
shape?; Why does it take over 3000 trials to find 512 items?; Is this 6:1 ratio between
trials and items significant?; Will this ratio repeat over experimental runs?: If not,
why not?; Will this ratio repeat for a sample space of size 16 (4-blocks)?; What other
phenomena in the world might give rise to a graph of this shape?; How should we
call this graph? These questions are nontrivial, especially when cast in terms of
moving between agent and aggregate perspectives: If each specific combination is
equally likely to be sampled on each turn, why is it that “the last ones are always left
behind for so long?”
Classroom Research

For this particular study, we investigated a potential mapping between the
distribution of experimental outcomes and the “distribution” of students in the
classroom. The rationale is that just as a single student can take enough samples so
that the shape of the outcome distribution stabilizes, so all students can each take
fewer samples that do not stabilize unless all students pool their samples.
Specifically, we explored whether such a students-to-samples mapping could be
leveraged so as to stimulate inquiry-based classroom discussion.

We chose a design-based research framework (Cobb, Confrey, diSessa, Lehrer,
& Schauble, 2003) so as better to investigate student early knowledge and difficulty
in the domain of probability and statistics as well as to develop classroom learning
supports that embrace this early knowledge and address these difficulties. Through
iterated studies that began with individual students and focus groups and continued
with classroom implementations, we are progressively modifying our computer-
based models in response to feedback from students and teachers. Such collaboration
between designers, programmers, researchers, students, and teachers, we find, is
fruitful towards creating equitable and effective learning tools that may effect
immediate changes in many students’ mathematical inclination and content
knowledge. This report focuses on data from a single implementation along this
design-research continuum.

Twenty-six 8th-grade students in a highly diverse urban school participated in
an implementation of ProbLab over two weeks (half the time spent in a computer
lab). Each student worked on an individual computer. Students used printed activity
guides that moved from structured introductions to student-initiated experiments, and
they could also modify the underlying code of the model. The researchers–facilitators
and teacher moved between students for on-the-fly interviews. Each lesson included a
classroom discussion. Due to the limited number of available computers, we split the
students into two groups. This inadvertent staggering of the implementation proved
fortuitous in that it allowed us an extra round of improvements. We videotaped all
lessons both with a roaming and a classroom-spanning camera. We selected and
transcribed discussion episodes to investigate how best to support students’ making
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sense of their experiments as they move between their personal findings and
classroom pooled findings.
Results and Discussion

Analysis of classroom discussion suggests that students are intrigued and
stimulated by their interaction with the models. Following, we present two data
examples. In both examples, students discuss with a facilitator outcomes from a
probability experiment in Sample Stalagmite. The sampling of red or green squares
had been framed as a “competition” between the two colors. Students had been asked
to set the probability of red at 50%, to run the model ten times, and report their
findings in terms of the ratio of red and green “wins.” In the first example, the
facilitator is working only with two students, and in the second example the entire
classroom is discussing their results. Note that, whereas in the first example (two
students) students must conjecture as to the outcomes of large numbers of trials, in
the second example (classroom) students’ pooled outcomes allow for a cogent
empirical finding.
Data Example #1: “On-the-fly” interview between a facilitator and two students.

Reuven: What’s happening here?
Student1: …more green than blue. I think the green is going to win.
R: What’s the chance that green will win?
Student1: 50–50.
R: Right. Is it possible that you do this experiment 100 times and green will

win every time?
Student1: If it’s like once every f…
R: …if it’s 50–50. Let’s say the probability is 50%. Is it possible for the green

to win every time?
Students1+2: No. I don’t think it is.
R: Would it be possible for green to win if you do it…once?
Student1: Yes.
R: Would it be possible for green to win if you do it twice?
Student1: Yes.
R: Would it be possible for green to win five times?
Student1: No.
R: Wait, so what about 3 or 4? Where’s the cutoff?
Student1: It’s rare.
R: Aha! It’s rare, ok. But if I were to flip a coin a 1000 times, is it possible that

it will always come out ‘heads’?
Student1: Yeah.
Student2: It will be like a miracle.
R: It will be like a miracle, but is it possible?
Student2: No.
Student1: Yes it is!
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R: Why is it not possible?
Student1: Because it’s a 50–50 chance.
Student2: Well, maybe if you do it 1000 that will be your ‘50,’ and then if you

do it another thousand, that will be your other 50. [Both laugh]
Data Example #2: In a classroom summary discussion, Toby had been remonstrating
that “there’s something wrong with the computer.”

Toby: The probability is 50–50 [in the setting of the model], so they [the
red/green outcomes] should be really close to each other, as in like it would
be 4 red and 6 greens. But that’s not we had—we had like 2 red and 8
greens. So they were pretty far away from each other.

Dor: That is pretty far away. Were you having this all the time?
Toby: Yeah, the greens kept on winning.
Mogu: [He had worked closely with Toby] Most of the time.
Dor: [addressing classroom] Hands up whoever had the greens winning most

of the time. [about half of the class] Ok, now hands up whoever had the
reds winning. [the other half of the class] Does that make sense?

Toby: Yeah. [Dor proceeds to elicit outcomes and plot them as a distribution]
Thus, classroom discussions allowed students to share unanticipated findings

from their individual experiments and re-interpret and reconcile these findings
through the lens of classroom sample distributions. We concluded that probability-
related simulation-based classroom activities can be designed so as to leverage and
explore the randomness that is intrinsic to the content through collaborative
discussion-based inquiry. When students each take a limited number of random
samples, they are stimulated by their individual “wrong” outcomes to compare and
compile their results as a cross-student sample-mean distribution. We have named the
contextualization of the central-limit theorem in collaborative inquiry “The Law of
Large Social Numbers.”

A promising finding is that many students appeared eager to modify the
computer procedures. These students wished to individualize the appearance of their
experimental environment. In particular, the students wanted to change the colors of
objects on the screen. In terms of programming, this may appear as a small step, yet
we believe that the act of “looking under the hood” is critical—it constitutes an easy
entrance activity that allays any student apprehension of programming and creates
personal precedents and a strong sense of appropriation and accomplishment.

In future studies, we will focus on: (a) understanding the conditions that best
support students in linking concrete and computer-based objects; (b) the affect of printed
activity guides in terms of creating shared classroom understandings and vocabulary,
stimulating explorative inquiry, and facilitating opportunities for teacher attention to
individual students; (c) whether more students with little if any programming experience
could be drawn to modifying the computer procedures underlying the models and how
such work may inform their content  learning; and (d) developing a more comprehensive
articulation of student understanding of the interplay of determinism (the settings of the
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computer model) and randomness (the specific outcomes) and how this interplay
informs student cognition of the central limit theorem.
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