

Agostino Cortesi and Flaminia Luccio (Editors)

ACM - IFIP
Informatics Education Europe III

Proceedings

December 4-5 2008-09-22 Venice, Italy

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference

Venice, Italy, December 4-5, 2008

Informatics Education Europe III

Editor’s detail

Agostino Cortesi, Flaminia Luccio
Computer Science Department
Università Ca’ Foscari
Venice, Italy

ISBN 978-88-903433-0-8

Program Committee
June Amillo

Roger Boyle

Chiara Braghin

M. E.Caspersen

Betim Cico

Agostino Cortesi

Tony Cowling

Gordon Davies

Petros Kefalas

Flaminia Luccio

Vira Lyubchenko

Peter Marwedel

Andrew McGettrick

Gabriel Michel

Thomas Ottmann

Karl C. Posch

Paolo Rocchi

Pierluigi Sanpietro

Riccardo Scateni

Willhelm Shaefer

Dragan Solesa

Anna Sotiriadou

Jan van Leeuwen

Katerina Zdravkova

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference

Venice, Italy, December 4-5, 2008

Table of Contents

3 Agostino Cortesi and Flaminia Luccio (Editors)
Preface

SESSION I: ACCREDITATION AND MOBILITY

5 Gabriel Michel
Why mobility is important for European students in computer science: review of 18
years of a Franco-German university training in with a double degree

17 Thomas Ottmann, Christoph Hermann and Christoph Heumann
Accreditation practice for degree programs in Computer Science: Experience gained
at a classical research university in Germany

30 Laszlo Aszalos
Comparison of the Hungarian and Euro-Inf accreditation systems

SESSION II: TEACHING AND TEACHERS

37 Maura Cerioli and Pierpaolo Cinelli
GRASP: Grading and Rating ASsistant Professor

52 Karl Josef Fuchs
Teacher Studies in Austria - Bridging the Gap Between Mathematics and Informatics
Education

67 Ana Pacheco, Anabela Gomes, Joana Henriques, Ana Maria Almeida and Antonio
Josè Mendes
A study on basic mathematics knowledge for the enhancement of programming
learning skills

SESSION III: EVOLUTION OF LEARNING

80 Roger Boyle, Nick Efford and Royce Neagle
Evolving modes of student use - whither the VLE?

92 Vincent Ribaud and Philippe Saliou
Evolution of an integrated course towards a sandwich course

105 Isa Jahnke and Volker Mattick
Shift from teaching to learning with Web 2.0

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 1
Venice, Italy, December 4-5, 2008

IBM LECTURE

115 Paolo Rocchi
Lectures on CS Taught to Introduce Students with Different Background

SESSION IV: PROMOTIONAL ISSUES

125 Thanos Hatziapostolou, Anna Sotiriadou and Petros Kefalas
Promoting Computer Science programmes to potential students: 10 Myths for
Computer Science

134 Angelo Lissoni, Violetta Lonati, Mattia Monga, Anna Morpurgo and Mauro Torelli
Working for a leap in the general perception of computing

140 Paul Denny, John Hamer and Andrew Luxton-Reilly
Tools that support contribution-based pedagogies

SESSION V: SOFTWARE ENGINEERING

155 Tony Cowling
Software Development as the Core of Informatics

170 Ani Nahapetian
Bridging Classroom Heterogeneity: A Software Engineering Course and Projects

179 Andreas M. Heinecke, Friedrich Strauss, Astrid Beck, Markus Dahm, Kai-Christoph
Hamborg and Rainer Heers
What Every Software Developer Should Know about Human-Computer Interaction - A
Curriculum for a Basic Module on HCI in Informatics Education

SESSION VI: TECHNICAL SKILLS

189 Tamar Vilner, Ela Zur and Judith Gal-Ezer
Recursive Thinking in CS1

198 Tobias Lauer
When does algorithm visualization improve learning? - Reviewing and refining an
evaluation framework

209 Ilias Sakellariou, Petros Kefalas and Ioanna Stamatopoulou
Teaching Intelligent Agents using NetLogo

223 AUTHOR INDEX

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 2
Venice, Italy, December 4-5, 2008

Preface

Agostino Cortesi and Flaminia Luccio
Dipartimento di Informatica, Università Ca’ Foscari di Venezia, cortesi@unive.it, luccio@unive.it

This volume contains the papers of the International Informatics Education Europe
Conference being held in Venice, Italy, on 4th and 5th December 2008.

The purpose of IEE is to provide a forum for researchers interested in higher-education of
Informatics. Topics covered by IEE include: Accreditation and assessment, Innovative
degree programs, Innovative uses of technology in the classroom, Partnerships with
industry, International cooperation, double degrees and mobility, Integrating gender and
culture issues into informatics curricula, Debugging tools and programming learning,
Expanding the audience for informatics, Funding opportunities for curriculum development
and studies, and Collaborative learning.

This was the third IEE meeting. Previous meetings were held in Montpellier (2006) and
Thessaloniki (2007).

The program committee selected 18 papers out of over 30, on the basis of at least three
reviews. The principal criteria were relevance and quality. The program of IEEIII includes in
addition three invited talks by Jan van Leeuwen, Rustan Leino and Carlo Ghezzi, and two
talks by representatives of the industrial partners Ibm and Intel.

I would like to thank the program committee members and the reviewers without whose
dedicated work the conference would not have been possible. A special mention has to be
made to Andrew McGattrick of the ACM Education Board, and Gordon Davies chair of IFIP
3.2. group.

Thanks also to Emanuela Boschetto, Andrea Marin, Sonia Barizza, Sandra Scibelli, Loretta
Fornaser and Gian Luca Dei Rossi for their organizing support.

The Conference has been fortunate to receive sponsorship from ACM, IFIP, Intel, IBM,
Microsoft, AICA, and CRUI.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 3
Venice, Italy, December 4-5, 2008

mailto:cortesi@unive.it

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 4
Venice, Italy, December 4-5, 2008

Proceedings of the ACM-IFIP IEEIII 2008 5
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

Why mobility is important for European
students in computer science: review of 18

years of a Franco-German university training in
with a double degree

Gabriel Michel

Université Metz, Isfates, Ile du Saulcy, Metz, France, Gabriel.Michel.Michel@univ-metz.fr

For students in computer science mobility abroad is still relatively rare compared to
other disciplines. Yet mobility is often a genuine social elevator for students who
experienced it, especially after having obtained a Franco-German degree in computer
science. This is what our empirical study based on several surveys of French and
German alumni after the bi-national training of ISFATES (Franco-German Institute of
Technology, Economics and Sciences) and after obtaining a dual French and German
degree proves. This study also demonstrates the importance of "soft skills" and
especially intercultural skills. Indeed we show that those students who had followed in
their overall training up to 20% less computer science courses than in national
education programs nevertheless generally have far better careers in computer
science than the latter.

Keywords

Double degree, CS Curriculum, Engineering, France, Germany, Intercultural, Learning,
Professional skills, Surveys, University cooperation.

1. Introduction

In most professions, it is now necessary to master new skills such as autonomy, the ability to
communicate (in different languages), flexibility, language and culture, mobility and
innovation. To prepare future graduates for these changes, the education system should
introduce students to these new skills and knowledge, often grouped under the name "new
skills" [11]. But in computer science, since the job market has always been in favourable, the
stress has always been focused on technical subjects. And in most departments of computer
science "soft skills" were and still are, regarded as secondary.
In this article we want to demonstrate that these soft skills and in particular, knowledge in
languages and intercultural skills are very important and offer far better career-advancement
opportunities for students in computer science. We rely on our experience of nearly 30 years
of double degree (18 years for computer science). There is not or hardly any research that
has been done on evaluating the mobility of students abroad despite the fact that it is one of
the vital challenges of university education in the coming years (in Europe in particular). The
intercultural domain is treated by scientists in regards to acculturation [13] culture shock [2,
3], work (or how to avoid failures during an assignment abroad - Training for Intercultural
Competence: Avoiding Failures in International Assignments) [15], the differences between
cultures [9], learning styles [12] or skills [1, 5, 8]. But measuring the effects of student
mobility and intercultural learning in computer science has rarely been an object of study.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 6

In Europe, Socrates / Erasmus programmes promote student mobility: it concerns semesters
of study or internships in another European country. The project Valera "Value of ERASMUS
Mobility" of the EU [14] aims to establish the impact of mobility within the sub-ERASMUS
programme of SOCRATES on the mobile students' and teachers' careers. With respect to
student mobility, professional "success" was measured primarily in terms of general and
international competences, transition to work, first and subsequent employment and work,
and international aspects of employment and work. According to the most recent survey (four
fields of study were selected: Chemistry, Sociology, Mechanical Engineering and Business
studies), the impact of ERASMUS is very good for the students if we compare this with those
students without international experience (higher status, higher earnings as well as a better
chance of reaching a position appropriate to their level of education, better career
opportunities, higher competences.

International experience notably seems to reinforce adaptability, initiative, the ability to plan
and assertiveness, higher socio-communicative skills as well as better ways of problem-
solving and leadership). More than half of the formerly mobile students assess their
knowledge and understanding of international differences in cultures and societies, and
almost half their knowledge of other countries is as important for their job tasks. These
proportions are mostly somewhat higher than in previous years But the impact of ERASMUS
is smaller than before according to surveys of previous generations for graduates in
obtaining a first job, getting a higher income and taking over job tasks for which visible
international competences are needed. This is most likely caused by a growing
internationalisation in general that leads to a gradual decline of the uniqueness of the
ERASMUS experience. But now the value of experience abroad as such is declining in the
wake of the general internationalisation of the environment.

But the number of mobile students is still small compared to the general student population
and depends both on the country, on scientific fields and also… on the parents income. In
France students who are mobile are still mostly students who major in business and
management, who graduated from reputable business and engineer schools and who take
advantage of this mobility that has been imposed on them. Parents and / or banks are the
financial support of these students whose future was in any case very favourable from the
outset.
At the other end of the hierarchy of higher education are the general universities, whose
students come mainly from popular classes. For them mobility is very difficult because
neither is it organized (no information, little or no cooperation agreements, no mobility grants,
…) nor recognized (no validation of units acquired abroad), without mentioning the cost of
mobility. Such mobility is particularly low in the computer science fields (for example in 2005,
only 0.3% of French students in mathematics and computer science experienced Erasmus).
Yet for these students, this mobility is possible and would be extremely beneficial particularly
in the context of a more competitive Europe. That's what we try to show on the basis of our
experience. To do this we will first present this institute, its history and its functioning, then
the results of several surveys that we conducted with former students. Then we try to
analyze what made these students successful, how we can develop their intercultural skills
and how we have integrated them into our curriculum.

2. Presentation of the Institut

2.1 History

After the Second World War, the construction of the European union was a means of
avoiding the conflicts of the past. It was necessary to build a political, a cultural and an
industrial Europe as well as an academic Europe. Isfates was created in this will in order to

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 7

pose the first stepping stones of a European education. The institute was created on
September 15th, 1978 during a meeting at the Franco-German summit of Aix-la-Chapelle: its
statutes come from a convention signed by the German Chancellor Helmut Schmidt and
President Giscard D' Estaing. This operation was the first of its kind on the European
university level. This Franco-German university institute was created to develop economic
ties between France and Germany by training a personnel qualified for the light industries
that are rising in this epoch (the mechanics of precision, electronics...) and by training
technical and commercial specialists that are really bilingual.

The fact that the institute was created in the towns of Metz (in France) and Saarbrücken (in
Germany) is not by chance as the two cities are only 70 kilometres away from each other
which makes it possible for the students to move easily from one city to the other throughout
their training. The choice of these two cities was symbolic. Robert Schuman originated
from Metz and the two cities also share a common story: in a little more than a century they
continued to pass from the hands of one country to the other.

Since its creation this institute has not ceased to develop and adapt. Today, nearly 2,200
French and German students follow the bi-national training of ISFATES and obtain a both a
French and German university diploma. The institute is at the very least unique and original
since it had allowed, until 1999, students having succeeded their first 2 years of higher
education in their country of origin, to then continue their studies for the next two years in
alternation between Saarland (one of the German “lands”) and the University of Metz.

ISFATES has made it possible, from the beginning, to obtain a French “licence” and a
German engineer diploma in three fields: electrical engineering, mechanical engineering and
company management and economics. The computer science department was created in
1990, and other departments such as the civil engineering and logistics department were
soon to follow. Since 1993, students can obtain a masters degree at the University of Metz
in the field of their choice (as well as the German engineer diploma). And since 1999
students have been able to enter ISFATES directly after the baccalaureat (highschool
diploma), its duration having been extended to four years. This new structure thus offers
students a course comparable with the national university programmes.

The ISFATES-DFHI has been used as a model for many trainings that have been set up
since 1988 under the aegis of the Franco-German College for higher education, then, since
1997 under the aegis of the Franco-German University / Deutsch-französische Hochschule
(UFA/DFH), created at the time of the Franco-German summit of Weimar. The purpose of
this institution is to bring together all of the cooperations integrated between higher French
and German educational establishments. Currently gathering 150 establishments, 5000
students were registered with the UFA for the academic year of 2007/2008. The ISFATES-
DFHI, with its 400 registered students, remains today the most significant Franco-German
training delivering at the same time French and German diplomas.

2.2 Operation of the Institut

Currently Isfates has 6 branches : Computer Science, Logistics, Management Sciences,
Civil Engineering and Infrastructures, Mechanical Engineering and Industrialized
Manufacturing and Engineering Systems. For each branch, a group of 15 to 30 French and
German students " will travel " together each year from one university to the other. During
these 4 years alternatively divided between the University of Metz (France) and the HTW
Saarland (Germany), the French and German students attend all of the courses jointly (of
the national host branch of reception), which allows a permanent and enriching contact with
the other culture. The students from the six branches of a given year also have some “inter-
branch” courses in order to maintain a certain cohesion. The course of study is as follows:
- 1st and 2nd semester in Metz,
- 3rd and 4th semester in Saarbrücken,

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 8

- 5th and 6th semester in Metz,
- 7th semester in Saarbrücken,
- 8th semester period training course in a company outside the linguistic area of origin.
This training leads to a Bac + 4 in each of the branches leading to the following
qualifications:
- An engineer diploma (Abschluss DER HTW Saarbrücken).
- A master’s degree (maitrise) at the University of Metz.
The teaching staff is in itself bicultural and meets regularly and alternatively in the 2
countries.

3. Alumni surveys

We present here the two surveys which were carried out with all students from all sectors:
the results of the computer science sector were not significantly different from those of the
other sectors. These results are thus also valid for the computer science specialists.

3.1 First Survey (1995)

This survey was sent to 800 alumni of the old structure: 317 questionnaires were returned. It
concerned alumni who graduated from the institute between 1980 and 1994. They had
completed the Isfates curriculum in Bac+3 and Bac+4 and had obtained the French “licence”
and German Engineer Diploma.

Out of the 500 questionnaires that had apparently reached their destination, 317 returned
completed within one month after sending them (which constitutes a very strong and
significant return rate). Of the 317 questionnaires at our disposal, only 299 were usable.
Out of the 299 responses, 127 came from former German students, 172 from former French
students. 196 engineers responded (1/3 German, 2/3 French) and 103 managers (47%
German, 53% French). The average age of the subjects concerned in this survey was 29
years old and they had had 5 years of professional experience on average.

We will describe only a part of the results of this survey: certain aspects, such as their
motivation for coming to Isfates, pedagogy, marks, contact with teachers, the quality of
teaching offered at the two sites, the autonomy granted to students, how their first job was
found, and the size of their company will not be revealed in this article. But these data were
used to cope with the various reforms of recent years.

We will here describe the responses to the following questions: who they were before joining
the institute, in which countries they found a job, what the nationality of their first employer
was when they were expatriates, how much they earned, what were the essential skills
offered by this training for their professional life and would they repeat the same training.

• Profession of father: 70% of French and 52% of German alumni belonged to the most
disadvantaged social-professional classes : workers (miners often for the French),
employees, farmers, civil servants of a basic category.

• In which country did you find your first job (in %)?

The survey concludes that there is a strong mobility for the first employment, especially for
the French (42% in Germany, 9% in another country against 49% in France). Thus a little
over half of French students expatriated after their degree (especially to Germany) in
contrast to 21% of German students (12% + 9%).

For the French, attractive higher salaries abroad (in Germany in particular), is certainly the
essential explanation of this mobility.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

9

Figure 1 Mobility country of your first employment.

0

10

20

30

40

50

60

70

80

90

Germany France Other countries

Germans

French

• Nationality of the company for expatriates at the time of their first employment. The
aim was to assess the number of French and German alumni who left their country
of origin for their first job.

Most expatriates worked in companies in partner countries. (for example the French worked
primarily in Germany in a German company, only 10% of French expatriates worked in a
French company).
Nearly 30% of the French alumni worked in a company in a third country. This phenomenon
was even more significant for German expatriates. This can be explained by the
attractiveness of an international curriculum, even if this curriculum does not directly
integrate knowledge about this third country. This enforces the assumption that already in
1995, intercultural skills were acknowledged and recognized by international companies.
The results show that relatively few expatriates abroad worked in companies from their
country (keeping in mind that in 1995 the number of the French companies operating abroad
was much lower than today).

• What is your gross annual salary in DM?

The result of this question showed an annual average gross salary of 65000 DM for the
average 29 years old age group and 5 years of professional experience. In 1995, this
corresponded to the wages of engineers from reputable schools in France and to that of
engineers of good technological universities in Germany. Note that these wages were
obtained by students after four years of training (instead of five in the well-known schools), in
university establishments that are not the most reputable (Metz and Saarbrücken) and
coming from, in the majority of cases, from the underprivileged social classes. Whereas in
the renowned schools around 7% of the pupils came from the " disadvantaged" classes. At
Isfates nearly 70% at that time were from the “disadvantaged” classes.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 10

Figure 2 Annual Wages in DM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

French Germans Engineers Business Together

More than 72000

From 60 to 72000

From 48 to 60000

 Less than 48000

• How you see your professional future (in %)

Figure 3 Your professional future

0

10

20

30

40

50

60

70

80

90

100

French Germans Engineers Business

Good

Bad

Here again, we can see a certain optimism whatever the sectors or nationalities : 84% of
French felt good about these prospects! Considering that the French culture is known for its
pessimism in regard to the future, this is an excellent result.

• If you had the choice, would you reattend Isfates?

Overall 89% of French alumni (9% did not know and 2% would not recommence this training)
and nearly 80% of German alumni would agree to repeat this training (a little more the
technicians than the managers). This is an excellent result, and very significant, because
among the 9% of the French alumni who did not know, or who would not repeat this training,
it is necessary to also include those who were aware of having chosen the wrong field. The
Germans were probably a little less enthusiastic because the social elevator was a little less
significant for them (the social-professional levels of their parents being a little higher) and
the net worth wages which they earned thanks to the diploma was a little less significant for

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 11

them than for the French. If one asked the question " If I had to start again? " to a 100
managers of an average age of 29 years and working for approximately 5 years on average,
how many would say they do not regret their choice of training?

Figure 4 And if were to be redone?

0

10

20

30

40

50

60

70

80

90

100

Yes Don't know No

Germans

French

3.2 Second alumni survey (2002)

This survey was carried out in July and August 2002 in the perspective of a renewal of
Isfates. At that time the essential problem was to make the courses more attractive, in
particular in the scientific field affected by both the decline in the vocations in the field of
engineering (still of more an advantage in Germany than in France), and the drop in the
number of high-school pupils having learned German in France and French in Germany.
Whereas the first survey raised the question: " What have you become and what do you
think of us? ", this second survey was primarily focused in responding to recent concerns
such as:

- taking into account the current situation, " what type of courses should be offered in order
to make the institute more attractive? "

-" is the masters degree necessary and which LMD should be put into place? "

Meanwhile we had also taken the questions of the first survey again in order to determine
whether we would still have the same results: career, mobility, wages, vision of their future
professional life and satisfaction with their training are the questions which we repeated. We
will reveal in this part only this last data.

Overall the sample was comparable to that of the survey of 1995: the same proportion of
managers (39%) and engineers (51%), a type of professional situation slightly more
favourable than the father. The average age of the subjects covered by this survey was 30
years old and they had had 5 years of professional experience on average. 70% of them
had obtained their diploma from Isfates after 1995, and thus had not been consulted at the
time of the first survey: they were primarily recent graduates.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 12

The answers to these various questions confirmed the 1995 survey: there was still a majority
of students that came from more disadvantaged social-professional levels, a mobility as
significant for the first job, annual wages still high in taking into account their level of studies
(comparable with those of students leaving good engineering and business schools).
Although the survey was conducted during a period of economic recession in France as well
as in Germany during the summer of 2002, the old optimism remained. Their professional
future was seen as " good or very good " for 69% of the alumni, " not good " for 11%, while
20% did not know. Finally the very significant indicator of satisfaction with this training when
asked " If I had to start again, would I? " : 83% answered yes, 7% no and 10% did not
know.

3.3 Some other indicators

Since the creation of the computer science department of Isfates in 1990, one could note
very visible differences between the students who followed this curriculum compared to the
students of the national education French and German sectors. Most of these differences
were also observed in other sectors, but we will focus on computer science students. In the
computer science subjects these students obtained similar results to those obtained by
students from the national education sectors. There was no significant difference in the
average mark of a group of computer science students from Isfates with the average mark of
students from the national group (even if the students from Isfates had completed, in overall,
less computer science courses throughout their training compared to other students). On the
other hand the difference was extremely favourable for Isfates when it was a question of
finding a training course or an employment, in the average duration of research, the type of
missions given or salaries earned. These Franco-German students found their first training
course or their first job much more quickly, had a very interesting position, and had higher
paid salaries. And this variation was even more visible during the years of the computer
science crisis. Indeed the students from Isfates were hardly affected in these years of crisis.
Let us notice that in a period of full employment in computer science, the number of
candidates in the computer science department of Isfates fell because mobility was not
necessary to find a job. And of course as soon as the job market in computer science
weakened, one could note an increase in the number of candidates again.
Therefore the students of Isfates have always interested employers, as much as the well-
known engineer schools and universities. Thus, those wishing to continue their studies after
their fourth year had their student files very easily accepted (much easier than those from
the national education) even in the most renowned establishments in France. We have thus
been able to set up an agreement with the Polytechnique School of Montreal, known to be a
very selective establishment for European computer science specialists and which only
accepts students from the most reputable schools in France and those of the best German
technological universities. Today, Polytechnique, noting the adaptability and excellent
results of Isfates, is opening its doors more widely to the students of Isfates and is
continuing to accept an increasing number of our students (whereas the number of
candidates for this school has not decreased).
A last indicator is the number of prizes obtained for the best training courses carried out by
the students of the two countries. In Isfates, and in the computer science sector in
particular, students regularly receive prizes of having carried out the best training course,
whereas students from the national education (having a much more significant manpower:
from 4 to 7 times more depending on the year and locations) only obtain prizes very
exceptionally.

4. Discussion

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 13

4.1 The cultural skills that pay

The results of the studies we have undertaken show that this type of training offers students
interesting career-advancement opportunities. The high level of satisfaction of former
students who would be willing to repeat the same career choice (89% and 83% according to
the survey) can be explained in the following way: even if the direction they had chosen at
the age of 18 or 20 years was not necessarily the best compared to their tastes today, the
position they currently occupy, and also the professional opportunities encountered enabled
them to have a job that pleases them. The awareness of the effect of a social elevator
(remembering that over 50% of students had grants) is certainly another reason not to regret
their choice.
If we compare our surveys with the results of the Valera study on Erasmus, one finds that the
benefits of mobility is much more favourable for students from Isfates. This can be explained
by the following reasons:

• The duration of mobility: the students from Isfates carried out either two
semesters (in the old system), or four semesters (in the intermediate system), or
five semesters (in the current system) abroad. Erasmus does only one or two
semesters abroad.

• Integration: even when the semester takes place in the country of origin, the
student is in a bicultural group. Moreover, the programmes of the different
semesters are synchronized. This is not the case for Erasmus.

• Diploma: Isfates students receive the diploma from both countries which is not the
case for Erasmus. The importance of a double degree no longer needs to be
proven: for example, most German companies in computer science technology do
not know the French diplomas. For a French person, having the German diploma
allows him easy access to the German labour market.

• Economic ties are very developed between the two countries.
The Erasmus survey covered four specialities of which two are general (sociology
and general chemistry) and where mobility seems, a priori, to be not so great. For
Isfates, its six specialties are in great demand in the international market.

We also asked the alumni in these questionnaires, and in many interviews, to classify three
skills (specific knowledge in the field, knowledge of the language and intercultural skills) that
they considered to have contributed to the success of their careers. Intercultural skills were
in majority considered to be the first, followed by language skills and finally academic
knowledge. Obviously a good academic level is indispensable, but intercultural skills are
increasingly needed in the job market, and appear to make a difference. It is the reason why
we have taken advantage of the various reforms of the institute by integrating, each time a
little more, these skills into our educational programmes.

4.2 Taking into account the results of the survey: intercultural skill
development in the curriculum

In the computer science department, as well as in all other departments, each group is made
up of 50% Germans and 50% French. So even when French students spend their academic
year in France, they study each day with German students and a have a certain number of
German teachers. All projects in computer science must be bicultural meaning a group
working on the project must necessarily have both French and German students.
We gradually introduced specific courses aimed at developing language and intercultural
skills. These courses consist of presentations on the cultures of each country, conferences,
projects to be realized by the students, company visits, etc…. Moreover, the importance we
grant these courses is illustrated by the specific number of dedicated hours and their weight
in the marking system. Thus intercultural and language lessons account for 30% of the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 14

number of students’ hours. To illustrate these choices, here is the content of the courses
taken by first year students in the computer science department.

First Semester: (4 Units: Each Unit consists of subjects each representing 48 hours or 24
hours per semester)

• M1 Languages and intercultural education
o German / French 48 h.
o English 48 h.
o Intercultural 24 h.
o Knowledge of companies 24 h.

• M2 Core Subjects
o Mathematics 48 h.
o Computer Science 48 h.

• M3 Programming
o Algorithmic 48 h.

• M4 Management
o General Economy 48 h.
o Commercial law 48 h.

2nd Semester (4 Units)

• M1 languages and intercultural education
o German / French 48 h.
o English 24 h.
o Intercultural 2 24 h.

• M2 Core Subjects
o Mathematics 48 h.
o Computer Science 48 h.

• M3 Programming
o Databases 48 h.
o Algorithmic 48 h.

• M4 Networks
o Internet 48 h.

The “languages and intercultural learning” units and the “management” course units are
taught in all of the departments : it allows computer science students to not remain only
among themselves and to have ongoing contacts with students from other departments. In
the first semester, rather than starting immediately on specific computer science subjects we
have decided to offer many non-IT units. Here are the reasons:

• To allow German students, who often have an average knowledge of the French
language on their arrival in the first year in France, to improve their level of French so
as to not fall behind in the technical courses (which really begin in the 2nd semester)

• To reduce the dropout rate (frequent in the 1st year at universities) by giving a
chance to students who come from high schools to gradually adapt to the pace of
university life and to adapt to the country.

For the following three years the programme consists of close to 30% of language and
intercultural education. We recognize the difficulty confronted in setting up these type of
lessons as it is a new field, is little recognized and is often poorly accepted by the students.
Explaining the choice of “sacrificing teaching hours to something other than computer
science” has not been easy with both students and among teachers. Indeed in the computer
science department (as in other departments) the same resistance and remarks were made:
computer skills are essential, and any other subject (sometimes even languages) were not a
priority, the academic level of the students at the end of the training would be too low, other

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 15

subjects could be self-taught, it was a waste of time and would undermine the value of the
diploma…

The results of our surveys, the facility with which each year our graduates found an
employment, and an experience of nearly 30 years of Franco-German exchange helped to
convince the different teaching teams to devote a significant part of the programmes to "soft
skills" and in particular to language and intercultural skills. Even today when a new computer
science colleague joins the teaching staff of the computer science department, his first
thoughts on the training are still the same and he has again to be persuaded.

5. Conclusion

Studying abroad and obtaining a double diploma is, for a computer scientist, a passport for
an even more successful future career than if he had not been mobile. And this is the case
even if in the beginning this computer scientist is not particularly brilliant or good at
languages, nor coming from an elevated social class. Our study proves this. The surveys
carried out with the Isfates alumni confirm that such a training allows a greater mobility, a
starting salary significantly higher than those holding an equivalent national diploma and a
very optimistic vision of the alumni’s future professional life. The study also shows that most
alumni would be ready to start over again and that this training is a very effective social
elevator.

This study proves that this type of training is a very important asset, even for a future
computer science engineer who does not have to worry much about his early career. The
recipe for Isfates is as follows: a good basic training in computer science plus current
practice of foreign languages, a permanent cultural bath, and double diplomas.

This study also demonstrates the importance of "soft skills" and especially intercultural skills.
In fact, those students who had, in their overall training, up to 20% less computer science
courses than in the national education programme have a far better career than the latter.
Currently Isfates has the system of Bachelors and Masters Degree:

• For the Bachelors Degree: three semesters take place in Metz and three semesters
in Saarbrücken in the end obtaining a joint Franco-German Bachelors Degree. It is also
possible to spend one semester with Erasmus in another country.

• For the Masters Degree: three semesters of study followed by a semester of
internship in a third country. For the three semesters of study, the first takes place in
Saarbrücken, the second in a third country or Saarbrücken and the third in Metz. In the
end a joint Franco-German Masters Degree is obtained.

This year the computer science department of Isfates has joined the network ECS (European
Computer Science) [6] which allows students to do the 3rd year of their bachelors degree in
one of universities belonging to the network (Burgos in Spain, Turku in Finland, Coimbra,
Portugal, Huddersfield in England) and in addition to obtain the diploma from this country.
That makes a total of three diploma’s in three different countries at the end of the Bachelors
Degree. This will entail even more intercultural skills and certainly better careers prospects.

These experiences of setting up joint trainings between different countries should be taken
into account in order to arrive at a coherent European university training in computer science
involving an optimal mobility of students. This is already what a project such as Euro-Inf [7]
has; its goal is to create a coherence among all trainings in computer science from the
European standpoint.

References

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

 16

1. Beamer, L. Learning Intercultural Communication Competence, The Journal of Business
Communication, 1992 ; vol. 29, n°.3, p. 285-295.

2. Berry, J. W., Segall, M. H., & Kagitçibasi, C. (Eds.). (1997). Handbook of cross-cultural
psychology. Social Behavior and Applications (2 ed.). (Vol. 3). Boston, MA: Allyn & Bacon.

3. Camilleri, C. & Cohen-Emerique, M. (Ed.) (1989). Chocs de cultures: concepts et enjeux
pratiques de l'interculturel, Paris : L'Harmattan, p. 363-398.

4. Deutsch-Französische Hochschule - Université franco-allemande http://www.dfh-ufa.org/

5. Dinges, N., K. Baldwin. Intercultural Competence. A Research Perspective, In D. Landis et R.
Bhagat (dir.), 1996 ; Handbook of Intercultural Training, London, Sage, p.106-123.

6. ECS European Computer Science
http://www2.turkuamk.fi/ECS/index.php?option=com_content&task=view&id=46&Itemid=44

7. Euro-inf The Euro-Inf Project - European Accreditation of Informatics Programmes
http://www.euro-inf.eu/

8. Hampden-Turner, C. et A. Trompenaars. Building Cross-Cultural Competence. 2005 ; London,
Yale University Press.

9. Hofstede, G. Culture's Consequences. International Differences in Work-Related Values.
2001; London, Sage.

10. ISFATES-DFHI Institut Supérieur Franco Allemand des Techniques, d’Economie et des
Sciences - Deutsch-Französisches Hochschulinstitut http://www.isfates-dfhi.eu

11. Morin, E., Les sept Savoirs nécessaires à l’éducation du futur, 2000 ; Paris, Seuil.

12. Oxford, L. R., N. J. Anderson. A crosscultural view of learning styles. » Language Teaching,
1995 ; Cambridge University Press, n° 10, p. 201-215.

13. Redfield, R., Linton, R., Herskovits, M.J., Memorandum on the study of acculturation, in
American Anthropology, 1936 ; n°38,

14. Valera “Value of ERASMUS Mobility” of the EU
http://ec.europa.eu/education/programmes/socrates/erasmus/evalcareer.pdf 2005

15. Vulpe T. Training for Intercultural Competence: Avoiding Failures in International
Assignments. CERC news. Issue No. 132 http://www.dfait-maeci.gc.ca/cfsi-icse/cil-
cai/pdf/cerc_article-en.pdf 2004

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

17

Accreditation practice for degree programs in
Computer Science: Experience gained at a
classical research university in Germany.
Thomas Ottmann, Christoph Hermann1, Christoph Heumann2

1Georges-Köhler-Allee Geb. 51, 79110 Freiburg, Germany,
ottmann@informatik.uni-freiburg.de; hermann@informatik.uni-freiburg.de
2 ASIIN e.V., Robert-Stolz-Straße 5, 40470 Düsseldorf, Deutschland
heumann@asiin.de

In this paper we outline how large German research universities handle the Bologna
reform. We in particular describe how they fulfill the requirement to accredit their new
undergraduate and graduate programs. A description of the general framework is
complemented by specific examples and experiences gained in the accreditation
process of the computer science programs at the University of Freiburg. We in
particular illustrate the positive effects of peer review in the accreditation process for
the design and implementation of the new degree programs and disclose hurdles
solved for the accreditation. It turns out that the external program accreditation of all
degree programs is complex and expensive. Therefore, large traditional universities
go for the so called systems accreditation. The aim is to make external program
accreditation superfluous once an efficient internal quality management system is
implemented and operational. We outline some advantages and disadvantages of
system accreditation (Systemakkreditierung) versus program accreditation and
conclude with lessons learned during our accreditation experience.

Keywords
Program versus System Accreditation, Quality Control, Changing Computer Science
Programs, Bologna Reform, German Research Universities

1. General framework for accreditation
In the German federal system, the responsibility for higher education mainly lies with the 16
federal states (Bundesländer) and their respective ministries for higher education. Parallel to
the introduction of the two-cycle structure with Bachelor’s and Master’s programs by
Germany’s universities as a result of the Bologna process, quality control has been
transferred from the state ministries of higher education to accrediting bodies founded by the
higher education institutions (HEIs) themselves, sometimes in co-operation with other
stakeholders in higher education. This change goes along with a transfer of responsibility
from the state to the HEIs, leading to greater autonomy on the part of universities, but also to
new administrative responsibilities and to requirements regarding the documentation of the
quality of their processes, also with regard to the development and implementation of the
new Bachelor’s and Master’s degree programs. In the past, the state ministries of higher
education had a much more direct influence on the state-funded universities and their degree
programs. Nowadays, most state higher education laws just contain the requirement that
degree programs must be accredited.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

18

The accreditation system in Germany is regulated by the Accreditation Council
(Akkreditierungsrat) which was established by the 16 federal states as a foundation under
public law. The Accreditation Council sets the standards and guidelines for the accreditation
agencies and awards the right to accredit degree programs. Currently, six accreditation
agencies have been authorized by the Accreditation Council to award its Seal to accredited
Bachelor’s and Master’s degree programs: ACQUIN, AHPGS, AQAS, ASIIN, FIBAA, and
ZEVA1.
Three of these cover the entire breadth of academic education, the other half focuses its
activities on certain subject areas. The accreditation agency ASIIN e. V., for instance, is
specialized in the accreditation of degree programs in engineering and informatics/computer
science, as well as mathematics, biology, physics, chemistry, geosciences and pharmacy.
Most computer science programs offered at German universities and universities of applied
sciences (Fachhochschulen, UAS) are accredited by ASIIN. ASIIN e. V. is organized as a
non-profit association carried not only by networks of HEIs, but also by federations and trade
associations (including the federal association of state engineering chambers), scientific
societies and umbrella organizations from industry and trade unions – all of which are active
in the fields of technology and natural sciences. It is supported by the national bodies
representing the faculties of engineering and natural sciences at German universities and
universities of applied sciences.

The Bologna reform has not only changed the administrative framework for quality control
but also shifted the focus from learning inputs to educational objectives and learning
outcomes. The objectives of a degree program should reflect the needs of the different
stakeholders in higher education: academia, industry, state governments, and students. The
accreditation process must ensure that degree programs seeking accreditation meet their
objectives. The assessment method is the same for all German accreditation agencies: First,
any degree program must specify its objectives; this requirement is then further elaborated
by a number of key questions to be answered (what subject-specific and subject-
independent competences/qualifications are being imparted, how is the employability of
graduates achieved, what are typical occupational fields for graduates, what is the specific
profile of the degree program, and further similar questions). Second, the concept of the
degree program and its implementation must assure that the objectives are met and that the
HEI has the necessary means to carry out the program. Some accreditation agencies, like
ASIIN e. V., complement the general requirements and procedural principles by subject-
specific criteria. These are conceived as parameters for orientation and comparison against
this background, allowing for reasonable deviations and serving as an orientation for
application and auditing of degree programs in the accreditation procedure. ASIIN e. V. has
13 technical committees (TC) for the various disciplines represented within ASIIN. They
formulate learning outcomes and objectives, develop the subject-specific criteria and
guidelines, nominate audit teams for accreditation procedures, and review and comment
reports of audits to the Accreditation Commission. This is not done in isolation but in
discussion with the scientific organizations, future employers of graduates, and students. In
addition, ASIIN e. V. is part of international networks aiming at establishing comparable
outcome descriptors for higher education degree programs in specific disciplines on the
European level, amongst them the Euro-Inf Project (European Accreditation of Informatics
Programs).2 With this project, a framework has been established that supports the
coordinated further development of accreditation criteria for informatics degree programs in
Europe between supra-national organizations such as the Council of European Professional
Informatics Societies (CEPIS) and Informatics Europe as well as national bodies such as the
British Computer Society or GRIN in Italy.

1 http://www.akkreditierungsrat.de/index.php?id=5
2 http://www.euro-inf.eu

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

19

Beyond the fitness of purpose of the Bachelor’s or Master’s degree program and the
correspondence of its objectives to the needs of the stakeholders in the higher education
process, the Standing Conference of the Ministers of Education and Cultural Affairs
(Kultusministerkonferenz, KMK) of the 16 federal states has set common structural
guidelines for Bachelor’s and Master’s programs, compliance with which is also checked in
the accreditation process. These guidelines specify modularization, the award of credit
points, and the duration of degree programs; they regulate entry requirements and transition,
distinguish between different profiles and types of Master’s programs, and clarify the
equivalence of the new degrees with the traditional one-cycle diploma degrees.

In what follows we briefly characterize the different versions of how the learning outcomes of
undergraduate and graduate programs in informatics/computer science are specified in the
subject-specific criteria of the TC 04 of ASIIN, which is the technical committee responsible
for informatics/computer science. The specification is by far less detailed than the one
developed by the ACM/IEEE joint task force contained in the Computing Curricula 2001
Report [4]. The specification does not distinguish between different computing related fields
but tries to roughly characterize the body of knowledge and competences to be expected
from every graduate of a computer science program in about 10 pages. The subject specific
competences comprise formal, algorithmic, and mathematical competences, analysis, design
and implementation abilities, as well as technological and application-oriented competences.
No detailed curricular recommendations and no sample programs or course descriptions are
given. Thus, the requirements are much more generic than the ACM/IEEE recommendations
or the guidelines compiled by the German Computer Science Society GI [5]. A typical
example is the specification of the formal, algorithmic, and mathematical competences to be
expected from every computer science graduate:

Graduates of any informatics program are able to analyze, structure, and
describe real world problems by formal means. They can transfer formal
requirements into correctly implemented and efficient solutions using
currently available hardware- and software systems. They are able to identify
the algorithmic core of a problem and have a good command of the
respective algorithms, data structures, and patterns for solving problems.
They are able to assess the correctness and efficiency of a solution using
mathematical means. These and other abilities are based on a solid
mathematical training. It includes discrete mathematics, formal logics, and an
introduction to calculus and real analysis such that students are able to
distinguish between ideal mathematical objects and their incarnations on
current computer systems. They master not only formal methods to infer
conclusions from facts but also the statistical methods to detect patterns in
large data sets. Finally, graduates not only have a large repertoire of means
and methods at their disposal; they are also aware of the limits of algorithmic
and formal methods.

Design and implementation abilities are described in a similar way. They include
programming skills and the mastering of the software development techniques and tools. The
technological competences specify the body of knowledge in computer hardware,
architecture, operating systems, computer security etc. Beyond the subject specific
competences, more general, social skills to be acquired by computer science graduates are
described in a similar generic way: Graduates have learned to develop solutions in teams;
they can communicate their solutions both in writing and orally; graduates of a Master’s
program have obtained an introduction into the scientific methodology of the discipline and

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

20

are able to acquire new knowledge from scientific literature. They are able to organize and
monitor projects.

It should be clear that such a description of learning outcomes does not necessarily lead to a
unique curricular structure but may result in a large variety of different programs. The
accreditation practice, however, has shown that the diversity is much less distinct than one
might expect. Despite all local characteristics, undergraduate programs in
informatics/computer science at German HEIs often look quite similar: About 30 ECTS
credits are spent for mathematical training including discrete mathematics, calculus, formal
logics and stochastic. There is an introduction into computer hardware and architecture,
algorithms- and data structures, and computer systems including operating systems,
networks, and database management. The strongest emphasis is laid on the introduction into
programming and software development including project work, where students not only
learn the basics of software technology but also gain practical experience in their application
in small teams of 6 to 10 students.
There are several reasons why undergraduate programs often look quite similar: often,
informatics departments would base the design of their new Bachelor’s and Master’s
programs on the established one-cycle degree programs instead of starting from scratch;
also, they would consult the recommendations of scientific and professional organizations
like ACM/IEEE and GI for designing Bachelor’s and Master’s programs; and accreditation is
based on a peer review of programs which means that experts from other HEIs and from
industry discuss the concept and its realization with the members of the informatics
department. Diversity is much more visible in the Master’s programs. Here, the traditional
German view, comprised in the traditional one-cycle informatics diploma, of granting a
unique universal degree enabling their degree holders for a large variety of different jobs, has
been replaced by a variety of highly specialized Master’s programs ranging from media
informatics, bioinformatics, technical informatics, security systems, to software technology,
and many more.

Informatics/computer science is a subject offered at all three major categories of HEI:
universities, universities of applied sciences (UAS), and universities of cooperative studies
(BA). All HEIs grant Bachelor’s degrees, at least in some states like Baden-Württemberg.
Universities and UAS also grant Master’s degrees. Formally, all degrees are considered to
grant equal rights. This is new in the German system of HE. Before, only the Diploma
degrees granted by universities qualified their degree holders to enter a PhD program. Now it
is possible to switch between institutions with a Bachelor’s degree in order to enter a
Master’s program and to enter a PhD program with a Master’s degree regardless of where it
has been acquired. It should be obvious that this has been a massive gain in prestige for the
UAS. This change was politically intended and is one reason why UAS were much faster
than universities in adapting the new two-cycle Bachelor’s and Master’s system and in
seeking accreditation of their degree programs. The only difference remaining between
universities and UAS is that the latter ones cannot grant PhD degrees. Nevertheless, the
accreditation process has the effect that the educational standards of CS education at
universities and UAS are becoming similar, though both still try to maintain their specific
profiles: Universities concentrate more on the methodological and theoretical foundations of
the discipline while UAS see their strength in the more practical aspects of the discipline and
their close relationship with industry.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

21

2. Challenges to applying the Bologna reforms at the University of
Freiburg
The University of Freiburg (officially called Albert-Ludwigs-Universität Freiburg named after
its founder, Duke Albert Ludwig) is a classical German research university already
established 550 years ago in 1457. Today it belongs to the top tier of German universities
with proven excellence in research and teaching. It is structured into 11 faculties: Theology,
Law, Economics, Medicine, Philosophy, Philology, Mathematics and Physics, Chemistry,
Biology, Forestry, and Applied Sciences. It offers 151 different subjects ranging from large
subjects like German, to exotic and small subjects like European Ethnology. The structure
and organization of this university poses several challenges to the implementation of reforms
in higher education.

Heterogeneous program structure

More than half of the degree programs and almost half of the 20,000 students of the
university are studying programs not affected by the Bologna reform. These are the state
controlled educational programs in medicine, law, and all subjects qualifying students for
becoming high-school teachers. Diploma degrees have traditionally been granted in all
science and engineering disciplines, but they have to be replaced by the new programs.
Thus, there is a discrepancy between the two educational systems, the state-controlled
programs and the ones under the sole responsibility of the university. A large number of
subjects (like mathematics, for example) may be studied in both modes leading to different
degrees. It should be clear that the university tries to utilize synergies between the two
programs wherever possible by mutually using identical courses in both programs. However,
it turns out to be quite difficult to synchronize the different modes; transition and examination
regulations vary, and the objectives of the degree programs differ.
Because of these structural differences, the change of degree programs to the two-cycle
system of Bachelor’s and Master’s degrees at a full university with a broad spectrum of
subjects is by far more complex than the corresponding change at a UAS or even at a more
homogeneous technical university. Therefore, it is not surprising that most faculty members
and study deans were quite hesitant implementing the change.

Heterogeneous information systems

What also has not been considered was the very heterogeneous software environment at the
university. The switch to the bachelor/master systems created major headaches for the
technical and administrative departments; In particular, they were not flexible enough to
handle the large number of course-related exams in the Bachelor’s and Master’s programs
instead of the few punctual exams in the diploma programs. Furthermore, the new
examination regulations contain a lot more differentiations and regulations. Those are, for
example, the specification of compulsory and elective subjects, keeping track of the numbers
of required exams, the number of attempts as well as the introduction of a bonus and malus
system. Additionally to the requirement to enter all this information in software systems there
is also the need to be able to view the study progress for every student at any time.
Therefore, new web-services for supporting the examination authority and the students alike
had to be introduced. They should allow every student to retrieve his study progress at any
time. First calculations in 2005 showed that the additional effort for manually administrating
all the new exams for the students at the University of Freiburg amounted to additional work
for six people employed full time for one year (counting 5 minutes of additional work per

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

22

exam) [9]. Therefore, the software environment had to be prepared to the new system
allowing a decentralized maintenance of all the students’ data. The University of Freiburg
addressed this problem with an infrastructure of a centralized service allowing decentralized
administration within the university. Since the beginning of the transition to the new system,
the software systems have been improved step by step, but they are still far away from a
perfect solution. For example, most of the basic information in the course manual needed for
the accreditation (see section three) as well as the data about the staff members and their
research experience and current research fields are all stored in one of the universities
software systems. From a technical point of view, it should be no problem to collect all this
required data and to bundle it for the accreditation. Unfortunately, due to the heterogeneous
nature of those software systems, they are not all interconnected which makes it quite hard
to get the required data.

The “unknown” first cycle graduates

The common structural framework set in place by the state ministers for higher education
stipulates that Bachelor's programs must lead to a professionally relevant qualification.
Access to Master's programs must be based on further criteria, i.e. only those students
having passed the Bachelor’s exam with a result above average are allowed to enter a
Master’s program. However, where CS is concerned we know that students holding a
Bachelor’s degree have no difficulties to find a job, at least in the current economical
situation. Furthermore, the assumption that the good students stay on and continue their
studies in the Master’s program is also not universally true. Most of our own graduates
entered the industry workforce or changed to another university. Some of them returned after
a short period in the industry to continue their studies in a Master’s program.

“Soft skills” as explicit element of higher education

In order to qualify the students enrolled in a Bachelor’s program for a job, not only a thorough
education in the subject is necessary but also the acquisition of so-called “soft skills”. These
include the ability to work in teams, scientific reading and writing, presentation competences
and the mastering of the appropriate computer-based tools, etc. This is also quite new for a
classical university. Freiburg has solved this problem as follows: It has established a central
unit organizing and teaching a broad spectrum of courses in four different categories:
management, communication, media and computer usage, and foreign language education.
Each bachelor program must contain between 8 and 12 ECTS credit points taken from this
list in order to assure that the students obtain at least a basic training in these soft skills.
Beyond this “external” training, informatics students are usually required to complete
seminars and project work within their subject also providing such “soft skills” as a by-
product.
Every informatics/computer science graduate should be able to solve real-world problems
outside his own discipline. For that purpose, he should have learned to communicate with
experts from other disciplines and apply his knowledge appropriately. In Freiburg, as in most
other universities, this has been solved in such a way that informatics students are requested
to enroll in a number of courses from some other discipline, the so called application area. A
traditional university has much to offer in this respect: In principle, students may choose any
subject of their interest ranging from medicine to business administration and micro system
technology. In practice, it has, however, turned out that this was very difficult to organize: it
requires special agreements with other faculties, a coordination of the class schedules and
examination rules, a compensation for the teaching loads, and much more. Because the
Informatics/Computer Science Department was among the very first departments who
changed their degree programs to the new two-cycle system, it turned out to be almost

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

23

impossible to import a limited number of modules from other programs into the informatics
program.

General reservation against accreditation

For faculty members bearing in mind the Humboldtian ideal of a university teacher,
combining excellence in research with excellence in teaching, the transformation of
traditional research-oriented Diploma degree programs into a two-cycle structure and the
requirement of subjecting the new programs to regular reviews “from the outside”, is a radical
change to which they find it difficult to adapt. At the University of Freiburg there are a total of
151 programs (in which a total of 20.714 students3 is currently enrolled). Only 10 of these
have already been accredited: four programs in the Computer Science and Microsystems
department (see next chapter), one in medicine (Master Online Periodontics), two in
economics (MBA International Taxation, MBA Estate Planning), a global studies program
(MA Social Sciences) and the programs Environmental Governance and Forest, Ecology and
Management. For all of these programs, the higher education ministry of the state of Baden-
Wuerttemberg (BW) required the accreditation either before the programs started or after a
certain time. Also, all of them receive direct funding from the state ministry for higher
education, giving the ministry more leverage than in cases where the funding is provided
indirectly via the university as an institution.
As we will see in the next sections the accreditation process is quite time-consuming and
sometimes difficult, but certainly worth it for some of the benefits gained by a peer review of
the programs.

3. Design and Accreditation of Computer Science programs
Degree programs in informatics/computer science are offered by the Faculty of Applied
Sciences, which consists of two departments, the Department of Computer Science and the
Department of Microsystems Technology. The Faculty of Applied Sciences in Freiburg
already decided in 2004 to suspend the informatics one-cycle Diploma degree program and
to introduce new undergraduate and graduate programs. At the time, there was almost no
experience at the university with the new two-cycle educational system and accreditation of
degree programs. There was, as yet, no accepted framework for new Bachelor’s and
Master’s programs. The aim of the department was to guarantee that the consecutive
combination of the Bachelor’s and the Master’s program should lead to a qualification at least
comparable to the old diploma studies. This is in concordance with the definition of so called
consecutive Master’s programs: The general rules of the Standing Conference of the
Ministers of Education and Cultural Affairs of the 16 states in the Federal Republic of
Germany for the introduction and accreditation of Bachelor’s and Master’s programs [7]
distinguish between consecutive, non-consecutive, and continuing educational master
programs. A consecutive Master’s program extends, deepens, and continues its preceding
Bachelor’s program. Thus, both the undergraduate and the graduate program are considered
as a combined unit of coordinated modules leading to a clearly specified common profile.
Therefore the idea, when introducing the new programs at the department, was to replace
the diploma by a consecutive undergraduate and graduate program in informatics.

The design of the new programs and the accreditation procedure was quite a new
experience for the faculty. In particular, the concentration on learning outcomes for the
design and implementation of the new programs was completely unfamiliar to the staff. Two

3 In winter semester 2007/2008 20.714 students were matriculated.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

24

main questions had to be answered: How do we achieve the professional qualification of our
bachelor students and what are typical jobs for a bachelor graduate? Hence, what is the
desired learning outcome? Of course the general requirements, procedural principles and
subject-specific criteria mentioned in section one of the accreditation agency had to be
fulfilled for a successful accreditation of the new programs as well. This implied the collection
and preparation of a lot of information. The output orientation forced explicit formulation of
the objectives of the educational programs and not only to derive the curriculum from the
objectives but also to show the contribution for each module to the successful achievement
of the desired learning outcome.

Another challenge was the requirement that the Bachelor’s degree must enable its holders to
successfully apply for a job outside the HEI. This meant that the traditional concentration of
engineering and science studies at universities on a thorough mathematical training in the
first two years could not be maintained anymore. Instead, in the undergraduate program the
practical parts, inclusive the procurement of “soft skills”, were considerably strengthened,
and the mathematical components and advanced topics were only marginally and
exemplarily included. Parts of them had to be shifted to the Master’s program. The latter fact
was also the source of a conflict which seems to be typical for universities transforming their
diploma studies into new undergraduate and graduate programs: Traditionally, in the diploma
degree programs at universities each core subject (in Germany usually represented by a
chair) was represented by at least one advanced course for third and fourth year students;
usually there is no specified order in which these advanced core courses have to be taken.
The successful completion of these courses is the prerequisite for any further specialization
in specific related subjects. The question now was which of the core and special courses
should be included into the three years of the undergraduate program and which into the
graduate program. In Freiburg (as in many other university departments) this conflict could
not be solved amicably. It required a discussion of the staff with the peers during the
accreditation audit in order to find a solution and to mostly eliminate this problem, leaving a
marginal rest: Courses on software technology and on database systems were turned from
electives to compulsory; only very few modules became eligible both in the undergraduate
and graduate programs.

When designing the new graduate program, the faculty also wanted to attract students from
other universities already holding a Bachelor’s degree. Students from abroad already
enrolled in an international Master’s program (applied computer science, ACS, funded by the
German Academic Exchange Service, DAAD, and offered by the faculty for several years)
were of particular interest. Originally, it was the aim to merge this international ACS program
and the new Master’s program. During the accreditation procedure it became clear that this
merger was not compatible with the requirements for consecutive degree programs.
Therefore, the faculty decided to split the Master’s programs into two variants: The
consecutive “standard” program and a new non-consecutive ACS program. The latter has
special conditions for enrolling students holding Bachelor’s degrees from institutions offering
degree programs having some overlap with the Bachelor’s program in Freiburg but which are
not almost identical. In order to allow for the previously gained knowledge of these “external”
students and to adapt the level of qualification, the new ACS program was endowed with two
new bridge modules providing students with the necessary knowledge enabling them to enter
the advanced master courses. That is, both the standard consecutive graduate program and
the new non-consecutive ACS-program share large parts of their curriculum but are not
identical.

All the modules in the curriculum had to be described within a course manual which consists
of a detailed description of each course: The ECTS credits awarded for this course, a

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

25

detailed list of the workload (time to spend on the practical parts, theoretical parts, lab
sessions, homework etc.) the language and type (major, minor, elective course, etc.), the
role of the module in the curriculum (i.e. one of four elective modules in a certain area), the
requirements, goals and learning contents as well as the kind of exam of the module and of
course literature accompanying the course. The most difficult part here was that staff
members were not used to distinguish between learning outcomes and the description of the
learning input, that is, of the content of a module. Quite often, a professor specified the
competences to be acquired by a module simply by “the goal of the course is to obtain an
introduction to ... (and then the content description was repeated)”. For all modules the
learning outcome had to be specified in terms of knowledge (the ability to recall or remember
facts without necessarily understanding them), comprehension (the ability to understand and
interpret information), application (the ability to put ideas and concepts to work in solving
problems), analysis (the ability to break information in its components to see
interrelationships), synthesis (the ability to use creativity to compose and design something
original) and evaluation (the ability to judge the value of information based on established
criteria) [6]. Moreover, it was necessary to eliminate overlaps and to close gaps in the
contents of modules. This, of course, first means that a professor offering a course is himself
conscious about the learning outcome and the appropriate method to reach it.

The workload specified in the course manual has to match the total amount of time a student
spends on the different modules while he is enrolled in a course. To get a Master’s degree in
Baden-Württemberg, students have to take courses for a total of 300 ECTS credit points
(including the credits gained during their first degree – i.e. bachelor). This corresponds to a
total number of 9,000 hours of student work load (1 ECTS credit point awarded corresponds
to 30h work). This workload and its related burden for the student (which is often
underestimated by students) have to be monitored continuously. In this way the student is
not overworked, but the workload should also not be too low during a semester. The required
amount of work and other factors like the quality of teaching should be evaluated at least
every semester to make sure that the quality fits the expectations one would have from a top
tier university. This includes student’s critics of courses. In the Master’s program “Intelligent
Embedded Microsystems” (IEMS) we evaluate courses twice a semester (once in the middle
to be able to intervene if something goes wrong, and once after the exams to get
accurate/detailed feedback from the students about the real workload they had with the
modules including the time they spent on preparing for the exam).
The major problem here is that every faculty or department used to have its own style of
using evaluations to implement some kind of quality monitoring. Today the University of
Freiburg is establishing a general evaluation framework for the whole university in order to
assure a continuous and standardized evaluation of all courses in every faculty. Quality
control is also a requirement for the accreditation of the degree programs and therefore there
is no need that every faculty starts from scratch. But the standardization of all different
faculties needs for evaluation is almost impossible. What fits the Computer Science
Department needs does not fit the needs of the Psychology Department and vice versa. A
cautious legal department caused additional problems by rejecting the drafts for an
evaluation regulation because they allegedly were conflicting with legal provisions.

Since Master’s programs should have a clearly visible research orientation, curriculum
design cannot be independent from the research activities of the staff members responsible
for the program. Therefore, a meaningful detailed description of the professional experience,
the areas of research, and role of all the people involved in the program had also been
compiled for accreditation. It is not surprising that this was one of the easier tasks, for
professors of a research university which are accustomed to present themselves and their
research achievements.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

26

Of course, also the basic formalities for any degree program, like admission regulations,
regulations for exams, form of the diploma degree, and the diploma supplement had to be
formulated and approved by the university committees. Creating these regulations without
the existence of a framework for Master’s/Bachelor’s degree programs at the university was
arduous but not impossible. Today the University of Freiburg has a general framework for all
Bachelor’s and masters’ programs; it is based on the experience gained in the establishment
of the informatics/computer science programs and considerably facilitates the introduction of
new subject specific programs.

Currently, the Faculty of Applied Science with its two departments, the Department of
Computer Science and the Department of Microsystems Technology, offers a bachelor
program in informatics and two master programs (consecutive and non-consecutive) in
informatics as well as bachelor and master programs in microsystems technology. Both
departments have a special research focus on intelligent systems and in the field of
embedded microsystems. They have all the technologies and know-how available necessary
to design and develop modern high-tech embedded systems. Therefore the faculty decided
to also offer a new graduate program in this field as a program for continuing education, the
Master’s program “Intelligent Embedded Microsystems” (IEMS). The idea for this new
program was not only to combine the expertise of the two departments but also to utilize the
long experience of the faculty in the usage of networked computers and multimedia for
establishing online versions of their study courses. As already mentioned, the Bachelor’s
degree from German universities of applied sciences (UAS) and universities of cooperative
studies (BAs) now gives students the possibility to enter a Master’s program at a university.
In order to broaden the reservoir of potential graduates for the new Master’s program, and, in
particular, in order to attract students who have already worked for some time in industry
after their graduation, the curriculum of the master IEMS has been designed to accept all
kinds of different students from these institutions [1]. The establishment of this new Master’s
program IEMS has been supported by a generous fund from the State Foundation BW. This
funding, however, was combined with the requirement to accredit the degree program before
its introduction.

Fortunately, the accreditation of the new Master’s program IEMS was a lot easier. The
complete documentation describing the resources available for implementing the program,
like staff, buildings, equipment etc. could be reused. So the biggest hurdles were mainly the
concept of the degree program, the mode of its realization, the detailed description of all
modules, and the regulations for admission and transfer from other programs.
After delivery of the whole documentation to the accreditation agency, a group of four peers,
all specialists in the related fields, carefully studied the material provided. They then visited
the department in order to discuss the new program, its goals and implementation as well as
the studying conditions for the students with the professors involved in the program.
During the first audit of the computer science bachelor program it was criticized that the
given ECTS credits did not reflect the correct workload of the students and that the
qualification profile of the bachelor students was too blurry. The audit of the master IEMS
was similar: The peers detected a number of inconsistencies, overlaps, and gaps in the
program and helped to sharpen its profile. Moreover, there were some singularities involved
in this IEMS program requiring special attention: First, the degree program is designed as a
Master’s program for continuing education. This means, that its modules and the mode of
instruction should relate to the acquired professional experience of students. Second, it
should be possible to study the program part-time and enable the students to stay in their job
with a possibly reduced workload. Third, the study mode is blended learning, which is a
mixture of online delivery and present studies. Many modules are based on newly compiled

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

27

lecture recordings and enriched with other study material like self-assessments and a study
guide. The special delivery mode for the content required us to show the lecture recording
rooms where the recordings are taken and the laboratories where students can do practical
lab sessions. The peers were quite impressed by the professionalism on how lecture
recordings [3] are produced at the faculty and how they are delivered via a learning
management system. Even some labs are organized as online labs [2], something quite
unusual for such degree programs. As a result of the peer review and the audit, accreditation
was made pending on only very few improvements: Overlapping contents in two courses had
to be removed, in some others the contents had to be clarified, two new modules had to be
introduced (control theory, actuators), and some of the detailed module descriptions had to
be revised. For all modules, a responsible contact person had to be nominated, and detailed
module descriptions had to be created for each project management module instead of a
general description of project management modules.
The result of the whole accreditation processes was a considerable improvement and a
much better coherence of the whole program. Thus, the faculty has many reasons to
appreciate the careful and thorough work done by the accreditation agency and the peers.

4. System accreditation versus program accreditation
The introduction of system accreditation as an alternative to program accreditation is a
recent development. The German Accreditation Council has developed system accreditation
as a new instrument of external quality assurance for higher education degree programs in
2007 in order to address several problems that had been identified by HEIs and several state
ministries for higher education.
On the one hand, it was found that program accreditation as practiced since 2000 was a
costly process, both in terms of financial and personal resources: These encompass external
costs for fees charged by accreditation agencies as well as internal costs associated with
preparing the required documentation. The fee charged for an accreditation process for a
single degree program or a consecutive Bachelor-Master-combination is about EUR 11,000
to 12,000, when more related programs are reviewed within one joint procedure, the average
cost per program is about EUR 3,500 to 4,000. Additional costs of the accreditation process
were caused by the compilation of the self evaluation and additional documentation: since
almost no German HEI had pre-defined processes or dedicated administrative staff for
quality assurance, and heterogeneous information systems did not provide coherent data on
student success, it was most often left to academic staff to compile the required
documentation by their own hand. Not surprisingly, this was not seen as an efficient use of
scarce resources. All the more, because on the other hand program accreditation was not
always perceived to have a visible and lasting impact on the quality of the degree programs.
All too often, it seemed, the peer review was limited to discussing formalities rather than
discussing ways to further improve the quality of the degree programs; when
recommendations for quality development were made, HEIs lacked proper instruments for
ensuring that they were being followed up upon. From this perspective, and given limitations
to the institutions’ capacities, program accreditation was criticized as a futile exercise without
lasting impact.

To address these problems, system accreditation has been introduced – initially as an
alternative to program accreditation but with the perspective of replacing it altogether within
five to ten years’ time. System accreditation requires HEIs to install a comprehensive quality
management system that – at least – covers their core process teaching and studying. In
order to receive a system accreditation, HEIs must demonstrate that not only have they
designed and installed a comprehensive quality management system in this area, but also its
effectiveness, i. e. the QM system must be able to effectively control and guarantee the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

28

quality of all degree programs on an ongoing basis. This includes the effective control of
teaching quality based on student surveys, the periodic review of program outcomes, the
transparent documentation of the programs and of all modules including their contribution to
achieving the desired learning outcomes, the efficient organization of the course of studies
including the design, administration and registration of exams, research on alumni and their
career development, to name a few. Quality management systems suitable for system
accreditation must meet the Standards and Guidelines for Quality Assurance in the
European Higher Education Area [8], and should be as effective as the external quality
control achieved by the program accreditation – in effect, this implies that HEIs assume the
functions of program accreditation rather than leaving this task to an external agency. HEIs
that have been awarded a system accreditation are freed from the requirement of having all
degree programs accredited individually.
Given the organizational capacities and current state of quality management instruments and
processes at most German HEIs (as described above using the – not untypical – example of
the University of Freiburg), the road to system accreditation will be a long and winding one
for many of them: Universities like the University of Freiburg have just started to establish
such a quality control system. They are already routinely collecting quite a large number of
benchmark data relevant for quality control. But there are still serious deficiencies and
fundamental problems resulting from the fact that many of the involved services and their
computer-based support is not organized in an interoperable way. Here, universities will have
to invest a lot of energy and money within the near future.
Nevertheless, at least the large research universities in Germany seem to aim for system
accreditation instead of program accreditation in the medium term. They also consider this a
further indication of autonomy and independence of external control by the state or state-
governed institutions. Furthermore, organizing their own quality control system facilitates the
combination of teaching and learning assessments with research assessments, also to be
periodically carried out every five to seven years.

5. Lessons learned
The biggest advantage of the accreditation process of the new undergraduate and graduate
programs is that faculty members are obliged to seriously discuss the teaching and learning
objectives in their departments; the competence profile expected from their alumni by their
future employers and not their own (research) interests dictates the design and
implementation of a degree program. All our experiences show that external peer reviews
are the most efficient means to initiate the necessary change from the input to output
orientation and to guarantee the quality of degree programs. The requirement to document
the objectives, the learning outcomes, and the contents of a curriculum in the accreditation
procedure implies that accredited degree programs are usually much better documented
than non-accredited ones. This is of special benefit for students, future employers, and staff
members alike. The additional expenditure for the accreditation appears to be worth the
effort; it is assuaged if the university offers well-developed computer-based services for staff
and students supporting all phases of studying at a HEI. Currently, we see the greatest
deficits in this respect. Though universities have a large number of web-based services
supporting students and staff, these services are seldom interoperable, well integrated,
reliable, secure, and user friendly enough in order to fulfill current and future needs. If quality
control by accrediting a degree program is not considered an isolated event to be carried out
every five or seven years but understood as a continuous process, universities must be able
to provide benchmark data a mouse click away. Information about success and failure rates
of degree programs, acceptance of their alumni by the job market, workload of modules and
results of course-related exams must be easily available.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

29

The emphasis on learning outcomes and competences to be acquired in the new degree
programs designed after the Bologna reform also raises new challenging questions for
faculty and scientists alike: How can we measure the competences? What are the best
means to achieve the desired learning outcomes? Are our courses, labs, seminars the
appropriate, the only means to achieve a defined competence level? Are there other ways to
reach a competence level comparable to what universities can offer? How can the university
contribute to the life-long learning process of continuously refreshing the competence of their
alumni? The modularization of the new degree programs should facilitate this quite a bit:
Universities may allow interested students to enroll in single courses which are of current
interest for industry irrespective of whether the applicant for participation has an appropriate
degree. Once he can show that he has the necessary competence to follow the course, he
could be allowed to enroll. If he succeeds, the university may issue a certificate but not
(another) degree to him.
Finally, though most large (research) universities currently go for systems accreditation
instead of program accreditation, we see that most of them have still to go a long way until a
reliable and effective internal quality control system is operational. We do not expect that its
successful implementation will make procedures like the current program accreditation
obsolete. It is expected that they may become easier to handle and less cumbersome; but
we anticipate that their essentials remain valid in order to guarantee the quality of current
and future degree programs.

References
1 Hermann C, Welte M. Continuing Education at Universities: New Perspectives at German

Universities, Informatics Education Europe II, Thessaloniki, Greece, Nov. 2007.
2 Becker M., Hermann C., Welte M. and Manoli Y. "intelligent embedded microsystems"

distance learning in microsystem engineering and applied computer science. In EWME 2008 -
7th European Workshop on Microelectronics Education, to appear. Springer.

3 Hermann C., Hürst W. and Welte M. The electure-portal: an advanced archive for lecture
recordings. Informatics Education Europe, Montpellier, France, Oct. 2006.

4 Computing Curricula 2001 Computer Science, ACM/IEEE 2001,
http://www.sigcse.org/cc2001/cc2001.pdf

5 Bachelor- und Masterprogramm im Studienfach Informatik an Hochschulen, Dezember 2005,
GI Empfehlungen 48, 2005 http://www.gi-ev.de/fileadmin/redaktion/empfehlungen/GI-
Empfehlung_BaMa2005.pdf

6 Bloom, B.S. Taxonomy of educational objectives: The classification of educational goals:
Handbook I, cognitive domain. New York, 1969

7 Ländergemeinsame Strukturvorgaben gemäß § 9 Abs. 2 HRG für die Akkreditierung von
Bachelor- und Masterstudiengängen; Beschluss der Kultusministerkonferenz; 10.10.2003 as
amended on 22.09.2005 http://www.kmk.org/hschule/strukvorgaben.pdf

8 Standards and Guidelines for Quality Assurance in the European Higher Education Area;
European Association for Quality Assurance in Higher Education; Helsinki, Finland; 2005
http://www.bologna-bergen2005.no/Docs/00-Main_doc/050221_ENQA_report.pdf

9 Kraus M., Trahasch S., Vögele E. and Hermann C. eGovernment-Dienste als Voraussetzung
für den Bologna-Prozess. In Proceedings of Multikonferenz Wirtschaftsinformatik, Passau,
February 2006. Springer.

http://www.sigcse.org/cc2001/cc2001.pdf
http://www.gi-ev.de/fileadmin/redaktion/empfehlungen/GI-Empfehlung_BaMa2005.pdf
http://www.gi-ev.de/fileadmin/redaktion/empfehlungen/GI-Empfehlung_BaMa2005.pdf
http://www.kmk.org/hschule/strukvorgaben.pdf
http://www.bologna-bergen2005.no/Docs/00-Main_doc/050221_ENQA_report.pdf

Comparison of the Hungarian and Euro-Inf
accreditation systems
László Aszalós
Faculty of Informatics, University of Debrecen, Hungary, Laszlo.Aszalos@inf.unideb.hu

The programme Software Engineering First Cycle Degree at the University of
Debrecen was founded in 2004 according to Hungarian Higher Education Law and
Bologna Process and accredited by the Hungarian Accreditation Committee. In 2008 it
was also accredited by the Euro-Inf organization. This paper will present the details of
the Hungarian accreditation system and how it has evolved. We will describe the Euro-
Inf accreditation system which was established to provide comparison between higher
education qualifications in the field of informatics. This paper will present the
similarities and differences between the two accreditations system, which have
different origins yet have the same goals.

Keywords
Accreditation, Bergen Conference, Bologna Process, Euro-Inf, Hungarian Accreditation
Committee

1. Introduction
Before 1989 the Hungarian higher education and academic system followed the Russian
model. Many researchers received their degrees in the Soviet Union. After 1990 Hungary
began to adopt the standards of the European Union. The foundation of the Hungarian
Accreditation Committee [3] was part of this process through the first higher educational law.
It was created as a professional advisory board to the ministry, responsible for higher
education. The first aim of this organization was the founding of the uniform PhD education,
and its quality control. Among its duties are evaluating the establishment of new higher
educational programmes and the reviewing the applications of universities/colleges to start
these accredited programmes. The organization evaluates the intent for founding new
institutes, universities, and accredits the universities colleges and PhD schools. The
Hungarian Accreditation Committee follows the Bergen Document [6], and its standards. The
recommendations of the Hungarian Accreditation Committee are in no way mandatory for the
ministry, but yes they are followed through.
The European Union having been formed from very different countries, there is a big variety
in higher educational programmes, even in informatics. For an employer it is almost
impossible to compare two different programmes. One of the main aims of the Bologna
Process [5] is to make these programmes comparable. The Euro-Inf organization [2]
undertakes providing a common framework for the European accreditation system for the
engineering and informatics sector. All this could facilitate the mobility of graduated students
because the employer can trust in the “European label” given by Euro-Inf.

2. Hungarian accreditation system
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

30

Before 1989 the ratio of graduates was significantly smaller than in the European Union.
Therefore there was a political motivation to increase the number of graduates and to reject
the school fee. The Hungarian state paid a predetermined amount for each regular student to
the institutes. To attract more and more students the institutes started new programmes.
Presently there are 25 universities and 47 colleges in Hungary with a population of 10 million.
The new higher education law introduced an authorized minimum headcount to stop this
tendency, and fixed the list of first cycle degree programmes [4]. This list was created in
accordance with the universities and colleges after 3 years of preparation and accreditation
process. At the moment there is no opportunity to establish a new BA/BSc programme that is
not on the list.

2.1 Establishment of a programme

There is no limit in the higher educational law about establishing second cycle degree
programmes. The sole limit is economic; the Hungarian government limits the number of
regular students who can enrol in MA/MSc programmes, which is 30 percent of the number
of BA/BSc students. If an institute wants to establish a second cycle degree programme, it
needs to present an application to the Hungarian Accreditation Committee. This application
contains:
• description of the subject of the programme
• the number of required ECTS credits to fulfil the programme
• classification of credits: how many are from required subjects, how many are from

required elective subjects and how many are from free-elective subjects
• scientific fields
• the programme outcome, general and specific competencies
• system of exams
Based on the application the Hungarian Accreditation Committee can recommend accepting
or rejecting the establishment of the programme. After a positive decision of the ministry the
institute has the right to apply for establishing program.

2.2 Launching a programme

The Higher Education Act 2005 [1] and the Government Decree 79/2006 regulate the
launching of a new programme in Hungary. According to these, any institute can launch any
established programme, if it can prove it has a suitable staff, infrastructure, and a demand for
graduates.

Staff requirements
The institution needs to name a senior instructor with scientific, i.e. PhD, degree who is
employed full time at the institution. This person needs to be responsible for only one degree
program at a time. For any subject a person with the scientific degree is needed, who is
responsible for that subject. The research area of the person responsible for the subject must
cover this subject. One person can be responsible up to 25 ECTS credits in any programme
of any institute.

Content requirement
The curriculum of the programme should satisfy the “National Qualification and Outcome
Requirements” [4]. These requirements are published regularly on the homepage of the
Ministry of Education and Culture. The first cycle degree programme needs to be suitable for
entry into a second cycle degree programme; and the second cycle degree programme
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

31

needs to be suitable for conducting research and development and doctoral studies.

Research
The institution needs be involved in one research or development project in which it employs
a nationally recognized research team. The teaching staffs needs to publish on a regular
basis and present their research results in appropriate forums of science/engineering.

Infrastructure requirements
The institution provides the basic infrastructure necessary for their programmes on an
ongoing basis
• premises corresponding to the actual number of students for students, teaching and

support staff corresponding to the needs of the programme
• training tools for the entire cycle
• organizational and administrative structure supporting education
All the programmes need a library where the major periodicals of the given discipline are
available or electronically accessible. The library’s textbook holdings have to include books
listed as suggestive reading in the subject syllabus. The programme needs an IT network
offering state-of-the-art services accessible to students on a regular basis and in an
organized manner as well as research, design, measurement and other facilities and
equipment needed for preparing graduation thesis and projects; infrastructure and training
site for practical education.

Special requirements
• Bachelor programmes in the technical and natural sciences should always include

courses in computer sciences, general economics and management, quality assurance,
environmental studies and European studies

• Programs in the technical sciences require a minimum of 40 credits of basic education in
the natural sciences and minimum 40 credits of distinct professional core material in the
area of study.

Requirements for distance learning
There is very long list of requirements for distance learning. Here some of them:
• One tutor may teach no more than 50 students in more than 3 subjects at a time (in one

semester).
• Conditions for the ongoing updating of the course material.

Content of the application
The application needs to present the previous teaching and research activities of the
institute. The aspirant institute need to give a forecast of the demand of graduates in the
region and in the country proving the launching of the programme is really necessary. The
application contains the curriculum, and for all subjects the syllabi and the list of
recommended literature. The institution ensures the personnel and material condition for the
number of students in line with the needs of the discipline. The institute needs to present the
methods of learning and the development of skills and competencies described in the
outcome requirements. Finally it must support the successful completion of a foreign
language exam, which is obligatory for issuance of a diploma. To be able to launch the
distance learning, all the teaching materials need to be included in the application.

Proceedings of the ACM-IFIP IEEIII 2008

The application must contain a staff handbook which includes the teachers’ CV. The
following data will be included: name; qualification; skill; working place; scope of activities;
degree; title of thesis; scientific scholarships; teaching activities; professional practise;
publications over the last five years and the most important ones; international relations in

Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

32

research/teaching.
The application must contain the following appendix: the recommendation of the senate of
the university, the outcome requirements and the opinion of the potential employers.

2.3 Institute accreditation

An institute accreditation is valid for maximum eight years. Purpose of these accreditations is
to establish if an institute satisfies the minimal requirements and the management ensures
the teaching and research activities required.
The institutes are converting to the Bologna Process, thus the accreditation contains the
monitoring of this conversion. An institute cannot be accredited without a working quality
assurance system. The goal of the quality assurance is:
• perfect satisfaction demand of “costumers”, rising complacence
• rising level of education
• ensuring effective performance
The management needs to determine the functional tasks, long-term goals and plans, the
monitoring, evaluating, and modifying of short-term goals, rules, regular evaluation; quality
assurance organizations, the parameters for changes and their outcomes. The aim of the
self-assessment report of the institute is to sum up the performance and to explore problems.
The main points of the self assessment report are
• quality policy, strategy and quality assurance procedures;
• launching and follow-up programmes, regular internal evaluation;
• student’s evaluation, complacency of students;
• ensuring quality of teachers (minimum level of publication, taking part in applications,

organization of conferences, developing content of subjects);
• students services, tools;
• internal informational system (most important economical, scientific results of the

institute, result of doctoral schools and gifted students);
• publicity

3. Euro-Inf accreditation system
This part is based on documents at [2]. The ultimate goal of the Euro-Inf Project is to
facilitate European-wide professional recognition by the competent national authorities of
informatics degrees. These recognitions are awarded by study programmes accredited on
the basis of the programme outcomes and accreditation criteria defined in the Euro-Inf
Framework Standards. The partners of Euro-Inf Project are ASIIN (Accreditation Agency for
Degree Programmes in Engineering, Informatics, the Natural Sciences and Mathematics,
Germany), Council of European Professional Informatics Societies (37 informatics societies
from 32 countries), University of Applied Sciences Hamburg and University of Paderborn.
The Euro-Inf, based on standards and accreditation systems, created a set of framework
standards which were tested and refined through trial accreditations. The Faculty of
Informatics of the University of Debrecen, who applied for the trial accreditation for its
programme of Software Engineering, was a partner in a trial accreditation in March of 2008.

3.1 The aims of Euro-Inf

Euro-Inf aims to create a framework for setting up a European system of Standards for
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

33

assessing informatics education at the First Cycle and Second Cycle level (as defined within
the Bologna process). Based on the establishment and approval of this set of standards, the
main objectives of the Euro-Inf Project are:
• to provide an appropriate “European label” for accredited educational in informatics
• to provide a basis for comparing educational qualifications in informatics in the European

Higher Education Area (EHEA)
• to facilitate mutual transnational recognition by programme validation and certification
• to facilitate recognition of accredited degrees in informatics higher education in

accordance with the EU Directives and other agreements
• together with other field-specific standards and criteria, to contribute to the harmonisation

of the European Higher Education Area
• to support the mobility of informatics graduates
• to contribute to international transparency - as one of the objectives of the Bologna

Declaration
• to support improvements to the quality of informatics programmes in general

3.2 Content of the application

The Euro-Inf standard asks the applicants to prepare self-assessment report; entry standard
and requirements; curriculum outline; module handbook (learning outcomes, syllabus
content, etc.); titles of final year projects for the previous three years; list of facilities including
buildings, laboratories and equipment; staff handbook (CV’s of academic, technical and
support staff); provide for the accreditation visit the set of representative examination papers.
The structure of the self-assessment report is the following
• the programme needs, objectives and outcomes: needs of the stakeholders (students,

potential employers, informatics societies), educational objectives (consistency with the
mission of the institute, publicity, standards), programme outcomes (the practice is
consistent with the requirements)

• relevant and effective educational processes: planning (quality of curriculum), delivery
(analysis of students’ and tutors’ evaluation, workload statistics), learning assessment
(transparency and publicity of rules,)

• appropriate resources and partnerships: academic and support staff (competence and
qualification of teaching staff, research and consulting work, statistics about support
staff), facilities (lecture, computer facilities, library), financial resources (budget for staff,
for running and upgrading facilities, for training), partnership (local, regional, national,
international partnership and cooperation agreements)

• adequate assessment of the educational process: students (entrance requirements,
success rates, etc.), graduates (numbers, match between employment and education,
graduates’ and employers’ opinion)

• an effective management system: organization and decision-making processes, quality
assurance system (policy, procedures, system of evaluation)

3.2 Meetings at accreditation visit

The accreditation visit takes at least two days with the auditing team having a preliminary
meeting where they discuss the documentation and the necessary information to be
obtained. The team meets with the head of department/university who introduces the institute
the academic staff members and support staff. The staffs need to prove the facts in the self-

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

34

assessment report are valid and to answer any questions the auditing team might have. After
this, the team meets with students and with former students, with relevant
employers/industry/professional informatics organisations representatives. The aims of these
meetings also serve in checking the validity of the report, and learning more about institute.
The accreditation visit includes an evaluation of relevant facilities (libraries, laboratories, etc.)
and a review of project work, final papers and other assessed work (with regards to the
standard and modes of assessment as well as to the learning achievements of the students).
At the end of the visit the auditing team gives feedback to the institute including the
preliminary result.

3. Discussion
Although the two different accreditation systems have the same origin in that they are based
on the same standard, they have very different roles and aims.
The requirements of the Hungarian Accreditation Committee are sometimes too general and
it is hard to audit them. For example the competences of the programme in Software
Engineering is a 12 item long list, where a sample item is planning, analyzing and developing
algorithms considering the most important paradigms of programming.
The Euro-Inf system contains a 34 item long list of competences, where one of the
corresponding items is ability to select relevant analytic and modelling methods, which is
more concrete, and easier to check.
The knowledge of foreign language in Hungary is under the average level of the European
Union. Hence foreign language exams are necessary to get a diploma and a remarkable
portion of students graduate several years after their final exam, because they didn’t pass
the language exam. This is the reason why the support of foreign language learning is so
important in the Hungarian accreditation system. In some cases the applicants need to give
data about command of a language of the teaching staff. The Euro-Inf accreditation doesn’t
require similar data.
The Euro-Inf was developed according to European Qualification Framework (EQF). The
core of the EQF is its eight reference levels describing what a learner knows, understands
and is able to do – their 'learning outcomes' – regardless of whether a particular qualification
was acquired. In the module handbook the applicants need to label these levels for all the
subjects. While the EQF is a hot topic on the conferences about education in Hungary, the
accreditation system has not been adopted yet.
In the Hungarian accreditation system does not emphasize the direct connections with the
industry. The staff handbook of Euro-Inf accreditation directly asks about the cooperation
with industry over the past five year, and the patents and protected rights. Since the Faculty
of Informatics, Debrecen originates from Institute Mathematics, most of the teaching staff is a
researcher, and the members of the faculty only a few patents and very light connections
with the industry.
In the Hungarian accreditation process the programme accreditation is based exclusively on
the written proposal, not on the on-site visit. This is common during the accreditation of
institutes or universities/colleges.

4. Conclusions
The regular accreditation is determined by the higher education law in Hungary. It helps for
the students and potential employers, to compare universities and colleges, but annoying for
our colleagues. It also helps for the heads of institutes to see that everything is going well.
Carefully analyzing the Hungarian accreditation system shows that it is an almost state-of-
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

35

the-art system. The Euro-Inf accreditation is a good opportunity to measure our result in
international manner.

References
1 Higher Educational Act (in Hungarian) http://www.om.hu/letolt/felsoo/ftv_20051129.pdf
2 Homepage of the Euro-Inf organization http://www.euro-inf.eu/
3 Homepage of the Hungarian Accreditation Committee http://www.mab.hu/english/index.html
4 National Qualification and Outcome Requirements (in Hungarian) http://www.okm.gov.hu/

download.php?ctag=download&docID=650
5 The Bologna Process: Towards the European Higher Education Area http://ec.europa.eu/

education/policies/educ/bologna/bologna_en.html
6 The European Higher Education Area - Achieving the Goals http://www.bologna-bergen2005.no/

Docs/00-Main_doc/050520_Bergen_Communique.pdf
7 The European Qualifications Framework (EQF) for Lifelong Learning http://eacea.ec.europa.eu

/llp/eqf/index_en.htm 2007

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III
Conference
Venice, Italy, December 4-5, 2008

36

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

37

GRASP: Grading and Rating ASsistant
Professor
Maura Cerioli1, Pierpaolo Cinelli2
1DISI – Dipartimento di Informatica e Scienze dell’Informazione, Via Dodecaneso 35,
Genova, Italy, cerioli@disi.unige.it
2DISI – Dipartimento di Informatica e Scienze dell’Informazione, Via Dodecaneso 35,
Genova, Italy, cpier83@gmail.com

GRASP is a simple tool for assessing and grading libraries in the .NET® framework. It
has been developed to support the management of the project for a third year course
and has been used to grade the student projects for two years. The main functionality
offered by GRASP is the execution of an arbitrary number of test sets, grading the
result on the basis of a configurable mapping between test results and scores. The
code of the tests depends only on the interfaces given as assignment, and the
connection between interfaces and student implementation is managed by GRASP.
The tool is built as an open architecture, where additional filters can easily be plugged
in.

Keywords
Automatic grading of code, CS Curricula, Programming in the .NET® framework, Project
assessment

1. Introduction
Since the early times of teaching programming techniques, many researchers have actively
pursued the automatic assessment of code (see e.g., [1], [2], [3], [4], and [5] for further
references). But, recently the needs for such tools have become more pressing.
Indeed, the number of projects to be assessed in the average class is dramatically
increasing, following the number of students in computer science and related areas, which, in
turn, is gaining as the world population is continuously expanding and the educated
percentage of it is improving. Moreover, due to economic shortages in many educational
institutions, the number of teachers is not keeping up the pace with that of student,
sometimes it is even decreasing. So there are proportionally less teachers for each student.
Moreover, the amount of code to be assessed is increasing also because of the diminished
skills and motivations of the average student. Indeed, nowadays several young people join
computer science and engineering programs only in order to be able to get a job at the end
of their studies, disregarding their personal interests and, in most cases, their previous
educational career. Thus, they are missing the basis and the intrinsic motivations to learn
programming. Therefore, such students on one hand are more prone to submit insufficient
projects, implicitly increasing the number of assignments to be assessed, and on the other
hand need more feedback to be able to learn programming skill, also in terms of corrections
of preliminary exercises.
Another reason in favour of automated assessments is that e-learning and blended teaching
strategies are spreading worldwide and need to empower their end-users by efficient self-
evaluation tools, providing quick feedbacks at any time. Thus, it is imperative for such
distance-learning environment to include automatic evaluations. In most generic

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

38

environments for distance learning, the automatic evaluation is limited to very simple
assignments, like for instance quizzes and multiple-choice tests. But, in order to support
programming courses, it is necessary to provide better feedback on the code elaborated by
the students, including automatic testing.
Though several automated assessment tools have recently been developed to address the
automatic testing of code, most of them are limited to the case of filter programs1. This is for
instance the case of [6], [7], [8] and its successor [9], and [10]. But, currently a large part of
programming teaching is devoted to object-oriented languages and techniques, which are
becoming the de facto standard programming paradigm. Most recent tools slightly extend
their applicative domain to object-oriented code, but still testing only input-output behaviour
on elementary types.
In order to assess functional correctness of object-oriented programs, we need more flexible
testing, featuring assertions and verifications on multiple objects and their status. The tool we
know that is closest to satisfy this requirement is JUnit [11]. However, its didactic use has a
few limitations. First of all, JUnit is a tool for unit testing, not for education. Thus, on one hand
it is coarse grained, in the sense that, as usual in a standard testing activity the only
interesting output of a test is whether the code passes or fails the test, possibly collecting
some information about failures to help the following fixing phase. For grading purposes,
instead, the output of the tests needs to be a level of compliance to the specifications in a
sufficiently subtle scale. We may need, for instance, to assign a smaller penalty to the wrong
choice of exception in a test expecting an exception to be raised than to some code
terminating without signalling anything abnormal, possibly distinguishing different paths of
executions and so on. The second problem of using JUnit to assess didactic projects is that it
supports the evaluation part, but fails to have grading features. Thus, the educational user
needs another (inexistent as far as we know) tool to translate the testing report in a mark.
Finally, automated testing tools are designed to test projects where both classes and
implementations are available during the test development, so that the test can refer to them.
Instead, in order to totally separate the student implementation from the project assignment
and tests, produced by the teacher, we need a specific feature allowing writing tests without
any knowledge of the implementations, not even at the syntax level.
Our interest for automated assessment tools for object-oriented libraries has arisen teaching
a programming course for the third year of the degree in computer science at the University
of Genova, called TAP (Tecniche Avanzate di Programmazione, i.e. Advanced Programming
Techniques). Such course has around 60 students per year and gives the basis of
component based programming and design to the students. It has a major project aimed at
having the students familiarize themselves with the .NET® technologies in general, and C#
programming in particular, and at improving their programming abilities, by individually
realizing a library implementing a set of fixed interfaces.
The particular setting of the TAP project prevented us from using already existing automated
assessment tools. Indeed, the development platform is .NET® and the language is C# and
we did not find any tool at all supporting them2. Thus, we decided to develop a small tool,
called GRASP (Grading and Rating ASsistant Professor), to automate the project grading.
The basic idea is to grade the projects only on the basis of (mainly functional) correctness,
by testing them. To make this possible, the project specification must be extremely precise,
so that the behaviour of the implementations is totally predictable. Moreover, it is mandatory
that the assignment cannot be tampered with, that is, that the implementation of the students

1 A filter program is typically composed by routines, taking in input basic values, and
producing basic values as output.
2 Microsoft Visual Studio Team System edition provides an integrated testing environment,
but it has all the limitation expressed for the JUnit testing tool.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

39

is totally disjoint from the official text of the project. Therefore, GRASP is designed to rate
projects implementing a set of interfaces, constituting its specification (at a syntactic level).
The tool runs test sets on all the project implementations included in a given folder and
produces for each of them a short report stating the assigned mark and a more detailed one
with the results of each test.
Though the tool is written in C#, it can be used to grade projects realized in any language
supported by the .NET® framework, because of the support for mixing up libraries written in
different languages provided by the Microsoft platform. Actually it is even possible to write
the tests in a different language from that used by the students to implement the project.
In Section 2 we describe GRASP features, while Section 3 is devoted to a brief sketch of its
architecture. Possible improvements of GRASP are discussed in the last Section.

2. GRASP Main Functionalities and Usage
Roughly speaking, the requirement of GRASP is to support the automatic evaluation of any
number of projects realizing a component, by way of the execution of test sets.
A library of classes, each one representing an individual test case, constitutes a test set.
Each such class has a special method, with signature void ExecuteTest(), and executing
the test corresponds to create a new object of the class and invoke that method on it. In the
method body it is possible to set the result of the test, choosing a value among
Unacceptable, Error_Serious, Error_Medium, Error_Light, Error_Paltry, OK,
Correct_Good, Correct_Optimum, and Correct_Excellent in the enumeration
TestResult. Each test is aware of the execution environment and capable to access part of
the context information. Moreover, it is possible to create test cases that cooperate with each
other. More details on the definition of tests are discussed in Subsection 2.4.

2.1 Supported Projects

GRASP has been developed in order to support the projects of the TAP course, which is
focused on component based development. Thus, those projects consists of the
implementation of a component, realized by a .NET® assembly.
Since there are no immediate linguistic means to represent components3 in the .NET®
framework, we use the object factory pattern (see e.g., [12]) to simulate the (dynamic)
connection between the specification (i.e. the component contract) and the implementation
(the binary code4) of a component.
Thus, the assignment consists of
• a collection of interfaces in an object-oriented language (usually C#5), describing the

syntax of the component interface;
• for each interface and each method in it, the specification of its semantics, presented by

the Microsoft Xml Documentation providing at the same time also the standard
documentation of the interface;

3 The IComponent interface and its standard implementation Component in the .NET®
framework represent a very special model of components, providing features to be managed
both at design and at run time. A generic component in the sense of component based
development is usually mapped on an assembly. However, the full separation between
interface and implementation is not enforced by the framework and has to be imposed by
methodological means.
4 We are loosely using “binary code” to refer to MSIL code as well.
5 It could be any language supported by the .NET® Framework; but, for TAP we use C#.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

40

• a collection of factories, i.e. classes with virtual methods creating objects of the given
interfaces, playing the role of constructors for the classes implementing the interfaces.

For instance, let us consider as a running example the specification of teams, as part of a
project for the development of a component to be used in systems supporting the
management of tournaments. Then, the interface to be implemented could be the following,
where IPlayer is an interface for the definition of players, which we omit, being irrelevant for
understanding the example.

/// <summary>
/// Represents a generic team.
/// </summary>
public interface ITeam
{
 /// <summary>
 /// Returns the name of this team.
 /// </summary>
 /// <remarks>This field is constant.
 /// </remarks>
 string Name
 {
 get;
 }

 /// <summary>
 /// Adds a new player to the team.
 /// </summary>
 /// <param name="player">The player to add.</param>
 /// <exception cref="ArgumentNullException">Exception thrown when
 /// <paramref name="player"/> is null.</exception>
 /// <exception cref="InvalidOperationException">Exception thrown
 /// when <paramref name="player"/> is already in team.</exception>
 void AddPlayer(IPlayer player);

 /// <summary>
 /// Removes a player from the team.
 /// </summary>
 /// <param name="player">The player to be removed.</param>
 /// <exception cref="ArgumentNullException">Exception thrown when
 /// <paramref name="player"/> is null.</exception>
 /// <exception cref="InvalidOperationException">Exception thrown
 /// when <paramref name="player"/> is not in team.</exception>
 void RemovePlayer(IPlayer player);

 /// <summary>
 /// Returns a numeric value indicating how many players compose the
 /// team.
 /// </summary>
 int PlayersCount
 {
 get;
 }

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

41

 /// <summary>
 /// Returns the list of all the players composing the team.
 /// </summary>
 /// <remarks>The list must be a safe readonly wrapper.</remarks>
 IList<IPlayer> GetPlayers();
 }

Then, the factory for such component could be the following, where we detail only the
constructor for the empty team and drop the other constructors, both for this interface and
the others.

/// <summary>
/// Provides the API for creating and using the tournament via a
/// remoting context such as the GRASP one.
/// </summary>
[Grasp.Definitions.FactoryDefinition]
public class TeamFactory : MarshalByRefObject
{
 /// <summary>
 /// Creates a new team with no players.
 /// </summary>
 /// <param name="name">The name of the team.</param>
 /// <exception cref="ArgumentOutOfRangeException">Exception thrown
 /// if name does not belong to ANB[3,25].</exception>
 public virtual ITeam CreateTeam(string name)
 {
 return null6;
 }
 ...
}

In this constructor code, a requirement is imposed on the format of the acceptable team
names: team names must contain only letters, digits or blanks and have length between 3
and 25. This kind of requirement is quite common and cannot be efficiently tested by a small
number of test cases.
Note that the class TeamFactory is recognized by GRASP as a factory, because of the
attribute Grasp.Definitions.FactoryDefinition. The tool will explore the student
projects7 looking for classes inheriting from it and having the attribute
Grasp.Definitions.FactoryImplementation in order to use them during the test to
produce the objects of the interfaces to be tested. In this way, the test can be written without
a reference to the student implementations, which are hooked at run time by this mechanism.

6 The factory class produced by the teacher is actually an abstract class, never to be
instantiated. Thus its factory methods will never be invoked, do not carry any information and
can safely return null. The student will be required to inherit from this class and override all
the virtual methods, inserting the actual code building the objects.
7 Actually, GRASP will take into account only those assemblies that the student has notified
the system to contain factory classes, by adding to the evaluation directory files by the same
name of these assemblies and with an extra factory extension. This is required both for
individual multi-assembly projects, and for cross testing, in case a student produces a
component depending on the implementations of other students, for instance if a large
assignment is distributed among the members of a group. Thus, the tool will correctly
manage the merging.

The assembly (or assemblies) containing interfaces and factories constitutes the assignment
from the point of view of GRASP and has to be distributed to the students, to be referenced
in their projects. In the sequel we will refer to such assembly as ProjectAssignment.dll.

2.2 Evaluating One Project

In any configuration of the system, the evaluation of student projects is ultimately delegated
to the GraspEC application, for Grasp Execution Context. It executes all tests included in the
testsets folder on the student project, producing as output an xml file, with a node for each
test. Such a node contains the following attributes.
• The full name of the test, including the test set (hierarchical) name, if any.
• The test scale, i.e. its difficulty. It may be any integer value in the range [0,100], is

declared in the definition of the test (see Subsection 2.4), and is used as multiplicative
factor when computing the final mark as weighted sum (see next subsection).

• The test result, that is the numeric code associated to the value from the enumeration
TestResult chosen as result in that execution.

• The stage of the test code where the result has been established (see Subsection 2.4 for
further details). This information is mostly useful for debugging; both for using GRASP to
debug the project under evaluation, for instance by the students during development,
and for debugging the tests themselves, clarifying the execution path.

• The exception, if any is raised, disregarding the result of the test. Indeed, notice that
raising an exception may be the correct behaviour of the project.

In the next Subsection we will see how the xml result file is used to grade the project.
In order to evaluate a project, the easiest way is to locally execute GraspEC. In that case, the
application should be executed in a directory with a structure similar to that in Figure 18.
Besides GraspEC.exe and its configuration file, the folder should contain the assignment and
its dependencies, (ProjectAssignment.***, GraspCommon.***, GraspDef.***), the
project implementation to be tested (ProjImplementation.***), any file with the same
name as the assembly containing the factory implementation but with extension factory
(ProjImplementation.dll.factory), used to direct GRASP in the search for the factories
pointing out the correct assemblies. Moreover, two special folders are needed: extensions,
including the libraries extending the functionalities of GRASP, and testsets, containing the
libraries of tests to be executed.

 Figure 1 The Structure of GRASP Folder.

In order to be evaluated, student projects must comply with two rules.
First of all, they must implement the assignment, ProjectAssignment.dll, that is, they
need to have a reference to that library9 and provide implementations for all the required

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

42

8 The GRASP suite is fully customizable. Here, we are showing the default configuration.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

43

interfaces described there. The student projects may also include a number of extra classes
and methods, of any visibility level.
The second aspect is that the factory classes have to be marked by the
Grasp.Definitions.FactoryImplementation and must give a meaningful implementation
of the factory methods, using in their bodies the constructors of the appropriate classes.
For instance, a student project for our running example should include in the same directory
an assembly ProjectImplementation.dll containing the following definition (where
MyTeam is the implementation of ITeam) and a file ProjectImplementation.dll.factory.

[Grasp.Definitions.FactoryImplementation]
public class MyTeamFactory: TeamFactory
{
 public override ITeam CreateTeam(string name);
 {

return new MyTeam(name);
 }

 …
}

Since the student projects need to use the Grasp.Definitions.FactoryImplementation
attribute, they also have to reference GraspDef, where the attribute is defined.
All the configuration definitions for ProjectImplementation, if any, should be added to
GRASPEC.config in order to be available during test execution.
Using GraspEC locally and on a single project, however, is not a solution to the problem of
evaluating a large number of student elaborates. In the next Subsection we will see how it is
possible to grade several projects at the same time.

2.3 Grading Projects

In order to perform the evaluation of several projects at the same time, a service, called
GraspAgent, is provided. It is totally automatic and it processes packages, taking them from
the source directory and placing the resulting evaluation and grading reports in a
subdirectory of result created with a unique name. At the end of a successful evaluation,
the input package is deleted from source. Instead, if the evaluation cannot be performed, the
package is marked as faulty and left in the source directory for further consideration. In that
case, the corresponding evaluation is meaningless and has to be ignored, but for debugging
purposes.
There are several reasons for which the evaluation may abort.
The most obvious is the attempt at evaluating a package where some important element is
missing, or corrupt. Indeed, each package must contain all the files needed for the
evaluation, i.e. the project implementation assemblies and possibly the configuration file, any
needed resource, like for instance databases or other files, and the file identity.xml,
whose root has the attributes name, surname and id; the latter is the student id, used to
disambiguate in case of homonymy10.

9 GRASP automatically resolves versioning conflicts, if any, by forcing the student project to
use those assemblies specified both in the default environment and in the teacher’s package.
This measure helps to prevent malicious students from changing the specification. See
Section 3.1 for further details.
10 This file is used to identify the student who produced the package. The teacher may
decide to specify validation rules for each field and in that case, a non-conforming identity file
will cause the package rejection without any further action.

Another common cause of failure is the mismatch between the version of the project
assignment used to compile the submitted project implementation and that given to
GraspAgent to build the evaluation environment.
Indeed, in order to prevent student tampering with the testing environment, the evaluation
service build a brand new directory like that described in Subsection 2.2 using its own copy
of the standard parts (that is, GRASP, the assignment and the tests) and taking from the
student package only the project implementation assemblies, local resources and
configuration, forcing the redirection of references and resources to those provided by
teacher, even if in a different version with respect to those used by the student.
Other likely troubles that could prevent GraspAgent from completing the evaluation are
timing problems. For instance, extremely inefficient project may take so long in completing
some test to fail. Indeed, GRASP uses a configurable time limit for the execution of each test
case so that looping programs can be interrupted and the revealing test marked as failed.
The evaluation of a package produces two reports; the first one is the detailed evaluation
described in the previous Subsection, while the second one is the actual grading of the
project, which is an xml file containing the student data from the identity.xml file and the
computed mark, besides information about active extensions on the grading algorithm.

weighted
sum translation test

results
test

scores
final
mark

penalization

mapping top mark

-

 Figure 2 The Basic Grading Algorithm.

The basic grading algorithm is depicted in Figure 2. First the logical results of the individual
tests are translated into numerical values, following a map defined in the resource mapping.
Using logical values to define the test results to be mapped on scores only at the moment of
the final grading not only allows the teacher to fix the numeric details having already seen the
student results, making guesses unnecessary to get a reasonable mark distribution, but it
also helps students to focus on the relevance of the individual test without being carried out
by the numeric score, especially during the debugging phase.
The second step is to multiply the numeric score of a test for its scale and algebraically sum
all of the resulting values to get the weighted sum, representing the penalty earned by the
project, to be subtracted from the top score. Since a higher final mark is determined by a
smaller penalty, each error will contribute a positive part to the penalty, while each excellent
performance will be rewarded with a negative value. Notice that a particularly brilliant student
could score a grade higher than the top mark, in case the penalty is negative.
The algorithm described so far only applies if all the results are acceptable. If there is at least
one unacceptable result, the system always computes a non-positive result to signal that
the project is unacceptable. However, there may be cases where the teacher wants to
consider all the projects as passed (possibly with a very small score). For instance, if the
students are given a subset of the tests to be used as a threshold, any package passing all
of them should be considered sufficient, even if in some extra test it scores an
unacceptable result. In order to take care of these situations, an extension of the basic
algorithm allows to change all the scores for instance from unacceptable to error_serious
so that the algorithm computes a correct mark in any case. It suffices to add the following
lines to the configuration file. The first line activates the extension and the second one
provides that extension with (a bit of) the actual mapping.

<add key="extension_ChangeResult" value ="none, GraspFactory,
Grasp.Factory.Extensions.ChangeResultChannelPlumb"/>

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

44

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

45

<add key ="service_changeresult_unacceptable" value ="error_serious"/>

It is also possible to change more result values, for instance, in order to preserve fairness of
evaluation distinguishing the real error_serious from those obtained from former
unacceptable. To add further changes it suffices to add the corresponding lines, like for
instance

<add key ="service_changeresult_ error_serious " value ="Error_Medium"/>

This extension is but an example of the flexibility of GRASP. Other tailoring tasks can be
similarly implemented as a plug-in.

2.4 Writing Tests

The most time consuming activity of project evaluation with the support of GRASP is the
definition and implementation of tests.
A test set is simply any assembly of the .NET® framework using the namespace
Grasp.Definitions provided by the GraspDef assembly and containing classes inheriting
from the class TestCase. In order to be executed by GRASP, the individual test cases must
be public classes and marked by the TestCase attribute. They need to have a public
constructor with an integer parameter representing the difficulty scale of the test, used by the
grading algorithm. The most important method of a test case class is Execute, which is
automatically invoked during the evaluation phase. In that method it is possible to write any
kind of (correct) code, using, in particular, the ExecutionContext property with its methods
and properties, of the TestCase class. The ExecutionContext is the core of the testing
system. It provides the following methods
• GetFactory(Type) produces a new object of the class implementing the factory type in

the student project. Thus, it is the entry point in the code to be tested. Since its
implementation do not require a reference to the code to be tested, not even the name of
the student factory class, using this method we achieve total independence between
testing and student implementations.

• SetTestResult(TestResult) set the result of the test and terminates the execution of
the test. It may also have an extra parameter of type Exception, in which case the
exception is added to the result report.

• EnterStage(int), which mark the beginning of a new logical stage of execution; if the
result of the test is established at stage n, then n is written in the report, helping the user
to locate the execution flow.

• MapException(Type, TestResult) maps the raising of an exception of the given type
to the assignment of the result to the test; it is a convenient way to avoid disseminating
the test of try-catch blocks, making the test code more readable.

• UnMapException(Type) vice versa ends the redirection of the exception.

For instance, an elementary test case for the example of the team creation will be the
following

/// <summary>
/// Creates a new team and checks that there are no participants.
/// </summary>
[Grasp.Definitions.TestCase]
public class CreateTeam : TestCase
{
 public CreateTeam()

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

46

 : base(10)
 { }

 public override void ExecuteTest()
 {
 TeamFactory f =
 ((TeamFactory)ExecutionContext.GetFactory(typeof(TeamFactory)));
 ITeam t = f.CreateTeam("Team 1");
 ExecutionContext.EnterStage(10);
 if (t.PlayersCount != 0)
 {
 ExecutionContext.EnterStage(20);
 ExecutionContext.SetTestResult(TestResult.Unacceptable);
 return;
 }
 if (t.GetPlayers() == null)
 {
 ExecutionContext.SetTestResult(TestResult.Error_Serious);
 return;
 }
 else
 {
 if (t.GetPlayers().Count != 0)
 {
 ExecutionContext.EnterStage(30);
 ExecutionContext.SetTestResult(TestResult.Unacceptable);
 return;
 }
 else
 {
 ExecutionContext.SetTestResult(TestResult.OK);
 return;
 }
 }
 }
}

Each test is executed independently11, so that a priori there is no interaction among objects
created in different tests. Since it is convenient to reuse the object created (and checked to
be correct) in previous test cases, the ExecutionContext also provide the property
GlobalContext, which is a simple dictionary where such objects can be permanently stored
in order to be reused. For instance, if in the previous example we add the line

ExecutionContext.GlobalStore.Add("team1", t);

just before setting the test result in the correct case, then we can reuse it in further tests, for
instance those checking the functionalities to add and remove players.

11 In the standard configuration, GRASP will execute all the tests in a test set in the same
process sequentially. But, it can be configured to reset the environment for each test set.

2.5 Using GRASP for Debugging

From a technical point of view, it is very easy to use GRASP and its test sets for debugging
the project implementation during its development. Indeed, it suffices to distribute the
skeleton of the GRASP directory discussed in subsection 2.2, complete with the assemblies
of the tests to be published before project submission, and set GraspEC.exe as external
program to be started during debugging. In this way it is possible to execute the tests and
even put breakpoints both in the implementation and in the tests, following the execution step
by step.
Moreover, giving the students at least part of the test sets to evaluate their projects helps
them to understand how systematic testing is performed, improves their understanding of the
specifications and save them the time of choosing and implementing the tests themselves.
However, letting the students have the test sets (or part of them) also has some drawbacks.
Indeed, some students are driven to think that passing those tests is the unique required
achievement of their code. They spend their time tampering with their code so that it passes
a specific test, without taking into account the damages that unplanned modifications are
doing to their code integrity, nor understanding the general troubles identified by the specific
failure. Thus, totally absorbed by solving a few specific cases where their code fails, they are
actually wasting time in decreasing the global code quality. For instance, if they have a
method accepting as parameter only alphanumeric strings (like the constructor in our running
example) and are given tests where the actual parameter includes three forbidden chars, the
less brilliant students check exactly for those with a cascade of if statements, instead of
reading the original specification and modify the code to check that all the elements of the
string are letters or digits. In this way, they waste time and get in the end unreadable code,
which will fail any new test using some different unacceptable char.
This negative didactic effect may be avoided, or at least reduced, by discussing with the
students how the testing plan should be derived from the specifications, the huge number of
exhaustive testing (if ever possible to achieve) and how it is reasonable to cut down the size
by choosing representative examples.

3. GRASP Lifecycle and Architecture
Though it may be used locally, GRASP has been designed to run on a remote machine and
interact with the users in a limited and simple way.

teacher

WebUI
drop box

sends
packages

sends test sets
 and

environments

admin GRASP

student

e-mail results

server

GraspAgent

GraspEC

s
e
n
d
s

r
e
s
u
l
t
s

s
e
n
d
s

p
a
c
k
a
g
e
s

Figure 3 GRASP Standard Deployment.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

47

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

48

In Figure 3 we see the standard distributed deployment for GRASP. The teacher (or an
administrator) set up GRASP on the server. Afterwards, the interactions of the students with
the running service are totally encapsulated by a minimal web interface letting the students
drop their packages on the server to be processed by GraspAgent that will send the results
by email to the address given at the submission moment. The user provided to the students
has no other right on the server than writing in the drop-box. Thus, even a malicious user can
only consume its disk quota, without damaging the system.
The teacher can use the web interface to add new test sets and environments to the service.
The set up of the service consists simply of copying the GraspAgent directory on the server,
copying the data for the current project in the correct positions inside such directory and start
the service.
The needed data for assessing a project are the following:
• The project assignment, i.e., the assemblies containing the definition of interfaces and

factories, which must be packed in a zip file12 and put into the environments directory.
• The test sets, i.e. the assemblies containing the chosen TestCase classes, must be

copied into the testsets directory.
• The mapping file used to translate the test results into scores13, which must be copied

into the mappings directory.

3.1 GRASP Lifecycle

When starting up, the GRASP service first of all reads its own configuration and checks that
all the needed extensions and resources are available. Then, it loads all the required
extensions and simulates the execution of an internal evaluation task, to verify its feasibility.
If no errors are encountered in these preliminary phases, then GRASP starts the scheduling
of the tasks and executes them till it is stopped. When stopped, GRASP releases all the
resources and terminates its execution. Though ideally the service should always be stopped
at the end of the scheduled tasks, it is possible to end its execution at any moment and the
system closes down gracefully. Indeed, if GRASP is stopped during the execution of a task,
the task is immediately cancelled, its data are saved on the disk and it will be performed from
scratch (not resumed) at the next start up of the service, so that no data can be lost.
The standard task executed by GRASP is the evaluation of a package. The main concern in
this phase is to guarantee the security of the system as well as the correctness of the
execution of a package. Thus, it is mandatory to be sure that all the tests to be executed
coincide with those prepared by the teacher and that the student code is executed in a
sandbox, with privileges as low as possible.
At this aim, the service builds an execution directory, playing the role of sandbox, starting
from the data submitted by the student and injects in it all the standard files for the
evaluation, in order to prevent any code tampering. Thus, the project assignment is taken
from the default environment14, the GRASP libraries from the root directory and the test sets
from the testsets directory of the service. Before starting the execution of GraspEC in the
built sandbox, the service may switch to a less privileged user, called limited user, and in any
case strips down its own privileges so that only the part of file system inside the sandbox can
be accessed. The choice of using the limited user and the indication of its login and
password is done by specific keywords in the service configuration. The actual definition of

12 The default value of this file is default.zip
13 The default value of this file is default.mapping
14 The default environment is the template for the minimal and common files that are needed
for running a package.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

49

such user in the system is left to the administrator, who should create it with the minimum
amount of privileges to execute the code. However, due to the generality of the applications
of our tool, the correct configuration may greatly vary from case to case. Hence, it is
impossible to give indications in the general case.
Analogously to the overall service, also GraspEC starts its lifecycle by checking that its
execution environment contains all the needed resources. In this case, the activity
corresponds to verify that all the required factories and internal resources are available,
because the overall service has already checked the correctness of the extension
configuration.
If the verification does not fail, the test cases are executed in alphabetical order and their
results are recorded in the final xml report. While the test cases are executed, the results are
communicated via a secure channel to the GraspAgent service.
At the end of the execution of all the tests, the service grades the results and saves them in
the results directory, possibly sends them by email to the submitting student, and finally
destroys the sandbox.
If the execution of a package stops unexpectedly, like for instance if it encounters
unexpected errors, e.g. some missing resource or an execution timing exceeding the allowed
time limit, the task is immediately cancelled, no data is saved on the disk and the package
will be marked as faulty. Faulty packages are scheduled for a fresh new execution.

3.2 GRASP Architecture

The development of GRASP has followed a component-based approach, so that its
architecture is highly modularized and planned for further extensions. Most parts have been
developed specifically for this project, though some are third part components, released
under the GPL license.
The main subsystems and their relationships are depicted in Figure 4. As it is easy to see,
the core of the system is the Agent component. Not only Agent coordinates the other
components of the system, but it is also responsible for the management of the system
lifecycle. Indeed, it takes care of configuring and initializing the different parts of the system
and of the interactions with the execution runtime, with the collaboration of the specific
components.
Roughly speaking, the other components can be distinguished in those used to configure
and manage the overall service and those responsible for the execution of an individual task.
In the first group we have the component managing the configuration of the overall service
(AgentConfigurationManager), those registering the common parts to be used for the
evaluation, managing respectively the mapping files (MappingRegistrationManager) and
the environments (EnvironmentsRegistrationManager), those managing the extensions
both of the overall service and of the environment for the evaluation (ExtensionLoader and
ExtensionManager) and finally the component managing the internal events
(EventManager), and the scheduler (ServiceScheduler), taking responsibility for the timed
execution of individual tasks. It is worth to notice that this latter component manages all the
loaded active extensions of GRASP, i.e., all the extensions implementing the interface
ISchedulableAgentExtension. Thus, in order to enrich GRASP by other evaluation means,
it suffices to define suitable active extensions and to add their activation keyword to the
configuration file. This architectural choice makes GRASP an open system, in the sense that
it is quite easy and convenient to improve it with other functionalities.

In the second group we have the component building the correct configuration for GraspEC
(RuntimeConfigurator), the component responsible for the creation and management of
the sandbox (ConfigurationBuilder) and finally the component taking care of the
management of the resources needed by test execution, from their creation to their final
release (ExecutionTracer).

Figure 4 GraspAgent Architecture.

4. Conclusions and Further Work
We have presented an automated assessment and grading tool for student projects on the
.NET® platform, for which there are no available alternatives, called GRASP. It supports a
larger class of tests then simple input-output statements and allows grading the test results
on an eight values scale, supporting fine-grained evaluations.
GRASP has been successfully applied for marking over a hundred student projects,
implementing 8 different assignment. The constraints on teaching resources for TAP require
an automatic evaluation solution and we are quite satisfied with GRASP performances and
applicability. However, it would be interesting to investigate the relationship between
automated (by testing) and human (by code inspection) evaluation. To this aim, we plan to
reassess the grades of (at least part of) the projects graded by GRASP, to get an insight on
the limits of our tool and possible improvements on the test design to make automated and
human evaluations closer. Another interesting experiment we plan to conduct is to
investigate the impact of the use of GRASP during the development of the student projects.
Indeed, having some tests and an environment to perform them could influence the quality of
the produced implementations. To verify if this hypothesis is true and, in that case, see if the
influence is positive or negative, we plan to assign as next term project the very same library
already used as project assignment a few years ago, before using GRASP and compare the
student products in the two cases by the same tests. Since the students have the same
background, the results should be significantly comparable.
In the future, we plan to improve GRASP from three points of view.
First of all, we will generalize it in order to support additional test systems, like for instance
dependent or parallel testing, and will further extend the capability of customization of the
suite. Moreover, we will provide an additional layer to encapsulate a database system,
standardizing both the database schema, if any, and the database calls. Thus, it will be
possible to evaluate conformance to requirements on the data layer as well.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

50

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

51

Then, we will integrate other evaluation criteria, possibly by interoperating with static and
dynamic analysis tools like fxcop15. This extension will enable the tool to check the
conformity of the code to required patterns and to verify that good programming practices are
respected.
Finally, we will address the management aspects, on one hand by tracing the progress of the
development made by every student, allowing in this way to collect statistical information
about how and when the students work and help detecting plagiarisms. On the other hand,
we will integrate the GRASP suite with an e-learning platform like Moodle in order to improve
the experience of the students, providing one uniform front-end for all their e-activity.

References
1 Hollingsworth J. Automatic graders for programming classes, Communications of the ACM 1960;

3(10): 528-529.
2 Naur P. Automatic grading of students' ALGOL programming. BIT 1964; 4: 177-188.
3 Forsythe, G. E., Wirth, N. Automatic grading programs. Communications of the ACM 1965; 8(5):

275-529.
4 Hext J. B. and Winings J. W. An automatic grading scheme for simple programming exercises.

Communications of the ACM 1969; 12(5): 272-275.
5 Douce C., Livingstone D., and Orwell J. (2005). Automatic test-based assessment of programming:

A review. J. Educ. Resour. Comput. September 2005; 5(3).
6 Blumenstein M.M., Green S., Nguyen A. T., Muthukkumarasamy V. GAME: a generic automated

marking environment for programming assessment. In: Pradip K. S. et. al. editors. Proceedings
ITCC 2004 International Conference on Information Technology: Coding and Computing; 2004;
IEEE Computer Society.

7 Matloobi R., Blumenstein M.M., Green S. An enhanced generic automated marking environment:
GAME-2. In: Auer M.E., Al-Zoubi A. editors. Proceedings of the International conference on
interactive mobile and computer-aided learning. 2007.

8 Ceilidh on the WWW. URL: www.cs.nott.ac.uk/~ceilidh/.
9 Higgins C., Hegazy T., Symeonidis P., Tsintsifas A. The CourseMarker CBA system: improvements

over Ceilidh. Education and information technologies September 2003; 8(3): 287 – 304.
10 Tremblay G., GuÈrin F., Pons A., Salah A. Oto a generic and extensible tool for marking

programming assignments. Source Software—Practice & experience archive March 2008; 38(3):
307-333

11 JUnit resources for test driven development. URL: http://www.junit.org/.
12 Gamma E., Helm R., Johnson R., Vlissides J.M. Design patterns: elements of reusable object-

oriented software. Addison-Wesley Professional computing series. November 10, 1994.

15 This tool is shipped with Microsoft Visual Studio Professional Edition and above.

http://www.cs.nott.ac.uk/%7Eceilidh/
http://www.junit.org/

Teacher Studies in Austria
Bridging the Gap Between Mathematics and
Informatics Education

Karl Josef Fuchs
University of Salzburg
Department of Mathematics and Informatics Education
karl.fuchs@sbg.ac.at

The paper documents the necessary changings of an established basic lecture for
teacher students at the University of Innsbruck caused by the intention to cover the re-
quirements of Mathematics and Informatics teacher students with one conjoint course.
The article gives a short overview of the goals of the lecture first. Afterwards the
course schemes of the two teacher studies Mathematics and Informatics are con-
fronted with each other. The main part of the paper is built by reflected and rea-
soned considerations derived from the comparison of the two curricula. Therewith
the reader’s interest should be aroused by the experience that basic principles and
concepts of Mathematics and Informatics education hold similarily on one hand but
that each discipline has its specific approach on the other hand.

1 Relation, Intention and Goal

In 2000 I was invited to hold the basic lecture in Mathematics Education at the University of
Innsbruck the first time. Since then I have been acting as visiting professor in Mathematics
Education continuously. In Winter 2007 the administration of the university decided to add
Informatics to the offered teacher studies in natural sciences in Innsbruck. As the Bachelor
and Master studies in Applied Informatics have already been running at the technical faculty
for several years one can expect that some of these students would ask for courses in In-
formatics education by and by to gain an additional vocational pillar. In summer 2008 after
due considerations I gave my agreement to rename the established basic lecture in ’Math-
ematics education’ to an ’Introduction in Mathematics and Informatics Education’ to satisfy
the expected requests. The time quota for this lesson - two hours a week - was left un-
changed. So far the lecture was customarily visited by twenty - five students approximately.
Henceforward we may count on nearly thirty students as the number of teacher - students in
Informatics will be at best one-fifth of those in Mathematics.
Now it is necessary to present the goal of the basic course. The lecture should feed the
students into the concepts and models of scientific Mathematics and Informatics Education.
The course ought to be visited in the sixth semester or later. Afterwards the students have
to visit an educational seminar. The head of such a course expects the students to be able
to work on selected publications in Mathematics or Informatics Education independently.
Usually the students have to prepare a term paper which is presented to the head and other
participants in one of the seminars’ hours.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

52

Practice in schools is covered by separate courses.
Diploma theses can be written as well in Mathematics as in Informatics Education.

2 Counterparts Teacher Studies Informatics and Mathematics

The teacher studies we are focussing in entitle graduates to teach in grammar schools (10
to 18 years old students) or in schools providing vocational education (15 to 19 years old
students) [31]. A full teacher study is composed of two subjects where each subject needn’t
be within one faculty. For example: Combinations like Informatics / Physics or Mathematics /
Informatics are as possible as Mathematics (Informatics) / History. Actually the minimum pe-
riod for these studies is 9 semesters. Each subject in natural sciences covers approximately
ninety hours a week educational parts and school practice included.

2.1 Course Scheme of the Combination Informatics / Mathematics

A roughly done review provides the reader with the information that both studies rest on three
pillars:

• Special branches of science,

• Educational concepts of each subject,

• Pedagogy and School Practice.

Figure 1: Teacher Studies Informatics / Mathematics

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

53

2.2 Contents and Methods

Special branches of science are covered with

• Introduction to Informatics / Algorithms and Data Structures / Computer Architecture/
Data Bases / WWW & Multimedia / Software Applications / Operating Systems and
Computer Networks / Programming Methodology / Legal and social Aspects in IN-
FORMATICS,

• Introduction to Mathematics / Analysis / Linear Algebra / Algebra / Discrete Mathe-
matics / Geometry / Stochastics / Differential Equations / Numerical Mathematics in
MATHEMATICS.

The Educational concepts of each subject are discussed in courses

• Introduction to Informatics Education / Teaching Methods / Programming in School /
Applied Software in School / Operating Systems and Computer Networks in School in
INFORMATICS,

• Introduction to Mathematics Education / Teaching Methods / Analysis, Algebra, Geom-
etry and Stochastics in School / History of Mathematics and social aspects in MATHE-
MATICS.

Pedagogy and School Practice are integrated in the whole vocational training

• with courses in teachers’ personality training (Basic Competences, Fundamentals of
teaching and learning),

• with orientation- and self reflection - phases as a result of confrontation with School
Practice ,

• with the so called semester of practice in school.

Now having shown the structure and the whole field of contents in which the course ’Intro-
duction in Mathematics and Informatics’ will be embedded we will try to gain reflected and
reasoned considerations out of it.

3 The New Face

Tieing in with the model of Informatics Education presented at ISSEP 2005 in Klagenfurt [7]
I decided to arrange the new face of the course along the diverse functions of a scientific
educator.
Hence headmost a Mathematics and Informatics Educator is working as a

3.1 Mathematician and Computer Scientist

Her or his job is

• to analyze problems,

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

54

• to review and judge actions and

• to summarize the results.

Let’s illustrate the different aspects of the basic activities by prototypical examples. The
example in Mathematics is taken out of Fuchs [11].

Table 1: Illustrating Examples

Subject Mathematics Informatics
Analyzing Studying the consumption

data of a car in depen-
dence of velocity we may
come to the decision that a
quadratic function will de-
scribe the continuous pro-
cess optimally.

Simulating the limited
growth of a population
defined by a recursion
may lead to the decision
to calculate the values and
visualize the data with the
help of a spreadsheet.

Reviewing Fitting the graph of a
quadratic will show that
the model is adequate for
a particular but totally im-
proper for another relevant
range. We will have to re-
think our decision. We will
have to resume the analy-
sis of the problem.

Wading through the wide
variety of applied software
we may find special pro-
grams for the simulation of
dynamical systems. Inputs
can be made with the help
of a GUI. Variable outputs
in the form of value tables
or specific diagrams can
be created easily.

Summarizing The example tells us that
Modeling is a cyclic pro-
cess essentially.

Recapitulatory we must
see that Implementa-
tion Competence which
addresses the general
view on implementation
tools is one of the main
competences of Computer
Scientists.

Additionally the mathematics and informatics educator is

3.2 Educator, Psychologist and Philosopher

The scientist is engaged in educational science, social sciences, psychology and philosophy
of culture from this point of view. Her or his position is standing midst of Theory and Practice.

Theory refers to educational topics such as internal differentiation, general properties of
learners, interindividual or intraindividual differencies in the behavior of learners [34] or even
educational ideals from a historical - philosophical point of view [30], [13].

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

55

Figure 2: Teethed Disciplines

Practice refers to the public obligations of each subject against learners which means the
development of attitudes, virtues, abilities and skills in detail. Actually social relevance ad-
dresses the discussion about educational standards [3], [20], [25] and the compilation of
Mathematics and Informatics Competences [8].
Let’s stick into essential topics of Practice in detail.

3.2.1 Models for Sequencing Courses

Deductive Organization

This style of sequencing courses may be characterized by systematic and smart representa-
tions, appropriate definitions, preparation of all required sources. In general you may say that
it is a soften universities’ lectures’ style. In no case I want to argue against courses which go
after essential Mathematical / Informatical Concepts to great lengths on one hand but I refer
to the following common practice in deductive teaching just as strongly. Very often teachers
of Mathematics or Computer - Science acquire the habit of a magician who celebrates the
grip into the bag of tricks instead of pointing out recurrent strategies. Additionally this style
of teaching is accompanied by sentences like ’The facts shown are for direct reading’ or ’The
proof of the statement is trivial’ characteristically. Even naturally the deductive representation
is advisable for teaching perhaps the following contents:

Table 2: Representative Topics

Mathematics Informatics
Differentiation Rules Logic: Reasoning Methods
Topology: Continuity Elementary Sorting Methods
Axiomatic Stochastic Calculus Number representation and Num-

ber conversion

Tasks’ Oriented Representation

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

56

This method can be defined by a concentration on classes of tasks such as quadratic equa-
tions (Elementary Algebra) or forming straight lines’ equations (Analytical Geometry) [26]
in Mathematics as well as generating value tables (Calculating with spreadsheets) [15] or
implementing text - processing functions in Informatics [9].
The tasks’ oriented style plays a major role in school. Most of the prosperous approbated
school books in Mathematics and Informatics are designed in this way. A lot of teachers give
economy of time as reasons for their choice of Tasks’ orientation.
Especially the sharp and strict partition of topics - each chapter introduced by so called
’Specimen Tasks’ - may raise the impressions of isolated subject - matters by the students
which comes in opposition to the aim of networked thinking [32].
Additionally the disconnectedness of ’innermathematical / innerinformatical’ topics and ap-
plied Mathematics / Informatics makes an impact on students’ concepts’ development as a
whole.

3.2.2 Genetic Method

The strategy that ties up to preconceptions of the students and incorporates problems into
bigger holistic contexts outside or inside of Mathematics and Informatics may be named the
Genetic Approach. Deeper considerations are introduced by intuitive or heuristic entries.
Gradually one’s horizon is broadened towards abstraction. Education must be seen as a
process. The Genetic Approach comes along with following accents involving the names of
famous scientist:

1. Education in Natural Sciences ought to be psychological, vital and application - ori-
ented. Additionally it should assimilate historical facts into its approach [17].

2. Concepts in Natural Sciences have been created all times whereupon creating covers
recreation as well as newly - creation. Moreover this activity mustn’t be a privilege of
the scientist but also students must have the opportunity to arrange their own insight -
process [5].

3. The Genetic Approach features the turning to the learner. Hence it ought to be exem-
plarily and socratic which addresses the fact that the development of concepts takes
place effectively under discussion [33].

4. Discussing the Genetic point of view Problem Based Learning comes along with.
Thereby learning is seen as an iterative design - process embracing externalisation
(including some kind of presentable product, critical reflection (addressing the discus-
sion of different possible solutions) and argumentation (characterizing well - grounded
decisions in favor of a design product) [10].

Let’s illustrate the single attributes with some short examples?

Table 3: Attributes, Subjects and Examples

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

57

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

58

3.2.3 Analyzing and Structuring the Process of Learning Mathematical and Informat-
ical Concepts

Learning Following the Spiral - Principle

If you regard learning of Mathematics and Computer Science as process it will be inadvisable
to postpone topics until a definite, extensive and closed explanation will be possible. In
fact the discussion of serval aspects ought to be introduced even in earlier stages in an
adaequate form of representation. Jerome Bruner [2] gets to the point with his hypothesis
’... that every subject can be taught to any child at any stage of development ’intellectual -
honestly’ ...’.
The deduction for Mathematics and Computer Science is as follows: Instructions should start
as early as possible in an age - appropriate form of thinking. In higher stages the instructions
revive onto a final concept. This process can be interpreted as helix, the so called ’Spiral of
Learning’. The following examples will illustrate the theoretical construct.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

59

Table 4: ’Spiral of Learning Examples

Mathematics Informatics

3.3 Different Forms of Representations

Teaching ’intellectual - honestly’ - as Bruner phrased it - focusses our concentration on the
different forms of representations.

3.3.1 The Enactive Form

Following this concept informations are extracted from operations which are directly related
to reality. It addresses actions wherewith the learning individuum can affect his environment
immediately.
Mathematics: Record the track when walking around a fixed point taking into account a
constant distance to this point as constraint (concept circle) [18].
Informatics: Try to find out as much as possible names of your parents, grandparents, great
- grandparents and so forth. Then sketch a tree for the relationship ’Child of’ with the learner
being the root and the ancestors as further knots (concept structuring information - file fold-
ers) [4].
Additionally the results of Piaget’s research ought to be noted in this context [24].

3.3.2 The Iconic Form

This form of representation addresses the relevance of any graphical, stylized or diagram-
matic description to the acquirement of mathematical and informatical knowledge. The iconic

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

60

form is of notable significance for designing algorithms. As far as possible standardized are
the following forms of graphical representations.

Figure 3: A Potpourri of Graphical Representations

With the proceeding use of computers in Mathematics especially in connection with Com-
puter Algebra Systems (CAS) and Dynamical Geometry Software (DGS) the Tile - Windows
- Principle was introduced. This concept points out the benefits of using different represen-
tations side by side for developing concepts. Imposingly the principle can be demonstrated
in the context of equations’ solving.

Table 5: Tile - Windows - Principle Example

Algebraic >solve({y=xˆ2-2*x+7,y=3*x+3},{x,y});
{x=1,y=6},{x=4,y=15}

and Graphical interpretation
for Solving a system of equa-
tions with CAS MAPLE

>plot({xˆ2-2*x+7,3*x+3},x=-1..6);

As Mathematics and Computer Science are intrinsic symbolically I will only make mention of
this form of representation in this paper for the kind of completeness.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

61

3.4 Fundamental Ideas

Jerome Bruner made the proposal to arrange the several topics of each subject according
to general principles. In 1982 the mathematician Fritz Schweiger picked up the concept and
enunciated a remedy definition of fundamental ideas [27].
Accordingly the ideas should hold at least the following properties:
The idea
- should make a contribution to speak about a subject,
- should be instructive which means that it should make concepts more plain,
- should be good as ’vertical fiber’ for the curriculum which means that it should clear and
bundle topics and
- finally it should have been important within the historical development of a subject.
Shortly after in 1983 Fritz Schweiger puts the idea of Enhanced Redefining up for discussion
[28]. Together with Klaus Aspetsberger and Karl Fuchs he published the ideas Prototypes
and Linearization as fundamental ideas when using Computer Algebra Systems [1].
In 1993 Andreas Schwill renders the concept in his preface to ’Fundamental Ideas of Infor-
matics’ [29] more precisely.
Hence basic ideas have to comply with the following criteria:
- The Horizontal Criterion can be illustrated by an axis which pierces a multiplicity of topics.

Table 6: Section of the Multiplicity of Topics

Mathematics

Informatics

- The Vertical Criterion addresses the different levels in consideration of itemization and for-
malization.

Figure 4: Illustration of Different Levels

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

62

- The Criterion of Meaning depicts the idea’s commonsensical relevance.
- The Criterion of Time circumscribes the historical aspects of ideas, the monitoring of the
historical development of ideas, concepts and structures. On the other hand this criterion
indicates that fundamental ideas must be significant for longer periods.
Andreas Schwill presents the idea of Algorithmization (running from design - paradigms to
evaluation) and Structural Decomposition (including Modularization) in his collection of ideas.
Approximately at the same time in 1994 Karl Josef Fuchs published an article about the
’Logic of Fundamental Ideas’ in Informatics [6]. Therein he put the ideas Structure (Data-
and Relations’ Structures) and Modeling up for discussion.

4 Bringing to a Close: Expectations and Perspectives

4.1 Objectives for School Practice

In recent years schools in Austria have tended to greater teachers’ autonomy. Minutious
instructions dealing with the contents have been reduced in support of substantial method-
ological and educational principles. More than ever the responsibility to form a modern
teaching process with justice to the students will become the teachers’ challenge. This de-
velopment will make huge demands in teachers’ vocational training courses. The adding
of new computer science contents to traditional school curricula have caused new tasks for
modern Mathematics and Informatics Education more than so far. Substantial knowledge
of basic concepts will be important in almost the same manner as great pedagogical and
educational skills for state-of-the-art schools in the future. The illustrated course will try out
to come up to these new standards.

4.2 Stimuli for Research in Science Education

Focussing on these developments from a scientific point of view makes a case for an increas-
ing research in science education. On one hand courses like the introduced should provide a
basis and awaken interest in Mathematics and Informatics Education. On the other hand we
must think of young scientists who are already motivated and competent in research beyond
school practice. In a first step I have in my mind the offers for diploma theses dealing with
educational topics in further steps the promotion of doctorate and postdoctorate programs
for teacher students at the universities.
Fortunately a couple of journals and international conferences like IEE III open the opportu-
nity to present and discuss educational concepts and programs.

References

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

63

1 Aspetsberger, Klaus; Fuchs, Karl, Schweiger, Fritz (1995) Fundamental ideas and
symbolic algebra. In: The State of Computer Algebra in Mathematics Education Berry,
J.; Monaghan, J.; Kronfellner. M.; Kutzler, B. (eds.), Bromley: Chartwell-Bratt, pp.
45-51.

2 Bruner, Jerome (1980) Der Prozess der Erziehung (engl. Process of Education).
104pp, Cornelsen Verlag.

3 Dorninger, Christian (2007) IT - Bildungsstandards (engl. IT - Educational Standards).
In: PC - News Nr. 106, Nov. 2007, pp. 8-11.

4 Frey, Elke et al (2004) Informatik 1, Klasse 6 und 7 - Objekte, Strukturen, Algorithmen
(engl. Informatics 1, 6th and 7th class - Objects, Structures, Algorithms). 97pp, Klett
Verlag.

5 Freudenthal, Hans (1973) Mathematik als pädagogische Aufgabe (engl. Mathematics
as an Educational Task). 680pp, Dordrecht: Kluver Academic Publisher.

6 Fuchs, Karl Josef (1994) Didaktik der Informatik: Die Logik Fundamentaler Ideen
(engl. Informatics Education: The Logic of Fundamental Ideas). In: Medien und
Schulpraxis, 4+5, pp. 42-45.

7 Fuchs, Karl Josef (2005) How Strict May, Should, Must the Borders be Drawn? In:
Micheuz, Antonitsch, Mittermeir (eds.) Innovative Concepts for Teaching Informatics,
pp. 7 - 14, Wien: Carl Ueberreuter.

8 Fuchs, Karl; Landerer, Claudio (2005) Das mühsame Ringen um ein Komeptenzmod-
ell (engl. The Exhausting Struggle with a Competencies’ Model). In: CD - Austra,
Special Edition, pp. 6-9.

9 Fuchs, Karl Josef; Vasarhelyi, Eva (2007) Informatics with Casio CP 300+. Bilingual
learning material, pp. 38, Norderstedt: Casio Europe GmbH.

10 Fuchs, Karl Josef; Landerer, Claudio (2007) Problembasiertes Lernen im Infor-
matikunterricht (engl. Problem Based Learning in Teaching Informatics). In: Problem-
basiertes Lernen (engl. Problem Based Learning) Zumbach, J.; Weber, A.; Olsowski,
G. (eds.) Bern:h.e.p. Verlag, pp. 158-175.

11 Fuchs, Karl Josef (2007) Fachdidaktische Studien (engl. Educational Studies). In:
Fuchs, Karl Josef (ed.): Beiträge zur Didaktik der Mathematik und Informatik an der
Universität Salzburg (engl. Contributions to Mathematics- and Informatics Education
at the University of Salzburg), 386pp, Aachen: Shaker Verlag.

12 Herber, Hans-Jörg (1979) Motivationstheorie und pädagogische Praxis (engl. Theory
of Motivation and Pedagogical Practice). 187pp, Stuttgart: Verlag Kohlhammer.

13 Heymann, Hans Werner (1996) Allgemeinbildung und Mathematik. Studien zur
Schulpädagogik und Didaktik, Band 13 (engl. General Education and Mathematics.
Educational Studies concerning Academic Pedagogy (Volume 13), 320pp, Weinheim
/ Basel: Beltz.

14 Hubfeld, Walter (1995) Dynasys. Ein Werkzeug zur graphischen Model-
lierung und Simulation dynamischer Systeme (engl. Dynasys - A Tool
for Graphical Modelling and Simulation of Dynamical Systems). In:
http://www.bics.be.schule.de/cif/Physik/software/dynasys.htm#Anfang (23.11.2007).

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

64

15 Hubwieser, Peter et al (2007) Informatik 2, Klasse 9 - Tabellenkalkulationssysteme,
Datenbanksysteme (engl. Informatics 2, 9th class - Spreadsheets, Data Bases).
179pp., Stuttgart / Leipzig: Ernst Klett.

16 Hubwieser, Peter (2007) Didaktik der Informatik - Grundlagen, Konzepte und Beispiele
(engl. Informatics Education - Basics, Concepts and Examples). 285pp, Berlin:
Springer Verlag.

17 Klein, Felix (1928 / 2004) Elementarmathematik vom höheren Standpunkte aus (engl.
Elementary Mathematics from a Higher Point of View). 256pp, Berlin: Springer Verlag.

18 Krainer, Konrad (1990) Lebendige Geometrie (engl. Spirited Geometry). In Journal
für Mathematikdidaktik 11(2), pp. 165-166.

19 Matkin, Stan; Pietrzykowski, Tomasz (1985) The Programming Language PRO-
GRAPH: A Preliminary Report. In: Computer Languages, 10:2, pp. 91-125.

20 Micheuz, Peter (2006) Informatics Education at Austria’s Lower Secondary Schools
Between Autonomy and Standards. In: Informatics Education - The Bridge between
Using and Understanding Computers Mittermeir, Roland T. (ed.), Berlin / Heidelberg:
Springer-Verlag, pp. 189-198.

21 Micheuz, Peter et al (2007) Mission Possible - Computers in “Anyschool”. In: Informat-
ics, Mathematics, and ICT: a ’golden triangle’, College of Computer and Information
Science Northeastern University, Boston, Massachusetts, USA.

22 Nassi, Ike; Shneiderman, Ben (1973) Flowchart Techniques for Structured Program-
ming. In: SIGPLAN Notices, pp. 12-26.

23 Palme, Jacob (2005) Multi-lingual content management. Stockholm University.
24 Piaget, Jean (2003) Meine Theorien der geistigen Entwicklung (engl. Theories of

Mental Development). 120pp, Beltz Verlag.
25 Puhlmann, Hermann et al (2007) Grundsätze und Standards für die Informatik in

der Schule. Bildungsstandards Informatik, Entwurfsfassung der Empfehlungen der
Gesellschaft fr Informatik. (engl. Principles and Standards of Informatics in Schools.
Educational Standards of Informatics, a Conceptual Design of Commentations of the
Infomatics Society). In: LOG-IN, Vol. 146/147, Enclosure to the Jounal.

26 Reichel, Hans-Christian; Müller, Robert (2002) Lehrbuch der Mathematik 5 (engl. Text-
book in Mathematics for the 5th class (9th level of education). 318pp, Wien: bv - hpt.

27 Schweiger, Fritz (1982) Fundamentale Ideen der Analysis und handlungsorientierter
Unterricht (engl. Fundamental Ideas of Calculus and Action-Oriented Instruction). In:
Beiträge zum Mathematikunterricht, pp. 103-111.

28 Schweiger, Fritz (1983) Erweitertes Umdefinieren (engl. Enhanced Redefining). In:
Mathematik im Unterricht, pp. 9-15.

29 Schwill Andreas (1993) Fundamentale Ideen der Informatik (engl. Fundamental Ideas
in Computer Science). In: Zentralblatt für Didaktik der Mathematik, 25(1), pp. 20-31.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

65

30 Spranger, Eduard et al (1969) Gesammelte Schriften, Band 5: Kulturphilosophie und
Kulturkritik (engl. Volume 5: Philosophy of Culture and High-Culture Critique. 483p,
Halle: Niemeyer Verlag.

31 Studienplan für das Lehramtsstudium an der Universität Innsbruck in den Unter-
richtsfächern Biologie und Umweltkunde, Chemie, Geographie und Wirtschaftskunde,
Informatik und Informatikmanagement, Mathematik sowie Physik (engl. Curricula
for Teacher Studies in Biology, Chemistry, Geography, Informatics, Mathematics and
Physics at the University of Innsbruck) (2007), Universität Innsbruck.

32 Vester, Frederic (2002) Unsere Welt - ein vernetztes System (engl. Our World - a
Networked System). 177pp, dTV.

33 Wagenschein, Martin (1999) Verstehen lehren (engl. Teach to Understand). 180pp,
Beltz Verlag.

34 Zimbardo, Philip; Gerrig, Richard (2004) Psychologie. Eine Einführung (engl. Psy-
chology. An Introduction). 976pp, Pearson Studium.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

66

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 67
Venice, Italy, December 4-5, 2008

A study on basic mathematics knowledge for
the enhancement of programming learning
skills

Ana Pacheco
1
, Anabela Gomes

2
, Joana Henriques

3
, Ana Maria

Almeida
4
, António José Mendes

5

1CISUC - University of Coimbra and Department of Mathematics of the University of
Coimbra, Polo II, Pinhal de Marrocos, 3030 Coimbra, Portugal, aa0506@mat.uc.pt

2CISUC - University of Coimbra and Department of Informatics Engineering and Systems,
Polytechnic Institute of Coimbra, Rua Pedro Nunes, Quinta da Nora, 3030-199 COIMBRA,
anabela@isec.pt

3CISUC - University of Coimbra, Polo II, Pinhal de Marrocos, 3030 Coimbra, Portugal,
joanahenriques33@hotmail.com

4CISUC - University of Coimbra and Department of Mathematics of the University of
Coimbra, Polo II, Pinhal de Marrocos, 3030 Coimbra, Portugal, amca@mat.uc.pt

5CISUC - University of Coimbra, Polo II, Pinhal de Marrocos, 3030 Coimbra, Portugal,
toze@dei.uc.pt

Novice students often find it difficult to learn to program. This translates in high
failure and dropout rates that are often felt by teachers and discussed in the literature.
According to our own experience as teachers we believe that student basic
mathematical knowledge may have a positive effect on their ability to learn
programming. The paper presents a study that involved a small number of
Mathematics students enrolled in an introductory programming course who showed
deep difficulties in programming learning. The study tried to evaluate if the lack of
mathematical knowledge was a main cause for the students’ difficulties or if the
problems were mainly caused by programming specific issues.

Keywords

CS1 programming, Learning difficulties, Mathematics background, Problem solving,
Programming learning.

1. Introduction

The high failure levels in programming courses suggest that computer programming learning
is a difficult process for many students. This is a problem that has been noted not only in
Portugal but also, as literature suggests, in several Universities around the world [1,2,3,4].
Some very interesting international studies related with this problem were carried out by two
different teams [1,2].
Many researchers proposed educational tools to support computer programming teaching
and learning. Several of those tools use animation and simulation techniques, some
stressing on algorithms others on complete programs. Some focus on low level details (e.g.
showing data structures and their evolution during a program), while others use a higher

mailto:aa0506@mat.uc.pt
mailto:anabela@isec.pt
mailto:joanahenriques33@hotmail.com
mailto:amca@mat.uc.pt
mailto:toze@dei.uc.pt

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 68
Venice, Italy, December 4-5, 2008

detail level, showing program behaviours, component relations and methodologies. Some
systems just animate pre-defined programs and/or data structures, while others accept
student’s programs, allowing them to see how they work and, eventually, making the
necessary corrections. Jeliot 2000 [5], Trackla2 [6], BlueJ [7] and Jhavé [8] are recent and
known examples.
Although some of these tools are very interesting and useful at some of the learning stages,
the problem remains and we continue to find reports mentioning a high failure and dropout
rates in initial programming courses, even when computer science students are involved.
In our view several factors complicate the difficult task of learning programming. They are
related with teaching methods, study methods and the specific nature of programming.
Although a student centred education focusing in individual needs would be important to
develop programming competences, we believe that most institutions don’t have conditions
to support this approach. Time constraints and course sizes are common obstacles, as
classes continue to have too many students to allow a personalized education, with suitable
feedback and adequate supervision to each students needs. Additionally, many teachers
seem to think that in higher education pedagogical care is not very important and that the
students should adapt themselves to each teacher’s style and options. For example,
programming involves dynamic concepts that, frequently, are taught using static materials
(projected presentations, verbal explanations, diagrams, drawings, texts, and so on) not
helping many of the students to get a full understanding of the involved dynamics. Usually,
teachers also forget to diversify their teaching strategies to contemplate the diversity of
thoughts, rhythms and learning styles that coexist in the classroom.
Our own experience as teachers tells us that many students don’t work enough and use
study methods that aren’t suitable for learning programming. This is a consequence of habits
acquired in secondary education and also in some higher education courses. Often students
focus their study on memorization of formulas or procedures, using readings and a certain
mechanization of procedures as the basis of their work. This approach is clearly inadequate
for programming learning, as studying a text book is not enough. Programming learning
needs a very different type of study, demanding intensive practical problem solving work,
reflection, and a true understanding of the concepts involved (not only memorization). Many
studies suggest that a good mathematical background and good generic problem solving
abilities are also important for programming learning [1,9]. Many students often lack the
determination demanded by programming problems for which they don’t find simple and
straightforward solutions. In this situation students often give up or immediately look for
external help, from colleagues or the teacher. This is an unsuitable attitude as, from an
individual learning point of view, solving a problem after going through difficulties and
correcting the errors made can be more valuable than easily solving a problem. The process
of trying to solve a difficult problem, making errors, understanding and correcting them is a
good learning activity that allows the students to gain experience and develop important
cognitive structures. To go through this process it is necessary to demonstrate a good
amount of persistence that many of our students often fail to show.
Another problem is that the specific nature of programming is substantially different from
many other subjects. In this sense, programming learning requires skills that are not easy to
develop like abstraction, generalization, transfer and critical thinking, among others [2]. Also
the curricular structure of programming courses is often too centered on the syntactical
details of a particular programming language, without promoting a real understanding of the
purpose and utility of programming, and especially the mastering of important programming
concepts. We think that the purpose of an introductory programming course should be to
improve the students’ problem solving skills necessary to develop a program and the
programming language should only be seen as a tool to express ideas and algorithms.
Although the above mentioned questions are important we think that the most important
cause for the difficulties felt by many novice students in programming learning is their lack of

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 69
Venice, Italy, December 4-5, 2008

generic problem solving skills. The students don’t know how to create algorithms, mainly
because they don’t know how to solve problems. Problem solving requires multiple abilities
that students often don’t have namely mathematical and logical knowledge. These ideas lead
us to make some experiments to study the relation between mathematical competences and
programming course results. In the third and fourth sections we will describe and analyze
some of these experiences.

2. Previous studies

In our opinion and according to many authors there are a number of reasons that may
explain the difficulties that students have in introductory programming courses. In [10] the
authors present several reasons as causes to these problems including inappropriate
methods of teaching and learning linked with a strong negative connotation associated with
the subject. However, the authors highlight as the main problem the students’ lack of various
types of skills, particularly problem solving skills [1,9]. In the set of experiences that we have
been performing [11,12,13] the participating students did not show deep knowledge of basic
mathematical concepts. In our opinion this situation has a negative impact in their readiness
to develop problem solving abilities and, therefore, in their difficulty to learn programming.
For instance, in a specific study we concluded that the students had deep difficulties in
several areas, such as basic calculus and number theory or simple geometric and
trigonometric concepts [11]. Some difficulties in transforming a textual and concrete problem
into a mathematical formula that solves that problem, and limitations in abstraction level and
logical reasoning, were also identified.
In another study [12], including only students without any previous programming experience,
we found a positive Pearson correlation (p=0.492 at a 0.01 level (2-tailed) in one group and
p=0.416 at a 0.05 level (2-tailed) in another group) between the students’ programming
results and their calculus ability. In that study we found that the previous programming
experience was the most relevant factor affecting the programming course result, at all. This
suggests that programming learning requires time and maturity.
The authors also acknowledged the difficult nature of the subject, stressing that programming
learning is complex and requires effort and perseverance. Indeed, the programming abilities
involve a set of skills that go far beyond knowing some programming language syntax. We
believe that programming is mainly a problem solving task, in which the simultaneous use of
different skills and cognitive functions is involved [14,16]. There are also authors who
consider that the programming capacity consists of a hierarchy of multiple competences [17].
Accordingly to what some theoretical computer scientists like Papadimitriou or Vazirani [18]
have been stating in their conferences, we strongly believe that programming is mainly a
problem solving task, in which different skills and cognitive functions are involved.

3. The study

This study took place in the Department of Mathematics of the University of Coimbra in the
year 2007/2008. It included a group of six Mathematics first year students, enrolled in the
discipline of Programming Methods I, where they are expected to learn the basic concepts of
programming, using Pascal as programming language. Those students were selected
because they showed many difficulties in programming learning, giving clear signs that
failure was imminent.
The experiments included two sessions in which students were faced with different
worksheets about mathematical concepts in a theoretical and practical mathematical
approach and in a programming perspective. The main idea was to find out what the
students’ main programming difficulties were. We tried to evaluate their programming ability
to implement a simple mathematical concept, always after a mathematical explanation or

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 70
Venice, Italy, December 4-5, 2008

exercise about that concept. We wanted to know if the programming difficulties were only
related with programming (in)ability or if the lack of some mathematical knowledge could
influence this difficulty.
The sequence of questions presented to each student followed the Bloom’s Taxonomy of
educational objectives [19], so that we could see at what level each student showed
significant difficulties. This taxonomy is widely used by educators to judge the depth and
appropriateness of their coverage of course materials. The general categories of Bloom's
Taxonomy are knowledge (memorization) at the low end, comprehension, application,
analysis, synthesis and evaluation (judgement) at the high end.
The authors followed the experiences trying to interfere as less as possible in the student’s
thoughts, but trying to intervene, in a sensible way, when some doubts arose. During the
sessions the authors provided to each student exercises appropriate to his/her knowledge,
depending on the difficulties previously experienced. This allowed us to use an individualized
approach in the detection of the specific difficulties shown by each student.
During the first session the students were asked to answer three worksheets that were
distributed according to each student reaction to the previous one. The three worksheets are
closely connected and based on the concept of least common multiple (LCM), approached,
first from a purely theoretical away and latter in a programming context [Appendix A].
The first worksheet [Appendix A – 1] was distributed to all students and intended to verify if
they were familiar with the LCM concept and were able to apply it both theoretically
(Question 1) and in an algorithmic context (Question 2). This allowed us to guide each
student through tasks that are in consonance with his/her level of knowledge and skills.
Given the simplicity of the second question it is easy to identify the students who are unable
to develop the program due to difficulties exclusively linked to programming and not by any
lack of knowledge about the concepts involved. The students that answered question 2
without difficulties were guided to question 3. This question is divided in sub-questions so
that it is possible to identify students who show ability to solve more complex programming
problems and that can follow a logical and consistent reasoning that allows them to develop
towards other programming levels and areas. This first worksheet has also some more
complex questions, each one being an evolution of the previous one, but always around the
same concept.
Students who had difficulties in the mathematical concept of LCM were directed to worksheet
2 [Appendix A – 2] that focuses on LCM mathematical aspects, while the others went directly
to worksheet 3 [Appendix A – 3]. Worksheet 2 begins giving a theoretical explanation of the
LCM concept and explains it using a concrete example so that students can easily seize it.
Next, students are faced with a set of four questions of increasing difficulty, following some
levels of Bloom's Taxonomy. This way, we can follow student’s difficulties from a very basic
level (knowledge of the LCM concept) - through its direct application - to exercises where the
students should make their own conclusions from previous levels and generalize/adapt them
to new situations. The third worksheet includes a set of increasingly difficult programming
questions, all interconnected and linked to the concept of LCM. The questions were chosen
so that they could reflect the different levels of Bloom’s Taxonomy, applied to programming
aspects. This method is being increasingly used and there are already several authors who
have been trying to develop Programming Taxonomies based in Learning Taxonomies [2,20,
21].
The objective of those questions was to identify the student’s difficulties and at what stage
they start to appear. The first question is very basic and its seven sub-questions just verify if
students can recognize and understand the effect of basic programming concepts, namely
variables, attribution instructions, input/output instructions and basic control structures
(selection and cycle). Questions 2 and 3 are at the Understanding level. Students who can
answer the fourth question (Application level) correctly show that they completely understood
the code, dominate basic programming techniques and have the reasoning capacity that

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 71
Venice, Italy, December 4-5, 2008

allows them to reshape programs according to the new requirements. Question 5 is at the
Analysis level. Questions 6, 7 and 8 are at the Synthesis level. Note that all these questions
are related and require a full understanding of the mathematical concepts inherent to the
LCM and the fundamental concepts related to programming that were trained in previous
levels. The last question, 9, is at the last level of Bloom's Taxonomy (Evaluation). Students
that can solve this question have internalized both the LCM mathematical concept and the
programming basic concepts required to develop algorithms related with the LCM.
In the second session we followed a slightly different approach. We wanted to detect
students programming difficulties to the maximum, so we concentrated in exploring
programming questions in terms of Blooms Taxonomy. All the questions were related with
concepts like LMC, multiples, divisor and prime numbers. However, this time we decided not
to evaluate the students’ mathematical knowledge, but instead to give them a sheet with the
necessary Mathematical concepts, definitions and examples required to answer the
programming questions.
Thus, in question 1 [Appendix B] there were seven sub-questions to verify if students can
recognize and understand the effects of basic programming concepts, namely variables;
attribution instructions, input/output instructions and basic control structures (selection and
cycle). We also intended to verify if students can read and interpret some parts of the code
used (question 2 and question 3) and determine the general propose of this code (question
4). These questions basically assess the Knowledge and Comprehension levels. The fifth
question is at Application level and the sixth question is at Analysis level. We consider
question 7 at Synthesis level, since the student had to integrate ideas from the different
concepts into a unique plan or coding. Question 8 is at Evaluation level where students
should make a judgment, recognizing the meaning, importance and utility of a small piece of
code, needed in a certain context. The next section describes the experiment results.

3.1 Global results

Concerning the first session, most of the six students answered the first question on LCM
between two numbers correctly, but only a small percentage managed to solve it efficiently.
Most students just listed the multiples of the two numbers to find the first that was common,
showing that they actually don’t know how to generalize the concept. Only a few students
tried to create a program to compute the LCM between two numbers, but no one did it
correctly. Apart from headers, variables declaration and output/input instructions asking for
and reading values, only one student tried to create the necessary algorithm, but without
success.
All the students that were directed to the second worksheet, where the mathematical concept
of LCM was introduced and explored, seemed to understand the concept, as they answered
the related question correctly. However, only half managed to solve a specific problem
involving the concept of LCM between three numbers.
Students revealed serious difficulties in understanding some basic programming concepts.
All were able to correctly identify the variables, but not all recognized initial assignments to
variables. Students showed more difficulties with repetitions. Only some recognized it and
indicated the line where it started and finished. The purpose of the repetition was also
unknown for most students. Another aspect is that not every student recognizes the input
and/or output instructions. The difficulties increased when we asked students to analyse a
given piece of code. Few of them fully understood the program and indicated the output that
would result from a change made in the original code. From this point on, the questions
began to involve more demanding cognitive concepts and the students started to give up or
to give the wrong answer.
This diversity of student’s responses is in line with the conclusions of Lister et al [2] where
the authors, using the taxonomy of SOLO, grouped the student’s answers in different levels.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 72
Venice, Italy, December 4-5, 2008

In the second session only three students appeared, so we decided to analyse their
progress, defining a profile result for each involved student.

3.2 Profile1

The student knows the concept of Least Common Multiple (LCM) between two numbers,
however he can only determinate it by listing the multiples of the given numbers. He also
knows the concept of prime number and how to get a prime number factorization using the
Prime Factorization Algorithm, but can not apply it to get the LCM between two numbers. He
also failed the questions that relate both concepts.
In terms of programming, the student knows the basic instructions (initiation, input/output,
selection structures...). To calculate the LCM he used the concept of Greatest Common
Divisor (GCD), but could not calculate it. In the worksheet the student identified instructions
and basic operations and the initiation of explicit variables. However, he did not recognize -
variables not initialized. Those failures have been documented in both sessions. The student
does not show true understanding of repetitive instructions, since he considered in the first
session the repetitive structure FOR as a repetition, but in the second session he also
considered the selection structure IF as a repetition. Nevertheless, in some situations he
seemed to understand this concept since he used it correctly. Some of the times he also
demonstrated a true understanding about the meaning of instructions, not limiting his answer
to a simple translation.
Although the student showed in several exercises that he knows and understands the
concept of prime number, he failed when asked to develop a program that computes these
numbers. In fact, he only presented the initiation instructions and read/write instructions, not
making any attempt to get in the process of calculating prime numbers.
The student can create a program that prints out the multiples of a number, but couldn’t
make a slightly different program to print all the common multiples of two given numbers. In
fact, he tried, but he used again the GCD that he does not know how to determine. Although
the type and the order of the selected exercises intends to direct the student to a proper
resolution, in the end the student presented the same program that he had submitted in the
beginning of the session (including the same type of errors).
In the second session, faced with a given program and despite some difficulty of expression,
the student identified all the instructions and explained the behaviour of isolated pieces of
code and the program as a whole. However, when asked to develop a slightly different
program (computation of common divisors between two numbers) the student failed to do it.
There was an implementation attempt that only verified if a number is divisible by another.
In a new question the student was asked to complete a program, where the logic condition
that controls the repetitive structure REPEAT… UNTIL was missing. The student had to
choose between four options. The student chose the right option but could not justify why.
However, in another question the student revealed a good comprehension about logical
conditions.
In conclusion, despite the fact that the student can interpret pieces of code and simple
programs, and make simple changes to a given program, he cannot implement a complete
program, even if it is similar to the one provided before.

3.3 Profile2

The student does not know the concept of LCM between two numbers. After going through
the worksheet that explains the concept, he managed to answer to direct questions about the
LCM between two or more numbers. However, he wasn’t able to apply the concept in a
specific situation involving more than two numbers. In the second session he showed

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 73
Venice, Italy, December 4-5, 2008

knowledge about other mathematical concepts, such as prime numbers and Prime
Factorization Algorithm.
In terms of programming, the student showed knowledge about basic instructions (initiation,
selection structures...) and he identified all variables. He correctly identified the output
instructions, but instead of indicating the input instruction READ, he indicated the limits of the
repetition FOR. This error happened in both sessions.
The subsequent analysis suggests that there was not a true understanding about the
behaviour of the FOR repetition. When questioned about what happens when the first bound
of the repetition has a higher value than the second, the student believes that the control
variable assumes only these two values. The students were uncertain about the
impossibility to enter the repetition in this situation.
In the first session he failed to make any of the required programs and his attempts made no
sense.
In general, the student is able to decipher literally a piece of code, but he doesn’t have a true
understanding about its behaviour. He also cannot explain the real usefulness of a piece of
code or a program. In many situations, he remitted his answer to the concrete program’s

data and literally translated the program’s instructions. However, when he was asked to

create a slightly different programme (computation of common divisors between two
numbers) he managed to do so, although presenting an inefficient solution.
In conclusion the student appears to have ability to translate pieces of the code but is not
able to interpret or generalize it. Surprisingly, the student can implement similar programs to
those given before.

3.4 Profile3

Although the student correctly answered the question about the LCM between two numbers,
his approach seemed to indicate that the concept was not well understood. Thus, he was
redirected to the second worksheet, which he fully and properly resolved. He seemed to
know the concept of prime number, and how to use the Prime Factorization Algorithm,
though in the calculation of one of the factorizations he made a mistake that seemed to be
caused by distraction. The student cannot calculate the LCM by using the Prime
Factorization Algorithm or respond to questions that relate these two concepts.
In terms of programming, he did not identify the input/output instructions (READ and
WRITE), indicating in its place the undisclosed words (INPUT, OUTPUT). Along the
worksheet he recognized instructions and basic operations, the initiation of explicit variables,
not recognizing, however, as variables those that hadn’t been initialized.
The student doesn’t have a real understanding of the repetition concept. In the first session
he recognized the repetitive structure FOR, but in the second one, he also considered the
selection structure IF as a repetition. He correctly identified where the FOR structure begins
and ends, but did not appear to have a complete understanding about its behaviour.
The student can literally translate the instructions of a piece of code or a program, but does
not seem to understand its actual usefulness. He reports his answers to concrete program’s
data and he showed difficulties about making generalizations when some changes were
made in the input data.
When he was asked to create a program (computation of common divisors between two
numbers) slightly different to the one provided before (calculating the LCM between two
numbers) the student failed to do so, confining his answer to the initiation instructions for
reading and writing. He tried to explain, in words, the algorithm, but not correctly.
When asked to complete a REPEAT… UNTIL structure, he chose the right option, but could
not justify why.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 74
Venice, Italy, December 4-5, 2008

4. Conclusion

Given the small number of students who attended our sessions it was not possible to
conduct a statistical study of the results. Although the three students’ answers reveal
different profiles we are not able to generalize the conclusions obtained due again to the
reduced sample. However, we can make a few observations about the study that may be
helpful for the development of further studies and learning strategies.
The students showed lack of knowledge about basic mathematical concepts, demonstrating
only a superficial understanding of the subjects. However, we realize that such difficulties
could be easily overcome, with a targeted training for the development of specific
mathematical skills.
We could also verify that students did not make many efforts to find ways to solve the
proposed problems. They seem to lack the necessary determination to improve their
programming level. However, in their attempts, they did not make too many syntactic
programming errors, most of them were simply mistyping.
Sometimes students write partially correct code, but the interaction was wrong, producing a
globally incorrect solution. Other times students forgot to consider special cases in the input
data, making programs that failed in those cases. Occasionally we noticed that the students’
code to create the output was correct, but in the wrong place in the program.
However, most errors were logic errors. Frequently students failed to program a correct
solution because of an incorrect interpretation of the mathematical concept or due to their
incapacity to translate that concept in an algorithm. Therefore, more studies should be done
in order to have more consistent results. We are now planning a set of experiments
concerning, mainly, three aspects: student’s mathematical knowledge, student’s logic
programming errors and student’s problem solving and cognitive skills needed to
programming learning.

References

1 Simon et al. Predictors of Success in a First Programming Course. Proceedings of the 8th
Australian conference on Computing education; 2006, Hobart, Australia.

2 Lister, R et al, Not Seeing the Forest for the Trees: Novice Programmers and the SOLO
Taxonomy. Proceedings of the 11th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education; 2006, Bologna, Italy.

3 Jenkins, T. On the difficulty of learning to program. Proceedings of the 3rd Annual LTSN_ICS
Conference; 2002, Loughborough University, United Kingdom.

4 Lahtinen, E, Ala-Mutka, K and Järvinen, H. A study of difficulties of novice programmers.
Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education; 2005, Monte de Caparica, Portugal.

5 Levy, RB, Ben-Ari, M, Uronen, PA. The Jeliot 2000 program animation system. Computers &
Education 2003;40(1):1–15.

6 Korhonen, A, Malmi, L, Silvasti, P. TRAKLA2: a framework for automatically assessed visual
algorithm simulation exercises. Proceedings of the 3rd Finnish/Baltic Sea Conference on
Computer Science Education; 2003, Koli, Finlândia.

7 Kolling, M, Quig, B, Patterson, A and Rosenberg, J. The BlueJ system and its pedagogy.
Journal of Computing Science Education, Special Issue of Learning and Teaching Object
Technology 2003;12(4):249–268.

8 Naps, T. Jhavé – Supporting Algorithm Visualization. IEEE Computer Graphics and
Applications 2005;25(5):49-55.

9 Dehnadi, S, Bornat, R. The camel has two humps. School of Computing, Middlesex
University, UK; 2006 Feb 22. [Online]. [February 2008]. Available from URL:
http://www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf [Accessed February 2008].

10 Gomes A, Mendes AJ. Learning to program - difficulties and solutions. Proceedings of the
International Conference on Engineering Education - ICEE’07 [CD-ROM]; 2007 Sep 3-7;
Coimbra, Portugal.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 75
Venice, Italy, December 4-5, 2008

11 Gomes A, Carmo L, Bigotte E, Mendes AJ. Mathematics and Programming Problem solving.
Proceedings of the 3rd E-Learning Conference – Computer Science Education [CD-ROM];
2006 Sep 7-8; Coimbra, Portugal.

12 Gomes A, Mendes A. A study on student’s characteristics and programming learning.
Proceedings of the EDMEDIA08, World Conference on Educational Multimedia, Hypermedia
& Telecommunications; 2008 Jun 30 – Jul 4; Vienna, Austria.

13 Pacheco A, Gomes A, Henriques J, Almeida AM, Mendes AJ. Mathematics and Programming:
Some studies. Proceedings of the International Conference on Computer Systems and
Technologies - CompSysTech’08; 2008 Jun 12-13, Gabrovo, Bulgaria.

14 OECD (Organisation for Economic Co-operation and Development). Learning for tomorrow’s
world. First results from PISA 2003. [Online]. [2007?]. [cited 2008 May 20]. Available from
URL: http://www.pisa.oecd.org/dataoecd/38/30/33707234.pdf.

15 Gagné E. The cognitive psychology of school learning. Boston: Little Brown and Company;
1985.

16 Seamster TL, Redding RE, Kaempf GL. A Skill-Based Cognitive Task Analysis Framework. In:
Chipman, Shalin and Schraagen, editors. Cognitive Task Analysis. New Jersey (NJ):
Lawrence Erlbaum; 2000. p. 135-146.

17 Lister R, Adams E, Fitzgerald S, Fone W, Hamer J, Lindholm M et al. A Multi-National Study
of Reading and Tracing Skills in Novice Programmers. SIGSCE Bulletin 2004;36(4):119-150.

18 Dasgupta S, Papadimitriou CH, Vazirani UV. Algorithms. McGraw-Hill; 2006.
19 Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krahwohl D. Taxonomy of Educational

Objectives, Handbook I: Cognitive Domain. New York (NY): David McKay Company; 1956.
20 Johnson, CG and Fuller, U. Is Bloom’s Taxonomy Appropriate for Computer Science?

Proceedings of the Sixth Baltic Sea Conference on Computing Education Research; 2007
Feb, Uppsala University, Sweden.

21 Fuller, U et al. Developing a Computer Science-specific a Learning Taxonomy. ACM SIGCSE
Bulletin 2007 Dec;39(4):152-170.

22 Mead, J et al. A Cognitive Approach to Identifying Measurable Milestones for Programming
Skill Acquisition. SIGCSE Bulletin 2006;38(4):182-194.

Appendix A
1-
1. Determine the LCM between 6 and 21.

2. Write a program that calculates the LCM between two numbers.

3. Imagine that you want to make a program that calculates the sum of two fractions.

a) Modify the previous program into a function that receives two numbers, calculate and print the

LCM between them.

b) Make an algorithm of a program that calculates the sum of two fractions, using the function that

you defined in a). The four values corresponding to fractions N1/D1 and N2/D2 must be

introduced and the result of the sum shown in the form N3/D3.

4. Indicate, from the following set (2, 3, 4, 6, 7, 21, 37, 125), which numbers are prime numbers.

5. Write a program that calculates and prints all the prime numbers between two values n1 and n2.

6. The Sieve of Eratosthenes is a method to obtain a table of prime numbers up to a chosen limit:

 Write a list of numbers from 2 to the largest number, say n, you want to test for primality. Call

this List A.

 Write the number 2, the first prime number, in another list for primes found. Call this List B.

 Strike off 2 and all multiples of 2 from List A.

 The first remaining number in the list is a prime number. Write this number into List B.

http://www.pisa.oecd.org/dataoecd/38/30/33707234.pdf
http://www.mhhe.com/dasgupta

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 76
Venice, Italy, December 4-5, 2008

 Strike off this number and all multiples of this number from List A. The crossing-off of multiples

can be started at the square of the number, as lower multiples have already been crossed out

in previous steps.

 Repeat steps 4 and 5 until no more numbers are left in List A.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Write a program that implements the sieve of Eratosthenes to a number n.

2-
The Least Common Multiple (LCM) between two integers a and b is the smallest positive integer that

is simultaneously multiple of a and b.

For example, " A florist sells roses for 3 € each bunch, which is the price of 2, 3, 4 and 5 bunches?"

Answer: 6 €; 9 €, 12 €, 15 €, respectively.

Assume now that the florist sells not only rose bunches, but also carnation bunches for 6 € each.

Suppose that Mr Phillips wanted to pay a certain amount for flowers, either roses or carnations.

Indicate two price possibilities for the different flowers Mr. Phillips can buy. Answer: Calculate the

multiples of 3 and pick two that are also multiples of 6. For example: 6 and 12.

In such conditions, what is the minimum amount that Mr. Phillips can spend? "Answer: LCM (3,6) =

6€.

1. Identify the correct answer, the LCM between 7 and 21 is:

a) 3

b) 147

c) 21

2. Determine LCM (12,20,24).

3. Two friends meet each other in December 2007, in the city where they were born. One of them

returns every 3 months and the other returns every 4 months. When will the friends meet again in that

city?

4. What would happen if there was a third friend who was in the city on the same day and returned

every 5 months? In other words, when will the three friends meet again?

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 77
Venice, Italy, December 4-5, 2008

3-

1. Given the following code extract:
1. var n1, n2, i, j :integer;

...

2. n1:= 3;

3. n2:= 10;

4. for i:=n1 to n2 do

5. if i mod 2 = 0

6. then write(i);

a) Identify the variables.

b) What is the initial value of each variable? Indicate the number of the code line where each

variable is initialized.

c) Let i=57. Which is the result of the following instruction i:=i+1?

d) Let i=101. Which is the result of the following instruction i mod 2?

e) Is there a loop? If yes, please state the line where it starts and finishes.

f) Is there any instruction of entry and/or output data? If yes, identify it and write the correspondent

line(s).

g) Explain what makes the instruction for i:=n1 to n2 do.

2. Explain, in plain language, what is the behaviour of the above code.

3. Assume that lines 2 and 3 are replaced by the following code:

7. n1:=10;

8. n2:=3;

 What is the result of this change in the behaviour of the above code?

4. Enter the necessary changes in the given program (in 1), considering the data given in the previous

question, so that the behaviour of program 1 is the same.

5. Explain the reason of the condition if i mod 2 = 0?

6. Based on the given program, write another program that prints out the multiples that exists between

n1 and n1 * n2.

7. Upgrade the previous program in order to print the common multiples of n1 and n2, within the range

of n1 and n2 * n1.

8. Change the previous program in a way that only the least common multiple between n1 and n2 is

shown.

9. Will it be necessary to loop through all the numbers between n1 and n2? Suggest some changes to

optimise the procedure for calculating the minimum common multiple between n1 and n2.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 78
Venice, Italy, December 4-5, 2008

Appendix B

1. Given the following code extract
9. Program LCM(INPUT, OUTPUT);

10. VAR D1, D2, greater, smaller, i:INTEGER;
11. BEGIN
12. D1:=3;
13. D2:=6;
14. IF (D1>D2)
15. THEN
16. BEGIN
17. greater:=D1;
18. smaller:=D2;
19. END
20. ELSE
21. BEGIN
22. greater:=D2;
23. smaller:=D1;
24. END;
25. FOR i:=greater TO greater*smaller DO
26. IF ((i mod greater=0) AND (i mod smaller=0)) THEN
27. break;
28. WRITELN (i);
29. END.

a) Identify the variables.

b) What is the initial value of each of the variables? Indicate the number of the line, in the given

code, where the variable is initialized.

c) Is there a loop? If yes, please state the line where the loop starts and finishes?

d) Is there any instruction of input and/or output data? If yes, state the line(s) where those

instructions appear. If not, indicate how the values of variables are obtained.

e) Explain the propose of the instruction FOR i:=greater TO greater*smaller.

2. Explain, in current language, what the utility of the code between lines 6 and 15 is.

3. Explain, in current language, what the utility of the code between the lines 17 and 20 is.

4. Explain the goal of the all the above code.

5. Write a program that calculates, and shows on the screen, the common divisors between the two

numbers.

6. Given the following function, aiming to determine if a number is prime or not, complete the structure

REPEAT… UNTIL, using one of the options below. Justify your choice.
1. Function xpto (i:INTEGER):BOOLEAN;

2. VAR j: INTEGER;

3. flag:boolean;

4. BEGIN

5. flag:=true;

6. IF i>4 THEN

7. BEGIN

8. j:=2;

9. REPEAT

10. IF (i mod j=0) THEN
11. flag:=false;

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 79
Venice, Italy, December 4-5, 2008

12. j:=j+1;
13. TO COMPLETE
14. END;
15. primo:= flag;
16. END;
a) UNTIL (flag=false) or (j>=i)

b) UNTIL (flag=false) or (j<=i)

c) UNTIL (flag=true) and (j>=i)

d) UNTIL (flag=true) and (j<=i)

7. The “Unique Factorization Theorem” says that the representation of any whole number, greater
than 1, can be written as a product of prime numbers in a unique way except for the order of factors
and the presence of units. Write a program that calculates, and shows in the screen, the
decomposition of a number in prime factors. For example, assuming the number 84, it will appear in
the screen 2,2,3,7.

8. Suppose that “prime” is a function that receives a whole number and that returns a boolean value
(TRUE or FALSE) to reflect the fact that the receiving number is a prime number or not. Admit that n1
is a number that you want to decompose into prime numbers. Indicate the usefulness/meaning of the
following code extract.

i:=2;

WHILE (NOT (prime(i)) OR (n1 mod i<>0)) DO

 i:=i+1;

Evolving modes of student use - whither the
VLE?
Roger Boyle, Nick Efford, Royce Neagle

School of Computing, University of Leeds, UK, {roger,nde,royce}@comp.leeds.ac.uk

We consider the issue of where physically Informatics students choose to work.
Technological change now offers them a range of points of access, at the same time as
institutions are exploiting these modes to the full. In the context of a new institutional
VLE, we have conducted a preliminary study of modes of use: we learn, unsurprisingly,
that use of central bulk laboratories is diminishing, but that there may be subtle patterns
of behaviour evident among individuals.
We note that these behaviours are driven by strong external forces and will not be coun-
tered, and further note that there may be cause to worry about students becoming ‘vir-
tual’, both for their own academic benefit and their enculturation. We conjecture that
conclusions for Informatics will be relevant to the whole academy as time passes, and
propose work to monitor this issue.

Keywords

VLE, Digital Natives

1 Background and motivation

The Virtual Learning Environment [VLE] is now so common as to be a default piece of the aca-
demic landscape. First appearing during the 1990s and deriving from mechanisms designed to
support distance learning1, universities, colleges and high schools now routinely provide ma-
ture products as part of their teaching infrastructure. Their capabilities are very well known, but
in summary, the VLE of 2008 will provide mechanisms for curricular repositories, coursework
management, messaging between students and staff, video and audio handling, blogging and
collaborative working using tools such as wikis.
The VLE has gone through a maturing phase: while once it might have been regarded as novel
(often a drawback in educational domains), the number of competitors has shaken out to a very
few: the market is dominated by BlackBoard [3], the public domain Moodle [13] and a small
number of others.

1Wikipedia, inter alia

1.1 Expectations and behaviour of modern students

For universities, there can be a drawback in the ubiquity of such products: new students often
come to universities expecting the environment to be ‘new’, ‘exciting’, ‘different’, . . . , and there
can be negative reactions to software environments that are just the same, functionally at least,
to those they had at school. We might hope that the actual use that higher education [HE] puts
them to goes some way to restoring expectation.
But there is another effect at work that presents more fundamental problems for HE which will
be absent, or much less evident, in high schools: the modern student is a Digital Native [14]
and comes to us with a far more blase view of technology in general. This is not a superficial or
facetious observation – the preconceptions, attitudes and motivation of our learners is some-
thing that those of us who are Digital Immigrants (to use Prensky’s useful definition) sometimes
struggle to comprehend. This often deep social rift can be especially evident when we try to
deploy the technology which they take for granted in pursuit of our aims – however well we
understand things, we remain immigrants.
Prensky’s useful terminology may well be viewed as one aspect of a much broader and well
documented sociological effect: aspects of post-modernism that have been well documented
by, for example, Bauman as Liquid Modernity [1], and Beck as Second Modernity [2]. These
authors describe aspects of societies in the late twentieth and early twenty-first centuries: ‘in-
habitants live in a perpetual present’, ‘people are constantly busy and perpetually short of time’,
‘social networks are not being added on to the national container; they are changing its nature’,
‘a society preoccupied with the future’. Many would agree that features such as this are espe-
cially evident among current students and schoolchildren. The sociological thesis is that these
effects are not cosmetic, but fundamentally affect the way we live, and it is easy to see that at-
titudes will develop that present serious challenges to traditional modes of education. Students
often exhibit a ‘here today, gone tomorrow’ approach with scant regard or interest to the longer
term or historic causes – credentials as Digital Natives simply represents the communication
channel they choose to use. These are major issues that others address – here we consider
only that aspect which might impact on mode of computer use in education, particularly as
exemplified by a VLE.

1.2 Implications for technology in teaching

The consequences for these issues may become significant, and may already be so. Habits of
computer use among Informatics2 students are often advanced, and often not representative
of the broader community, but do often become so – what our students are doing this year
is standard practise in science and engineering a few years later, and across the institution
shortly after that. In computer demand and use, our students can be a signpost. And in many
universities, Heads and Chairs of computing departments are reporting much reduced demand
for the bulk facilities that have been essential provision for decades. The reasons are easy to

2In this paper, we use the term ‘Informatics’ to include degree programmes in Computer Science, Computing,
and a wide range of cognate areas.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

81

understand: consumer electronics are at a price that permits many students3 to own platforms
at least as good as the university provision, and domestic broadband Internet connection is
ubiquitous. In addition, laptop users frequently have easy wireless access throughout their
institution. Ergo, significant amounts of work are being done ‘somewhere else’, leaving the
university sweatshops underpopulated.
An early reaction to this is approval: bulk laboratories are expensive to procure and maintain,
and need regular upgrade – how much better if the institution has no need to provide them. But
there may be drawbacks:

• Institutions commonly state expectations on student hours (in the host institution, 10 hours
per credit point, aggregating to 1200 per academic year). Only a small proportion of
these hours is formally scheduled and expectations are made about independent study,
often cited as a feature of the successful student. In Informatics, this private study is
rightly dominated by some use of computers. Various studies sound warnings about the
assumptions made about this use of time, and these warnings carry more weight as the
pool of students becomes broader, and pre-university education does less to encourage
independent learning.

It seems clear that student time investment and, more particularly, nature of use of time,
can be critical to the quality of their learning [6, 11, 12]. Moving to systems such as VLEs
where by design time is much less directed, may well have unanticipated pitfalls.

• Secondly, one of the major benefits of higher education is the enculturation of the student
into her chosen discipline (whether it be Informatics, Physics, Philosophy, . . .), and this
comes most easily from physical interaction with peers and academics. Acceptance into
the community [19] is not a luxury, but is an essential part of the transition that HE pro-
vides: ‘students are too often asked to use the tools of a discipline without being able to
adopt its culture’ [17], ‘student do not only learn knowledge in the classroom, they learn
a set of practises’ [4].

Acquiring community membership (in all disciplines) has historically been semi-automatic
as successful students live and work physically within a department among some of that
community’s strongest exponents. While physical participation in the academy is not
essential, it is customary, and the consequences of its loss deserve consideration and
caution.

1.3 This study

So we consider a scenario in which we detect – anecdotally – major changes in the patterns
of work of some of our students that may give cause for concern, both for their curricular
experience and their induction as computer scientists. In the host institution, a new VLE is
being commissioned at significant expense and the scope for accelerating the change in these
patterns is obvious, and in some quarters applauded and encouraged. We mean, accordingly,

3In informal surveys, we learn that nearly all students have private provision of a quality that matches the institu-
tion’s.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

82

to discover what we can about the nature of this use, and whether it influences in any way the
quality of the student experience and their evolution into proper members of the community of
Informatics. Earlier related studies [6, 16] evidence that collecting accurate data of this nature
is not easy, and an objective approach to this is one of our aims: but it is also noted [16] that
quantitative data alone is insufficient fully to understand behaviour, and qualitative follow-up is
essential.
This paper considers the nature of the modern VLE, and an overview of the range of technology-
based teaching that is currently seen and being developed. We note the extent to which these
technological developments provide the potential, at least, for significant changes in student
working practise. We then present results and comments on a preliminary study conducted at
Leeds on the effects we have discussed, and draw some conclusions on what it means for the
modern academy.

2 Technologies to supporting learning

There is a wide range of technologies on offer to modern HE: some of it (bulletin boards,
plagiarism detectors etc.) is well established and mature; other aspects (e.g., pod-casting)
are recent, hinging on pervasive ownership of consumer electronics. At the other end of the
spectrum, special-purpose installations may be procured to facilitate specific modes of learning.
An example is the ‘Techno-cafe’ (for example, [8]) where large screens are provided in a group
working environment, making cross-site collaborations an easy possibility.
It serves to stand back and think about a time 10, or even just 5, years ago and to consider the
contrast in usage. Various factors are simultaneously at work;

• The range of communication and digital electronics that teenagers will expect to own –
phones, cameras, iPods, . . . – has grown significantly, as has their capability.

• Their relative cost to the consumer is dropping, certainly when capability is considered.

• Internet access by domestic broadband and public (or institutional) wireless has grown
enormously.

• All of the above have been noted and used or acknowledged in schools.

These are statements of the obvious, but we stress that we are seeing the Digital Native here,
not people exercising luxury choice, or recreational behaviour. This is of course less true of
installations such as ‘Techno-cafes’, where a sense of novelty and difference will perhaps exist.
Overarching all this is the VLE: well established in nature since the 1990s, it continues to evolve
and will these days routinely provide teacher and students with video and audio facilities, and
easy cross linking into popular repositories such as YouTube and Flickr.
The Universities and Colleges Information Systems Association4 conduct a regular survey mon-
itoring the penetration of VLEs and MLEs in the UK: it is being conducted in 2008, but the last
published report (2005) [10] tells us that:

4http://www.ucisa.ac.uk/

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

83

• They are widespread: at that time [in the UK], post-1992 institutions (ex-polytechnics)
predominated.

• Majority use was for for accessing course material. PDP use was growing.

• Central university units usually provided support and future strategy, with close interaction
with external national agencies.

• It was becoming an expectation on staff to use them, where they were available.

We can confidently expect these features to be more evident rather than less in the survey
underway; the VLE has demonstrably become an academic ‘must have’, and not a Learning
and Teaching option or luxury. The survey by design concentrated on HE, but we have abun-
dant, if anecdotal, evidence that VLEs are similarly widespread in the pre-university sector. For
students, they are routine.
The host institution for this work has used a homegrown VLE, ‘Bodington’ [5], for ten years.
Some faculties within the institution have developed considerable experience over this period
in the use of a ‘blended learning’ approach that combines VLE-hosted materials and activities
with traditional face-to-face teaching via lectures, seminars, laboratory sessions, etc. There is
a long-held desire to build upon this experience and develop an institution-wide blended learn-
ing strategy that addresses key institutional goals such as translating excellence in research
and scholarship into learning opportunities for students, or refining assessment practise and
improving academic feedback.
Two years ago, it became clear that the existing VLE solution would struggle to meet the future
need for widescale adoption of a blended approach to learning and teaching, and the institution
agreed the business case for procurement of a new VLE. The procurement process began in
January 2007 with an invitation to tender via the European Union’s OJEU tender process and
concluded in June 2007 with a decision to purchase licences and services from Blackboard.
This decision was motivated by a number of considerations, among them the fact that Black-
board’s system offers a wide range of functionality, along with the ability to extend this further
via a ‘plug-in’ architecture and integrate with the institution’s existing e-learning tools—notably
Questionmark Perception [15] and Turnitin [18]. Blackboard’s widespread use by partner and
peer institutions of similar size and complexity was also a factor in its favour.
The institution has a two-year rollout strategy for the new system, based on an expectation that
early adopters (largely comprised of users of the existing Bodington VLE) will spearhead its
use during the 2008-9 session and that the majority of modules will be making some use of
the VLE during the 2009-10 session. Implementation of this strategy is being supported by ap-
pointments within each faculty of a full-time support officer and a part-time coordinator. These
individuals have the job of assisting teaching staff with the transition to blended learning tech-
niques using the VLE and with the migration of teaching materials and activities from Bodington
to Blackboard.
The two-year rollout strategy is part of a broader, five-year vision stating that, by 2011-12, the
use of the VLE and other learning technologies to provide a blended learning experience will
be the normal expectation for all staff and students. To help the institution achieve this goal,
funding is being provided to each faculty for pilot projects that explore innovative uses of the
VLE.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

84

Question Yes
Do you have access to a desktop computer or laptop
where you live, while you’re at university?

100%

Regularly use mobile 88%
Allow university to communicate using mobile 75%
Regularly use SMS 88%
Allow university to communicate using SMS 81%
Regularly use IM 81%
Allow university to communicate using IM 47%
Regularly use social networking sites 83%
Allow university to communicate using social net-
working sites

44%

Regularly use sharing sites 64%
Allow university to communicate using sharing sites 37%
Regularly use virtual communities 5%
‘Social networking sites are to talk to friends or make
new friends’

80%

‘Social networking sites are to search or share infor-
mation’

36%

Not using social networking sites, but with no reason 10%
Not using social networking sites, because of no In-
ternet

0%

Always have a mobile phone 98%
Always have an mp3 player 49%
Always have a PDA 10%
Always have an iPod Nano 15%
Always have an iPod Video 14%

Table 1: Selected results from University of Newcastle questionnaire. This work was conducted
as part of CETL ALiC [7].

3 Technology Utilised and Owned by Students

The Digital Native of today is very technology savvy, and we present a snapshot.
A preliminary survey performed on first year students at the University of Newcastle in 20075

demonstrated a high percentage of access to technology – this is summarised in Table 1. In
addition to institutional provision, all seemed to have independent access to a desktop com-
puter or laptop while at university. One aspect to materialise from this survey is how students
communicate with the University: only a third of students were found to have a landline with
most students using mobile phones.
Additionally, there was widespread use of PDAs and similar ‘this year’ consumer devices. The
data summary given above is but a snapshot - behind this the trend is clearly toward such
accessories.
Many students use instant messaging and social networking sites such as Facebook and MyS-

5In preparation for publication.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

85

pace. About half the students allowed the university to communicate using these means, and
see social networking sites as a means to communicate with friends and make new friends.
Only a third of students use social networking sites to search and share information. There
is a wave of interest from HE in exploiting social networking which is proceeding with mixed
success [9]; the Natives do not always welcome the Immigrants onto home ground.
The details of these data serve to verify what we may expect: all our students are Digital
Natives and the way they choose to conduct their lives is determined by this. Their range of
opportunities is broad, and they have mixed feelings about ‘the university’ intruding.
We anticipate that these patterns will strengthen within a small number of years – certainly,
such a survey conducted 5 years ago would have shown weaker patterns of behaviour.

4 Working Habits of Students

We have set out to determine where and when students choose to work within the range offered
to them: at simplest this is within traditional laboratories, ‘at home’ (which may of course imply
a student residence), or using a laptop on the move, probably using the intuition’s pervasive
wireless. This is a crude classification that conceals many other modes of use and commu-
nication such as WAP and, for example, iPhones. For this initial study, we sought to learn (i)
by percentage, where work is done; (ii) at what time(s)work is done; (iii) by percentage, where
work requiring specific resources is done.
This is an indicative survey only and we make no suggestion that it is exhaustive or thorough.
Students were canvassed via:

• Online bulletin boards

• An e-mail canvass

• Via a ‘spot questionnaire’ in a lecture

(The first two here may well have a self-selecting effect on the respondents). The following
questions were put

1. There are three places you can study and work: Lab Computer, Home Computer, Roving
on a Laptop. Please estimate the percentage of time you spend on each, and why.

2. Approximately how many hours a week during term time do you spend on a computer to
study and complete work during Morning, Afternoon, Night, and why?

3. Estimate the percentage of time you spend while accessing University resources (e.g.
coursework specific applications) in the areas of: Lab Computer, Home Computer (VPN,
CITRIX or other), Roving on a Laptop (VPN, CITRIX or other).

4. How do you access School of Computing and University of Leeds resources?

The survey had 27 responses via email (5), bulletin board follow-ups (5) and paper submis-
sions (17); it provides interesting outcomes and will serve as a very crude benchmark for fuller
surveys in future years.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

86

4.1 Results – how and where Students Work

Given the rough and ready nature of the survey (a small sample, almost certainly not fully
representative), we can only present the roughest of results, but nevertheless they are food for
thought, suggesting a bimodal split in the use of computers. Arbitrarily selecting a threshold
of 60% to determine where subjects spend a majority of their time working, we found that
11 subjects preferred to work from home, while 10 preferred to work from a computer in the
university lab (Figure 1, left).

Working from home

Working in a lab

Evenly split

11

10

5

Working from home

Evenly split

Working in a lab

7

15

2

Figure 1: Number of students working in labs, at home, or both. On the left, general computer
usage and on the right, doing coursework requiring specific resources.

Considering where work is done when resources within the university are required, we know
that many students are able to replicate the university environment almost perfectly (perhaps
to higher specification) on private systems – we might hypothesise that these are among the
‘better’ students.
Students who prefer to work from home but are unable to utilise resources from the university
would probable work in the university lab. Our crude analysis of responses has some support
for this (Figure 1, right)
Considering preferred hours of operation, the variability in behaviour is again very evident.
There is no such thing as ‘average behaviour’, with some students preferring to finish academic
work before the evening, and others preferring to work at night and only doing during daylight
what the timetable strictly requires.

Working in Comfort and the Working Environment

Of greater interest than the raw numbers are the reasons and opinions that lie behind some of
them; many of these appeared to be related to environmental issues. A representative sample
of comments from ‘home workers’ is:

• Lab computer chairs are quite uncomfy and the labs tend to have extreme temperature
changes! I prefer the home comforts whilst working also.

• I would stay more in labs if there would not be freezing [sic]. Air conditioning was some-
times crazy. And also Labs were sometimes quite noisy.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

87

• The main lab. is far too busy and freezing! The smaller one – quiet but far too hot! Home
– nice surroundings, can grab a cuppa, quiet! 20% in uni is usually group discussion.

• . . . convenience, comfort, quietness . . .

• My work environment at home is a lot better than labs, e.g. quiet, more relaxed. Computer
setup is a lot better than the labs.

We note several comments on home comforts: interestingly, students that worked more often
from the labs cited the good working environment they provided, with fewer distractions: Prefer
to use SoC computers as its easier to work in Uni (less distractions) . . .

Support and Resource

Another prime motivator was access to help. Students who generally worked in the labs cited
two main reasons: the resources available, obviously, and help was available from staff and
peers if there were problems.

• Work in labs when help is available or don’t have tools that I need at home. Working at
home makes it easier to take a break, and save time walking in and back.

• Lab is good for group work and moral support.

The comments here are not all from weaker students who might be expected to be seeking help:
we have held follow-up conversations in a small number of cases with the strongest individuals
of the cohort, who intentionally occupy space near the staff they like to access. They are overtly
joining the ‘community’ [19].

5 Discussion

We consider, despite a small and probably biased dataset, that we have identified an issue that
may develop into a problem. The choices in front of students lead to very variable modes of
behaviour, and the move toward more elaborate electronic support – by design – will increase
this. Of course, increased affordability of suitable electronics will at the same time do so as well.
This variety is largely untracked (although we uncover it here), is evolving, and is consequential.
Does it matter? Our entry point for this study was twofold: the time students actually spend
studying, and their success or failure, howsoever, in engaging with the community that is the
academic department. Disentangling either of these is probably a deep and long-term issue,
most unlikely to be answered by superficial surveys. Thus, our conclusions here are primarily
a catalyst for future work, described below.
This brief survey does go slightly further: in collecting data conversations were held with two
students who, entirely by coincidence, represented extremes of the spectrum:

Student A: (Very strong - a clean sweep of First Class results). A adopted a mode of working
with 10% at most of his time ‘at home’, although he had a highly sophisticated domestic
installation on which everything was possible. He preferred to avoid laboratories because
of environmental concerns, but made tactical use of his personal laptop, occupying space

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

88

frequented by other students and the staff that were key to his study. Being strong, he
was a major asset to other students he worked with and presumably derived benefit from
speaking with them: he derived much more direct benefit by frequent, planned interaction
with staff.

Student B: (Very weak - a ‘results struggler’ who failed his capstone project . . . most unusual).
B conducted nearly all his practical work at home, citing technical superiority and ‘con-
venience’. The former reason is probably unarguable (laboratory machines look old very
soon after bulk purchase), but in conversation he went on to explain that he often had
difficulty motivating himself in an environment of distraction. Having established an ab-
sence habit, he was rarely seen in the Department and was a poor attender at project
supervision meetings.

A here is the student we all want: clever, motivated, communicative, good study skills, good
problem solver; B is the antithesis. The interest in these examples is that they have both man-
aged to maximise their strength/weakness by chosen mode of operation – working at home,
maybe A would be just strong, not very strong, while more academic interaction might have
pulled up B’s performance just enough to get a degree.
Of course, other examples will exist of home dwellers excelling and laboratory denizens failing,
and for many reasons. This just confirms our view that there is a range of behaviours that we
need to understand and track, and then plan (or compensate) for.
This study thus defines a range of questions that we seek to answer

• Across a full cohort, is our sample in any way representative?

• Do these patterns evolve as students become more senior, and how?

• Is there any correlation between student performance and mode of working?

• Is there any correspondence between a sense of community membership and mode of
working?

The advent of an entirely new VLE environment is opportune: institutional policy directs that
maximum use will be made of it (trivially, every module will have at least a rudimentary pres-
ence). VLEs come equipped with monitoring facilities, but we will augment these with the
wherewithal to monitor the points of access of students, thereby automatically deriving the raw
data illustrated in a sample here.
This is simply raw material, however: it then becomes important to disentangle truths in a
qualitative fashion and we will conduct interviews and deeper studies to try to determine the
academic effects of modes of working, and how these evolve during and after university study.
The benefit should be some understanding of what – for the Digital Natives – works and what
doesn’t, and thereby an opportunity to play to strengths; to seek a balance between working
virtually and direct contact with staff that is optimal for the individual. This is likely to imply
modes of VLE use that are different to historical approaches.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

89

6 Conclusion

Conclusions from a brief and unrepresentative survey are clearly of little value, but we consider
we know enough to present an issue. We feel we have confirmed that a significant number of
students are voting with their feet, and choosing to work away from the institution; probably a
significant number of others are doing this ‘to some extent’.
We take the view that wholesale absence from the university environment is not good for dual
reasons:

• Private study time is critical to winning a degree of quality, and there are doubts that it
will be optimally or well spent in private home comfort, especially among newer or weaker
students.

• Physical interaction with the discipline – the staff – should not be seen as optional in the
education of the next generation of Informaticians.

Nevertheless, Knut-like we recognise that we cannot roll back the tide. The Digital Natives will
behave as they wish and it is up to us to bend our processes to help them.
We will continue to monitor the mode and nature of use, with more precision than the simple
survey presented here. We suspect there are patterns of use related to student prior experience
and possibly to intellectual aptitude, but that may be hard to demonstrate. We are confident
that these patterns are fast evolving in time, and it behoves us to be ready for what is to come.

7 Acknowledgements

We gratefully acknowledge the input of Martyn Clark in some of the background ideas pre-
sented here. Thanks are also due to the many students who described to us their experience,
and to the VLE team at the University of Leeds.
Some of this work was funded by HEFCE as part of the ALiC Centre of Excellence in Teaching
and Learning [7].

References

[1] Z Bauman. Liquid Modernity. Polity Press, 2000.

[2] U Beck. The Reinvention of Politics. Rethinking Modernity in the Global Social Order.
Polity Press, Cambridge, 1996. Beck has written widely on Second Modernity and the
Risk Society.

[3] Blackboard academic suite, 2008. http://www.blackboard.com/products/Academic_
Suite/index.

[4] J Boaler. The development of disciplinary relationships: Knowledge, practice and identity
in mathematics classrooms. For the Learning of Mathematics, 22(1):42–47, 2002.

[5] The Bodington open source project, 2008. http://bodington.org/.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

90

[6] D Carrington. Time monitoring for students. In FIE ’98: Proceedings of the 28th Annual
Frontiers in Education, pages 8–13, Washington, DC, USA, 1998. IEEE Computer Society.

[7] CETL ALiC: Active learning in computing, 2008. http://www.dur.ac.uk/alic/.

[8] A Hatch and L Burd. Creating a working environment for group-work: Techno-cafe ex-
perience report. In Proceedings of the 7th Annual Conference of the Subject Centre for
Information and Computer Science, Trinity College, Dublin, 2006.

[9] S Hoare. Students tell universities: Get out of myspace! Education Guardian, Monday
November 5, 2007. At http://education.guardian.co.uk/students/news/story/0,
,2205512,00.html.

[10] M Jenkins, T Browne, and R Walker. VLE surveys. 2005. At http://www.ucisa.ac.uk/
groups/tlig/surveys.aspx.

[11] D Kember, Q Jamieson, M Pomfret, and E Wong. Learning approaches: Study time and
academic performance. Higher Education, 29(2):329–343, 1995.

[12] S Kolari, C Savander-Ranne, and L Viskari. Do our engineering students spend enough
time studying? European Journal of Engineering Education, 31(5):499–508, October
2006.

[13] Moodle course management system, 2008. http://moodle.org/.

[14] M Prensky. Digital natives, digital immigrants. On the Horizon, 9(5), October 2001.

[15] Questionmark perception, 2008. http://www.questionmark.co.uk/uk/perception/
index.aspx.

[16] A Sandström and M Daniels. Time studies as a tool for (computer science) education
research. In ACSE ’00: Proceedings of the Australasian conference on Computing edu-
cation, pages 208–214, New York, NY, USA, 2000. ACM.

[17] J Seely Brown, A Collins, and P Duguid. Situated cognition and the nature of learning.
Educational Researcher, 18(1):32–42, 1989.

[18] Turnitin digital assessment suite, 2008. http://turnitin.com/.

[19] E Wenger. Communities of Practice: Learning, meaning, and identity. Cambridge Univer-
sity Press, 1998.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

91

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

92

Evolution of an integrated course towards a
sandwich course
Vincent Ribaud1, Philippe Saliou1

1 University of Brest, Computer Science Department, C.S. 93837, 29238 Brest, France

Recently, local software companies in Brest asked for work placement students at
Masters level. In 2007-2008, an innovative programme in software engineering was
adapted to the work placement requirements. In this programme, students learn
software engineering by doing, with a long-term project as the foundation of all
apprenticeships. Apprenticeship periods are intertwined with the work placement
periods. We present adaptations we made whilst keeping the programme objectives.
The programme uses several hierarchical models that meet exactly at the two first
levels: an activity model coming from the ISO/IEC 12207; an apprenticeship model; an
ability model with 3 domains, 13 families, and 48 abilities together with 11 transversal
competencies. At 4 key moments of the year, each student is asked to self-analyse the
activities he/she did with regards to the immersion system’s ability model and self-
assess abilities on a scale from 1 to 5. Self-assessment averages of the 2006-2007 and
the 2007-2008 cohorts are used to compare existing and adapted systems. Finally, we
draft perspectives on the repercussions resulting from the work placement system.

Keywords
Learning by doing, self-assessment, software engineering, work placement.

1. Introduction
Sandwich courses were so named to describe the alternation of a study period in college and
a training period in industry which characterizes them; in France a common arrangement is
one week in college followed by three weeks in a training situation during the period of
studying for the degree, but a variety of periods and sequences exist.
In spring 2007, local employers in Brest decided to implement a recent French law on
professional training. This law requires that 3% of employees be under ‘sandwich’ (or work
placement) conditions. Companies asking for work placement students in the software field
choose to use a system called “Contrat de professionnalisation” (professionalization contract)
over a period of 12 months. During these 12 months, the work placement student is a full-
time employee, although also attending university for certain periods. Salary is about 80% of
the salary corresponding to the job that the course leads to.
For such contracts involving Brest University, the employers’ demand has been essentially
for an innovative program called “Software Engineering by Immersion” (‘Ingénierie du
Logiciel par Immersion’). The main feature of this last year of the Masters programme is to
learn software engineering by doing, with a long-term project as the foundation of all
apprenticeships. Due to demand from companies, this programme has been adapted and the
academic year 2007-2008 is running as a work placement course.
This paper presents, in section 2, the main changes made to the programme structure; an
assessment framework in section 3; some comparison elements in section 4; and ends with
perspectives on the repercussions resulting from the work placement system, and a
conclusion.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

93

2. Structure of the program
This section is intended to present how we adapted the program to the work placement
system requirements in order to maintain its original objectives, structure and assessment.

2.1 Overview

Since 2002, Brest University has provided the software engineering by immersion paradigm
as an alternative to other education systems. The immersion system is born from the
necessity (due to the Bologna process) to design a fifth year for an existing and well tried 4-
year technological education system. Since the 4-year system was sound and complete, this
opportunity allows us to address the problem of educating software engineers from an
unusual perspective for a university: to actually perform a significant software project - that is
a sequence of stages organizing the activities intended to transform initial client requirements
into a software product – always bearing in mind the goal of learning how to carry out these
software engineering activities.
The year is divided into three periods, called iterations:
• a tutored apprenticeship period allows students to acquire software engineering

knowledge and skills,
• an accompanied application period must transform knowledge and skills into

competencies,
• and finally an internship period to put this into practice in a firm.
Learning is entirely based on a 7-month project, performed by a 6-student team within a
virtual company, and tutored by an experienced software engineer. With the exception of
English and communication courses, no lectures are given. The apprenticeship process was
designed to be achieved in two iterations. During the first iteration (4.5 months), students are
swapped around the different tasks required by engineering activities, and strongly guided by
the tutor. During the second iteration (2 months), roles are fixed within each team and teams
are relatively autonomous in completing the project, the tutor performing mainly a supervising
and rescuing activity. During this second iteration, students rely on the apprenticeship
process in order to autonomously perform a software development process supporting the
production of the software product. An example of project is given in the figure 1 below.

Functions - The main goal of the project is to provide a semantic annotation tool able to annotate
(indexing through metadata) Web resources, search (on metadata) in different modes, browse
(hierarchically or with facets), manage RDF vocabularies (semantic schemas), and deal with the scope of
annotations (public or private). The project uses Jena - http://jena.sourceforge.net/ an open-source
Semantic Web programmers’ toolkit - as RDF API.
Technical environment - The system uses a three-tier architecture in which the user interface, functional
process logic, computer data storage and data access are developed and maintained as independent
modules, on separate platforms. Sub-systems are: Oracle database, Hibernate persistent layer, Spring
framework running on Tomcat, JSF for the user-layer.
Documentation - The tutor wrote the statement of work with expected needs. Main deliverables provided
by the students are: Meeting report, Project Plan, Requirement Specification, Software Analysis, Software
Design, Code, Integration and Validation Plan, Software User Manual, and Software Operator Manual.
Besides these engineering documents, students produce other kinds of document related to their
apprenticeship: case study, usage guide, evaluation report, book or article summary, best practices, etc.

Figure 1 An example of a long-term project: a semantic annotation tool.

Whilst keeping the programme objectives, we adapted the system in the following way:
• the tutored apprenticeship period remains unchanged, but is alternated with the second

period (two weeks each per month from September until mid-May),

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

94

• the accompanied application period is performed in the company, and may use a
different development process than the process learned by doing during the first period,

• the last period is no longer a period of work placement, but rather a salaried period
because the student is now a full employee of the company.

2.2 Reference framework

The immersion system uses a breakdown of apprenticeships into software engineering
processes subdivided into software engineering activities, together with a set of
apprenticeship scenes which provide the learning environment and defining tasks. This
hierarchical process/activity/scenes model is adapted from the ISO/IEC 12207 [1] and is
used as a reference framework for the learning objectives. Table 1 presents the two first
levels of this hierarchical breakdown. From the university point of view, this division is the
reference framework in a diploma-awarding perspective. Processes are course categories
within the programme, activities are courses and scenes are classes.
From the 25 processes of ISO/IEC 12207, we concentrate on those related to the software
development cycle, that is: 5.3 Development, 6.1 Documentation, 6.2 Configuration
Management, 6.3 Quality Assurance, 6.4 Verification, 6.5 Validation, 7.1 Management, and
7.2 Infrastructure. The ISO/IEC 12207 Amendment 1 proposes a grouping of processes into
categories. We reorganized the selected processes above in a same manner. The main
process considered is the Development process. The other considered processes are not as
wide as the development process, so these are retrograded to activities and reorganized in
two processes: Project Management and Development Support.
In the ISO/IEC 12207, the Development process consists of the following activities : System
requirements analysis and system design; Software requirements analysis; Software design;
Software construction; Software integration; Software qualification testing; System integration
and qualification testing. Our breakdown differs slightly because we do not need system
activities (only software) and we put emphasis on computing constraints, essentially
Technical Architecture.

Table 1 Activities breakdown.

Processes Activities
Software project management Project management

Quality insurance
Software configuration management

Software development engineering Requirements capture
Software analysis
Technical architecture
Software design
Software construction
Integration and validation

Software development support Technical support
Methods and tools support
Documentation
Installation and deployment

2.3 Assessment

2.3.1 Evaluation of industrial production processes
The process approach (as advocated in the ISO 9001:2000 standard) allows a company to
describe its organization in order to produce defined results. The more visible processes are

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

95

those undertaken to perform services or produce products that the company provides, which
are often referred to as operational processes. In the software area, the supply activities
chain provides deliverables (mainly documents) at each intermediary step of the
development cycle. An important part of the quality management system deals with the
evaluation of delivered documents, supported by two kinds of evaluations: those which
inspect products during their elaboration and those which verify and validate (V&V)
requirements.

2.3.2 Authentic assessment
The immersion system belongs to the constructivism approach and Tardif [9] states that the
impacts of constructivism on assessment are numerous. In accordance with teaching
practices, assessment necessarily relies on complete, complex and meaningful tasks. The
assessment has to reflect effective, individual achievement of learning outcomes. The
assessment must also take into account - directly or indirectly - cognitive strategies used by
the learner. The constructivism paradigm implies that the teacher directly and frequently
intervenes in the knowledge organization and hierarchy construction performed by learners.
The role of the assessment is to report on the state of knowledge building. Assessments
should take place in a context that is familiar to the student, using standards that are well
known and presented in multiple forms [9].

2.3.3 Two kinds of activities in the immersion system
Samurçay and Rabardel [7] distinguish two faces in human activities. The productive activity
is an activity made, oriented and controlled by the human subject to perform tasks he/she
has to achieve with regards to the situation features. The constructive activity is oriented and
controlled by the subject that performs it in order to build and develop competencies with
regards to the situation and professional areas of action.
A formally organized education system has to make a distinction between a support activity
which is a productive activity with learning objectives, and a constructive activity of
competency development which happens on the occasion of the productive activity (with
learning objectives) [5]. Our learning process organizes situation-problems present in the
work activity in order to schedule productive activities (with learning objectives) and to control
constructive activities that happen on these occasions.

2.3.4 Two kinds of assessment in the immersion system
Distinguishing two kinds of activities lead us to distinguish two kinds of assessment.
The immersion system attempts to mimic an operational environment, and productive
activities (with learning objectives) have to be assessed with assessment procedures
mimicking industrial usages. Hence, a first type, called Verification and Validation
assessment, consists of evaluations based on the review of apprenticeship stages and on
the qualification of software products. These evaluations are Verification and Validation
(V&V) activities, performed in line with a predefined schedule.
However, most activities (especially during the first iteration) are constructive and need an
(authentic) assessment that is fully integrated with the learning process. Thus, the second
type is constituted by the tutor/author feedback cycle, the weekly progress meeting and peer
reviews. These activities directly sustain knowledge building because they provide
continuous feedback to learners. We call it regulation assessment referring to De Ketele “[…]
an open process whose priority function is to improve the working order […] of a part or of
the whole system” [2]. These evaluations are performed continuously and there is no firm
separation between assessment and apprenticeship processes. Assessment sustains
learning, giving useful information to students about the evolution of their learning process,
and making them aware of knowledge they have, or are lacking.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

96

2.4 Without work placements

2.4.1 Structure
Until 2007, the year was divided into three iterations: a 4.5-month tutored apprenticeship
period, a 2-month accompanied application period and a training period of 4-6 months in a
firm (see table 2). The acronym UE (Unité d’Enseignement) means Course Unit.

Table 2 Structure of the previous course.

Iteration Period Content
Tutored apprenticeship From September to January UE1 : Software project management

UE2 : Software development
engineering
UE3 : Software development support
UE4 : Communication and English
language

Accompanied application From February to March UE5 :
Putting into practice the knowledge,
skills and competencies acquired
during the first period

Internship From April to August UE6 :
Performing an operational mission

The guideline for the two first iterations is the software development project, in which
students will be immersed. Each company is associated with a company tutor, who plays
different roles in the first and second iteration. The objective of the project entrusted to each
company is to manufacture an information system, which responds to a real need of the
computer science department (see figure 1 for an overview of a past project).

2.4.2 Objectives
The training course starts after the response to solicitation phase. The role-play partly
consists of simulating the client-supplier relationship. The company tutor has to write
requirements, then a response to solicitation including a technical and commercial offer
responding to the anticipated requirements. These documents are very similar to real
documents. They are only different in order to incorporate needs induced by our
apprenticeship system:
• Two work packages are expected in order to map the two first iterations.
• Lead-time and cost are adapted to the size of teams and the time available for the

training course (4.5 then 2 months).
• Technical constraints imposed by the client correspond to the objectives and means of

the course.
During the first tutored apprenticeship iteration (4.5 months), an incomplete version of the
software is built within a framework entirely driven and tutored by the company tutor. All
software engineering activities are put into practice within a complete software development
cycle. The expected software product at the end of this iteration corresponds to the first work
package as defined in the requirements document. Our assessment process fits exactly into
the apprenticeship situations. Students are continuously building knowledge and developing
skills. Tutors regularly observe what is happening in order to provide a sound feedback and
to perform authentic assessment.
During the second accompanied application iteration (2 months), each company is relatively
autonomous in putting into practice the knowledge, skills and competencies acquired during
the first iteration. A set organisation of the team is set up for the second iteration, structured
around roles: project manager, analyst, architect, configuration and version manager,

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

97

developer, integrator and qualifier. The expected software product at this end of this iteration
corresponds to the whole software product as defined in the requirements document. During
this iteration, the company is still accompanied by the company tutor, whose role is mainly to
supervise and rescue.
Finally, the third iteration, i.e. the internship period, should ensure the continuity of the
training course. Inside a firm, a software project (from A to Z) could be entrusted to the
student, in line with the development process learned during his/her education. Practicing of
software engineering activities is an alternative to the training period - for example, managing
software configuration, capturing users’ needs, analysis or design modelling, etc.

2.4.3 Assessment
Each iteration has its own pedagogical goals, and hence its own assessment characteristics.
Throughout the first iteration, evaluations are regulation assessments (belonging to the
second type defined in § 2.3.4) intended to support knowledge and skill-building whilst
providing continuous feedback to learners. Each apprenticeship scene gives rise to one or
several deliverables. Each deliverable is carefully examined and annotated by tutors, then
the tutor feeds back comments to the authors together with improvements to be brought
about. This assessment and feedback process is iterated (at least twice) until that the
deliverable is considered good enough for future exploitation (problems could arise if the final
delivery is not judged to be good enough). Each apprenticeship scene is assessed and
awarded a mark. Because each scene is related to a software activity belonging to a
software process, marks are consolidated in order to provide an average assessment for
each activity/process.
The first iteration ends with the delivery of the information system corresponding to the first
work package, qualified according to the validation protocol which was elaborated by the
project team. This qualification is a V&V activity (belonging to the first type defined in §
2.3.4). Success of this activity (and hence of the evaluation) is related to the quality of the
system produced, and is no longer tied to the completion of the learning process (it is still a
formative experience because the tutor is giving feedback during and after the V&V activity).
The objective of the second iteration is to put into practice the knowledge and skills acquired
during the first iteration. This second period always takes place over a period of 8 weeks.
Thus, students spontaneously shift in terms of production rhythm. Assessment is performed
on achieved deliverables according to production criteria: compliance and schedule. We did
not have enough time to measure individual competencies and performances. We gave three
marks for this iteration: one for the project itself (and the work carried out), one for the group
viva voce examination, and one for individual reports on personal and group work. The mark
given for the project relies on assessments of the essential deliverables of a software project,
and is the result of a V&V activity.
Internship periods, as the third iteration, are assessed in our department, and awarded three
marks: one for performance at work, established by the industrial tutor using a questionnaire
provided by the faculty, one for an individual viva voce examination (with the participation of
the industrial tutors), and one for an individual report on the work carried out during the
internship.

2.5 With alternation

2.5.1 Structure
The principle of a program with work placements is that the educational objectives and
assessment of course units are nearly the same as those of a program without work
placements, but that some of the course units can be performed in a different way or during
the periods in industry. In our case, two course units, UE5 Accompanied application and UE6
Internship were good candidates to be performed during the industrial periods.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

98

In the previous system, the UE5 Accompanied application was intended to autonomously
perform software engineering activities under the supervision of a faculty tutor. In the work
placement system, the objectives are the same - but now it happens in a firm under the
guidance of an industrial tutor. Assessment is still performed by the faculty under the rules of
an internship period.
The UE6 Internship was designed to be an operational mission, and played the role of a pre-
hiring period. In the new system, students are salaried employees and de facto in an
operational position. Hence, the objectives are stuck to, and assessment performed as
before.
The remaining course units have to be intertwined with the industrial periods. We choose a
two weeks / two weeks rhythm from September to mid-May.
The year is now divided into two periods, the former with movement between university and
company, the latter with a full-time period at the company (see table 3).

Table 3 Structure of the new course.

Iteration Period Content
Tutored apprenticeship Half-time from September to

mid-May (9 * 2 weeks)
UE1 : Software project
management
UE2 : Software development
engineering
UE3 : Software development
support
UE4 : Communication and English
language

Work placement period in
company

Half-time from September to
mid-May (8 * 2 weeks)

UE5 :
To perform software engineering
activities in a real situation

Full-time period in company From mid-May to September UE6 :
To perform an operational and
salaried mission

The structure remains identical to the previous one, except in that the Course Unit 5 is
renamed “Work placement period in company” and Course Unit 6 is renamed “Full-time
period in company”. For the two modified course units, ECTS are identical, objectives remain
the same and assessment differs only slightly, as explained above and below.
Unfortunately, first and second iterations are performed on different projects. The former is
an apprenticeship project driven by the university and the latter is an industrial project driven
by the companies with whom students are placed. However, the same reference framework
(see table 1) and a unique abilities assessment framework (see section 3) are used
throughout the year, providing students with a link between apprenticeship and work
experiences.

2.5.2 Objectives and assessment
As before, the guideline for the first iteration is the software development project, in which
students will be immersed. But most of the objectives from the two previous iterations are
now assigned to the new, single one. That means, for one thing, that the shift from
apprenticeship to production must be made during this iteration, whereas previously the first
iteration was focused on apprenticeship and the second on production. Hopefully, students
are maturing in parallel, thanks to the work placement periods, and are naturally shifting
towards a professional attitude.
As before, the training course starts after the response to solicitation phase. Reference
documents are project requirements and a response to solicitation. A unique work package is

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

99

expected, and lead-time and cost are adapted to temporal organization of the training course
(4.5 months over a period of 8.5 months).
During this unique apprenticeship/production iteration, the whole software product as defined
in the requirements document is built within a framework entirely driven by the company
tutor. But in contrast with the previous system, the tutor has to gradually reduce the help on
offer to the student. During the first phases of the development cycle, products are assessed
at the moment they are delivered, then feedback and corrective measures are provided by
the tutor. In the latter phases, less feedback and help (or none at all) are given to students,
and they have to do it by themselves. The tutor’s main tasks gradually become broad
supervision, assessment and rescuing if needed. Assessment shifts from being regulation
evaluation to being V&V evaluation.
During the work placement period (4 months over a period of 8.5 months), each student is
autonomous so as to put into practice (in his/her industrial position) the knowledge, skills and
competencies that he/she is currently acquiring during the first iteration. It could happen that
skills required by the industrial missions are learned later in the academic cycle and students
have to resolve this deficiency by themselves. Assessment is still performed by the faculty
under the rules of an internship period: one mark is awarded for performance at work and
established by the industrial tutor, one mark for an individual viva voce examination, and one
mark given for an individual report on the work done during the intertwined work placement
periods. The mark given by the industrial tutor assesses the student’s activity and is mostly
measured from the produced deliverables - and is therefore the result of a V&V activity - as
before.
For the viva voce examination and the individual report, the student is asked to establish
clear links between the work carried out and the apprenticeship reference framework. A kind
of reflection-on-action [8] is still required in order to show examiners how they have matured
in the course of their work placement. In order to facilitate this difficult exercise, a half-day is
devoted each month to a group meeting at which each student presents an account of what
happened at work, how and why he/she acted as he/she did, to his/her peers (and tutors).
Thus, an attempt at assessing meta-cognitive abilities is introduced - but it needs
improvement.
The third iteration (4 months) is no longer an internship period. Students are no longer new
employees; they are fully integrated within their companies and are paid the going rate.
Companies both see and use them as full employees. Assessment is performed jointly by the
faculty and industrial managers (work, report, oral) but using industry expectations.

3. Abilities assessment framework

3.1 Linking processes and activities to apprenticeship situations

Each activity represented in table 1 can be analysed from various points of view: expected
knowledge and skills; stakeholder roles; input and output deliverables; required tools and
resources, etc. At work, what makes sense for these multiple viewpoints is their articulation
within the activity situation (the cohesion of the work situation). During the apprenticeship, it
is also the (apprenticeship) situation which has enabled the multi-dimensional nature of
activity to be understood. The (apprenticeship) situation has to transform students into
learning humans, allowing them to put their own skills to work; the task to be performed
allows the learning to take place. Situations are not natural: they have to be provided by the
education system [4]. Putting students in a learning position - the situation - is the vital lead
of educational design and practice. We distinguish the conceptual situation from the lived
situation. A conceptual situation (called apprenticeship situation) is a situation-problem that
“has to place fundamentals acquisition in actions that provide a goal to the students” [4]. An

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

100

apprenticeship scene is the materialization - in action - of the conceptual apprenticeship
situation. The system by immersion is a theatre play where, during a scene, different actors
play different professional roles in order to learn professional [software engineering]
activities.
There are two reference decompositions that meet exactly for the two first levels; the former
is an activity model coming from the ISO/IEC 12207: process, activity, task; the latter is an
apprenticeship model: process, activity, apprenticeship situation (scenes).

3.2 Linking processes and activities to abilities (competencies)

Meirieu [3] defines a competency as “the ability of a person to act in a pertinent way in a
given situation in order to achieve specific purposes”. Competencies are means of action
which a person has to perform his/her activity with regards to the situation he/she has to deal
with. The immersion system aims to acquire professional competencies that we prefer to call
abilities. We carefully analysed the entire apprenticeship scenes for each activity in order to
establish the abilities that theses scenes are intended to develop. We tried to answer to the
question “what is the student able to do, once the scene has been performed?”. This analysis
gave us a set of abilities for each activity.
So we kept the 2-level breakdown of our reference framework, the first level being called
competency areas (corresponding to processes) and the second level competency families
(corresponding to activities), and we placed knowledge and abilities within each family (see
an example in table 5). This breakdown contains 3 domains, 13 families, and 48 abilities
together with 11 transversal competencies. We call the whole breakdown an ability model of
our education system [6].

Table 5 An example of a competency family: “Software project management”.

Knowledge area Associated abilities or skills
To use an ISO 9001 development
baseline
To apply a Project Plan and to
update it if necessary

• Software life-cycle model
• Estimation and follow-up of

development of software
components: organization,
workflow …

• Traceability and requirements
conformity

• Project Plan

Planning and project progress

3.3 Auto-assessment of abilities

The structure and definitions of this ability model are recorded in a document called the
competencies compendium. Applied to the software engineering apprenticeship field, our
ability model establishes a structure that directly supports the personal and team
construction process of the knowledge and skills required to practice engineering of a
software project. For each ability or transverse competency, the student assesses
himself/herself at a maturity level. The assessment scale grows from 1 to 5; - 1 - Smog:
vague idea (or even no idea at all); - 2 - Notion: has a notion, a general idea but insufficient
to an operational undertaken; - 3 - User: is able to perform the ability with the help of an
experienced colleague and has a first experience of its achievement; - 4 - Autonomous: is
able to work autonomously; - 5 - Expert: is able to act as an expert to modify, enrich or
develop the ability.
It is not easy for a student plunged into the ‘doing’ to keep in mind the abilities aimed at by
the apprenticeship scene (and by the education system) and to establish links between all

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

101

kinds of learning. That is the reason why, at four key moments of the year, each student is
asked to self-analyse the activities he/she did with regards to the immersion system’s ability
model. So, four times during the year, students have to establish this inventory and
communicate it to their tutor. We call this periodic inventory the Personal Follow-up of
Competencies (PFoC) and it is, among others, intended to initialize a personal follow-up of
competencies that could be pursued in a professional career.

4. First elements of comparison

4.1 Quantitative approach

It is not easy to measure the efficiency of an education system, and the impacts of evolutions
within an existing system. In order to compare the system with work placements from the
previous one, an indication can be drawn from the personal follow-up of competencies. For
the 13 competency families, Table 6 presents the self-assessment average of the 2006-2007
cohort and the 2007-2008 cohort. Each cohort has 12 students.

Table 6 Personal follow-up of technical competencies for the 2006-2007 and 2007-2008 cohorts

 2006-2007 cohort 2007-2008 cohort

Competency
area Competency family Sept.

2006
Feb.
2007

May
2007

Sept.
2007

Feb.
2008

May
2008

Project management 1.5 2.8 3.4 1.3 2.7 2.9
Quality insurance 1.1 2.4 2.8 1.4 2.3 2.4

Software
project
management Configuration management 1.2 1.8 2.9 1.6 2.9 3.0

Requirements capture 2.1 3.2 3.6 1.8 2.8 3.0
Software analysis 3.6 3.7 3.9 2.4 3.0 3.3
Technical architecture 1.4 2.4 3.0 2.0 2.8 2.9
Software design 2.8 3.2 3.5 2.3 3.1 3.6
Software construction 2.7 2.7 3.1 2.5 2.9 3.4

Software
development
engineering

Integration and validation 1.2 1.3 2.7 1.3 2.0 3.2
Technical support 2.3 3.0 3.4 2.4 3.1 3.5
Methods and tools support 1.7 2.6 3.2 2.0 2.5 2.9
Documentation 2.8 3.3 3.5 3.1 3.3 3.7

Software
development
support

Installation and deployment 2.4 3.3 3.5 2.9 3.3 3.7

All families follow a regular and roughly equivalent progress, with or without work
placements. Due to the low number of students in cohorts, and the paucity of our statistical
knowledge, no statistical comparison was performed. Yet some small differences could be
pointed out . We remark that the final levels are slightly lower in the new structure than in the
old. That is probably due to the loss of the second iteration in the new structure, because the
breaking down into two iterations provided a learning process that was easier to follow. In the
new structure, the intertwined iterations are, for some students, experienced as two
intertwined learning processes which may be in conflict, slowing down the overall learning
process. But the new structure achieves other goals, and is an answer to external pressure
from local employers that could not be ignored.
As a point of detail, both cohorts established their February compendium before having
performed the validation phase, and that should explain the low level of progress in the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

102

“Integration and validation” family. But as you can see, the 2007-2008 cohort is much more
aware of this activity, probably due to exposure during the placement periods.
For the 11 transversal competencies, Table 7 presents the self-assessment average of the
2006-2007 cohort and the 2007-2008 cohort.

Table 7 Personal follow-up of transversal competencies for the 2006-2007 and 2007-2008 cohorts

 2006-2007 cohort 2007-2008 cohort

Transverse competency Sept.
2006

Feb.
2007

May
2007

Sept.
2007

Feb.
2008

May
2008

Organization 2.8 3.2 3.6 2.3 2.9 3.3
Cooperation 3.5 3.8 4.0 2.5 2.9 3.7
Communication 3.0 3.5 3.6 2.5 3.2 3.7
Transfer / Sharing 3.0 3.5 3.7 2.6 3.3 3.5
Analysis 3.1 3.6 3.7 2.5 2.9 3.4
Abstraction 3.1 3.3 3.5 2.4 3.1 3.3
Cleverness 2.9 3.1 3.4 2.8 3.0 3.1
Innovation 3.1 3.3 3.7 2.8 3.2 3.3
Listening / Flexibility 3.3 3.7 3.8 2.8 3.2 3.5
Adaptability 3.2 3.8 3.9 2.6 3.0 3.5
Reflection 2.8 3.2 3.6 2.3 2.4 3.5

Progress is nearly the same, depending on the initial assessment. As for technical
competencies, on average these are lower in the new structure than they were in the older
one. But industrial experience is higher, which improves students’ employability.
This year, reflection activities were performed on the industrial periods rather on the
university periods and we delayed it until January. This could explain the slow start of
progress on this transverse competency for the 2007-2008 cohort.

4.2 Students’ remarks and expectations

Missions entrusted to students during industrial periods could differ significantly from those
that the programme prepares for. Only six students out of twelve have to perform a project
which corresponds to the skills learned from A to Z. Four out of twelve students perform
maintenance activities for which only a part of the acquired skills apply, as well as some
essential skills which are lacking. And two students have to perform multiple tasks and
missions for which the skills needed do not exactly fit with those of the programme.
So, it is not surprising that several students pointed out that there was little application of the
education in the industrial environment, or that there was a gap or a shift between required
skills in the industry and learned skills at university. Some students were afraid that the time
spent in the industry reduces the amount of skills that can be acquired in the program.
Obviously, almost all students expected a significant gain in terms of experience and a
subsequent payment from the placement system. Most of them were attracted by the idea of
long-term work with regard to shorter periods of work placement performed before. One
student pointed out that industrial periods raise the desire to evolve within a company – an
idea that had never occurred to him before.

4.3 Tutors’ remarks

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

103

We designed the immersion program in 2002 with a year divided into three periods, known
as iterations: a 4.5-month tutored apprenticeship period, a 2-month accompanied application
period and an internship period of 4-6 months in a firm. Objectives, achievement and
assessment were different for each period, but were aligned with Donald Schön’s idea of the
reflective practitioner perspective [8].
It was at the request of local employers that the changes to the immersion system were
instigated. The major difficulties encountered were in increasing the time spent on placement
(and therefore decreasing time spent at university) and in intertwining the periods.
The second iteration (accompanied application) was a good candidate for taking place in a
firm rather than at the university. Because the main objective is to acquire autonomy as a
software engineer, and thanks to an assessment that is production-criteria oriented and
based on achieved deliverables, there is no betrayal of the iteration in transferring it to a
company. Unfortunately, intertwining apprenticeship and operational periods may cause
additional difficulties for the apprentice - it all depends on what happens during periods in the
firm, which is no longer under the university’s control.
The third iteration (formerly an internship) is now an operational period but the goal -
production – remains, and assessment remains roughly the same - although the
performance level expected by employers may be higher.
The curriculum of our programme is based on a software engineering profession reference
model, and it helped us transfer a part of the educational objectives (and related ECTS) to
periods spent in a firm. However, the adaptation we made to our programme may be much
more difficult to achieve with programmes based on a knowledge-oriented curriculum, and
we are very conscious of the limits of our approach. The next session is an attempt to identify
lessons that might be applicable in our situation, as well as to situations others may find
themselves in.

5. Perspectives: repercussions of work placement
Adapting the immersion system to a work placement system produced and will continue to
produce several repercussions, some on the system itself, and some on our university
department. We tried to deal with this as well as possible, but we must engage in a long-term
thinking process about it. We will try, in this section, to give some elements of these
repercussions along the engineering perspective: strategic engineering, training engineering,
and educational engineering.

5.1 Strategic engineering

There can be few links between a company hiring fresh graduates and the educational
establishment from which these young employees graduated. But in a sandwich course,
companies are paying students during the studying time and are paying the educational
establishment for the education provided. So, the relationship between companies and
educational establishments is quite different. There is a real need to build a veritable
partnership with employers in order to, at least:
• Provide young graduates with a minimum level of professional experience and the skills

required (technical and non-technical), making them rapidly adaptable and operational.
• Prepare students for the recruitment process.
• Tailor a single work placement programme to the context of each company

5.2 Training engineering

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

104

Several programs are candidates for adaptation to work placement systems. In our
university, for example, there are work placement students in the science faculty (mechanics,
electronics, computing, etc.), in the business faculty (management, bank-insurance, etc.), in
the social science faculty (human resources, disability management, etc.) and so on. An
educational establishment has to engage itself in a global strategy related to training
engineering, putting emphasis on, at least:
• Promotion of a competency approach in teaching, learning and assessment
• Building of new degrees or adaptation of existing ones to the real needs of companies
• Encouragement of faculties, departments to develop work placement programmes
• Assessment of existing and new programmes

5.3 Educational engineering

The work placement system leads educational staff to re-think their teaching methods, re-
organize programmes, and set up new modes of intervention. At the very least, we must pay
attention to:
• Anchoring each student’s individual learning path with his/her industrial experience and

exploiting these experiences for educational purposes.
• Accompanying each student in the construction of his/her professional project.
• Favouring those periods outside the university by providing students with new skills

gained through innovative teaching practices.

6. Conclusions
We presented adaptations we made to an existing ‘learning software engineering by doing’
programme in order to transform it into a work placement programme. The structure and the
objectives remain identical to the previous course, and assessment differs only slightly.
Self-assessment of competencies of the 2006-2007 and the 2007-2008 cohorts were used to
compare existing and adapted systems. No major differences were found. Students and
employers are satisfied overall, but it is vital that we engage in a long-term thinking process
about the repercussions of work placement, in terms of several engineering perspectives.

References
1 ISO/IEC 12207:1995, Information technology -- Software life cycle processes, International

Organization for Standardization (ISO), Geneva, Switzerland.
2 De Ketele J.M., Roegiers X. Méthodologie du recueil d’informations. Bruxelles, De Boeck, 1993.
3 Meirieu P. Si la compétence n’existait pas, il faudrait l’inventer In IUFM de Paris Collège des CPE,

2005, http://cpe.paris.iufm.fr/spip.php?article1150 (last accessed May 20th, 2007).
4 Morandi F. Pratiques et logiques en pédagogie, Paris, Nathan, 2002.
5 Pastré P. Introduction In Recherche en didactique professionnelle, edited by Samurçay, R. and

Rabardel, P., Toulouse (France), Octarès, 2004.
6 Ribaud V., Saliou P. Towards an ability model for software engineering apprenticeship. Italics, July

2007.
7 Samurçay R., Rabardel P. Work competencies: some reflections for a constructivist theoretical

framework In Proceedings 2nd Work Process Knowledge Meeting: Theoretical approaches of
competences at work, Courcelle sur Yvette (France), 1995.

8 Schön D. The reflective practitioner, New York, Basic Books, 1983.
9 Tardif J. L’évaluation dans le paradigme constructiviste In L’évaluation des apprentissages.

Réflexions, nouvelles tendances et formation, Sherbrooke (Canada), Université de Sherbrooke.
1993.

Shift from teaching to learning with Web 2.0
Isa Jahnke1, Volker Mattick2

1Dortmund University of Technology, Center for Research on Higher Education and Faculty
Development, Germany, isa.jahnke@tu-dortmund.de
2Dortmund University of Technology, Department of Computer Science, Germany,
volker.mattick@tu-dortmund.de

Abstract: The shift from teaching to learning means reversing the traditional teacher-
centered understanding of learning, putting students at the center of the learning
process and letting them participate in the evaluation of their learning. It is a shift from
the teacher, who possesses and communicates knowledge with a particular aim, to
the students, who acquire the knowledge they need to solve a problem with the help
of the teacher. This paper presents a socio-technical community approach, which
supports the shift from teaching to learning, and a first prototypical realization of a
new kind of computer and Internet based teaching and learning systems at a
Department of Computer Science in Germany. Numerous students (approx. 80-400 per
lecture) participated in these lectures. Based on our empirical experience from 2002
until today, we present a good practice that combines face-to-face meetings and
online discussions.

Keywords
CS Curricula, Concept and tools for e-learning, Community-based learning, Learning
paradigm, Supporting learning processes

1. Introduction
The shift from teaching to learning is a vital point of discussion in higher education [13]. This
paradigm means a shift from teacher-centered to student-centered teaching and learning
concepts. Student-centered learning means reversing the traditional teacher-centered
understanding of learning, putting students at the center of the learning process and letting
them participate in the evaluation of their learning. It is a shift from the teacher, who
possesses and communicates knowledge with a particular aim, to the students, who acquire
the knowledge they need to solve a problem with the help of the teacher.

It is important to note that a student-centered learning approach also means that students
need to be better qualified in managing their own learning process and therefore need more
information about how their curriculum is structured. Not just pure professional information
must be presented but also administrative information. The teacher should be accepted as a
moderator of the learning process thanks to her/his professional expertise, not her/his formal
status as a lecturer. This is not as simple as it seems because teachers lose their native
rights, which they were used to have by their role alone.

Traditional computer-based learning concepts are teacher-centered, e.g. vocabulary training
software. More up-to-date learning systems are more flexible, adaptable to different existing

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

105

mailto:volker.mattick@udo.edu

levels of knowledge and learning strategies, but are usually controlled by the teacher as well.
Both do not implement concepts that embed the whole learning process into the given
curriculum and empower the students to manage their own learning. These didactic concepts
follow the same philosophy as the techniques used in the early days of the world wide web.

In contrast, Web 2.0., a buzzword created by O’Reilly in 2003 [9], emphasizes social
software applications that are heavily reliant on human interaction, collaboration and social
networking. The role of the user is changing from reader to author, from consumer to
producer and both: “prosumer”. Web 1.0 is still ‘information download’, whereas Web 2.0 is
evolving into communication about information, and cooperation. Therefore, Web 2.0 also
stands for Internet-based human interaction.

Current investigations of web-based communication show how groups can be adequately
supported. Forte and Bruckman [6] as well as Wasko and Faraj [11] have investigated
persons’ motivations for contributing to Wikipedia, and its social change.

Web 2.0 works very well in the public and private sector. In contrast, it is just beginning to be
used in universities. How can we use Web 2.0 or other technologies for supporting a shift to
student-centered learning in Informatics education? How can we use these learning
technologies to improve students’ learning and the outcomes of our academic programs?
How can we improve e-learning in student-centered settings?

This paper presents a socio-technical community approach, which supports the shift from
teaching to learning, and a first prototypical realization of a new kind of computer and
Internet based teaching and learning systems. Numerous students (approx. 80-400 per
lecture) participated in these lectures. Based on our empirical experience from 2002 until
today, we present a good practice that combines face-to-face meetings and online
discussions.

2. Initial Situation
In 2001, the Department of Computer Science (at the Dortmund University of Technology, in
Germany) had approximately 2,000 students. From 1996 to 2001, many students had not
graduated with Computer Science degrees, according to an internal statistical report
published in 2001. This report showed that many students ended their Computer Science
courses after three or four semesters without a degree1 or even moved to another university;
others did not take the written examinations. However, we did not know exactly why the
students were failing, and so, we wanted to find out why students were dropping their
Computer Science studies.

We assumed that the problem was not only related to the content of the courses but also to
students’ management of their studies. So, the primary question was: how do German
Computer Science students organize their studies at a university? Do they have enough
information, and the right information, about how to organize their studies successfully?2

A first observation was that it is not enough for students to be experts in their subject, but
they also need to be experts in managing their lives as students professionally. As a
consequence, the faculty not only has to provide content, which belongs to the curriculum,
but also has to provide all available information that enables students to manage their

1 The suggested study time for an Computer Science degree in Germany is nine semesters (4-5 years). The

majority of students take 12-14 semesters to complete their degree (6-7 years).
2 German students often have a high degree of freedom: the decision in which semester to attend lectures or

seminars or even in which semester to take examinations is left to the discretion of each student.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

106

learning process. It is less relevant how much information is provided by the faculty, but it
must be the right information.

A second observation was that learning and coordinating the learning process often take
place not at the university but at home, whereas teaching is usually located at the university.
So we saw the need for a system that permits a continuation of the learning process over
distances. However, it is necessary to understand the status quo of the learning processes
first, before integrating adequate technical applications.

A third observation was that traditional status groups and organizational structures are not
very relevant for the learning process, because roles in a learning process are not identical to
roles in organizational structures.

3. A new practice for teaching and learning
Starting from the problem of self-organization and study management, we launched the WIS
project3 in 2001. The aim was on the one hand to find out what the barriers to studying were,
and on the other hand to establish what factors led to success for students of Computer
Science. Finally, we wanted to give the results back to the students in order to initiate a
discussion about these issues. The primary purpose of the empirical procedure was to help
students build their own online community that would be concerned with study management.

In addition to the practical purposes, we used the project to study people’s behavior as well
as emerging changes of social structure and social roles in the online community. The
project was based on an exploratory research method that includes ethnographic
observations, qualitative interviews and questionnaires. The research design was triggered
by an action research process [1].

The empirical exploratory method was essential, since we did not have sufficient hypotheses
to explain why the students dropped their studies. From interviews conducted in 2001, it was
clear to us that a software system was needed that was tailored specifically to the needs of
the social system it was meant to foster. To develop this special software system, we tried to
amalgamate the software-technological approach of the spiral model according to Boehm [4]
with the phase model for communities according to Wenger et al. [12], as described in
Jahnke, Mattick, Hermann [7]. The technical product could be similar to Blackboard or other
VLE; however, an essential difference is that InPUD only contains a small subset of their
functionality. Our approach focuses on students’ learning processes; Blackboard is rather
teacher-oriented.

3.1 Steps of the implementation process

Our empirical procedure included the following four phases of action research:
A) Identifying the problem(s): In semi-structured interviews, we looked at different students’
problems with study management. In face-to-face interviews, held between 2001 and 2002
with an open-ended interview guide, we talked to 14 people (8 students and 6
professors/lecturers). The various aspects of how students manage their studies were
summarized in different areas:

• Students knew the importance of attending lectures and learning groups even when

3 WIS is an abbreviation for the project ‘Development of Computer Science’ at the University of Dortmund (Prof.

Dr. Thomas Herrmann). It was promoted by the state of North Rhine-Westphalia (Germany) from 2001-2004.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

107

they did not attend4;
• The city of residence was often not the same as the place where the students studied

(many students traveled to the university by car or bus every day);
• The majority of students took on jobs to fund their studies; consequently they had less

time to attend courses;
• New students at German universities needed a high degree of self-organization, but

they had not learned it (and it had not been taught).
• There was a significant amount of information about Computer Science courses

available; however there was no single portal that organized this information. As a
result, students were forced to search through a jungle of information to find a suitable
course.

• A large number of students said that they had become disoriented during the regular
nine semesters (4-5 years), becoming unsure of when to attend which lectures and
seminars and when to register for and sit specific examinations.

Based on these practical problems, a standardized questionnaire was sent out to the
Computer Science students at the Technical University of Dortmund. 384 completed
questionnaires were returned. This represented a total of about 20 percent of all Computer
Science students enrolled in the bachelor courses. The results confirmed the following
thesis: The majority of students knew in theory how to organize themselves for a successful
Computer Science course, but they did not practise it.
B) Creating an information portal: The interview results from phase A prompted us to create
an Internet-based information portal that would offer an overview of each lecture, seminar
and course each semester, and a graphical plan of the first four semesters (corresponding to
a bachelor course). We decided to use computer support for two reasons: (a) due to the
large number of students who would be involved, and (b) in order to document the process
for the next generation of students. Additionally, the portal would enable information from the
study-management advisors and other university roles to be shared. In May 2002, the first
prototype of the community system called “InPUD” (Informatics Portal University of
Dortmund) was launched. The software system was revised twice and adapted to the
changing technological standards on the web, to make it better maintainable and to be able
to enrich it with new features that users ask for. The current version is realized by using a
standard content management system, enriched with some domain specific components,
programmed manually5. It is thus increasingly becoming a real Web 2.0 application.

The implementation of the portal leads to great difficulties, not with the students, but with
some lecturers. This is not very surprising, because things get more transparent, which is not
consistent with their traditional role as teachers. A lot of work and time was necessary to
anchor this technical system in the teacher community. In the end, this took up far more
resources than the whole programming work. To a developer of an e-learning system, it is
new that you must motivate the teachers more than the students to use the system.

C) Supporting ways of active communication and collaboration: Based on empirical insights
about the InPUD prototype, we added a discussion board about study management, the
mentioned ‘problem areas’, and selected undergraduate courses in September 2002. The
aim was to improve the transparency of successful study management factors. Information
about study management and seminars was interwoven with online discussion boards. Thus,
a computer-mediated knowledge sharing system was created. The knowledge sharing

4 It is not obligatory for German Computer Science students to attend lectures in order to take the examinations.
5 A publication that describes the technical realization is under preparation.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

108

http://dict.leo.org/se?p=lURE.&search=questionnaire

process was based on voluntary participation. As we will describe later, this was the
beginning of an online community.

D) Continuous improvement: From 2002 to 2006, the project team enhanced the technical
system and changed some things, for instance in order to improve the performance of the
technical system. Meanwhile, numerous new discussion boards were added, and more
information about study management was included. The InPUD community grew
continuously6.

3.2 Analyzing the implementation process

Especially from 2002 to 2006, we analyzed the InPUD community and its evolving social
structures based on the following research methods.

First, in 2003-2004, face-to-face interviews with 8 experts were held. The experts came from
the area of study management, had experience of ‘university management’, and knew web
based IT systems very well. We asked what the crucial factors for successful study
management were, in order to compare the experts’ statements with the development of
InPUD. Based on the empirical results of the interviews with the experts, we supported the
InPUD community with new ideas. One example was giving members with formal roles a role
name and making roles visible; for instance, the study-management advisors were labeled
explicitly. Furthermore, we conducted participant observation of the online discussions in
InPUD from 2002-2006. Moreover, the analysis also encompassed user statistics,
communication structures as well as qualitative content analysis focused on social
relationships in order to understand the social interactions.

As a result, in this exploratory action research process we identified empirically based theses
about the emergence of social structures through interactive technologies. The results can
be found in the following section.

4. The InPUD community
The InPUD community7 can be described as a ‘socio-technical knowledge sharing system’
for Computer Science students at the University of Dortmund, Germany. It is available online
at www.inpud.de. InPUD was launched in 2002. The InPUD community differs from other
online communities that are built in people’s spare time and are not a part of a company.
According to the characteristics given by Preece [10], the InPUD community is characterized
by a large size (more than 1,300 people). The community is an extended part of a
Department of the above-mentioned university and supplements the existing formal
organization of the university. The primary content of InPUD is knowledge – and its
collaborative creation – about the study of Computer Science, its courses and study
management. The students get information about how to study successfully, and the
opportunity to discuss study management, content and exercises of lectures as well as
seminars. Thus, InPUD helps provide and share information to improve study practices. The
community exists primarily online, but also has a physical presence through physical
connections, e.g., networked students in different courses, seminars or lectures.

6 In 2007, InPUD 2.0 was installed. The community portal has been converted to account for the transition from

the earlier national degrees (“Diplom”) to Bachelor and Master degrees.
7 InPUD is an acronym for Informatics Portal University of Dortmund (Germany), http://www.inpud.de.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

109

http://www.inpud.de/
http://www.inpud.de/

In more detail, the InPUD community includes an overview of all classes and lectures that
are offered during the course of a semester. This information is structured consistently
across all lectures or seminars. Included are information about the lectures, including any
tutorials which are being held (and when they are being held), course materials, notices for
examinations, lecturer contact information and often an open discussion forum, as well as
news and search functions.

The information and content in the area of study management have been integrated with
online discussion boards. These have enabled interested stakeholders to build active social
interactions. The discussion boards exist for each lecture as well as for study management.
They are embedded into an information website that includes facts about course guidance as
well as graphical maps that suggest which course best to study at which time.8

InPUD has at least two main functions:

First, InPUD combines face-to-face lectures and seminars with online discussions (blended
e-learning approach). At the time of writing, 30 boards are on-line, each with its own
moderator. The discussion boards include discussions about selected lectures. It is possible

- to ask something about the content (e.g., a student asked “I don’t understand why the
following example isn’t a socio-technical system: <a married couple talking over the
phone>. Can anyone help me to?”)

- to discuss exercises and their solutions on the discussion boards (e.g., a student
asked: “With regard to the exercises <What is an appropriate definition for human-
computer-interaction in contrast to human communication?>, my idea is the following.
Who of you have similar or different solutions, and why?)

- to post something about the organization of a lecture (e.g., a student asked “Do we
have to write an informal test at the end of the summer semester - or is it a formal
examination?”)

- to make some comments with respect to the evaluation of a seminar (e.g., the
students created an brief quantitative online survey about the written examination:
“The written test was easy – medium – difficult.”)

Second, there are information and discussion boards that have been initiated by study
management advisors, and course guidance. The discussion boards include questions and
answers referring to study management, for example “how to study successfully”, “how and
where to register for written examinations”, “where to find the university calendar (timetable)”,
“what are the contents of Computer Science courses”, “which semester is best suited for
studying abroad”.

The InPUD discussion-board software also provides an awareness tool that provides
information about activities of the users, formal roles and current status, and shows who and
how many users are online at the same time.

The community members are primarily students from the Department of Computer Science,
but also persons who are considering taking up studies, e.g., high school students. Other
community members are advisors from course guidance and study management. The InPUD
community comprises students who could theoretically meet at lectures. However, this face-
to-face communication is unlikely due to the fact that the courses are oversubscribed.
Sometimes there are more than 600 students on a single course - direct social interaction

8 German universities offer a multitude of lectures, and students have to create their own semester plan for

lectures; meaning they can choose which lectures they attend and when to attend them.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

110

with each person seems to be difficult to achieve.

The InPUD community is continuously expanding, although it has grown without any
marketing or any external advertising.

Since its launch in May 2002, more than 1,330 registered participants have written more than
34,000 contributions. Registration and login are only necessary when actively contributing.
Observation and reading are possible without registration and without logging in. Each user
has access to all available information. InPUD is used by more than 60 percent of students
within the Department of Computer Science at the University of Dortmund.

The number of requests has grown consistently, and the access rate usually peaks at the
beginning of a new semester. In October 2002, there were only 171,408 requests. A year
later, in October 2003, there were 292,155 requests, and in October 2004 this had increased
to 491,330 requests. In the last years, InPUD has doubled its requests in every year.

About 2,000 students (100 percent) are enrolled at the Department of Computer Science in
Dortmund. In April 2008, more than 1,330 (67 percent of all computer science students) were
registered in InPUD. About 670 students (33 percent) were not registered. We do not know if
these ‘non-registered persons’ were lurkers or if they did not use the information portal. With
some exploring interviews, we have found out that they might be lurkers because almost all
students use the information portal.

Figure 1 shows the analysis of the communication structure: About 1,100 members (of 1,334
registered members) contributed actively. The other 229 members were registered but still
did not post. We assume that these registered InPUD lurkers (11 percent of 2,000 students)
wanted to show their interest in the community although they did not actively participate.
According to Preece [10], there are different reasons why they do not post, for instance, no
motivation, no personal need, and curiosity without exposure. Maybe they are waiting for the
“right” moment to post.

A core of 263 individuals regularly provided contributions: ranging from 26 to 482 postings
(questions/answers) per individual. That is a significant number. The core members are the
elders, leaders and partly the regulars [8]. The other 842 active members (617 and 225)
made between 1 and 25 postings each. These members can be described as regulars, too,
but also included novices and visitors.

225

617

112

75

50

26

10-25 contributions

51-100 contributions

26-50 contributions

1-9 contributions
Number of Individuals

101-200 contributions

200 and more contributions
(max. 482 per student)

A core of 263 individuals
provide contributions

regularly

- more than 1,396 individuals
- have written 34,400 postings

(April 2008)

Figure 1 InPUD’s communication board - Number of contributions per individual

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

111

The success of the InPUD community can be measured by the significant number of
students who actively participate. More than 60 percent of Computer Science students
participate and use the community’s content. The large number of participants indicates that
a significant number of students appreciate this form of knowledge sharing. They discuss,
ask questions, answer others’ questions, come up with new ideas and help each other.

5. From Teaching to Learning – supported by InPUD?
A paradigm shift is taking hold in European universities. According to Barr & Tagg [2], the old
traditional paradigm that has governed our universities is this: A university is an institution
“that exists to provide instructions” (Instruction or Teacher-Centered Paradigm). Such an
education refers to authoritarian instruction in which the teacher directs all learning. The new
paradigm is: A university is an institution “that exists to produce learning” (Learning
Paradigm) in order to support learners. Student-centered, learner-centered and outcomes-
based education acknowledges the learner’s participation in the learning experience. It refers
to strategies which put the learner in control of constructing their own learning. This paradigm
takes into consideration the pace, repetition, learning styles, motivation, self-regulation, and
responsibility to learn. In such an approach, there is a shift from teaching to learning where
the teacher needs to take responsibility for ensuring that all students learn – and make
progress. Therefore, it requires a shift from the teacher as director of learning to facilitator of
the learner’s direction and creator of learning opportunities.

In order to apply effective learning methods, Dale [5] has created a learning pyramid with the
most effective learning methods or means. These are: “teach to others / immediate use /
explain something new to other people”, “practice by doing” and “discussion in a group”.
Methods like “follow a speaker during a 90 minutes lecture”, “reading”, “audiovisual
perception” and “demonstration” are less effective. They do not support the learner.
Instructions are still important; however, there is a balance between learner’s constructional
processes and well-organized processes of instructions from the teacher [3]. Table 1 shows
main aspects of the learning paradigm and how they are supported by InPUD.

Table 1 Supporting the Learning Paradigm with InPUD

The Learning Paradigm
(according to [13])

Characteristics of Web 2.0
with regard to the Learning
Paradigm

InPUD and the Learning Paradigm

Student-centered
approach: focusing on
students and learning
processes

Software systems that
support on-line human
communication; creating new
knowledge by many-to-many
users’ communication

++ InPUD creates feedback channels:
It has dissolved one-way-communication
from teacher to learners, and has enabled
communication channels from learners to
learners and teacher

Changing the teacher’s
role: from instructions to
creation of learning
environments and
situations (teaching how
to learn)

Web 2.0 applications support
interaction, cooperation and
collaborative learning, for
example with discussion
boards, Wikis, blogs etc.

0 InPUD has discussion boards. This
supports the methods “teach others”,
“discussion in a group” and “explain
something new to other people”.
[Research question: Does InPUD need more
than one collaboration opportunity?]

Supporting the learner’s
role

From consumer to producer
(“Con-ducer”)

+ InPUD supports the “Learner 2.0”:
From consumer to learner who actively
integrates new knowledge into personal
context

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

112

Focusing on learning
outcomes and goals

 -- InPUD enables a 24 h online
participation; however, it needs more
organizational and didactic commitments
in order to focus on learning outcomes

Promoting self-
organization and active
learning arrangements

Web 2.0 enables the building
of new social relationships
and social networking over
the Internet

+ InPUD enables students to find others
with similar interests, preferences or in
similar situations, and supports
discussions

Connecting knowledge
acquisition and learning
strategies

Communication about
teacher’s content

+ InPUD enables students to share
different perspectives

InPUD can support the shift from teaching to learning; however, today this shift is often
triggered by the students. A more reflective practice is needed in order to support the shift to
the learning paradigm and to improve the InPUD scenario. This includes, for example: First,
in order to support a mix between face-to-face and computer-supported collaborative
learning, the teacher should define what cooperation is and how a group can or should
cooperate. The connection between lecture and InPUD should be taught. Second, teachers
should give orientation and foster convention on how to learn with InPUD or other Web 2.0
based learning applications (“learning model”). The teacher should explicitly explain rules
and expectations for using InPUD at least at the beginning of a lecture.

What we have learned with InPUD is: There is no single learning scenario with Web 2.0
because it depends on how people participate in cooperation, it depends on different learning
cultures, on the teacher’s role, goals, and content and students. According to the Learning
Paradigm, in our future work we will research the above-mentioned criteria for enabling
“creativity supported learning environments”.

6. Conclusions
We have provided some insight on how the implementation of a system based on Web 2.0
technology can successfully support the shift from teaching to learning in Informatics. The
InPUD community is a good practice scenario that shows how combining face-to-face
lectures and online communication works.

Designing a socio-technical community to support student-centered learning is no longer
primarily a problem of programming or tailoring a technical system. Good standard software
such as content-management systems can be adapted in reasonably fair time. The main task
is fostering the acceptance of a system that is not compatible with the traditional structure of
a university or school. In a student-centered setting, there is little need to motivate students,
but a great need to motivate lecturers. Curriculum coordinators can be a great help in
designing such systems. Some crucial facts for acceptance, beside self-evident facts such as
ergonomic use, are:

All information must be correct. If it is not, the error must be corrected as soon as possible.
All information must be available when it is needed, better a bit before that. Not all
information is relevant for students, even if faculty members sometimes believe it is. To
implement such a software system in a department, you have to bear in mind that you are
not the only one who promises that everything will become better when someone decides to
use your system. In most cases, you are not the first either, so you must distinguish your
system even from systems you never thought would be competition. If you convince

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

113

committees of the advantages of such a system, it does not mean that they see any
necessity to pay for it, and often there really is no money. So use standard technologies as
much as possible and try to tailor them according to your needs.

From the study we may also derive some insight about Informatics students and culture:

• First: Students of Computer Science are not easy to handle when you try new teaching
methods that involve computer technology, because every student is convinced that he or
she can do the technology better. So do not even try to impress them by sophisticated
graphical design or enormous features. You will lose.

• Second: Use only technical systems which are secure and well tested. There is the
danger that students spend hours and hours in trying to hack the system or in finding
errors, but not in dealing with the content you want to teach.

• Third: Students of Computer Science have, of course, in their majority a great affinity to
using computers. So be very careful when offering incentives to use the system. Do not
make it too cozy. Otherwise students might never come out of the system to visit their
lectures or meet other students in real life. Anonymous logins are crucial.

It would be interesting to combine traditional e-learning systems, e.g., Blackboard or other
VLE that rather support a teacher-centered approach, with the InPUD philosophy as well as
Web 2.0 concepts, and examine the results.

References
1. Avison, D., Lau, F., Myers, M., & Nielsen, P. Action Research. Communications of the ACM, 42, 1

1999, pp. 94-97.
2. Barr, R. & Tagg, J. From teaching to learning. A new paradigm for undergraduate education. In:

DeZure, Deborah (Ed.): Learning from Change. Change Magazine. 1995, pp. 198- 200.
3. Behrendt, B. From Teaching to Active Learning in Higher Education. In: UNESCO (Eds.): The

University of the 21st Century. Muscat, Oman, 2001, pp. 415 – 434.
4. Boehm, B. W.: A Spiral Model of Software Development and Enhancement. In: IEEE Computer,

Vol. 21, No. 5, May, 1988, pp. 61-72.
5. Dale, E. Audio-Visual Methods in Teaching. Dryden Press: New York, 1954.
6. Forte, A. & Bruckman, A. Why Do People Write for Wikipedia? Incentives to Contribute to Open-

Content Publishing. 2005, Proceedings of GROUP 2005.
7. Jahnke, I.; Mattick, V. & Hermann, Th. Software-Entwicklung und Community-Kultivierung: ein

integrativer Ansatz. I-COM – Zeitschrift für interaktive und kooperative Medien. 2 /2005, pp. 14-21.
8. Kim, A. J. Community building on the web. Secret strategies for successful online communities.

Berkeley: Peachpit, 2000.
9. O’Reilly, T. What Is Web 2.0? Design Patterns and Business Models for the Next Generation of

Software, 2005, from http://tim.oreilly.com/
10. Preece, J. Online Communities. Designing Usability, Supporting Sociability. Chichester: Wiley 2000
11. Wasko, M., & Faraj, S. Why should I share? Examining social capital and knowledge contribution in

electronic communities of practice. Management Information Systems, 29, 1, 2007, 35-57.
12. Wenger, E., McDermott, R. & Snyder, W. M. Cultivating Communities of Practice. A guide to

managing knowledge. Boston (MA): Harvard Business School Press, 2002.
13. Wildt, J. On the Way from Teaching to Learning by Competences as Learning Outcomes. In:

Pausits, Attila / Pellert, Ada (Eds.): Higher Education Management and Development in Central,
Southern and Eastern Europe. Münster: Waxmann, 2007, pp. 115-123.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

114

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

115

Lectures on CS Taught to Introduce Students
with Different Background

Paolo Rocchi
IBM, via Shangai 53, Roma, Italy, paolorocchi@it.ibm.com

Broad assortment of professional activities generates different perspectives on
computing. Researchers on the educational field emphasize the need of specialized
curricula on computer science (CS) which should comply with those diverging
perspectives. But this is not enough, because different curricula stem from uniform
principles of necessity. Multiple perspectives on computing compound the didactical
problems in the introductory lessons on CS which revolve around common topics.
The present paper puts forward an approach to computer science conducted over
some years which addresses the teaching problems opposed by the different
background of students. The didactical experiment exploits a parallel theoretical
research driven to clarify basic concepts of informatics. The synopses of the very
initial lectures are sketched and in the close we discuss some features of the whole
course which adopts the inferential method typical of the educational style of mature
disciplines.

Keywords
Deductive teaching in CS, lessons at university level, theoretical models.

1. Introduction
Broadly speaking the goal of education is to develop competence in a domain, but a broad
variety of applications does not make the computing domain univocal. The relationships of
aspects of computers to each other and to the living environment appear very intricate. The
Report of ITiCSE’97 [1] highlights the pluralist nature of the computer sector and discusses
six major perspectives on computing.

1) The theory of algorithm was invented by mathematicians and usually people see
‘computing as mathematics’ because it is the most ancient paradigm in programming. The
structures of linear algebra (vectors, trees, and graphs) provide the fundamental models for
computer algorithms. Abstraction leads programmers in their everyday job; experts follow
mathematical criteria when they approach complex solutions.

2) The notion of ‘software engineering’ was introduced in 1968 on the occasion of the Nato
Software Engineering Conference that gave origin to ‘computing as engineering’. Software
experts do not confine themselves to the theoretical study of algorithms, but design and build
up software products in the living environment. Practitioners develop software projects and

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

116

prepare all the operations (manual and mechanical) surrounding the programs. Software
experts go throughout the productive life-cycle including feasibility stage, analysis and
design, implementation, testing, installation and maintenance. The entire field of computing
has an enormous factual impact in the world because of computing engineering.

3) Recent progress opens the door of computing to poets, humanists, artists and other non-
technical people and the Report of the ITiCSE’97 pinpoints the perspective ‘computing as
art’. Nowadays we see the application of skills according to aesthetic principles, especially in
the production of visible works of imagination that are pictures, poems, works-of-art etc.
Graphical design skills are becoming increasingly important, particularly in multimedia and
hypermedia applications.

4) Science includes both the systematic classification of knowledge and the discovery using
observation and experiment. Computing is most definitely considered an empirical science
where the subjects being studied are artefacts and natural phenomena. Computing is the
study of natural and artificial information processes alike: ‘computing as science’ emerges
with evidence. The recent emergence of computation in the biological fields has opened new
horizons. The old definition of computer science as the study of phenomena surrounding
computers is definitively obsolete.

5) Computers influence human life through procedures that people execute in all the
continents. The wide-spread introduction of Internet and the related change of people’s
lifestyle throughout the world manifest ‘computing as a social science’. Computer users
shape the system by their use and in turn are shaped by the system itself. Systems become
part of a broader culture and of an ever changing emergent phenomenon through which
people create and recreate the worlds in which they live. It may be said that computing melds
in part the future world within which humans are to live.

6) Computing touches on so many aspects of human activity that we could say that the major
challenge is to keep a degree of tolerance of differing views and to permit cross fertilization
of ideas from different strands. Anthropology, applied psychology, economics, ergonomics,
ethics, history, linguistics, management, mathematics, philology, philosophy, semiology,
sociology, and politics are some of the disciplines relevant to computing. Computing
infiltrates a broad variety of fields and in order to maintain this flexibility the Report of the
ITiCSE’97 concludes ‘computing as interdisciplinary’.

Multiple perspectives classified in the Report of ITiCSE’97 mirror professional activities and
interfere with the design of curricula at graduate and undergraduate level. The multifaceted
computer science complicates education design and entails different specialized curricula. It
is clear that we cannot do justice to this diversity in current educational programs by applying
monolithic didactics. But this is not enough because all the curricula start with introductory
lessons which deal with basic topics and bring about a crisis of the pluralist approach.
Diverging educational pathways are to stem from a rather uniform base of necessity.
Inevitably basic tenets are universal.
The present paper aims at plunging into those questions, namely we deal with the
demanding contents of the initial lectures which should cross all the paradigms on principle.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

117

2. Theoretical Support
Normally a student at the graduate level has a certain background with programming in some
language and with computer-based tools. The initial stage is the most favourable for forming
a general understanding of computing which sustains the subsequent educational steps and
the special professional purposes. Given the widening use of computers in the living
environment universities should provide a solid basis from the cultural perspective. Important
researchers highlight the demanding duties of the first stage lessons which should focus on
the foundations of computing:

”We therefore recommend that the introductory course consist of regular lectures (..)
the lectures should emphasize fundamentals (..) Lectures emphasize enduring
principles and concepts”. [2]

The report "Computing as a Discipline" was the basis of a major curriculum revision in 1991,
undertaken jointly by ACM and the IEEE Computer Society. It also suggested methods for
educational researches [3]. Basics of computing are the right place for equipping students
with cultures and languages which assist future professionals and users in whatsoever
context.
Opening lectures in computer science should include depth principles valid for the paradigms
from 1 to 6. By definition the basic tenets of a discipline are universal therefore the contents
of introductory lessons on CS should be rather uniform. Introducing lessons should perform
the arduous task to serve multiple perspectives, different didactical methods, and to prepare
a variety of professionals-to-be using unified keys.

Presently, introductory lectures on computing do not live up to expectations. Educators base
the initial stage of computer science on two cornerstones; they normally open a course with
the illustration of a personal computer and the Turing machine. Even if these topics sound as
apparently obvious starting points, some points arise against these educational pillars.

It is evident that the computer anatomy does not emphasize enduring principles and
concepts. The physical description of a computer deals with down-to-earth facts and not with
concepts. Teaching the hardware and the software components does not have the degree of
generality necessary to improve the deep understanding of systems. A student becomes fully
conscious of a machine when he knows the reasons that influenced engineers when setting
up the various technical solutions of the machine. Illustration of a system component on the
as-is” basis does not clarify its origins and sounds a low level approach to teaching.
The Turing machine is a conceptual model and a significant intellectual reference in the
pioneering age of computing, but does not prove to be an adequate educational aid
nowadays. Turing’s model hints at the idea that computers exclusively scale to abstract-
mathematical problems. Students are driven to believe that computers basically calculate
mathematical functions. This orientation is suitable for the ‘computing as mathematics’
perspective but does not fit the other perspectives. In fact the Report of the ITiCSE’97
underlines some critical aspects of the mathematical paradigm:

“Historically, calculus was of immense importance to computing, which was primarily
concerned with scientific and engineering problems. But presently, such computing
occupies a much smaller percentage. Many of the mainstream fields such as artificial
intelligence, database, software engineering, programming languages, and hardware
rely extensively on discrete mathematics; hard-core scientific computing, relying on

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

118

calculus and analysis, has become a small sub-specialty within the computing
community”.

The Turing machine causes a student to turn away from the practical approach to his future
or current profession. Jeff Kramer has written an interesting article upon the unnatural
operational behavior caused by systematic abstract education. [4]. Moreover he highlights
how the abstract orientation diverts the curricula designers who devote excessive space to
mathematical topics. The survey conducted by Timothy C. Lethbridge exhibits the effects of
pure mathematics on professional practice [5]. He asked software developers and managers
from around the world what they think about 75 educational topics. The replies concur that
some widely taught topics (most of them mathematical) have little impact on an everyday job.
Their formal computing education does not always match the knowledge they need to apply
to their daily work. Lethbridge closes:

"Mathematics, especially calculus, is extensively taught in computing programs. (...)
On the other hand, relatively little mathematics turns out to be important for software
engineers in practice and it tends to be forgotten. If we are to continue to teach the
amount and type of mathematics [that we presently teach], we must justify it by other
means than by saying it is important to a software developer's work: our data show
that is normally not the case".

In conclusion, the physical description of computers and especially the abstract models do
not support the pluralistic needs of education in the computer domain. The first stages of
curricula on computing turn out to be somewhat inappropriate and should be renewed using
more suited theoretical references.
The didactical problems do not rely entirely on educators. The true question is that
theoretical studies on computing lag behind and didactics suffers for the lack of an
exhaustive logical support. The initial lectures in computer science are the most precious
from the didactical viewpoint instead they fail due to the lack of sufficient theoretical ground.
[6].

The present paper illustrates a didactical experiment conducted in my company. The
students whom we normally introduce to CS belong to different fields and share different
perspectives on computing.
The work illustrated in this paper is theoretical and didactical at the same time. In particular
the present account details the first educational passages and recalls the logic framework of
this research [7] and other theoretical explanations [8].
I adopt the standard scientific method to illustrate this didactical experiment. The scientific
method usually:

I) Forms a hypothesis,
II) Constructs a model and make a prediction,
III) Designs an experiment and collects data,
IV) Analyzes results.

The ensuing four sections follow this standard scheduling step by step. Roman symbols
mark this correspondence. Because of the shortage of space lectures’ summary is very
concise and sounds rather autocratic of necessity.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

119

3. The Didactical Hypothesis

I) - My educational investigation starts with this observation: take the machine X that brings
forth the product x, it is obvious that the features of X depend strictly on x. Notably the
structure and the various properties of X are dictated by x and in consequence educators
must teach x in advance of X and must infer X from the features of x.
Concluding this didactical hypothesis may be reasonably taken: computers X manipulate
information x, thus firstly it is necessary that a teacher elucidates what is information and
later on a teacher derives the hardware and software solutions using the concept of
information.

4. A piece of Information to Start

II) - Tens of theories on information has been devised in the last decades but no theory has
gained the universal consensus. Luckily this failure does not impair the present project.
Instead of taking a model of abstract information, I take the model of a piece of information. It
is rather easy to see that the vast majority of experts have two important ideas in common
upon informational items. Authors agree that a sign has a body and this physical body stands
for something in the world. Pieces of information – signals, signs, messages, news, pictures,
sounds etc. – take a material origin and represent something in the world. Claude Shannon
calculates the signals conveyed in a channel which are physical quantities and symbolize
letters. E.g. the string 1001 stands for the alphabet letter A, 1100 does B etc. Researchers
belonging to different areas concord over two statements that I sum up in the following terms:

 i) - A piece of information is a physical and distinct entity,
 ii) - A piece of information signifies something.

Information is the root-cause of computer technology, I adopt hypothesis I) hence I derive a
cascade of conclusions from i) and ii). A didactical pathway introduces students to CS
starting from the couple of issues i) and ii). The intended educational approach is deductive
in accordance to the style possessed by mature disciplines such as mechanics, chemistry
etc.

5. The Didactical Pathway

III) - I held this educational-deductive path in several basic courses. My students varied
from young people to mature professionals and they shared very different perspectives in
informatics. Even if each student had a different perspective on informatics, I delivered
introductory lessons that make a unique track. I sketch the synopses of the initial four
lessons taken from this educational experiment. The chain-structure of the topics should
emerge without any doubt even if the account is rather skeletal. The present small sample of
lectures is confined to the very initial hardware topics and does not touch software
programming.

5.1 This lecture deals with the physical property of a piece of information.
Definition i) sounds generic because it is introductory; it is necessary to specify the basic
property of an object that makes this object a sign. Common experience shows how any
material entity is capable of informing due to the property of being distinct. Every thing that is
neat is information. E.g. the present writing conveys information as long as the printed
characters are neat. As soon the characters whiten the reader has no longer information
available. In conclusion: the object E is a piece of information if E differs from an adjacent
comparison term E*

E ≠ E* (1)

The entire world diversifies. The Grand Canyon, the Moon, the Sun, a street, a friend are
distinct entities: they are examples of pieces of information in the natural state. There are
free and natural pieces of information - like the foregoing examples - and artificial items - like
printed words and electric signals that men/women create for the special purpose of
informing. Distinct objects are either natural or artificial pieces of information of necessity.

5.2 This lecture deals with the essentials of the digital technology
Analog designers are inclined to imitate or to use the natural pieces of information existing in
the world. For example an analog device handles the human voice which is a spontaneous
piece of information. Digital designers show a far different behaviour: they ignore the natural
signals and want the pieces of information to be perfectly distinct. Digital technology applies
inequality (1) since the first step and prepares the bits 1 and 0 that verify 1≠0 in accordance
to (1). In addition digital experts ‘reinforce’ the distinctiveness of bits using the excluded
middle principle which constitutes a axiom of Boole's algebra [9]

 =1 0 0 = 1 (2)

Digital engineers go on through rational methods on the basis of (2), and construct pieces of
information and circuits by two standard ways. Whereas analog experts adopt thousands of
eclectic techniques, digital experts achieve all the technical solutions they want through
standard procedures and methods. The first rule is the progressive standard assembly.
Digital experts prepare pieces of information and circuits using standard components that are
respectively bits and logic gates.

a) - Roughly the progressive assembly of a complex message includes five steps:

1 - Experts establish the elementary information items: the bits.
2 - Then they prepare a binary word using bits. A binary word stands for a

character, or a figure, a symbol, a sound, a colour etc.
3 - Experts prepare a word, a number or other simple structures by joining

binary words.
4 - Users prepare a text, a document, a picture, a piece of music etc. which

are complex structures by joining the previous components.
5 – Lastly, authors join various informational forms created in the previous

steps and obtain a hypermedia.

b) - The assembly of a circuit encompasses four major steps:
1 – Experts build up the logical gates: AND, OR, NOT. These gates never

ever act in a manner different from the defined plans due to the
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

120

excluded middle principle. Hence it is easy for a designer to connect
the outputs of one gate to the inputs of another gate. Engineers create
a digital circuit from the logical gates like a sort of building blocks
through the ensuing steps.

2 - Designers prepare complex gates such as NAND by joining AND and
NOT.

3 - Later on they create combinatorial circuits using the previous gates, and
sequential circuits that are to be synchronized such as memories.

4 – Lastly engineers create the finite-state machine, the definitive solution,
using the components of the previous steps.

The previous lists are useful for students to grasp the standardization as the essence of
digital technology.

5.3 This lecture deduces the hardware models for the computer system
By definition, a computer system is capable of manipulating signals of any kind, hence the
computer hardware has to include two genders of units that conform to i) and ii) respectively.

1st) - There are units that change the physical nature of data – namely they affect

point i) – and are named conversion units. For example a printer transforms
electric information into ink and makes a conversion; a keyboard change
mechanical impulses into electric bits.

2nd) - The automatic information-processing unit manipulates the contents of
data – see point ii) – and provides original representations of the reality. I
introduce this concept by means of the following subtraction: 250 - 50 =
200. Suppose that 250 means ‘gross weight’, 50 stands for ‘tare weight’,
the outcome of the calculation 200 provides the ‘net weight’, namely the
output-number illustrates a reality quite different from those represented on
entry. Computation creates pieces of information with novel meanings.
Automatic information-processing generates not only new numerical
values, and even carries on new visual information, acoustic information,
textual information etc.

The information-processing unit PR manipulates pieces of information that are uniform from
the physical viewpoint, thus a computer system encompasses the information-process unit at
the centre and several conversion units TR at the periphery to provide homogeneous
messages in favour of PR.

Figure 1 – Star Model

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

121

The central unit receives and delivers homogeneous information thanks to the peripherals
specialized in conversion. Personal computers and laptops, embedded systems and
mainframes comply with the radial model.
Different units need control and engineers complete PR with the control unit and make the
central-processing unit (CPU). Because the cpu manages the whole system, it is easy to
infer that the computer structure has a leader unit and a number of peripherals depending on
the vertex. A hierarchical tree sums up this special quality of a computer system

Figure 2 - Tree Model

5.4 This lecture extends the tree model to the monocentric networks
When a computer covers a large geographical area, experts move the peripheral device mile
away and keep the hierarchy of the digital system. The peripherals placed all around the
country take the name of terminals due to their subordinate role, while the computer system
place at the vertex of the hierarchical tee acts as the host of such a monocentric or
hierarchical network. All the operations lie under the control of the host that ensures secure
communications amongst the nodes.
When the net is equipped with several hosts, the hierarchical order exhibited in Figure 3
cannot be preserved. No host has an edge over the others and the tree is impossible to
establish. All the nodes rank the same level and the hierarchical control vanishes. The
polycentric net has peer hosts and the Internet complies with this second scheme.

6. Analysis of the Results

IV) - The advantages that emerged in the educational experiment are commented as
follows.
Comparative analysis of the contents: The present proposal does not suggest a ‘way’ or a
‘method’ to teach consolidated contents, but puts forward new contents which show the
following advantages.
Traditional introductory lessons illustrate obvious topics such as the anatomy of a computer
and frequently have the defect of mismatching with the variety of professions due to
excessive mathematics and abstraction. Instead, the present research starts with general
aspects of computing which are easily accepted from whatever perspective listed in Report
of ITiCSE’97. Deductive learning of CS goes to the essence of things and in this way meets
the requirements of the multiple perspectives on computing.

Comparative analysis of theoretical models: The Star Model clarifies the challenging to-day
phenomenon called digital convergence. The Star Model is much more exhaustive than the
IPO model popularized in current introductory lessons.
The Turing machine leads to the ethereal view of computer systems and to abstract
reasoning, instead the present Star Model and Tree Model provide practical images of the
computer hardware and even of networks and software programming (omitted here).

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

122

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

123

The Star Model and the Tree Model adhere to experience and do not require previous
mathematical studies.

Comparative analysis of the deductive didactical method: Nowadays introductory courses
show the computer system on the as-is basis and it may be said that current course force the
mind of students to accept the facts without sufficient ground. Educational approaches which
lack of deductive justification impose the contents and may be said dogmatic. Instead, the
present lectures try to convince a student of the reasons that guide technicians’ decisions, in
this way the student’s mind is not coerced and becomes progressively aware of the solutions
created in the computer sector.
Currently there are thousands of electronic solutions which make a daunting challenge in
education. Inferential reasoning overcomes this problem because it turns out to be very
concise. In fact it is easier to learn a sequence of topics which are logically linked than to
learn topics without any logical order. In the present work complex matters are introduced in
brief – e.g. the properties of networks - whereas normally teachers waste a lot of time to
illustrate those matters that do not have logical connections with the others.

Comparative analysis of students’ psychology:
Students forced to acknowledge computer products on the as-is basis are poorly motivated,
instead the present account absorbs students’ attention. In fact a student is able to grasp a
lesson provided he/she is familiar with the previous topics.
By definition deductive reasoning reveals the root-causes of technology and students take
pride in the deductive logic. They become aware of understanding the most important sides
of computer systems and the connections with other domains. I experienced that also
students who rarely use computers - such as top-managers - showed interest in the present
approach.
Listeners having the humanistic culture were pleased to discover how principles i) and ii) -
shared in their own environment - lead to relevant aspects of the computer technology.
The history of computers integrates the foregoing lessons in a fair manner. The fortune of the
hardware and software products completes the introductory lessons and sometimes
provokes an emotional participation.

References
1 Report of the ITiCSE '97 Working Group on Historical Perspectives in Computing Education -

Supplemental Proc. of the Conf. on Integrating Technology into Computer Science Education,
Uppsala, 94 – 111, (1997).

2 P.J. Denning (ed) D.E. Comer, D. Gries, M.C. Mulder, A. Tucker, A.J. Turner, P.R. Young -

Computing as a Discipline - Comm. of the ACM, 32 (1), 9-23, (1989).

3 D.J. Bagert - On Teaching Computer Science Using the Three Basic Processes From the Denning

Report - SIGCSE Bullettin, 21(4), (1989).

4 J. Kramer – Is Abstraction the Key to Computing? – Comm. of the ACM, 50(4), (2007).

5 T.C. Lethbridge - Priorities for the Education and Training of Software Engineers - J. Systems and

Software, 53(1), 53–71, (2000).

6 J. Gehl -The Future of the IT Profession: an Interview with Peter Denning - Ubiquity, 1(5), (2000).

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

124

7 P. Rocchi - Technology + Culture = Software - IOS Press, Amsterdam (2000).

8 P.Rocchi, L. Gianfagna - An Introduction to the Problem of the Existence of Classical and Quantum

Information - Proc. Quantum Theory: Reconsideration of Foundations (QTRF-3), AIP vol. 810, 248-
258, (2005).

9 R.Tocci, N.Widmer, G.Moss - Digital Systems: Principles and Applications - Prentice Hall, (2006).

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

125

Promoting Computer Science programmes to
potential students: 10 Myths for Computer
Science
Thanos Hatziapostolou, Anna Sotiriadou, Petros Kefalas
City College, Affiliated Institution of The University of Sheffield, 13 Tsimiski Str, Thessaloniki,
Greece, {a.hatziapostolou, sotiriadou, kefalas}@city.academic.gr

During the last decade, our involvement with discussing with potential students and
their parents before they apply for an undergraduate Computer Science programme,
made us realise that there exist patterns in people’s minds about Computer Science
studies and profession. These patterns form misconceptions, which we identified as
myths. In this paper, we present ten of them. We argue that these could be used as a
promotion tool to attract potential students. Bearing in mind that Computer Science
programmes all over the world have suffered a decrease in admissions, we believe
that a good marketing policy that will lift public misconceptions about Computer
Science will contribute to attracting more students to the discipline.

Keywords
Computer Science Education, Admissions, Promotion & Marketing CS programmes

1. Introduction
Admittedly, admissions in Computer Science (CS) or related programmes in Higher
Education (HE) have dropped significantly over the last five years all over the world [1,2].
Although there has been considerable investigation for the reasons that lead to this decrease
[3,4], and some of the results reported are intuitive, it is not always justifiable why potential
HE students do not have CS anymore among their first choices.
There is a number of corrective actions that Universities and in particular CS Departments
took or are planning to take in order to restore the popularity of their CS programmes [5,6].
Briefly, some of them are:
• Update the curricula by change of titles and content, so that prospective students identify

(buzz-) words that look trendy;
• Enhance the curricula with courses that focus on industrial applications and business;
• Change the mode of delivery to make CS courses more fun to students and integrate

ICT more into teaching and learning;
• Abolish or minimise as far as possible theoretical courses, while dressing them up with a

more attractive wrapper;
• Apply their influence on secondary education teachers who might inform and guide their

students;
• Introduce mutated programmes that include many elements from business studies,

entrepreneurship and innovation;
• Promote and advertise programmes separately from others;
• Upgrading their web site promotion by presenting up-to-date staff and student

achievements (research and industrial), figures of graduate recruitment, etc.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

126

However, the above actions, although looked intuitive from the business side of view, were
not always well received by academic staff.
In our Department at CITY College, Thessaloniki, we also took a number of actions similar to
the ones listed above. As a result, some seem to work, some others do not, without,
however, having gathered long-term data to qualify and justify the results. In addition to this,
we are currently considering another way of promoting our programme with the objective to
change the potential students' perception for CS. This approach is based on a number of
misconceptions that secondary education students have about a CS programme and a CS
professional. The aim is to list 10 myths for CS, argue against these and if possible convince
the public to drop these misconceptions, which at large, constitute a preventing factor to
follow such a programme, choosing what is perceived as "the easier way to graduate", for
instance non-engineering programmes.
In this paper, we present these 10 myths for CS studies and profession in Section 2. Our
intention is to initiate debate on these among fellow colleagues and finalise the list by
strengthening our counter arguments. In section 3, we discuss our graduate students’
perception on these in order to informally validate our approach. Finally, we discuss our
Departmental promotion policy, which includes these misconceptions of the public, with the
aim to attract more students to the discipline.

2. Ten Myths for Computer Science

Since the first cohort of Computer Science students in our Department, 15 years ago, we
have been interviewing each one of the potential applicants. In Greece, it is common that no
student applies for a programme in a private institution before they talk to the College
administration and academic staff, requesting information on all aspects of education
provision and career development. Although this may not be common for the rest of Europe,
most of the times, candidates are accompanied by other family members, usually parents,
who also participate in the discussion around the programme of study. Such meetings last
between 30 and 60 minutes and are extremely important for both parties. For us, it is a
perfect opportunity to find out what people think about the College and its programmes, and
in the current context and culture, what people think specifically about Computer Science.
So far, we met multiple hundreds of cases, perhaps few thousands. At first, it was sometimes
surprising to listen to people’s opinions about Computer Science. The recurrent cases over
the years made us suspicious that there might exist patterns in the public perception about
CS. Our accumulated experience helped us in addressing in personal discussions some
wrong impressions candidates and their parents have. Lately, we decided to form a list of
such misconceptions and call them “myths about CS”. We managed to compile a list of ten
such myths (Table 1) and a set of counterarguments to use in interviews with potential
candidates.
In the following, we present the myths and a brief analysis. Each one is accompanied by a
counterargument as it is presented in our leaflets. Note that the wording and the analogies
used in our promotion materials and brochures may sometimes look simplistic or even naïve
or provocative but remember that these are just a marketing tool to address the public’s
misconceptions and help us carry out discussions with the average potential students and
their parents.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

127

Table 1 The Ten Myths about Computer Science in brief

Myth
1 Computer Science is sending emails, browsing the Internet, word processing and

learning to use specific application programs
2 Computer Science is programming
3 Computer Science is maths, maths … maths!
4 Computer Science undergraduate studies restrict the choice for postgraduate studies
5 Computer Science jobs are boring, lonely and are all taken
6 Computer Science graduates never reach higher management positions
7 Computer Science studies is only for men
8 Computer Science, Information Systems, Computer Engineering, Computing … are all

the same
9 Computer Science is not as important to society and business world as other disciplines
10 Computer Science is for “nerds/geeks”!

1 Computer Science is sending emails, browsing the Internet, word processing
and learning to use specific application programs.

Lots of candidates ignore what CS is. Their encounter with computers is limited in secondary
education and restricted to use of applications for word processing but mainly the Internet. If
they are lucky they can get some good outline in the career development seminars among all
other disciplines. Parents are in much worst situation. They keep on asking whether, as
graduates, their children will “have equal career opportunities to those having acquired
ECDL” or similar certification. Others, say that their children “do not need CS because they
were into computers every day since they were five years old”, obviously meaning the
encounter with email, games and chats on everyday basis.
We state in our promotion material: “Anyone can do this! None needs to enter a HE
programme in Computer Science in order to perform such tasks. In a similar way that none
needs a HE degree in Mechanical Engineering or Electronics to drive their cars or use their
TV sets. However, Computer Science is targeted towards developing such software, services
and applications solutions so that other people can use them”.

2 Computer Science is programming.

This comes from potential students rather than parents and it is the famous narrow view
about CS. Potential applicants ask a lot of questions about programming languages, how
many they are going to learn, in what depth etc. They are surprised by the fact that the
number is much less than expected, because they cannot imagine what else they can do
through the three years of study. Occasionally, a similar misconception is brought up, but this
time with respect to hardware, that is, “CS is about fixing PCs when they break”. Especially,
parents would love to see their kids fixing something, because most of them cannot
understand programming.
We state in our promotion material: “Again, most people can do this with a bit of reading and
practice! Programming is a technical skill for which someone does not need a degree to
acquire. Should you be an engineer to fix a leaking water pipe in your place? Someone with
an engineering degree knows everything about materials and hydraulics including perhaps
hands-on practice with tools. Programming is just a tool for Computer Scientists. Current
complex software systems require software engineering methods, methodologies and
approaches”.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

128

3 Computer Science is maths, maths … maths!

There are two categories. The usual math-phobic question: “Is maths involved? Can I make it
with the maths I know so far?” and the math-alibi statement: “I am not good in maths and
therefore I am not interested”. Both come as a result of inadequate knowledge of what maths
is and what is good for. In high school and lyceum, students did, admittedly, a lot of maths,
without however being able, or have time, to appreciate it. In an intensive examination
system, teachers prefer to get students going with maths rather than engaging on
philosophical discussions.
We state in our promotion material: “Not really! Maths in a Computer Science programme is
specific to this discipline and is taught almost from point zero. It is not just maths for maths.
Yes, we do need maths, because we are required to establish correctness and soundness of
the applications developed. This is much alike the way that mathematics guarantees that a
newly designed airplane is safe to fly without killing people before we spend millions in
constructing it. Maths is what makes it a Science!”.

4 Computer Science undergraduate studies restrict the choice for postgraduate
studies.

People get the wrong impression that the only postgraduate studies they can pursue are
those relevant to Computer Science, with emphasis in one of CS areas, such as networking,
software engineering, artificial intelligence etc. They seem surprised to hear that the horizons
for postgraduate studies are wide open to other programmes from different disciplines.
Some, they have not even thought of such possibility and although they do not believe it,
they look happy from such prospect.
We state in our promotion material: “To the contrary, a CS degree opens a wide range of
potential! Actually, it is evident that graduates who follow Master's degrees in other, even
unrelated, disciplines like Management, Music, Politics etc. are extremely successful
because they possess the fundamental intellectual skills and long-life learning abilities that
help them towards such an attempted conversion”.

5 Computer Science jobs are boring, lonely and are all taken.

Boring comes together with lonely as a result of a stereotype developed in people’s
perception about a person who spends most of its day and night time in front of a PC. The
idea that all jobs are taken comes from the general impression about unemployment figures.
CS related job offers, although from time to time affected by the general socio-economic
trends, are still and will be in abundance. It is not always easy to convince parents when
discussion comes to careers and employability, but few good examples of graduates’
successful career path could ease their concerns.
We state in our promotion material: “New problems and new needs by the society and the
industry never leave space for boredom because new solutions must be devised and offered.
The complexity of the problems addressed is such that none can manage alone. Computer
Scientists more than any other related discipline need to work in well-structured teams. The
need is increasing because demands for automated solutions are increasing. During the last
decade, Computer Scientists are highly employed. The demand is still constantly high. With
the current trends of the market, it is predicted that Computer Scientists would be hard to
find”.

6 Computer Science graduates never reach higher management positions.

Again the stereotype of a “hard working developer wearing t-shirt and jeans” is the source of
this myth. In people’s mind, CS professionals are there to be instructed what to do from top
level tie-dressed managers, without arguing much, they work at a dark room with PCs and
junk food all over the place because there is nothing else they are able to do. However, there
is plethora of examples of Computer Scientists and Engineers in general, who make high
management positions due to their skills and pragmatic approach to businesses. This is also
supported by the fact that no small proportion who choose to do an MBA at their late thirties,
are top executives in their companies with a CS or engineering background.
We state in our promotion material: “Computer Scientists acquire such organisational and
communication skills that are highly suited for high management positions. The disciplined
ways in which they face problems and engineer solutions make them able to undertake and
successfully cope with many managerial tasks. In addition, IT has become so important for
businesses that Computer Scientists are directly involved in decision making for the future
development of businesses”.

7 Computer Science is only for men.

While CS always attracted more men than women, the last ten years the gender gap is
expanding [1] and fewer young women are entering the discipline every year. The fact that
CS does not seem to appeal to young women originates from the distorted image of the
computing career and the misconceptions that programming is a solitary activity and that
jobs are boring and lonely. Young women believe that they will be alone inside a room writing
code all day long or talk to others with acronyms; they simply can not imagine themselves
doing these and inevitably become a “geek”. Furthermore, although women are creative and
innovative by nature, they have the misconception that CS does not require such skills and
as a result they do not pursue a career in this area.
We state in our promotion material: “It is true that men have outnumbered women in
computer science in the past, but this is changing. Increasingly, women are becoming
extremely successful professionals. On average they might even do better than men!
Computer Science is about helping others solve problems, learning about new ideas, face
challenges, dreaming up new situations, products, and ideas. Contemporary women
contribute to all the above in an innovative way”.

8 Computer Science, Information Systems, Computer Engineering, Computing
are all the same.

There is a tendency to confuse these. Especially in countries where “Computer Science” and
“Informatics” basically mean the same thing, while “Science” and “Engineering” are used as
synonyms. The ACM/IEEE CS Curricula [7] helped a lot in trying to differentiate these with
the figures provided in table 2 below.

Table 2 Differentiation between Computing Programmes [7]
Organizational Issues &

Information Systems

Application
Technologies

Software methods
and Technologies

Systems
Infrastructure

Computer Hardware
and Architecture

Theory
Principles
Innovation

Application
Deployment

Configuration
More Applied More Theoretical

DEVELOPMENT

IS

Organizational Issues &
Information Systems

Application
Technologies

Software methods
and Technologies

Systems
Infrastructure

Computer Hardware
and Architecture

Theory
Principles
Innovation

Application
Deployment

Configuration
More AppliedMore Theoretical

DEVELOPMENT

CS

Organizational Issues &
Information Systems

Application
Technologies

Software methods
and Technologies

Systems
Infrastructure

Computer Hardware
and Architecture

Theory
Principles
Innovation

Application
Deployment

Configuration
More AppliedMore Theoretical

DEVELOPMENT

CE

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

129

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

130

We state in our promotion material: “Computer science spans a wide range, from its
theoretical and algorithmic foundations to cutting-edge developments in robotics, computer
vision, intelligent systems, bioinformatics, and other exciting areas. Information systems
focus on integrating information technology solutions and business processes to meet the
information needs of businesses and other enterprises, enabling them to achieve their
objectives in an effective and efficient way. Computer engineering is concerned with the
design and construction of computers and computer-based systems. Although may share
common grounds, all three are distinct from each other”.

9 Computer Science is not as important to society and business world as other
disciplines.

While the number of occurrences that this specific misconception was revealed during
interviews has decreased during the last three years, it still does exist. The primary reason
that contributes to the formation of this misconception is the belief that CS is concerned with
sending emails, browsing the Internet, word processing etc. As a result, candidates and
parents who lack understanding of the area justly fail to see the importance of the discipline
since they can not realize how the use of such application programs improves quality of life.
We state in our promotion material: “Are the following important for the society and business
world? Safe driving and flying? Privacy in communications? Correctness and integrity of
sensitive business and personal data? Safety of bank accounts, anytime-anywhere access
and management of knowledge? Reduction of cost in business operations? Effective health
services? If so, then Computer Science is at least as important to society and businesses as
other disciplines”.

10 Computer Science is for “nerds/geeks”!

Mostly used in secondary education, the stereotype of a “nerd/geek” refers to a student who
is highly competent especially in traditionally difficult courses such as mathematics and
physics. As a result, anyone who believes that CS is about mathematics and algorithms
assumes that only such students can attend and succeed in computing courses. In addition,
the stereotype of a “nerd/geek” is presented in many movies as someone who is awkward,
without any social life and with friendships limited to other “nerds/geeks”. As a result, other
students may be strongly discouraged to attend a discipline in which they will have no ‘fun’.
We state in our promotion material: “This is a distorted image that Hollywood films impose to
the general public. Computer Scientists seem to talk to each other with some undecipherable
technology terms but this is no different from what Doctors or Engineers or Lawyers or
Philosophers do. Computer Scientists are trained to acquire good communication skills and
general knowledge that will help them to interact with people for whom they provide
solutions”.

Interestingly enough, the vast majority of the people met with staff were not concerned with
research at all. This is somewhat disappointing for academic staff that spend considerable
amount of time in conducting research with, among others, the aim to enrich teaching and
learning with up-to-date developments. It is something that the public ignores its importance
or at least it seems that it is not one of the first priorities in choosing CS programmes.

3. The perception of final year CS students
As said above, there is strong evidence that these myths do exist, as thousands of
discussions held over the last decade with potential candidates and their parents revealed.

We thought of asking final year students about what they think about these myths. This is by
no means a way to validate the myths stated in this paper. However, we thought that by
asking our students what they believed before they started their studies and what when they
are about to graduate, we can demonstrate that some (or all) of these myths do exist.

We conducted a short survey on our final year undergraduates by distributing a
questionnaire with these 10 myths and asking them to express their beliefs in order to
consolidate our suggestions. Furthermore, we also thought that it would be interesting to see
their opinion (view) as to what current high school seniors believe about the 10 myths.
Twenty (20) students completed the questionnaire the results of which are presented in
figure 1 below.

Figure 1 Questionnaire Results

In the above figure, the first column of the table and the first bar of graph represent the
percentage of the students that agree with the 10 myths just before graduation whereas the
second column and the second bar denotes the percentage of the students’ who agreed with
each myth before they started their studies. The third column and the third bar depict what
the students think that current high school seniors think. Figure 2 below presents the same
results but sorted by popularity of the myths before our senior students started their studies.

Figure 2 Questionnaire Results Sorted by popularity of Myths

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

131

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

132

While the results of the questionnaire are simple to understand, a few key indications are the
following:

 our students did have some misconceptions regarding the CS field before they
started their studies but after three years almost all myths were significantly dropped

 the second myth was the strongest one and 56% of our final year students thought
that ‘CS is about programming’ before they started their studies

 a high percentage of the students believe that current high school seniors have the
wrong perception about the field of computer science and the CS profession with
myths 10, 8, 2 and 1 being the strongest ones

 unfortunately, it seems that students still believe that CS jobs are boring, lonely and
are all taken. This is expected from students that have not yet entered the
marketplace but also, that perhaps the market itself gives such an impression to
potential employees.

We also conducted the McNemar test for each of the ten myths in order to see the actual
significance of change in the views of the students. The McNemar test compares paired
samples and tests the significance of their difference. The results revealed that there is a
significant change in the number of students who changed their perception before and after
their studies for myths 2, 3, 6 and 8 with significance levels p 0.021, 0.031, 0.031, 0.031
respectively.

4. Conclusions
During the last five years, the Computer Science discipline is facing a crisis mainly due to the
great decline in student enrollment. Having acknowledged this problem computer scientists
and computer science educators conduct investigations in order to pinpoint the reasons that
CS is not appealing to students any more and to propose solutions that will restore the
popularity of the field. According to these investigations, one of the major sources of the
problem is that prospective students and the public in general have a distorted view about
the discipline itself, what a computer professional does and a computing career in general.
After fifteen years of interviews with potential applicants of our undergraduate CS
programme and their parents, we were able to determine a number of misconceptions that
exist. In this paper we present these misconceptions as myths about CS studies and
profession. Our intention is not to present a finalised list of prevailing misconceptions but to
launch a discussion on these myths among fellow colleagues in order to strengthen our
arguments. We believe that this approach can facilitate the marketing plans of CS
departments that would like to promote their programmes to potential students. As part of our
promotion of our undergraduate CS programme, we have created a leaflet entitled “10 Myths
about Computer Science”. This leaflet presents and then drops these misconceptions. The
leaflet is disseminated along with the other promotional material, such as examples of our
graduates who today have a lot of success in different fields and countries, such as e-
learning, security, telecommunications, etc., to anyone who seeks information about the
specific programme of study. We have also written articles in local newspapers and finally we
are planning to develop a web version of the myths which will be added to the department’s
web site.

References
1 Vegso, J. Interest in CS as a Major Drops Among Incoming Freshmen. Computing Research News

17, 3 (May 2005); www.cra.org/CRN/articles/may05/vegso.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

133

2 Foster, A. Student interest in computer science plummets. Chronicle of Higher Education 51, 38
(May 27, 2005), A31.

3 McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., Mander, K. Grand Challenges in
Computing Education. BCS, 2004, ISBN 1-902505-63-8

4 Patterson, D. Restoring the popularity of computer science. Commun. ACM 48, 9 (Sept. 2005), 25–
28.

5 Denning, P., McGettrick, A. Recentering Computer Science. Commun. ACM 48, 11 (Nov. 2005),
15–19.

6 Klawe, M., Shneiderman, B., Crisis and Opportunity in Computer Science. Commun. ACM 48, 11
(Nov. 2005), 15–19.

7 Computing Curricula 2005. ACM, IEEE-CS, AIS.
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CC2005-
March06Final.pdf

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

134

Working for a leap in the general perception of
computing
Angelo Lissoni1, Violetta Lonati2, Mattia Monga3, Anna
Morpurgo2, Mauro Torelli2
1
Kangourou Italia, Via Cavallotti 153, 20052 Monza (MI), Italy, lissoni@kangourou.it

2
Dipartimento di Scienze dell'Informazione – Università degli Studi di Milano, Via Comelico

39/41, 20135 Milano, Italy, lonati, morpurgo, torelli@dsi.unimi.it
3
Dipartimento di Informatica e Comunicazione – Università degli Studi di Milano, Via

Comelico 39/41, 20135 Milano, Italy, monga@dico.unimi.it

The name “informatics” is often associated with the set of skills necessary to use
specific software applications and not to the discipline itself. We believe it is urgent to
change this misperception, as it has negative impacts. To this end, we started a
project aimed at spreading the discipline of informatics among school children
through a game-contest called Kangourou, that has a successful tradition in the field
of mathematics. This paper reports the first steps of this initiative: we present a
concrete proposal, providing some examples of the content and the formulation of the
questions proposed and reporting the initial feedback obtained by testing them in pilot
classes.

Keywords
Computing principles, game-contest, primary education.

1. Computer science and informatics
The debate about the role of computers in the science of informatics is an ancient one. The
popular expression computer science has upset several scholars: Dijkstra [1] compared its
use to naming surgery the knife science or astronomy the telescope science; others accept
the idiom just as a relic of its historical roots, as descriptive as the etymology of the word
geometry (Greek γεωμετρία: geo = earth, metria = measure). All in all, among the experts of
the field the question is almost settled: even those who use the term computer science – as
common in the US – are normally quite convinced that the topic concerns the computation
process, rather than the computational devices that have made it possible and convenient.
Actually, the design of efficient computational devices remains an exciting research issue,
but it is more in the scope of computer engineering than informatics. Also, informatics should
be distinguished from the study of computer systems and their deployment, a subject that
should be more precisely called information systems.
Although well established in the field, these distinctions are much less clear to the general
public. Furthermore, the three areas of informatics, computer engineering, and information
systems, obviously connected with one another, have little to do with the skilled use of a
bunch of specific applications: in fact, being fluent in using a given computer application is
largely independent from the knowledge one may have in the aforementioned disciplines. In
other words: to be able to read a clock one needs virtually no knowledge about the laws of
pendulum.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

135

Another interesting remark about the various interpretations of the term informatics is due to
Claudio Mirolo [3], one of the promoters of the Task Force for the Research on Teaching of
Informatics at the University of Udine, who identifies at least three possible acceptations,
corresponding to different cultural approaches:
1. informatics as a science, providing its own peculiar key to interpret reality and its specific

approach to problem solving;
2. informatics as a technology, concerning the characteristics, structure and working

principles of the now ubiquitous hardware and software devices;
3. informatics as an instrument, providing practical tools to manage information in many

different contexts.
For the sake of clarity, in the following we will adopt the term applimatics to denote the use of
specific applications and computing to denote the field of computer engineering, informatics,
and information systems. While the latter term is widely accepted, the former is coined ad-
hoc: we actually think that the use of a distinct term may help in reducing the ambiguity
affecting the subject.
Getting some skills in applimatics can be very useful. For example, the "European Computer
Driving Licence" (ECDL) [6] initiative has successfully contributed to the spreading the basic
literacy of office automation tools among millions of people, who certainly took advantage of
that knowledge. ECDL is a certification program based on seven different modules:
1. Concepts of Information Technology
2. Using the Computer & Managing files
3. Word Processing
4. Spreadsheets
5. Databases
6. Presentations
7. Information & Communication
As a matter of fact ECDL teaches very little about sheer computing (virtually only the first
module concerns what we consider computing) and the acquisition of basic computing
concepts is often perceived as an unwanted overhead by ECDL candidates.
This is the symptom of a general misperception: whereas everybody feels it is important to
have a basic knowledge about word-processors and web browsers, an understanding of
computing is often considered a special domain knowledge to be acquired only by experts of
the field, since it is believed to have no immediate interest or usefulness in the real world.
This opinion is supported also by many educated people, as shown by the fact that the
conceptual contribution of the science of computing to other disciplines (such as cognitive
science, economics, mathematics, physics, and linguistics) is seldom acknowledged.
However, we believe some peculiar aspects of computing are sufficiently basic to be taught
as a fundamental formative subject. For instance, consider:
• the focus on the precise description of objects, processes, and protocols;
• the management of complexity through encapsulation and reuse;
• the synthetic power introduced by the constructs of formal languages;
• the flexible use of abstractions, that can be dynamically coerced to what is more useful in

any given moment, as in the case of data used as instructions and vice versa.
As it is clear to all the people working in computing, the misperception of informatics has
negative impacts: brilliant students tend to be attracted by other sciences because they are
not familiar with the challenges of our discipline, freshmen in computing courses sometimes
have distorted expectations, public funding of basic computing research is hard to raise, etc.
What can be done to change this matter of fact?

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

136

Our first and most fundamental suggestion is that our research community has to undertake
a cultural battle to clarify the difference between computing and applimatics, and to
disseminate the root principles of computing, starting from children education.
As far as education is concerned, we complete the picture by reporting some simple facts
about the teaching of informatics in Italy. Recently, in its "Curriculum directions for K-12
education" [2], the Italian Department of Education (MPI) has indicated "Information
Technology" as a means to increase the communicative power of students. Thus, the
introduction of information technology tools is encouraged in all subjects (from arts to
science) in order to "expand the space, the time, and the mode of social interaction and
experience". Even technology teachers seem to be often predominantly interested in the fact
that computers may be used to process texts, images, and other multimedia content, or to
provide communication facilities. And, although MPI mentions that most of today
technological artifacts have to be operated by signals and instructions, the mastering of this
kind of issues seems to be suggested more as a service to higher level tasks than as an
intellectual challenge in itself.
The actual implementation of MPI's directions is even conceptually poorer, since schools lack
resources to acquire information technology means and teachers are rarely competent in
computing. In the practice of teaching, at least in Italy, the scientific aspect of computing is
virtually absent and the term “Informatica” refers prevalently to what we have called
applimatics. Paradoxically enough, in the '80s, the rare pioneers that experienced the
teaching of “Informatica” intended it in the sense of computing, by proposing didactic
initiatives mostly connected with programming (for instance through the Logo language, cf.
e.g. [4]). Such initiatives are today considered outdated by most teachers, more attracted by
many appealing and user-friendly applications. However, these applications convey very little
about computing, indeed they might even obscure the interesting computational and
algorithmic aspects of such tools. We are convinced, on the contrary, that the awareness of
these intrinsic features may be essential to a critical, profitable and mature use of computing.
Vice versa, by overlooking these features, there is a danger that these tools, which are by
now ubiquitous and pervasive, may be perceived in some sense as mysterious and
indistinguishable from magic.
To cope with this situation, we started a project to introduce children to computing through a
game-contest called Kangourou that has a successful tradition and a well-established
experience in the field of mathematics. This paper reports about the first steps of this
initiative and is organized as follows: in Section 2 we briefly present the Kangourou, in
Section 3 we describe our current proposal for a Kangourou of informatics, and in Section 4
we draw some conclusions stemming from our first experiences.

2. The Kangourou game-contest
A game-contest, the Kangourou des Mathématiques, was created in 1991 in France by
André Deledicq on the model of the Australian Mathematics Competition, with the goal of
contributing to the popularisation and the promotion of mathematics among young people.
The success was immediate also thanks to the associated distribution of a massive and
pleasant documentation on mathematics to the participating pupils and their teachers.
The French experience was exported abroad, first to Europe and then to other continents
through an international association, Kangourou sans frontières, founded in France in 1995.
The association's aim is to promote the spreading of a basic mathematical culture by all
means and, in particular, by organising the annual game-contest to be held on the same day
in all participating countries. The game, whose intent is to attract the maximum number of
pupils without aiming at any national selection nor at a comparison between countries, has

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

137

had a great success and it now counts millions of participants among elementary and
secondary school kids (47,000 in Italy in 2008).
In conjunction with the contest, and under the trademark Kangourou, books on mathematical
games, brochures on mathematical dissemination to the general public, documents and
software are realised and widely spread, meetings and exchanges between children and
between teachers, colloquia, and training periods are organised.
In Italy, which joined the association in 1999, the game is organised in cooperation with the
Mathematics Department of the Università degli Studi di Milano [5].
As a consequence of the effectiveness of the event, the game-contest was extended to other
disciplines. In Italy, in cooperation with the British Institutes and the patronage of the
Università degli Studi di Milano and La Sapienza of Rome, the Kangourou for English as a
second language was created two years ago, which saw 11,500 participants in 2008. A team
of members from two Informatics Departments of the University of Milan, AICA and SDA-
Bocconi is now studying a formula for an informatics game-contest. In particular the following
issues must be defined:
• the cultural goals,
• the way the game-context should be carried out,
• the content and formulation of the questions,
• the ages of the participants.

3. The ambitions of the Kangourou of informatics
The Kangourou of informatics might offer, to both pupils and teachers, a correct view of
informatics and the oppurtunity to face the actual nature of computing, with particular regard
to scientific aspects of informatics, often unstressed in school syllabi. The main tool is, of
course, play. In fact, in primary schools play may have a strong educational valence, while
the competitive feature is utterly subordinate.

3.1 A concrete proposal

At present our proposal is conceived as follows.
1. The organization should be similar to that of the Kangourou of Mathematics. An

individual competition to take place in the classes, followed by a national final for the best
competitors. The questions of the first stage will involve multiple choice answers, in the
style of the other Kangourous, without using computers, since that would severely
complicate this stage. In the final competition, however, we expect to propose open
questions which might require the use of computers or specific programs.

2. For the first edition of this Kangourou we only expect to involve classes in secondary
schools (11-14 year old pupils), but the idea is to extend the competition to primary
schools (6-11 year old pupils) as soon as possible.

3. The subject of study of informatics is actually such a vast one that it is not easy to
determine which contents and levels of deepening should be suitable for young pupils.
Moreover, no definite programs exist for the subject and the choice of topics is left to the
teacher. For this reason a first set of test questions has been proposed to pilot groups of
pupils and teachers with the aim to collect their feedback and reactions.

3.2 Contents and formulation of the questions

The aim is to present the questions in a playful form, by creating fanciful contexts, and to
make topics and problems accessible even without previous experience with informatics.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

138

One has to tackle technical terminology, reference to computer components, codes and
specific representations of information, jargon from signal processing, cryptography, data
structures (trees, graphs and so on), primitives and composition rules, algorithm
representation, execution and complexity, recursion, sorting and searching, automata,
languages and grammars.
Presently, only a few classes have already experienced our proposal but we can testify the
first reactions of teachers and pupils were quite different. Teachers often appeared worried:
the questions proposed often dealt with completely unknown topics and they felt they would
not have been able to answer; on the other hand, even if students considered many
questions difficult too, they appeared to be less scared and more curious.

As an example let us consider a couple of the questions proposed in the test set.

Santa Claus has prepared a few gift parcels having different colors: red, yellow, blue, and he
has put them in two stores, mixing colors. Now he needs to know how many red parcels he
has stored. He has got some elves to help him, but each elf only knows how to perform one
operation and moreover Santa can choose only three of the following elves.
Arvo moves blue parcels from a store to the other.
Bjork moves red parcels from a store to the other.
Ceula moves parcels from a store to the other but he is color-blind.
Dino counts the parcels in a store.
Which elf will Santa NOT choose?

In this specific case, answering the question requires the ability to realize a complex plan by
composing a few basic operations. These abilities may be considered of a logical or
mathematical type, however the existence of explicit constraints endows the problem with
some typical computer science features. We estimated such a question to be quite difficult
for the audience, however, surprisingly enough, students declared it to be quite easy.
Actually, it turned out that very few of them were able to answer correctly, recognizing that
the unneeded elf is Arvo; on the contrary, almost all of them excluded Ceula. Clearly, this
means they did not build a complete solution to deduce their answer, but probably followed
this wrong shortcut: keeping the more specialized elves and exclude the more generalist
one.

Another example is the following.

Philip needs to choose a password to protect his e-mail. Which of the following passwords
ensures greater security?

1. Philip1995 [adding his birth year].
2. Ph1l1p [changing a few letters into numbers].
3. PhiLiP [using some capital letters].
4. Philipemail [to remember what the password is for].
5. TpitfIto! [the initials in the sentence “This password is the first I thought of!”].

In this case the aim is to convey attention to a basic operation common to most computer
activities – the choice of reliable credentials – which much too often is made with dangerous
superficiality. According to the first feedbacks, this question actually seems to be quite easy

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

139

for young students, probably more acquainted with such issues and less naïve than we
would think.

4. Conclusions
Notwithstanding the ubiquity and pervasiveness of the results of the science and craft of
computing in everyday life, the impact of its conceptual roots on modern thinking is still
unclear to the general public. The success of the computational approach is often confused
with the popularity of successful applications and the need for mastering computing
principles is mixed up with the skills needed to use a given system proficiently. To cope with
this situation we think it is urgent to change the misperception of computing, by introducing
children to its root principles as soon as possible. To this end we started to study how a
game-contest as the Kangourou could help in fostering the interest about computing through
amusement and play. Our first experiments are promising, although, as expected, the major
obstacles seem to stem more from the misunderstanding of the multiple facets of computing
on the side of adults rather than from a lack of interest in informatics on the side of school
pupils.

References
1 E. W. Dijkstra. On a cultural gap. The Mathematical Intelligencer, 8(1):48-52, 1986.
2 Ministero della Pubblica Istruzione. Indicazioni per il curricolo per la scuola dell'infanzia e per il

primo ciclo d'istruzione. Tecnodid Editrice, Napoli, 2007.
 http://www.pubblica.istruzione.it/normativa/2007/allegati-/dir_310707.pdf
3 C. Mirolo. Quale informatica nella scuola? 2003.
 http://nid.dimi.uniud.it/pages/materials /discussion/educazione.pdf
4 J. Muller. The Turtle's Discovery Book! Harvard Associates, 1996. Italian translation by Silvia

Gallina, Laura Menicagli, Guido Ramellini. http://www.tiziana1.it/ebooks/Risorse/TDBitv1.pdf
5 http://www.kangourou.it (Italian web site) and http://www.mathkang.org (official site of the French

association)
6 http://www.ecdl.org

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 140
Venice, Italy, December 4-5, 2008

Tools that support contribution-based
pedagogies
Paul Denny, John Hamer, Andrew Luxton-Reilly1
1The University of Auckland, Private Bag 92019, Auckland, New Zealand, {paul, j.hamer,
andrew}@cs.auckland.ac.nz

The “contributing student” approach, introduced by Collis, turns the student
from passive consumer of information to an active and engaged co-creator of
resources for others. While the sharing of student produced content may be
handled manually in small classes, tools are required to effectively support this
approach in large classes. We report here on our experiences with, and
student perceptions of, the tools we currently use to support contribution-
based pedagogies.

Keywords
Aropä, Contributing student, Contribution-based pedagogies, Peer assessment, Peer review,
PeerWise, Self assessment

1. Introduction
Contribution-based pedagogies require students to engage in activities that involve the
creation and sharing of learning resources that are used by other students [1] [2]. This
contribution is typically (although not necessarily) peer reviewed. A number of significant
benefits arise from their use. Higher-order cognitive processes such as evaluation, reflection
and critical thinking are emphasized. Communication, teamwork and self-assessment, skills
integral to effective operation in knowledge economies, are developed, building a foundation
that supports lifelong learning. Students are transformed from passive receptors of
information to active and critical members of a community engaged in the process of
constructing knowledge.

Wenger, McDermott and Snyder [3] describe communities of practice as “groups of people
who share a concern, a set of problems, or a passion about a topic, and who deepen their
knowledge and expertise in this area by interacting on an ongoing basis”. A focus on
student-driven learning by emphasising contribution and feedback helps to form a community
of practice amongst the student population, in which students learn from and with each other.
Brookfield [4] notes that peer learning is crucial for success. Students learn from their peers
through advice, information and skill modelling. He states: “The learning activities of
successful self-directed learners are placed within a social context, and other people are
cited as the most important learning resource.” (p. 9).

Contribution-based pedagogies may have additional significant benefits for female students.
Barker et al. [5] suggest that retention of women in Computer Science may be improved by
creating a classroom culture in which learning is a social or community practice rather than a
solitary one, and Cohoon [6] recommends more interaction among classmates and the
development of learning communities.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 141
Venice, Italy, December 4-5, 2008

The information age is characterized by a massive amount of rapidly changing information
distributed across wide geographic and information spaces. Learning in the information age
“increasingly requires 'learning to participate' in social learning systems” [7]. Birenbaum [8]
states:

… successful functioning in this era demands an adaptable, thinking, autonomous
person, who is a self-regulated learner, capable of communicating and cooperating
with others. The specific competencies that are required of such a person include

a) cognitive competencies such as problem solving, critical thinking,
formulating questions, searching for relevant information, making informed
judgements, efficient use of information, conducting observations,
investigations, inventing and creating new things, analysing data, presenting
data communicatively, oral and written expression;

b) meta-cognitive competencies such as self-reflection and self-evaluation;
c) social competencies such as leading discussions and conversations,

persuading, co-operating, working in groups, etc. and
d) affective dispositions such as for instance perseverance, internal motivation,

responsibility, self-efficacy, independence, flexibility, or coping with
frustrating situations (p. 4).

Students must develop the skills that enable them to operate effectively in this environment if
they are to be successful. A radical shift in pedagogy is required to prepare students
appropriately. According to Biggs [9], good course design should focus on student learning,
and activities should align closely with the desired outcomes. As teachers in higher
education, we are responsible for designing assessments and activities that help students to
develop the ability to:

• work independently,
• filter large amounts of information,
• critically evaluate the quality of information,
• act as part of a community, and
• use online tools to communicate effectively.

Peer- and self-assessment activities are used to help students develop exactly these kinds of
attributes [10]. Stefani [11] states that if we want our students to be autonomous, reflective
and independent, then our assessment practices should include these qualities. Boud [12]
argues that self-assessment is central to effective learning and that students should be
making complex judgments about the criteria for good practice in a given area. Furthermore,
courses that do not encourage self-assessment can actually undermine lifelong learning [13].
The literature on both self-assessment [14] [15] and peer assessment [16] report numerous
benefits for students, including:

• help to consolidate, reinforce and deepen understanding, by engaging students in
cognitively demanding tasks: reviewing, summarising, clarifying, giving feedback,
diagnosing misconceptions, identifying missing knowledge, and considering
deviations from the ideal;

• highlight the importance of presenting work in a clear and logical fashion;
• expose students to a variety of styles, techniques, ideas and abilities, in a spectrum

of quality from mistakes to exemplars;

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 142
Venice, Italy, December 4-5, 2008

• provide feedback swiftly and in quantity. Feedback is associated with more effective
learning in a variety of settings. Even if the quality of feedback is lower than from
professional staff, its immediacy, frequency and volume may compensate;

• promote social and professional skills;
• improve understanding and self-confidence; and
• encourage reflection on course objectives and the purpose of the assessment task.

In smaller classes with few students, contribution based pedagogies can be successfully
employed manually. However, additional support is required in large classes to handle the
workload associated with the distribution and management of student contributed resources.
We have developed two web-based eLearning tools that facilitate meaningful student
contribution and collaborative learning. Using our tools, students can share and comment on
each other's documents, practice peer assessment, and develop demonstrably valuable
learning resources with minimal effort required from academic staff.

• Aropä [17] has been developed to support peer assessment as a routine coursework
activity.

• PeerWise [18] has been designed as a tool to help students revise course material by
generating, sharing, evaluating and practising self-test questions in a collaborative
environment.

In this paper, we report on the tools that we use to support regular, large-scale self- and
peer- assessment. Our tools have been used in over a dozen courses and have involved
more than 1,000 students each semester over the last four years.

2. Aropä
Aropä was developed as a tool to manage the administration of peer assessment activities. It
removes the need to manually distribute and collect paper copies of student work.
Documents to be reviewed are uploaded online, and downloaded for viewing by the
appropriate reviewers. Reviews are entered through a web form that can be fully customised
by the instructor. Aropä also manages the allocation of reviews, calculation of (weighted)
average grades, and an assortment of other administrative tasks.

Our main interest in creating Aropä was to make peer assessment possible as a routine
activity even in large, undergraduate classes. In this, Aropä has been very successful, with
over 1,000 students using it each semester. Aropä has been in use since 2004 by classes in
Academic Practice, Business, Civil Engineering, Commercial Law, Computer Science,
English, Electrical Engineering, Environmental Science, Information Management, Medical
Science, Pharmacology, and Software Engineering. The class sizes range from 12 to 850.

For a student, using Aropä involves three steps. First, she uploads a document (typically a
report, computer program, essay, etc.) through a standard web file upload page. The second
step is to read and review the allocated submissions. Finally, she reads the feedback
provided by her anonymous reviewers. A snapshot of the main interface is shown in Figure
1.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 143
Venice, Italy, December 4-5, 2008

Figure 1: The main page for a student using Aropä. All three student activities (uploading, as author;

reviewing; and receiving feedback) are available from this page (uploading is not shown).

For an instructor, using Aropä involves: deciding on the date submissions are due, the length
of the review period, the number of reviews to be allocated to each student, and designing
the grading rubric. Allocating three to five reviews to each student seems to give a good
balance between the need to provide a variety of feedback and the time required to write the
reviews. Long review periods have largely proven unsuccessful. One of the strengths of
peer assessment is in providing rapid feedback, and we have found reviewer participation
rates fall away if the reviewing does not start immediately after the submissions are
complete. Allowing two days to at most a week for reviewing has generally worked well.

We have found that Aropä tends to be used in three distinctive ways: (a) formative feedback
on a draft; (b) critical reflection after an assignment; and (c) for summative assessment.
These differ in the timing of the activity, the style of the grading rubric, and the level of
compulsion and associated marks. The rubric partially shown in Figure 2 is a typical
example of a summative assessment activity. The criteria are quite precise and detailed. An
instructor using this style of rubric is primarily interested in giving feedback to the author,
rather than having the reviewer reflect closely on the marking process, which is tightly
controlled. Consistency of marking is a major consideration when the assessment carries
significant weight toward the student’s final grade, and Aropä provides facilities to identify
wayward reviewers and to give greater weight to the marks from reviewers who have done a
good job. Marks are often awarded for both the authoring and the reviewing, using a “review
of the reviews” for the latter. This provides a strong motivation for students to take the
reviewing seriously (although there have been remarkably few incidents of problems in this
regard).

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 144
Venice, Italy, December 4-5, 2008

Figure 2: A grading rubric, showing Likert-style selections with detailed commentary provided by the
instructor. Rubrics can also include open-ended comment fields and yes/no check boxes, as well as

images, tables, multiple levels of headings, and character and paragraph styles.

An example of a grading rubric for formative feedback is shown in Figure 3. This rubric
guides the reviewer in commenting reflectively on a draft essay. There are no quantitative
elements, just a series of open-ended comment boxes. Since the essay is just a draft, the
author has an opportunity to incorporate any feedback into their final version. Significantly,
students have reported that reviewing other essays helped them identify faults in their own
writing. The feedback process is two-pronged.

Figure 3: A formative grading rubric. The rubric is comprised of open-ended responses only, and

explicitly requests the reviewer state their opinion, with no expectation of there being a single “correct
answer”

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 145
Venice, Italy, December 4-5, 2008

The third type of use is a combination rubric that includes both formative and summative
elements. These are often used in courses with a series of short weekly or fortnightly
assignments, to add a brief peer assessment step onto the end of each. Students in these
courses often report finding value in simply reading work from their peers. This allows them
to judge their own performance relative to the class. Over-confident students are given a
reality check, and students suffering from a lack of confidence (in computing, this frequently
means women) are reassured that they are not doing so badly after all.

3. PeerWise
PeerWise was developed to enable students to create, share and evaluate multiple-choice
questions with accompanying answers and explanations. All of the content on PeerWise is
developed by students as a course progresses, and remains available for revision purposes
prior to final examinations. All activity on PeerWise, such as developing new questions,
answering existing questions, and rating and providing feedback on questions is confidential,
which is designed to encourage participation from students who may otherwise find it
intimidating to contribute to a public resource.

3.1 Design Overview

For a particular student, the questions in PeerWise can be classified into three groups: those
that have been created by the student, those that have been created by others and which the
student has answered, and those that have been created by others but which the student
has not yet answered. The main menu (Fig. 4), displayed once a student logs in, is divided
into these three sections: "Your questions", "Answered Questions" and "Unanswered
questions", which are described in detail next.

Figure 4: The main menu for the PeerWise system

3.1.1 Your questions
This section (Fig. 5) displays all of the questions that a student has contributed. The items
are displayed in a table with columns listing the date the question was created, how many
times the question has been answered and the current rating of the question. The table can

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 146
Venice, Italy, December 4-5, 2008

be sorted with respect to any of these columns. There is also a column that displays the
difficulty of the question, as perceived by students who have answered it, and a column that
indicates whether or not the question is "suitable". A simple metric is used to determine the
suitability of a question, which requires that the rating of the question is greater than 2 and
that the most popularly selected answer matches the answer suggested by the author of the
question. If either of these conditions is not met, it may indicate the question is tricky or
contains errors.

The details of a question are displayed when it is selected from the table. These details
include the question text, as well as a histogram showing how often each alternative has
been selected, and any feedback that has been provided by students who have answered it.
While viewing their contributed questions, the author is able to provide a written response to
any feedback about their question.

Figure 5: Page showing the questions written by the student

To create a new question, the student provides a question stem and between two and five
alternatives. The student indicates which of the alternatives is correct, and provides an
explanation for the answer. The explanation is displayed to all students upon answering the
question, and is designed to assist students who have answered the question incorrectly to
understand their error. A simple tagging system allows question contributors to indicate the
relevant topics that their questions assess. The tags are presented in a cloud that enables
students to quickly locate questions on topics of interest. As soon as a new question is
contributed, it immediately becomes available in the "Unanswered questions" section (Fig. 6)
for all other students in the course.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 147
Venice, Italy, December 4-5, 2008

Figure 6: Page showing unanswered questions and topic cloud

3.1.2 Unanswered questions
Every student has access to all of the questions in the system. The unanswered questions
are presented in a table from which the student can select individual questions to answer.
The columns of this table include the perceived difficulty, number of responses, and current
rating of each question. As the questions are also tagged by topic, students using PeerWise
for drill-and-practice revision can spend their time answering highly rated questions on topics
of interest to them, at a difficulty level they feel comfortable with.

Once a student selects an answer to a question, they are immediately shown the correct
answer suggested by the author of the question, and the number of times each alternative
was selected by other students in the course. The explanation provided by the question
author is also displayed, as are all student comments written about the question. A simple
metric is used to assess whether the selected answer is correct. If the answer selected by
the student matches the answer suggested by the question author, and in turn this matches
the most popular answer selected by other students, then the answer is deemed to be
correct. In other scenarios, different icons are displayed depending on whether the student
agreed with the author, or with the most popular answer selected by other students.

At this point, a rating form is displayed, which allows the student to rate the quality and
difficulty of the question, and provide their own feedback. The quality rating is on a scale of 0
to 5, and the difficulty can be specified as either "easy", "medium" or "hard". As questions
are answered, they are moved from the “Unanswered questions” section to the "Answered
questions" section (Fig. 7) where they remain available for review at any time.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 148
Venice, Italy, December 4-5, 2008

Figure 7: Page showing answered questions

3.1.3 Answered questions
The questions that a student has currently answered are always available for review, and are
displayed in a table in the Answered questions section. If a student has provided feedback
on a question, they can check to see if the author has responded to the feedback in this
section. In addition, the accuracy of the ratings and correctness metric for these questions
improves as more students respond.

3.1.4 Leaderboards
Students’ contributions are anonymously ranked on a basic leaderboard (Fig. 8). From logs,
we see that a number of students regularly check their status in these leaderboards which
we believe provides motivation for contributing beyond the minimum requirements for
assessment. Specific tables display the top rated questions, and rank students on the
number of questions that have been answered, on the popularity of question authors and on
the popularity of students who have written feedback on questions.

Figure 8: Page showing leaderboard

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 149
Venice, Italy, December 4-5, 2008

3.2 Current usage

PeerWise was first introduced at the start of 2007, and has since been used in 12 courses at
the University of Auckland and 4 courses at the University of British Columbia. While still in
use at the time of writing, there have currently been over 7000 questions and 170000
answers contributed by 3000 students. While the teaching staff, style of course
examinations and requirements for assessment have varied greatly amongst these courses,
we can report on several patterns of use that appear to be common to all courses.

3.2.1 Contributing questions
Firstly, most students contribute only the minimum number of questions that are required for
assessment. Developing questions can be very time consuming and students may feel they
get more benefit from answering many questions in the same time that they could contribute
just one, which is supported by the following qualitative data:

 "I answered lot of questions but only developed 2 questions because I don't
enjoy making questions"

 "I think I gained more from answering than submitting."

However, we do see evidence in the qualitative data that at least some students feel
they learn more from taking the time to develop new questions:

 "Thinking about actually forming a question helps more than simply
answering them."

 "Developing questions makes me read the book and actually thinking deeply
about the subject."

 "I had to think of the possible wrong solutions students would fall for and
required alot of thinking from me, which in the end was a lot of help because i
was just about able to answer any question that was on the same topic as my
question. That was the biggest learning experience for me!"

Despite the fact that the majority of students are reluctant to contribute more questions than
are required, PeerWise has been used in courses where contributing questions is voluntary.
This has proven unsuccessful in small courses (less than 100 students), but remarkably
successful in large courses (at least 500 students). The success may be attributed to the
fact that the students who are willing to contribute questions voluntarily are motivated and
keen, and tend to produce good quality questions. Once there are a certain number of
questions in the system, which tends to occur in large classes, it becomes useful as a
revision resource for other students.

We have found PeerWise to be most positively received in classes with a conservative
requirement on the number of questions that must be contributed per student. Having a high
contribution requirement places significant load on the students, and can lead to a reduction
in the quality of the questions available. In one 12 week course, students were required to
submit two original questions every week, and this appears to have been too heavy a load
for most students. Qualitative feedback supports this:

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 150
Venice, Italy, December 4-5, 2008

"How about 2 question for every two weeks? Seriously need more time to
actually study..."

"1/week instead. Too many questions!"

"Having to contribute 2 unique questions / week is discouraging - I'm only willing
to put so much time towards PeerWise, and so far all of that time has been
consumed coming up w/questions, leaving no time to answer any."

"Reducing the questions to once a week may help reduce the frequency of
redundant questions."

3.2.2 Answering questions
Students answer many more questions than they are required to. In some courses, the
number of answers submitted by students was more than 20 times the minimum requirement
[19]. It is particularly interesting to note that in almost all courses, there is a significant
increase in the number of answers submitted to PeerWise immediately leading up to course
tests and exams. Students seem very positive about using the bank of questions developed
by their peers for revision purposes. In one large course, 600 students submitted in excess
of 40,000 answers in the five days leading up to the course test [Fig. 9].

Number of answers submitted per day

0

2000

4000

6000

8000

10000

12000

14000

16000
1-M

ay

2-M
ay

3-M
ay

4-M
ay

5-M
ay

6-M
ay

7-M
ay

8-M
ay

9-M
ay

10-M
ay

11-M
ay

12-M
ay

13-M
ay

14-M
ay

Date

Nu
m

be
r o

f a
ns

w
er

s

Figure 9: Number of answers submitted per day in the two weeks leading up to a course test, held on
the evening of 14th May. There were 600 students answering questions during this period.

3.2.3 Providing feedback
Students in all courses made use of the feedback facilities to provide comments about
questions in the system. Although there are typically no marks allocated to this process, in all
courses students made a substantial number of comments.

3.3 Efficacy

To investigate the efficacy of the PeerWise tool with regards to student learning, we analysed
quantitative data obtained from a large first-year programming course. This course had 460
students whom collectively contributed 1238 questions and 16247 answers to PeerWise.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 151
Venice, Italy, December 4-5, 2008

The top students in the class exhibit different characteristics to the weakest students [19]. In
order to understand how the use of PeerWise affected different students, we divided the
class into quartiles and for each quartile, asked whether the use of PeerWise provided any
measurable benefit. The quartiles, each consisting of 115 students, were formed using the
mark obtained in the mid-semester test which was conducted before PeerWise was
introduced. Within each quartile, students were ranked on their level of activity with
PeerWise, and we compared the most active half with the half that was least active, using
several different measures of activity.

Active use of PeerWise improved students’ grades in both the multi-choice and written
sections of the final examination. The improvements in the written sections seem to imply
that the use of PeerWise resulted in deep learning, rather than simply coaching students into
better MCQ technique. Our analysis of different measures of PeerWise activity suggests that,
in addition to time-on-task, voluntary engagement through the question discussion forum is a
strong contributor to this improvement.

The benefits of PeerWise are not confined to students of just high or just low ability. We see
improvements across all performance quartiles, and most consistently in the top and bottom
groups. There is some evidence to suggest the benefit to mid-ability students is less
significant, which raises the challenge of developing variations to PeerWise which may better
engage learners at all ability levels.

3.4 Qualitative feedback

We conducted a survey of students in a first year programming course who had used
PeerWise throughout the second half of the semester. There were 439 respondents, and
each was asked to provide their thoughts on the following open-ended questions:

• Q1: Which features of PeerWise did you find most useful/interesting/enjoyable?
• Q2: If you contributed more than the minimum requirement, why?
• Q3: What do you believe are the biggest problems with PeerWise?
• Q4: What do you believe are the biggest benefits of using PeerWise?

We categorised the responses to these questions, and the 5 most common categories of
responses are summarised below:

Q1: Which features of PeerWise did you find most useful /
interesting / enjoyable?

0 5 10 15 20 25 30 35 40 45

Rating system

Writing questions

Reading comments

Answering questions

Writing comments

Number of comments

Q2: If you contributed more than the minimum requirement,
why?

0 10 20 30 40 50 60 70

Enjoyable / Interesting /
Fun

Learning

Safely ensure minimum
requirements met

Answering helped me
learn

Revision / Practice for
exam

Number of comments

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 152
Venice, Italy, December 4-5, 2008

Q3: What do you believe are the biggest problems with
PeerWise?

0 10 20 30 40 50 60 70

Author's answer not
correct

Poor quality questions

Suitability metric (most
popular answer)

Unfair or inappropriate
comments / ratings

Nothing

Number of comments

Q4: What do you believe are the biggest benefits of using
PeerWise?

0 20 40 60 80 100 120

Being shown answers /
explanations

Writing questions helps
you learn

Large pool / variety of
questions

Using PeerWise helps
you learn

Study / exam revision

Number of comments

4. Discussion
Students using Aropä are focused on the formal peer review process. They are required to
formally assess a number of pieces of work according to a specified marking rubric. The
rubric provides guidance for the evaluation activities. Students must interpret and apply the
specified criteria, making critical judgements about the quality of work they are reviewing.

PeerWise focuses student attention on assessment and how it connects with the learning
outcomes of a course. Students are expected to create questions that probe understanding,
requiring the application of higher-order cognitive skills.

Both systems are used to develop appropriate self assessment skills. Using Aropä, students
are expected to apply the marking rubric to their own work as well as that of their peers.
Students using PeerWise use the question bank to assess their own understanding.

Feedback is a critical component of effective education practice, and one that is difficult to
deliver in large classes which often rely on the ability of casual tutors to provide the
feedback. PeerWise and Aropä both use the student cohort to provide this feedback. As the
feedback is not from an authoritative source, the act of receiving feedback requires further
evaluation and judgement to determine its accuracy and what benefits can be obtained from
it. These systems encourage the application of knowledge, enquiry and critical thinking
skills.

5. Related Work
The design of the PeerWise tool has previously been reported in [18]. An analysis of the
common usage patterns over a range of courses has been performed [19], and the efficacy
of the tool has been evaluated by considering whether increased activity leads to improved
student exam performance [20]. Students of all ability levels appear willing to answer many
more questions than they are required, with increased usage occurring during revision
periods prior to exams. The most actively engaged students perform significantly better in
written exams than students of equivalent ability who are less active on PeerWise.

The Aropä tool has been described previously in [17]. Qualitative data collected from two
large courses was analysed to evaluate the effectiveness of the tool. The evidence suggests
that Aropä successfully supported peer review activities in large classes and contributed to
student learning on many different levels.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 153
Venice, Italy, December 4-5, 2008

Although there are previous reports of systems that support student-developed MCQs [21]
[22] [23] [24], and peer review in large classes [25] [26] there are no reports of such systems
being implemented so extensively in such a large number of courses. Kern et al. [27]
recently noted that while the use of peer review in the classroom has numerous benefits,
there has been only one report of large scale education application of peer review,
conducted in 2001, and involving 411 students. They report that peer review should be used
in higher education and should become regular educational practice.

6. Conclusions and future work
Web technologies are able to provide a great variety of environments that engage students in
different forms of collaborative learning. The two systems described in this paper are
excellent examples of this. They are both practical. The systems have been designed to
scale to accommodate arbitrarily large class sizes, and they do this with minimal additional
load on instructors. The systems also contribute to the dual need for students to not only
learn specific course material, but also to develop into self-reliant learners able to collaborate
with others. They do this by having students take on multiple roles, as receivers and
generators of knowledge, within a learning community.

We now have sufficient experience in using these tools to be able to make recommendations
on how they can best be adopted in a range of classes and subject areas. The data we are
collecting on student performance and attitudinal change is providing evidence that the
contribution-based approach is indeed effective in the ways we have hoped. We are also
looking at identifying subgroups of students who do not engage with the activities or show
performance gains, in the hope that better understanding these groups will lead to ideas for
new tools and refinements for our existing ones.

References
1. Collis B. The contributing student: A blend of pedagogy and technology. In: EDUCAUSE

Australasia, Auckland, New Zealand; 2005.
2. Hamer J. Some experiences with the “contributing student approach”. ACM SIGCSE Bulletin

2006;38(3):68-72.
3. Wenger E, McDermott R, Snyder WM. W. M. Cultivating communities of practice: a guide to

managing knowledge, Harvard Business School Press; 2002.
4. Brookfield, S. (1985): Self-directed learning: a critical review of research. New Directions for Adult

and Continuing Education 1985;25:5-16.
5. Barker LJ, Garvin-Doxas K, Roberts E. What can computer science learn from a fine arts

approach to teaching? In: SIGCSE ’05: Proceedings of the 36th SIGCSE technical symposium on
Computer science; 2005. p. 421–5.

6. Cohoon JM. Recruiting and retaining women in undergraduate computing majors. ACM SIGCSE
Bulletin 2002;34(2): 48–52.

7. Mayes T, Fowler C. Learners, learning, literacy and the pedagogy of e-learning. In: Martin A,
Madigan D, editors. Digital Literacies for Learning. Facet Publishing; 2006.

8. Birenbaum M. Assessment 2000: Towards a pluralistic approach to assessment. In: Birenbaum
M, Dochy FJRC, editors. Alternatives in assessment of achievements, learning processes and
prior knowledge. Boston: Kluwer Academic; 1996. p. 3-30.

9. Biggs J. Teaching for quality learning at university. 2nd ed. Buckingham: The Society for
Research into Higher Education and Open University Press; 2003.

10. Boud D, Cohen R, Sampson J. Peer learning and assessment. In: Boud D, Cohen R, Sampson J,
editors. Peer learning in higher education. Kogan Page; 2001. p. 67–81.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 154
Venice, Italy, December 4-5, 2008

11. Stefani LAJ. Assessment in partnership with learners. Assessment and Evaluation in Higher
Education 1998;23:339-50.

12. Boud D. Enhancing learning through self assessment. Kogan Page; 1995.
13. Boud D. Assessment and learning: contradictory or complementary? In: Knight P, editor.

Assessment for Learning in Higher Education. London: Kogan Page; 1995. p. 35-48.
14. Boud D, Falchikov N. Quantitative studies of student self-assessment in higher education: a

critical analysis of findings. Higher Education 1989;18(5):529–49.
15. Falchikov N, Boud D. Student self-assessment in higher education: a meta-analysis. Review of

Educational Research 1989; 59(4):395–430.
16. Topping K. Peer assessment between students in colleges and universities. Review of

Educational Research 1998;68(3):249–76.
17. Hamer J, Kell C, Spence F. Peer assessment using Aropa. In: ACE ’07: Proceedings of the ninth

Australasian conference on computing education; Darlinghurst, Australia; 2007. p. 43–54.
18. Denny P, Luxton-Reilly A, Hamer J. The PeerWise system of student contributed assessment

questions. In Simon, Hamilton M, editors, ACE ’08: Proceedings of the tenth Australasian
conference on computing education; Wollongong, NSW, Australia; 2008. p. 69–74. (CRPIT; vol
78).

19. Denny P, Luxton-Reilly A, Hamer J. Student use of the PeerWise system. ITiCSE’08, June 30–
July 2, 2008, Madrid, Spain; 2008. p. 73-77.

20. Denny P, Hamer J, Luxton-Reilly A, Purchase H. PeerWise: Students Sharing their Multiple
Choice Questions. To appear in: ICER’08, 6–7 September, 2008, Sydney, Australia; 2008.

21. Arthur N. Using student-generated assessment items to enhance teamwork, feedback and the
learning process. Synergy 2006; 24:21–3.

22. Barak M, Rafaeli S. On-line question-posing and peer-assessment as means for web-based
knowledge sharing in learning. International Journal of Human-Computer Studies 2004;61:84–
103.

23. Horgen SA. Pedagogical use of multiple choice tests - students create their own tests. In: Kefalas
P, Sotiriadou A, Davies G, McGettrick A, editors. Proceedings of the Informatics Education
Europe II Conference. SEERC; 2007.

24. Yu F, Liu Y, Chan T. A web-based learning system for question posing and peer assessment.
Innovations in Education and Teaching International 2005;42(4):337–48.

25. Lewis S, Davies P. Automated peer-assisted assessment of programming skills. In: Information
Technology: Research and Education; 2004. p. 84–6.

26. Sitthiworachart J, Joy M. Effective peer assessment for learning computer programming. In
ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation and technology in
computer science education. New York, NY, USA; 2004. p. 122–6.

27. Kern VM, dos Santos Pacheco RC, Saraiva LM, Pernigotti JM. Peer review in computer sciences:
Toward a regular, large scale educational approach. In: Neto FMM, Brasileiro FV, editors.
Advances in computer supported learning. Information Science Publishing; 2007. p. 45–65.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

155

Software Development as the Core of
Informatics
Tony Cowling
Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello
Street, Sheffield, S1 4DP, England, A.Cowling@dcs.shef.ac.uk

This paper argues that the traditional view of programming as the core activity within
the study of informatics at undergraduate level needs to be enlarged, to include the
whole series of activities that comprise the software development lifecycle. This
series of activities is defined precisely, along with the restrictions that should be
applied to them to balance the need to keep this core of the curriculum small against
the need to cover adequately the whole of the lifecycle. To explain why this core of
the curriculum needs to be extended the paper describes how the understanding of
software development activities has evolved, both in model curricula and in practice,
showing how a gap has emerged between curricula and practice that needs to be
filled. Then the material that needs to be brought into the core of informatics to fill
this gap is discussed, considering both curriculum content and course structures,
and then discussing why this additional material is important. Finally the paper
describes how the various disciplines within informatics build on this enlarged core to
reflect their distinctive features.

Keywords
Model curricula, programming, progressive development of skills, software engineering.

1. Introduction
If one were to ask a typical educator in informatics – and particularly a typical educator in
Computer Science (CS from now on) – what they considered to be the core of the discipline
of informatics, it is likely that key words in their answer would be “programming” or
“software”. Further, they might then describe the relationships between these two essentially
in terms of programming being the activity of creating software, as implied by the definition
given in Computing Curricula 91 [1] of programming as “the entire collection of activities that
surround the description, development, and effective implementation of algorithmic solutions
to well-specified problems”. There are thus good historical reasons for putting this emphasis
on programming and also for understanding the relationship between programming and
software in this way, and these will be reviewed later in this paper. The main purpose of the
paper is, however, to argue that this relationship between programming and software has
changed in recent years to such an extent that describing it in this way is now far too
simplistic, so that this historical emphasis on programming must therefore be reconsidered.
Specifically, in the few years immediately leading up to the Computing Curricula 2001 project
(CC2001 from now on) and the creation of its CS volume [2] (CS2001 from now on), huge
changes were taking place in the industrial and commercial practices for creating software,
but these were at best only partially reflected in CS2001 itself. The overall effect of these
changes has been to emphasise that the process of creating software consists not just of a
single activity, namely programming, but of a number of activities, of which programming is
just one. An illustration of this is that it is commonplace to refer to the software development
lifecycle, where the most important feature that is common to all the different descriptions of

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

156

this lifecycle is that it covers a wide range of activities. Some of these, such as software
design or software testing, do cover various activities that could be described as aspects of
programming, but others of them – particularly those that come early in the lifecycle –
certainly are not programming in any shape or form, although (as will be discussed later)
they are at least as important to the success of the whole lifecycle as the programming-
related activities, if not more so. Hence, the basic argument of this paper is that, since the
creation of software has now grown as an activity in this way, informatics curricula need to
recognise this growth. Specifically, this means that these curricula need to expand their view
of the core of the curriculum, so as to recognise that it should now be taken to be this wider
activity of software development (SD from now on), rather than just the programming
component of it that has traditionally had this role.
Given this aim, the structure of the rest of the paper is as follows. Firstly the scope of SD
needs to be defined, which is done in the next section, while section 3 reviews the relevant
history, both of the role of programming and the evolution of SD. Section 4 then presents the
elements that need to be included in the curriculum if SD is to form its core, and section 5
justifies teaching these elements, while section 6 discusses each of the disciplines within
informatics to show how SD forms the core of it. Finally, section 7 summarises the
conclusions of the paper, and the further developments that are needed for its ideas.

2. Defining Software Development
The aspect of informatics that is being described here as SD was identified in the course of
work [3] concerned with defining the stages through which students develop the practical
skills needed to do software engineering (SE from now on). This work regarded the
achievement of basic skills in programming as a foundational stage, and it then identified the
next stage as achieving the ability to perform SD. This was intended to be the most minimal
subset of SE that was meaningful, in the sense of covering in some form the whole of the SD
lifecycle. As such it involves far more than just the recognition of the roles of processes and
models within programming [4, 5], important though these are. Rather, SD progresses on
from programming by dealing with systems instead of just programs, and so shifting focus
from the technology of software to the kinds of purposes for which it is applied, where
typically the problems are far less well specified than the earlier definition of programming
applies. Thus, the skills to be developed in the SD stage were defined as a tightly restricted
subset of the more general abilities that would be required for a software engineering
graduate (as discussed in [6]).

2.1 Restrictions on Software Development

Specifically, the previous definition of SD as a subset of SE restricted it to the use of basic
methods in order to produce software systems that provide feasible solutions to sets of
functional requirements. Hence, SD involves some form of each of the main activities of the
lifecycle, from requirements elicitation through to deployment. Then, the significance of the
restrictions to basic methods, feasible solutions and functional requirements is that, unlike
SE, SD is not intended to give any consideration to quality issues, whether of the product
being created or the process by which it is created, with two exceptions. One of these is
explicit, and is the basic need for the systems that are created to function correctly, meaning
that when their functions are executed they should produce results that satisfy their
specifications, since if they did not then those systems could not be said to be solutions to
their functional requirements. The other exception is implicit, and is that the systems created
must provide interfaces for their users that are sufficiently usable to allow a user to actually
make the systems perform their required functions without too much difficulty, as otherwise
those systems again could not be said to be solutions to their functional requirements. In

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

157

practice, though, the use of standard techniques for the construction of menu-driven user
interfaces, which is implied in the definition of SD, should normally be sufficient to achieve at
least this basic level of usability, and this is why this exception is described as implicit.
More recently, work on the significance of application domains for informatics curricula [7]
has indicated that another restriction now needs to be added to this previous definition of SD,
so that for the purposes of this paper it is now being defined as the use of basic methods to
produce software systems that provide feasible solutions to sets of functional requirements,
which are typical of those arising in a simple and well-defined application domain. This
additional restriction is intended to exclude application domains that require consideration of
more than just functional requirements, by eliminating those domains that are characterised
either by demands for systems to possess particular non-functional properties (eg safety,
security, real-time performance, etc), or by demands for particular process methods to be
used in constructing the systems (eg hazard analysis, modelling of performance or power
consumption, etc) in order to achieve such properties.
A practical effect of this restriction of SD to simple and well-defined application domains is
that it simplifies the processes that need to be used in most stages of the development
lifecycle. For instance, typically any such domain will not require all the various kinds of
analysis models to be constructed in order to represent the requirements for a system
adequately, or to specify them precisely enough. Similarly, for each such domain there will
usually be one style of architecture that is most commonly employed for systems, such as
three-layer architectures for small business systems or transform centre ones for simple
embedded systems. Hence, the adoption of such a style as the standard for its domain will
reduce significantly the number of design choices to be made, and so simplify the design and
construction activities for the systems.

2.2 The Content of Software Development

The combined effect of these restrictions is that, while there are obvious similarities between
SD and SE, there are also significant differences between them. The similarities arise
because both are concerned with the complete development lifecycle, from requirements
elicitation and analysis through some kind of specification (not necessarily formal), system
design, construction and testing to system deployment. Also, both focus on the need for
systems that are developed to meet their requirements. The differences arise from the
limitation of SD to only considering straightforward functional requirements, and hence only
involving very basic development processes. This limitation makes SD a purely qualitative
discipline, because the decisions to be made at each stage in the development lifecycle only
have to consider a restricted range of options, and so can be framed in qualitative terms. By
contrast, SE is in principle a quantitative discipline, even if in practice the amount of
qualitative material to be covered within a curriculum to support the quantitative aspects (and
particularly the variety of situations where these may be applied) means that undergraduate
programmes in SE often have to compromise on the extent to which they can cover its
quantitative aspects.
This is therefore why this previous work on the progressive development of students’ skills
argued that they needed to master SD, with its qualitative approach, before they could move
on to studying the quantitative aspects that characterise SE. The core of the argument that
this paper makes is then to extend this aspect of the progressive development of skills to the
whole of informatics. This is not to suggest that students who have studied SD then need to
progress on to studying SE, but rather that if they are going to study any discipline within
informatics in depth they need to begin by studying the whole of SD, and not just the small
part of it that is represented by programming.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

158

3. A History of Software Development
The history of the ideas being discussed here goes right back to the very first proposals for a
model curriculum for informatics, and the early evolution of software development can be
traced effectively through the various curriculum models that were produced. Towards the
end of the 1980s, however, the evolution of SD began to diverge from its treatment within
curriculum models, and so these later developments need to be considered separately.

3.1 Curriculum 68

Curriculum 68 [8] was the first model curriculum for what we now call informatics, but which it
then called CS, and it structured it into three divisions: information structures and processes,
information processing systems, and methodologies. The first of these then consisted of
three subject areas: data structures, programming languages, and models of computation;
and so was concerned almost entirely with the theories of both software and programming,
where the latter was seen just in terms of the representation of algorithms. The second
division, information processing systems, consisted of four subject areas: computer design
and organisation, translators and interpreters, computer and operating systems, and special
purpose systems. Hence, it was concerned partly with software and partly with hardware.
The third division, methodologies, was described as being “derived from broad areas of
applications of computing”, and covered ten subject areas, such as numerical mathematics,
data processing, process control, etc, which would now usually be described instead as
applications areas. Each of these areas then focused primarily on the software that was
being applied within it, rather than on the applications themselves.
More importantly, for one of these application areas an advanced course was proposed, on
Large-Scale Information Processing Systems, where the detailed description in the appendix
included this explanation. “The process of establishing such a large system involves a
number of steps: (1) the determination of the processing requirements; (2) the statement of
those requirements in a complete and unambiguous form suitable for the next steps; (3) the
design of the system, i.e. the specification of computer programs, hardware devices, and
procedures which together can "best" accomplish the required processing; (4) the
construction of the programs and procedures, and the acquisition of the hardware devices;
and (5) the testing and operation of the assembled components in an integrated system.”.
Hence, even at this earliest stage it was recognised that there was actually far more to
developing a software system than just programming. On the other hand, the content being
proposed for this course only covered some of these steps, and the report [9] on the very first
conference on software engineering, which took place some six months after publication of
this model curriculum, strongly indicates that at that time very little systematic knowledge
actually existed as to how they should be carried out.

3.2 Curriculum 78

Ten years later, Curriculum 78 [10] adopted a different fundamental structure, in which the
primary feature was the distinction between core and elective courses, where the core
courses were then described as covering four sets of topics, namely: Programming Topics
(of which there were 5), Software Organization (8 topics), Hardware Organization (7 topics),
and Data Structures and File Processing (7 topics). Even though these sets of topics were
not necessarily intended to each occupy similar amounts of curriculum time, the fact that
three out of the four had titles that implied that they were concerned with software or
programming continued this emphasis on these two aspects, even though the topics in the
software organization set were actually concerned mainly with the structures needed in
assembly language programming, rather than with those used in what at that time were

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

159

commonly called problem-oriented languages. Also, there was a much clearer view of
programming as an activity, and hence as part of a process: for instance, the outline of the
course CS1 Computer Programming I included the statement: “The emphasis of the course
is on the techniques of algorithm development and programming with style”.
Paradoxically, though, there appeared to be less recognition than previously that SD involved
more than just programming, for even though there was an advanced course (CS14) on
Software Design and Development, its content essentially just consisted of Design
Techniques (defined very much in programming terms), Organization and Management
(which we would now describe as basic project management methods), and a team project.
Similarly, perhaps reflecting the limitations of knowledge suggested above, the advanced
course (CS11) on Database Management Systems Design, which was the successor to the
Curriculum 68 course discussed above, was mainly concerned with models and techniques,
rather than with any process for the design or implementation of a database.

3.3 Curriculum 91

By contrast, Curriculum 91 was structured around ten compulsory subject areas: nine that
had been defined in an earlier report [11], plus a tenth for social, ethical and professional
issues. One of these ten subject areas was Software Methodology and Engineering, which
mainly covered material from SD, and was allocated a similar number of core hours to each
of the other four large areas, so that it had about a sixth of the total time. Of the other nine
subject areas, two of the large ones (Algorithms and Data Structures and Programming
Languages) were concerned explicitly with programming, but also an eleventh subject area
was suggested, called Introduction to a Programming Language. This was intended to be
optional, but in practice the material in it was sufficiently fundamental that any real
programme would have to include it. On the face of it, therefore, programming only
appeared to be allocated just over twice as much time as SD.
Part of the significance of this time allocation is that there had obviously been a major debate
about the role of programming between the publication of the earlier report and of this model.
The view taken in the earlier report can be summarised by its statement that “Many activities
in computing are not programming ... therefore the notion that “computer science equals
programming” is misleading.”. By contrast, the curriculum model did emphasise the
significance of programming, as “Programming occurs in all nine subject areas in the
discipline of computing ... programming is an extension of the basic communication skills that
students and professionals normally use in day-to-day communication.”.
Reflecting this, the first two knowledge units of Software Methodology and Engineering, viz
Fundamental Problem-Solving Concepts and The Software Development Process, which
were allocated nearly half of the time for the subject, were actually oriented heavily towards
programming, particularly for the suggested laboratory exercises. Hence, material relating to
other activities within SD was essentially confined to the other three knowledge units in this
area, viz Software Requirements and Specifications, Software Design and Implementation
(which also covered a certain amount of programming material), and Verification and
Validation. Thus, while the body of knowledge in this curriculum seemed to recognise the
importance of SD as a whole, it actually treated programming as much more important, and
in particular it defined far more material related to it.
The other key feature of Curriculum 91 is that much of its practical importance came from the
complete programme structures (called implementations) that it proposed. In principle some
of these were not too heavily oriented towards programming – for instance, there is one
(implementation G) that is explicitly defined to have a software engineering emphasis, and
which is strongly oriented towards SD – but in practice the only ones that were widely
accepted were those that did have a strong emphasis on programming. In part this is
probably a consequence of the status of the subject area Introduction to a Programming

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

160

Language, for in practice most educators would consider that the material in it could not be
regarded as optional, and so those implementations which omitted it (the majority of them,
including the one focusing on software engineering) were very unlikely to be utilised as
models for real programmes.
Within the implementations that did include the subject area Introduction to a Programming
Language, such as implementation A for Computer Engineering (CE from now on) and
implementation D for CS, the main core courses (designated CS101 and CS102, and entitled
Introduction to Computing I and II) were essentially very similar in content to each other, as
well as being a natural updating of the courses CS1 and CS2 defined in Curriculum 78,
which may explain why educators still commonly refer to these two introductory courses as
CS1 and CS2. Hence, the content of these two courses was primarily oriented towards
programming and related software concepts, as indicated by the following extract from their
descriptions “In the context of a modern programming language, such topics as problem
solving strategies, basic data structures, data and procedural abstraction, and algorithm
complexity are discussed.”. Given their role as the primary core courses, this emphasis
therefore reinforced strongly the view that programming was synonymous with the creation of
software, and was the core of informatics.
By contrast, in each of these two implementations the non-programming elements of the
subject Software Methodology and Engineering were covered in a pair of courses designated
C302 Software Systems and C303 Software Engineering, with most of the coverage of
requirements analysis, specification, software design (particularly architectural design) and
software validation coming in CS303, so that even CS302 had quite a strong programming
flavour. Hence, these course structures very strongly suggested that these activities were
definitely advanced ones, and only to be considered once the core activity of programming
had been thoroughly mastered. Furthermore, although the implementations specified these
courses as required, their allocation to the third level put them alongside most of the optional
topics, which may have led many instructors to draw parallels with the division between core
and elective topics in Curriculum 78, and so actually treat these courses as optional too.

3.4 Computing Curricula 2001

With the decision during the CC2001 project to split informatics into its separate disciplines,
and create separate model curricula for each, it was perhaps inevitable that the various
models should focus as much on the differences between the disciplines as on the elements
that were common to them. There were some common elements, and in particular the
volume for SE [12] (SE2004 from now on) imported several of the knowledge areas directly
from CS2001, although it changed their structure by treating some of these complete areas
as forming single knowledge units. CS2001 also appeared to try to integrate its SE
knowledge area more with the rest of its core than Curriculum 91 had done, even though
material on basic problem-solving was moved from this area to Programming Fundamentals,
and largely replaced by a new knowledge unit on Using APIs (which was similarly oriented
towards programming aspects of SD), as well as the addition of other units covering non-
programming aspects such as software project management, formal methods, component-
based development, etc.
Similarly, in terms of the course structures, while CS2001 defined the same three levels of
courses as Curriculum 91, its main successor to the latter’s courses CS302 and CS303 was
designated as CS290 Software Development. Hence, the classification of this as an
intermediate course suggests that its content was intended to be closer to the core than had
been the case for the old CS302 and CS303, although like the old CS302 this content was
actually oriented primarily towards the programming aspects of SD, as indicated by the main
topics covered. Five of these are almost completely focused on programming: event-driven
programming, using APIs, computer graphics, introduction to HCI, and GUIs; hence only the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

161

other three take a wider view of SD, viz: human-centred software evaluation, human-centred
software development, and software development techniques. Thus, while in principle this
course may have been intended to bring SD closer to the core of CS, in practice it did not
succeed in doing this.

3.5 Modern Software Development

Part of the reason for this is that, in defining its knowledge area and courses relating to SD in
this way, CS2001 had actually failed to track major developments in the practice of SD.
Whereas it was true for both Curriculum 68 and Curriculum 78 that there was then little in the
way of established practice for SD that could sensibly be taught in a curriculum, by the time
of Curriculum 91 this had begun to change. The processes of requirements analysis and
modelling were better understood and becoming more systematic, as evidenced by the
publication of Yourdon’s text Modern Structured Analysis in 1988 [13], and so too was the
activity of software design, as evidenced by the publication of texts in the UK describing the
early versions of SSADM (eg [14]).
Over the next ten years these improvements in the practice of SE gathered pace, as
competition between alternative approaches led to the so-called “methodology wars”, which
ended with the mergers during 1994 and 1995 of the three main competitors into a single
organisation (Rational Software). Following these mergers a unified modelling language
(UML) was created, along with a development method (the unified process) based round its
use: some of the first textbooks covering the use of UML appeared in 1997 [15], and the first
editions of the three definitive UML texts were published in 1999 [16, 17, 18]. These steps
represented enormous improvements in the technology of SD, by making all of the activities
within it much more systematic than they had previously been. As a consequence, by 2001
practice in SD was far more disciplined, and hence far more amenable to being taught, than
it had been just ten years earlier, and it has continued to develop further since then.

3.6 Curricula versus Practice

Despite the practical importance of these improvements in the methods of SD, and in
particular the importance of the concepts and technologies associated with UML, the phrase
UML only occurs three times in CS2001. Two of these occurrences are in the knowledge
unit IM3 Data Modelling, where UML is suggested as an alternative to entity-relationship
diagrams, and the other one is in one of the flavours of the course CS102, namely the
version called Objects and Data Abstraction. Here UML use cases are suggested as one of
the modelling tools that might be used in teaching the design aspects of object-oriented
programming, along with class diagrams, although UML is not mentioned in relation to these.
Similarly, state diagrams are mentioned in the context of operating system scheduling, but
again no connection is made between these and UML, even though UML includes such
diagrams. As for the unified process, this is not mentioned at all.
Hence, this model curriculum for CS comes very close to ignoring completely these huge
steps forward in the practice of SD. One can only speculate on why this was: presumably it
was somehow considered that they were really part of SE rather than CS, even though they
were not mentioned in the SE knowledge area either. This is a completely erroneous view,
though, for while the most obvious aspect of UML may well be its diagrammatic notations,
arguably the more important features of it and of the technologies related to it are the models
for the software structures that are represented in these diagrams. Hence, while the use of
the diagrams may be so fundamental to SE that it is also fundamental to SD, the meanings
of the diagrams are equally fundamental to CS, for they relate to the very structures of the
software that CS in particular, and informatics in general, claim to study.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

162

Indeed, the only property that differentiates the models of software structures that underpin
UML from the models underpinning the study of simple data structures or algorithms is that
of scale. Large scale is, however, now an integral feature of nearly all real software, and so
it would be completely unrealistic to argue that large-scale software structures might
somehow be less deserving of study than small-scale ones: if anything, their potential for
greater complexity makes it even more essential that the fundamental features of them are
well understood. Hence, a key part of the argument for extending the core of informatics
from just programming to the whole of SD is that educators can not afford to ignore these
larger-scale CS structures that underpin the whole of SD, at the expense of concentrating on
the smaller-scale structures that are characteristic of programming.

4. The Curriculum for Software Development
This description of how SD has evolved, and of some of the reasons for regarding it is
important, gives a partial indication of the material that needs to be included in the curriculum
for informatics if SD is to be treated as its core, and in particular it has emphasised the need
for the knowledge element of SD to include study of the large-scale structures of software as
well as the small-scale structures that form part of the topic of programming. The key feature
of the curriculum for SD is, though, that it is one of the most practical parts of informatics,
and so its focus has to be on the skills in developing software that students acquire, as much
as on the knowledge that underpins these skills. Hence, the best way of structuring this
description of the curriculum for SD is in terms of the main stages in the SD lifecycle that
students need to be able to work through.

4.1 Required Knowledge and Skills

The first of these stages is requirements analysis, and this involves two sets of skills. One
set is concerned with eliciting, from the client for a system, information that will contribute to
the requirements for it, through activities such as interviews and other structured meetings,
reading and analysis of background documentation, observation, etc. The other set is
concerned with creating models from the information that has been obtained so as to present
it in a structured form, where (as already indicated) the de facto format for these models is
now to express them as UML diagrams: class diagrams to describe the business data that a
system must handle, and use case and activity diagrams to describe the functions that a
system must be able to carry out. The skill of constructing these models is therefore a key
element for SD, but students also need to be able to create the contextual documentation for
these models in some appropriate format, such as traditional requirements documents, story
cards as used in extreme programming [19], or any suitable combination of these.
The second stage in the lifecycle is specification, but this does not necessarily mean formal
specification. The starting point for it is that, while a requirements document describes the
functions that a system should perform, it rarely defines precisely enough the effects that any
function should have on the data that the system is handling. Hence, there are three main
skills that students need to develop for this stage. One is the ability to analyse a set of
requirements, so as to determine what extra information is needed about the effects that
functions should have. The second is the ability to elicit the information needed to provide
the necessary detail, which may involve explaining to a client the consequence of different
possible choices that could be made. The third is the ability to document this information in
some format that is at least suitably structured, even if not necessarily fully formal.
The third stage in the lifecycle is software design, where the limitations inherent in SD mean
that architectural design is likely to reduce to selecting whatever standard architecture is the
normal one in the domain of the systems that are being studied. Hence, the main skill that
students need for this stage is the ability to create a detailed design for a system within the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

163

framework, and in particular to create relevant models to explain the operation of a design.
These again will typically be UML diagrams, such as package diagrams to show the static
structure of a system and collaboration diagrams (most commonly sequence diagrams) to
show its dynamic operation.
As well as these skills, this stage will typically require students to apply knowledge about
various kinds of components that may need to be included in typical software systems. For
instance, almost every system will require some kind of user interface, preferably menu-
driven and quite possibly graphical, and so students will need to know about the technology
and tools typically used to build such interfaces. An embedded system will also have to
handle inputs from sensors and outputs to actuators, and so students constructing systems
in this application domain will need to know about the characteristics and operation of these.
On the other hand, such systems may only have very simple requirements for storing data
persistently, whereas systems in other application domains are more likely to require either a
relational database or a simple object-oriented database for this purpose, or some kind of
knowledge base for artificial intelligence systems. Thus, students will need to know about
the appropriate choice of storage technologies, and also about basic aspects of operating
systems, networking, data structures, algorithms and APIs for these structures, as systems
within the scope of SD may need to use these in their design as well.
The fourth stage in the lifecycle is software construction, which mainly involves the
programming activity that is already well covered. Historically system testing then formed the
fifth stage in the lifecycle, but modern practice is that system testing and construction are
carried out together, with unit testing accompanying the programming of individual units of
code such as classes, and integration testing accompanying the assembly of these into
larger units of code, so that only final acceptance testing needs to be carried out once
construction is complete. Thus, the additional skill that students need for this stage is the
ability to design appropriate test cases and then apply them systematically, at each of the
levels of detail during the construction and final evaluation of a system.
The final stage in the lifecycle is system deployment, which for the kinds of systems within
the scope of SD typically consist of just two technical steps: system installation and system
initialisation. Furthermore, the restrictions on the scope of SD mean that typically installation
is done just by copying files from one location to another, either manually or by means of a
simple script. Similarly, any initialisation needed for a system is done by running a program
which forms part of that system, and which creates any initial data that may be needed by
the rest of it. Hence, the knowledge and skills required for these technical steps are simply
the same as those required for the design and construction stages.
As well as these technical steps, though, system deployment also involves the provision of
appropriate documentation for a system, not least to explain to users how to install and
initialise it. The creation of documentation that explains what users need to know, and in
terms that they can understand, is very definitely a different skill from those required in the
earlier stages of the lifecycle. Indeed, it is sometimes left to specialist technical writers, but
system developers have to be able to communicate effectively with technical writers, and so
some experience of actually creating documentation is necessary to help them understand
what is involved in this activity. Of course, it shares some aspects with the communication
skills needed for requirements elicitation, in that both involve being able to understand the
viewpoint of users who may not have much technical knowledge of computing, but who do
understand the tasks that they want a software system to perform. Fundamentally, though,
the two differ in that requirements elicitation is concerned with trying to obtain information
from users about a system that does not yet exist, whereas documentation is concerned with
conveying information to users about a system that has just been created.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

164

4.2 Relationships with Curriculum Models

The important feature about this material is that it is already included in the various CC2001
volumes, so that treating SD as the core of informatics does not involve adding huge
amounts of material to the present cores of these curricula. For instance, the basics of
software processes and of the various stages in the process are already in the SE area of
CS2001, the basics of interface construction are already in its HCI area, and the various
kinds of component technologies mentioned above have areas that cover their basics too,
such as Information Management, Operating Systems, Net-Centric Computing, etc. Thus, to
make SD the core of the discipline just needs extra time to be allocated to three aspects.
Firstly, for some of these topics SD requires students to be able to apply them, rather than
just knowing about them, and so they will need to be covered and practiced in more detail.
Secondly, since some of these topics are concerned with larger-scale structures in CS, some
time may need to be spent on the relationships between the different scales of structure that
exist. These two aspects will therefore require some learning outcomes being revised to
address higher levels within Bloom’s taxonomy [20]. Thirdly, these topics need bringing
together into a coherent whole, but this mainly involves adapting the structures of courses
rather than the curriculum content, as discussed below.
Similarly, the domain of embedded systems comes within the scope of CE, and here the
equivalent material is already included in the corresponding areas of the CC2001 volume for
CE [21] (CE2004 from now on), because these areas are taken directly from CS2001, and so
the same comment about adaptation applies to them. By contrast, for information systems
(IS from now on) the CC2001 volume [22] (IS2002 from now on) has a rather different
structure, with three top-level units to its body of knowledge, of which one is entitled Theory
and Development of Systems, but while this is oriented to a more general view of systems, it
does also naturally contain the topics described above as necessary for SD. Hence the
changes that would be required here would be similar to those needed for CS and CE.
The only exception to this situation is information technology, where the body of knowledge
in the CC2001 volume [23] has a broadly similar structure to those of the CS and CE
volumes, but does not have any knowledge area for SE or SD. Hence, a lot of such material
would have to be added to this model to provide adequate coverage of SD. By contrast,
SE2004 naturally includes all of the material needed for SD, since (as explained earlier) SD
is a restricted subset of SE, and so there is no additional content required, although [3] did
conclude that some rearrangement of the packaging of material into courses would provide
better support for focusing on SD in the early stages of the curriculum.

4.3 Relationships with Course Structures

While providing adequate coverage of SD would only require small amounts of material to be
added to the curriculum models for most of the disciplines, if SD is to form a coherent core
then (as already indicated) this has to be reflected in the course structures as well, which will
require rather more significant changes. Specifically, by comparison with CS2001, it will no
longer be appropriate to begin with a sequence of courses such as CS101, CS102 and
CS103, and then CS290, all of which are largely oriented towards programming, before
beginning to study in detail concepts such as the process of SD, or the way in which it
integrates topics from these previous courses. Apart from the rest of CS290, CS2001 defers
these to advanced courses, for which it proposes titles (eg CS390 Advanced Software
Development), but does not specify any details of the expected structure or content. In
arguing that these course structures need to change, though, it is not intended to suggest
that the material covered in courses such as CS101 to CS103 is unimportant, since that is

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

165

clearly not the case. Rather, this material needs to be seen by the students in its context as
part of SD, and this means that this context needs to be introduced early as well.
One model for how this might be done is provided by SE2004, which defines a sequence of
four core courses. This begins with SE101 and SE102, which cover broadly similar material
to CS101 and CS102, but where the intention is described as “... this course would start with
the SE material, and teach all the material as a means to the end of solving software
engineering problems for customers”. These first two courses do therefore provide quite a
lot of the context for the programming-oriented material, and this is then developed to give a
more comprehensive treatment of SD in the second half of the sequence, which is the pair of
courses SE200 and SE201.
An alternative to this sequential model in SE2004 is the one developed by the author and
colleagues in the Department of Computer Science at the University of Sheffield, which is
based on the observation that the large-scale structures and models used in SD are
sufficiently separate from the smaller-scale models associated with programming that the two
can be introduced alongside each other, as illustrated in table 1. Here, the conventional
sequence of two courses labelled CS101 and CS102 runs alongside the sequence labelled
SD101 and SD102, which starts with a general introduction to SD and then works through
the stages of the lifecycle. Thus, CS101 and SD101 are almost completely independent, but
SD102 needs to reflect the relationships between programming and software design, and the
role of programming in the construction process, so that it must either parallel with CS102 or
follow on from it.

Table 1 A core course structure for software development.

Introductory Course Sequences (in parallel)
CS101 Introduction to Programming →
SD101 Software Lifecycles & Requirements →

CS102 Data Structures & Algorithms
SD102 Software Design & Construction

Intermediate Courses (order not specified)
Databases (eg CS270),
Methods for Software Analysis & Design,

HCI and User interfaces (eg CS250),
Integrating Project

The intermediate courses in table 1 are then based largely on those in CS2001, but
incorporating the kinds of modifications discussed in section 4.2, meaning that the course on
methods for software analysis and design would be significantly different from CS290. Also
an integrating project course is proposed, which is not meant to detract from the role of
capstone projects, but rather to recognise that because they are capstones they come too
late in the curriculum for the practical lessons learnt to have any impact on the rest of what is
being studied. Hence, the purpose of this integrating project is to give students a coherent
view of SD, by putting into practice what they are learning about it in other courses, and also
to help prepare students for undertaking their capstone projects.

5. The Importance of Software Development
The main conclusion that is being drawn from the historical evolution of SD is that a gap has
emerged between current practices in teaching informatics and actually doing it, as these are
represented respectively by model curricula and by commercial and industrial approaches to
creating software. The argument so far has then been that this is a gap which needs to be
filled, but a sceptical educator might well ask just how important it actually is to fill this gap,
and there are three main points that need to be made in response to this.
Firstly, there is an internal issue within informatics concerning the relationships between
education and industry. In any discipline, undergraduate degree programmes need to have
educational goals that are wider than simply preparing students for employment within that

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

166

discipline, but equally these programmes must take proper account of those goals that reflect
the needs of potential employers of their graduates. For informatics programmes, where a
high proportion of graduates do go into the computing industry, this means that it is important
to pay attention to the range of skills that employers in this industry require. Essentially the
computing industry is concerned with all aspects of SD, and not just with programming, and
so this means that the industry requires the full range of SD skills, and not just programming
skills. Of course, the range of activities within the industry go far beyond SD as it has been
defined here, and so it also requires a huge variety of knowledge and skills that go beyond
those of SD, in all sorts of ways, but these are additional to the core of the discipline and so
outside the scope of this argument, which is concerned just with this core. In this framework
the function of this core is to ensure that students gain a realistic minimal preparation for their
future employment, and this need for realism requires the broader range of skills represented
by SD to be provided, rather than just a narrow focus on programming. Hence, to achieve
this the core of informatics needs to be widened to consist of SD.
Secondly, widening the core of informatics to cover the broader range of knowledge and
skills needed for SD is also important for the external view of informatics as a discipline. In
recent years falling enrolments for degree programmes in informatics have emphasised that
this external view is not healthy, and there are various reasons for this, many of which have
little to do with the curriculum content or structure of degree programmes. One reason that is
closely related to these features, however, is the “geek” image of computing in general, and
the activities of creating software in particular. At the heart of this image is the view that
informatics is concerned purely with technology, which has arisen largely because it has
been seen to be equated with programming, and with the narrow set of technical skills
needed for programming. If the core of informatics is broadened, so as to encompass the
much wider range of skills and styles of working that are needed for SD, then the whole of
informatics can gain the same benefits in avoiding this “geek” image that have been claimed
to arise for SE from its wider scope [24].
Thirdly, for many informatics degree programmes there is an issue which is related to that of
enrolments, namely retention, in that worryingly large numbers of the students who start off
by studying informatics then switch away from it to studying other subjects instead. Again
there are various reasons for this, some of which are related to the technical difficulty of the
activity of programming, but one of these reasons is that students do gain the impression,
from the nature of the programming tasks that they are asked to carry out, that they are only
seeing part of the process. That is, they can see that the programs which they are asked to
write will perform some task, but in many cases they will not be able to see that this task is
either useful or realistic.
By contrast, if SD is taken as the core, and the treatment of it includes any kind of practical
project, then the starting point that the students see is the elicitation of the requirements for
some system that clearly is meant to perform a task which should be either realistic or useful,
or preferably both, and this immediately addresses one problem. Also, they then see the
process right through to the end, where a system has been created and can be deployed, so
that as a result of their efforts they can now see this task actually being performed by this
system. This therefore provides them with a much more satisfactory overall experience, and
if students feel satisfied with what they have learnt of a discipline they are more likely to want
to continue to study it than if their experiences have been unsatisfactory. This will, of course,
act more effectively if this project comes earlier in the curriculum, which is part of the
argument for not leaving it until the capstone of the course. Also, another factor in making
such a project act more effectively is the extent to which the system being developed is to
carry out a task that is both realistic and useful, where the most satisfactory situation is for
the project to be producing a system for a real client. On the other hand, the involvement of
real clients raises a variety of other issues, which while relevant to the teaching of SD have
to be regarded as outside the scope of this paper, and thus not pursued any further here.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

167

6. Informatics Beyond Software Development
An important feature of the argument that SD should be treated as the core of informatics is
that it is not just restricted to one of the disciplines within informatics, such as CS, but applies
to all of them. This could be seen as trying to blur the distinctions between the different
disciplines within informatics, and while there might be arguments to be made that a greater
unity of these different disciplines would be a good thing, they would be a distraction from the
main argument of this paper, and so will not be pursued. Rather, what does need to be
considered is whether treating SD as a common core will actually blur these distinctions to
any significant extent, or whether the disciplines would still retain their individuality.
A key issue here is that there are actually two separate notions of core, and these need to be
distinguished. One notion is associated with the individual disciplines within informatics,
which each have their own formal cores, which are precisely defined in their model curricula
in terms of the knowledge units that form them and the amount of material from each of
these units that ought to be covered. The second notion is the one that this paper is mainly
concerned with, and is much less formal, in that it applies to the role of larger constructs (eg
programming or SD) within the whole of informatics. Hence, the kind of relationship that is
being suggested here is that this informal core should largely be contained within the formal
core for each discipline, but that the differences between the disciplines will affect to some
extent the way in which the larger ideas are interpreted: for instance, by affecting the choice
of application domain for SD. Hence, the informal core will not just be the intersection of the
various formal cores, or even some subset of this intersection, but may vary to some extent
between the disciplines.
Consequently, the formal core of each discipline can be regarded as consisting of two
components. One of these components is the material required for SD, and so represents
this informal core of informatics, while also reflecting the application domains that are specific
to the discipline. The other component for each discipline is the material that is additional to
this informal core, and that is included in the formal core of that discipline in order to reflect
the nature of the discipline. Of course, this additional material may also be related to SD in
some way – indeed, given the efforts that were made during the creation of the various
volumes of CC2001 to ensure that their cores were coherent it would be surprising if it were
not – but in each case these relationships are not the reasons why this material is in the
formal core, since these derive purely from the philosophies of the various disciplines.
On the other hand, the fact that these relationships exist between the informal core of SD
and the formal core of each discipline does serve to indicate the importance of SD, and in
practice such relationships take two forms. One form is where material extends the scope of
SD by widening the range of software systems that students would be capable of developing,
such as the units from the Intelligent Systems area in CS2001. Similarly, in the case of
CE2004 the units from the Digital Logic or Digital Signal Processing areas would be
examples of this, as they would extend the kinds of candidate systems from simple
embedded ones towards firmware systems or to ones that form specialised processing units.
The other form of these relationships is where material will strengthen the understanding that
students have of the technologies that are applied in SD, by examining them in more detail
than is needed for simply using them within SD. Examples of this in CS2001 would be the
units from knowledge areas such as Architecture and Organization, Operating Systems or
Net-Centric Computing, and similarly in CE2004 the units from the Circuits and Signals or
Electronics areas could be seen in this way, although they could also be viewed as extending
the range of candidate systems even further into hardware.
Similar examples to these could also be identified in the other disciplines within informatics.
For instance, in IS a key issue is that of how the requirements for software systems arise
from problems situations within business organisations, as identified using methodologies
such as soft systems analysis [25]. Such activities are outside the scope of SD itself as it

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

168

has been defined here, not least because sometimes the result of them is to identify that
actually the solution to the problem that has been identified is to reorganise some aspects of
the business, and that until this has been done the last thing that is needed is to try to create
or introduce some new piece of software. Similarly, in SE some of the core topics are
concerned specifically with going beyond SD to consider quantitative aspects of products or
processes, because the essential difference between SE and SD is that the former involves
these quantitative aspects whereas the latter is explicitly restricted to excluding them. Also,
in each case both IS and SE include in their formal cores units that provide deeper
underpinning to the SD material, such as the IS2002 units on Computer Architectures,
Operating Systems and Telecommunications, or the SE2004 topics that import the
equivalent units from CS2001.

7. Conclusions
There are therefore seven main conclusions to be drawn, where the most basic is that there
is a clearly identifiable set of activities that form SD, of which programming is just one.
Furthermore, while this set of activities is common to all of the disciplines within informatics, it
can be defined rigorously in a way that reflects for each discipline the nature of that
discipline, and the application domains that are specific to it.
Secondly, this whole set of activities has actually existed and been recognised since the first
curriculum model was created for what we now call informatics, even if at that time
programming was the only activity in the set for which enough systematic material existed
that it could be defined in detail in a curriculum. Thus, thirdly the discussion of how SD
methods have evolved has shown that this situation has now changed as the technology of
SD has become established. Fourthly, the analysis of CS2001 in particular has shown that
this evolution has not been adequately reflected in most of the curriculum models, so that
there is now a significant gap between these models and the practice of SD.
Fifthly, this gap between curriculum models and commercial or industrial practice is one that
needs to be bridged, for several reasons. One is that the technology being ignored concerns
models of large-scale software structures, and these are just as important for understanding
informatics as the models of small-scale structures that underpin programming. Another
reason is that giving the other activities within SD equal important with programming will
have great benefits for both the internal and external images of informatics. Internally it will
make the overall balance of material that is studied more realistic, and hence prepare
students better for future employment. Externally it will widen the range of skills that
students must develop, away from the focus on purely technical skills that has led to the
damaging “geek” image of informatics, and by giving students a more complete experience
of what informatics is about it may help to improve retention within degree programmes.
Sixthly, for most of the disciplines within informatics bridging this gap will not actually require
much change in the content defined by their curriculum models. What will require change is
the course structures, since these currently leave the introduction of the material relating to
activities other than programming until too late. In particular, it has been shown that some of
the concepts of large-scale structures in informatics, which underpin SD, are sufficiently
different from the smaller-scale structures of programming that the two can be introduced in
parallel without causing confusion. Finally, since treating SD as the core of informatics does
not require changes to the curriculum content, it also does not have any adverse effect on
any of the individual disciplines, because it does not affect those parts of their formal cores
that are not part of SD, but that do characterise the various disciplines.
Hence, this paper has been able to make the case that SD should be treated as the core of
informatics, but there is still a lot of further work that needs to be done for this to become a
common approach. In particular, this paper has only been able to outline the kinds of
changes to course structures that would be required, whereas what would be needed would

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

169

be a set of course structures that were defined in as much detail as the existing proposals in
the various CC2001 volumes. This will be a necessary further step to making SD the core of
informatics: and then all that will remain will be to convince enough other informatics
educators that they should move in this direction. Not an easy task, but certainly a
worthwhile one!

References
1 Tucker A B et al. Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task

Force. IEEE Computer Society, 1991.
2 ACM/IEEE, The Joint Task Force on Computing Curricula. Computing Curricula 2001 Computer

Science. ACM/IEEE, 2001. Also at <http://acm.org/education/curric_vols/cc2001.pdf>.
3 Cowling A J. Stages in Teaching Software Design. Proc. 20th Conf. on Software Engineering

Education and Training, IEEE Computer Society Press, 2007; 141–148.
4 Bennedsen J & Caspersen M E. Revealing the Programming Process. Proc. SIGCSE ’05, ACM

Press, 2005; 186-190.
5 Bennedsen J & Caspersen M E. Programming in Context – A Model-First Approach to CS1. Proc.

SIGCSE ’04, ACM Press, 2004; 477-481.
6 Cowling A J. What Should Graduating Software Engineers Be Able To Do? Proc. 16th Conf. on

Software Engineering Education and Training, IEEE Computer Society Press, 2003; 88–98.
7 Cowling AJ. The Role of Application Domains in Informatics Curricula, Proc. 2nd Informatics

Education Europe Conf., SEERC, 2007; 166–175.
8 Atchison W F et al. CURRICULUM 68: Recommendations for Academic Programs in Computer

Science. CACM 1968; 11.3: 151–197.
9 Naur P & Randell B. Software Engineering: Report on a conference. NATO, 1968. Also at

<http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF>.
10 Austing R H et al. CURRICULUM '78: Recommendations for the Undergraduate Program in

Computer Science. CACM 1979; 22.3: 147–166.
11 Denning P J et al. Computing as a Discipline. CACM 1989; 32.1: 9–23.
12 ACM/IEEE, The Joint Task Force on Computing Curricula. Software Engineering 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering. ACM/IEEE, 2004. Also
at <http://sites.computer.org/ccse/SE2004Volume.pdf>.

13 Yourdon E. Modern Structured Analysis. Prentice-Hall, 1988.
14 Downs E, Clare P & Coe I. Structured Systems Analysis and Design Method: Application and

Context. Prentice-Hall, 1988.
15 Fowler M with Scott K. UML Distilled: Applying the Standard Object Modelling Language.

Addison Wesley, 1997.
16 Booch G, Rumbaugh J & Jacobson I. The Unified Modelling Language User Guide. Addison

Wesley, 1999.
17 Rumbaugh J, Jacobson I & Booch G. The Unified Modelling Language Reference Manual.

Addison Wesley, 1999.
18 Jacobson I, Booch G & Rumbaugh J. The Unified Software Development Process. Addison

Wesley, 1999.
19 Beck K with Andres C. Extreme programming explained: embrace change. Addison Wesley, 2005.
20 Bloom B S (ed). Taxonomy of Educational Objectives: The Classification of Educational Goals,

Handbook 1: Cognitive Domain. McKay, 1956.
21 ACM/IEEE, The Joint Task Force on Computing Curricula. Computer Engineering 2004:

Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering, ACM/IEEE,
2004. Also at <http://www.acm.org/education/CE-Final%20Report.pdf>.

22 Gorgone J T et al. IS 2002: Model Curriculum and Guidelines for Undergraduate Degree Programs
in Information Systems, ACM/AIS/AITP, 2002. Also at <http://www.acm.org/education/is2002.pdf>.

23 ACM SIGITE, Curriculum Committee, Computing Curricula: Information Technology Volume (Draft
dated October 20, 2005), ACM, 2005. Also at

 <http://www.acm.org/education/curric_vols/IT_October_2005.pdf>.
24 Williams L. Debunking the Geek Stereotype with Software Engineering Education. Proc. 18th

Conf. on Software Engineering Education and Training, IEEE Computer Society Press, 2005; 4.
25 Checkland P. Soft systems methodology : a 30-year retrospective. Wiley, 1999.

Bridging Classroom Heterogeneity: A Software
Engineering Course and Projects
Ani Nahapetian1
1California State University, 1000 E. Victoria St., Carson, CA 90747, ani@csudh.edu

In this paper, the process of bridging classroom heterogeneity in a Software
Engineering course is discussed, using a real course as a framework for analysis.
Specifically, this paper addresses issues when disparities exist in the same
classroom, 1) between graduate and undergraduate students, 2) among students with
a variety of programming skills and programming language familiarities, and 3) among
student experience levels in software development. Additionally, the struggles of
aiming for substance, while dealing with the perils of group work, are addressed.

This paper presents real and practical solutions to these challenges, including
addressing issues with course content presentation, textbook selection, course
projects, and graduate research opportunities.

Keywords
Software Engineering, Computer Science Pedagogy.

1. Introduction

Software Engineering courses exhibit a large degree of heterogeneity in terms of student
abilities, skills, and motivation. This is especially true in the following situations:

1) the undergraduate course is co-located with a graduate version of the course;

2) some students have years of industry experience while others have learned to program
only recently and have no programming experience outside of the classroom;

3) students approach the course with different expectations about what they will learn and
the work they will do for the class;

4) students have different familiarities with programming languages and programming
environments.

In this paper, I discuss the various approaches used to develop a Software Engineering
course co-located with a graduate level advanced Software Engineering course.

Various conflicting interests presented themselves in developing the curriculum, and
specifically the projects for these two courses. First, of course there was an issue with having
a graduate level course and an undergraduate level course co-located. Secondly, I felt that a

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 170
Venice, Italy, December 4-5, 2008

group project was a critical component to the course, but I wanted to avoid the hurdles faced
when students worked in dysfunctional teams. The “I did all the work” syndrome could have a
significant effect on students’ impressions of the course material. Thirdly, the students
needed to be exposed to the basic concepts of Software Engineering, so they would
appreciate that software development is much more than just writing code in a programming
language.

In the rest of this paper, I present the challenges faced when preparing the course curriculum
and syllabus for a diverse group of Software Engineering students in a single classroom. I
present a survey of Software Engineering course syllabi and their use of textbooks and other
reading material. I then present the various new and interesting approaches I employed in
my classroom to address these issues.

2. Inherent Hurdles

2.1 Co-location of Graduate and Undergraduate Classes

For the first time in my department, a co-located Graduate Advanced Software Engineering
course was offered at the same time and location as the undergraduate course. Though the
undergraduate course had been offered previously the graduate course was entirely new,
along with the brand new Masters degree program.

As would be expected this arrangement presented several hurdles. The first of which was the
fact that the graduate students were expected to have previously taken an undergraduate
Software Engineering course.

2.2 Variety of Programming Skills

There were a variety of programming skills in the classroom. My university carries out its
introductory programming course mostly in Java. Though, one elective course on
Programming in C in the UNIX environment is also offered. Additionally, there is a course
that acts as a preparatory course to the undergraduate curriculum. This course has been
taught in several languages including Visual Basic, Matlab, and Alice.

Despite this emphasis on Java, there are large numbers of transfer students who have
studied C++ at their original college or university. Additionally, there are students who have a
great deal of industry experience, who are most familiar with the programming skills acquired
at their workplace. For example, in a classroom it is possible to find students well versed in
SQL, but weary of their background in Java.

This presented several distinct options for the projects:

1) allow students to work in any platform they are comfortable, and then deal with
compliance issues within groups as they arise;

2) impose one programming language on all the students;

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 171
Venice, Italy, December 4-5, 2008

3) offer a small set of popular programming languages, and compose the groups accordingly;

4) use a less known or proprietary programming language to level the playing field.

2.3 Dealing with Not Having Been in the Trenches

Software Engineering unlike other Computer Science fields is based on a large volume of
empirical knowledge. Also to those with experience, critical issues and their solutions
sometimes seem obvious. Students generally enroll in the course, once they complete their
introductory programming series, and so they may take the course as early as their
sophomore year.

In my Software Engineering course, there were students who had been working in industry
for many years and were able to gleam quite a bit of benefit from discussions regarding
practical aspects of Software Engineering, as compared with the students who had followed
a direct path from high school to this course offering.

This presented a challenging dichotomy in the class. Some students, especially those with
years of government industry experience, were very well versed in the techniques presented
in the class, while others, including some of the graduate students, had no experience
outside of the classroom and hence were learning the material from scratch.

Dealing with this issue was the most challenging hurdle faced in the course, as it spanned all
the other disparities, including class rank and programming skills.

2.4 Avoiding Perils of Group Work while Learning to Work in a Team

There is research regarding the perils of group work [Waite04]. Invariably, when a large
disparity between programming ability within a group exists, less experienced students defer
an uneven amount of work to their more advanced programming classmates. Though
opportunities to learn from each other are presented in these situations, students are not
always the most adept at apportioning the work and aiding each other. As a result, learning
opportunities are unevenly divided among the students, which can also lead to resentment.

On the other hand, working in a team is critical for a Software Engineering course. Industry
demands teamwork and Software Engineering curriculum specifically addresses issues
related to group software development. Students, during the job hiring process, are
evaluated on their ability to work in or lead large and small teams. This is especially
highlighted by our university’s close proximity to large aerospace corporations. Note that
software products in the aerospace industry are highly regulated and as a result use
Software Engineering practices to a greater extent.

The key challenge here becomes creating opportunities for group work, while still
overcoming the programming experience disparities among students.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 172
Venice, Italy, December 4-5, 2008

2.5 Aiming for Substance

Software Engineering is often condescendingly considered a “pseudoscience,” and Software
Engineering courses have a reputation for being the least technical of the Computer Science
department’s offerings. E. W. Dijkstra is famous for saying “The required techniques of
effective reasoning are pretty formal, but as long as programming is done by people that
don't master them, the software crisis will remain with us and will be considered an incurable
disease. And you know what incurable diseases do: they invite the quacks and charlatans in,
who in this case take the form of Software Engineering gurus.” [Dijkstra]

The field of Software Engineering has advanced significantly since the time when this
statement was made. Corporate hiring managers and university industry advisors strongly
encourage and even demand that students complete Software Engineering courses at the
undergraduate level.

Thus a key challenge for the course is to make clear to students that the seemingly basic
topics that are the basis of a solid Software Engineering practice are truly valuable and have
been developed at a great cost. Student resistance to such basic concepts as documentation
and configuration management is prevalent and considerable. A key challenge is presenting
the material so that students do not view them as unnecessary and time-consuming
prescriptions.

2.6 Learning to Present Technical Material

Both industry and academia demand that students have strong presentation skills, including
clarity, ease, and effectiveness. Software engineers are expected to engage in public
speaking to handle code reviews, design reviews, requirement reviews, demonstrations, and
more. Thus incorporating presentation opportunities became an important consideration in
my Software Engineering course development.

3. Textbooks

3.1 Not for Inexperienced Software Developers

Software Engineering literature is often written for engineers with industry and large scale
software development experience. For a large majority of the undergraduate and even
graduate students in my class, this is not a correct assumption. Students often take Software
Engineering right along with their Computer Architecture and Computer Networking courses.
There is no large time gap between the students’ initial introduction to programming and their
discussion of Software Engineering. Additionally, Software Engineering curriculum has a
focus on managerial duties that may be new to even experienced programmers.

The search for a textbook or other reference material is a challenge that needs to consider
student experience levels, while still aiming for the best and the latest empirical approaches
that Software Engineering has to offer.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 173
Venice, Italy, December 4-5, 2008

3.2 Survey of Online Courses

Software Engineering courses are more likely to not follow a single text, than any other core
undergraduate Computer Science course. Table 1 summarizes the textbook information
found in six syllabi found on the web after some reasonable amount of web searching. 2 out
of 6 online course syllabi did not have a course textbook. None of the online course syllabi
used a single textbook. Additionally, 3 out of 6 used published and web articles as part of
their curriculum.

 Table 1. Software Engineering Textbooks for Various Universities

Reference University Offering Text Type
Text(s) Used

[CSUN] CSUN Fall 2007 Multiple texts
1. Ian Sommerville, Software Engineering, 8th Edition, Addison-

Wesley Longman Publishing Co., Inc (2007).
2. Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell, 2nd Edition,

O'Reilly Media, Inc., (2005).
[CalPoly] Caly Poly San Luis

Obispo
Spring 2007 Articles

1. Supplemental reading
[Pomona] Pomona College Fall 2007 Single text,

supplemented
with articles

1. Steve McConnell, Code Complete, Second Edition, Microsoft
Press (2004).

2. Supplemental reading
[UCLA] UCLA Winter 2008 Multiple texts

1. Steve McConnell, Code Complete, Second Edition, Microsoft
Press (2004).

2. Roger S. Pressman, Software Engineering: A Practitioner's
Approach, 6th edition, McGraw Hill (2005).

[Washington] University of
Washington

Spring 2007 Multiple texts

1. Steve McConnell, Software Project Survival Guide. Microsoft
Press (1997).

2. Andrew Hunt and David Thomas, The Pragmatic Programmer:
From Journeyman to Master, Addison-Wesley Professional (1999).

[Cornell] Cornell Spring 2008 None
1. None, only recommended texts

[Berkeley] UC Berkeley Spring 2008 Articles
1. None, only recommended texts

4. Project Framework

After considering the course challenges presented in the earlier sections, I chose to address
them with the following approaches.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 174
Venice, Italy, December 4-5, 2008

4.1 Course Content Presentation

In an effort to bridge the disparities that existed among the students, I took several different
approaches to course content presentation. The various forms of imparting information not
only reinforced concepts, but also enlarged the group that was able to follow the material.

Specifically, I employed a comprehensive Software Engineering text [Sommerville07] and
also incorporated articles, some from a classic Software Engineering book [Brooks95].
Additionally, I used palatable, but also very powerful, articles on various important coding
topics. I emphasized a project development atmosphere in the course, so students would
have the opportunities to flex their software development muscles. Finally, I incorporated
student presentations into the mix, so that students would be able learn from each others
experiences and activities, as well as from the text and me.

Another essential component became classroom discussion. I found that students, even
despite their inexperience, still had some basis on which to make valuable comments and
well posed arguments. Additionally, the more experience students were able to provide an
invaluable perspective about the field and the practice of Software Engineering, that all the
students found beneficial. For example, the class was able to hear about how several
different local companies’ approach the code review process, with experienced students
taking on a role similar to that of a guest industry speaker.

4.2 Split Project Nature

I divided the course project into four segments: requirements, design, code, and testing. The
first two segments, requirements and design, were carried out as a team of three or four
students. The students developed a software project idea and prepared a requirements
document for their project.

The next segment of the project was to develop a design for the project. As a group, a high
level component based design was developed, where each team member eventually worked
to develop a component of the design.

The novelty of my course syllabus lies in the splitting the team for the code development
segment. To address the heterogeneity challenges presented in the earlier sections,
students wrote their own code without being able to rely on their partners for help. Individual
code development with the aim of combining the code components into a larger project is
common in industry. It also clarifies the need for practices such as documentation, proper
interfacing, component testing, integration, and more. It also addresses the inherent
differences between student programming skills which lead to the perils of group work
discussed earlier.

In an effort to give students a technical software development project which they would work
on individually, I considered the following options before settling on the split project idea. I
considered having students 1) edit legacy code, 2) develop a small pieces of open source
software, and 3) complete each others code.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 175
Venice, Italy, December 4-5, 2008

4.3 Requirements, Design, and Code Reviews

In an effort to provide technical presentation practice, the first three segments of the project
culminated with presentations, namely requirements review, design review, and code review.
Students presented as a group, or individually in the case of the code review, according to
the format of industry review meetings. All members of the class were expected to comment
during the review, and students had to implement the instructor’s comments in the next
phase of the project.

The reviews provide a forum for students to learn technical presentation skills, to engage in
the common practice of software reviews, and to learn to handle questions and comments on
their work. Additionally, it is an opportunity for students to learn their role as a member of a
review committee.

4.4 Reading Research Material

To encourage students to approach Software Engineering not only as a topic to learn, but
also as an accessible field about which to do research, I decided to expose graduate and
undergraduate students to Software Engineering research literature. The topics in Software
Engineering literature tend to be more palatable to wider audiences than other Computer
Science fields. Additionally, contributions from software engineers in the field are both
practical and informative.

Students read and analyzed several articles throughout the semester. The first article was
used as part of a take home midterm, to ensure that students read the article fully and were
given an opportunity to express their ideas on the material. The article was a publication on
code reviews, thoughtfully written by an industry software developer in very plain language
[Wiegers98]. It was the first Computer Science research article that many students had ever
read, and since the material presented in the article was relevant to the students’ lives and
also easy to understand, I believe that it helped form a positive impression of Computer
Science research and became a feasible entry point into the world of research. This exercise
was the best received assignment during the semester.

Throughout the course, students were asked to read selected Software Engineering excerpts
from F.P. Brooks’ famous text The Mythical Man Month [Brooks02]. Though the text is a
classic and an essential part of Software Engineering, it did not give the students a sense of
the current interests in the field, the way the research articles did.

4.5 Graduate Research Project

The standard approach for handling graduate course work, in a largely undergraduate class
is to give extra work to the graduate students. However, I had reservations about that
approach, since I felt that the graduate students might get bored, that it was the not be the
best use of their time, and that in turn might detract from the undergraduate learning
experience.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 176
Venice, Italy, December 4-5, 2008

In the end, I gave the graduate students a semester long research project assignment in
place of the final exam. The graduate students participated in all other parts of the course,
including the projects and the midterm. Outside of the classroom on an individual basis, the
graduate students and I discussed the research project, and the work was presented to the
entire class at the end of the semester. The work carried out for the research project involved
choosing a research idea in Software Engineering and working towards and preparing a
conference level research article on the idea.

4.6 Scheduling Graduate Work

I grappled with the idea of ending the undergraduate class session early to introduce and
engage in discussions about graduate concepts. Though, this presents an opportunity to
present graduate level work, it does cut the undergraduate lecture time short. Having a small
number of graduate students in the course permitted some of the graduate needs to be
addressed outside the classroom. In the end, I decided to hold combined undergraduate and
graduate lecture sessions, but to have additional weekly meetings with the graduate
students.

Through the process of preparing a graduate research paper, a great deal of interaction
occurred between the graduate students and me. I believe this greatly enhanced their course
experience. As the graduate program becomes more popular, this may become more difficult
to do.

I had one request from a graduate student to do the course software development project
individually. I did not agree to this, as the graduate students need opportunities to be
involved in a software development group, both for their benefit and that of the
undergraduates.

4.7 Final Opt-Out

Due to the split project nature of the course, students do not necessarily need to consolidate
their components into the final software project as they envisioned. However, since they
should each have a working component of the system, the option to integrate the
components is presented to the students. As a reward, the students are allowed to opt out of
the final, upon successful completion of their original project proposal.

Some students were highly motivated to take this option, as it provides the satisfaction of
completing a large software engineering project. Additionally, it allows the motivated groups
to obtain a deeper perspective about the software development process.

Though making the integration part of the project mandatory is enticing, it presents a problem
when some group members do not fully accomplish their component requirements. This puts
the other group member in a difficult situation. I find that the optional, final opt-out approach
is able to handle this situation more fairly, by giving dysfunctional teams a break by taking
the final exam instead.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 177
Venice, Italy, December 4-5, 2008

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference 178
Venice, Italy, December 4-5, 2008

5. Conclusion

In this paper, the process of bridging classroom heterogeneity in a Software Engineering
course is discussed. A real course is used as the framework for addressing classroom
disparities, in terms of class ranks, programming skills, and industry experience levels.
Additionally, approaches to avoid the perils of group work are presented, given this level of
classroom heterogeneity.

6. Acknowledgements

I would like to thank Professor Miodrag Potkonjak of UCLA for an interesting discussion
regarding Software Engineering textbooks, which greatly contributed to development of my
ideas on the subject. Also, I would like to thank Theodor Soneriu for collecting some of the
data used in Table 1.

References
[Berkeley] Berkeley Software Engineering Course Website.

http://inst.eecs.berkeley.edu/~cs169/sp08/doku.php?id=info
[Brooks95] Brooks, F. P. The Mythical Man-Month (Anniversary Ed.). Addison-Wesley Longman

Publishing Co., Inc (1995).
[CalPoly] Cal Poly Software Engineering Course Website.

http://www.csc.calpoly.edu/~djanzen/courses/307S07/
[CSUDH] California State University, Dominguez Hills Software Engineering Course Website.

http://www.csc.csudh.edu/ani/courses/2007Fall/csc481-581/csc481-581.html
[CSUN] CSUN Software Engineering Course Website. http://www.csun.edu/~twang/380/
 [Cornell] Cornel Software Engineering Course Website.

http://www.cs.cornell.edu/courses/cs501/2008sp/
[Dijkstra] EWD 1305: Answers to questions from students of Software Engineering.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1305.html.
[Pomona] Pomona College Software Engineering Course Website.

http://www.cs.pomona.edu/classes/cs121/
[Sommerville07] Sommerville, I.. Software Engineering, 8th Edition, Addison-Wesley Longman

Publishing Co., Inc (2007).
[UCLA] UCLA Software Engineering Course Website.

http://www.cs.ucla.edu/classes/winter06/cs130/syllabus.html
[Washington] University of Washington Software Engineering Course Website.

http://www.cs.washington.edu/education/courses/403/07sp/syllabus403.html
[Waite04] Waite, W. M., Jackson, M. H., Diwan, A., and Leonardi, P. M. Student culture vs group work

in computer science. SIGCSE Bull. 36, 1 (Mar. 2004), 12-16.
[Wiegers98] Wiegers, K. 1998. The seven deadly sins of software reviews. Softw. Dev. 6, 3 (Mar.

1998), 44-47.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

179

What Every Software Developer Should Know
about Human-Computer Interaction –
A Curriculum for a Basic Module in HCI in
Informatics Education
Andreas M. Heinecke1, Friedrich Strauß2, Astrid Beck3,
Markus Dahm4, Kai-Christoph Hamborg5, Rainer Heers6

1FH Gelsenkirchen, 45877 Gelsenkirchen, Germany,
andreas.heinecke@informatik.fh-gelsenkirchen.de
2sd&m AG, software design & management, Carl-Wery-Str. 42, 81739 München, Germany,
friedrich.strauss@sdm.de
3HS Esslingen, Fakultät Informationstechnik, Flandernstr. 101, 73732 Esslingen, Germany,
Astrid.Beck@hs-esslingen.de
4FH Düsseldorf, Fachbereich Medien, Josef-Gockeln-Str. 9, 40474 Düsseldorf, Germany,
markus.dahm@fh-duesseldorf.de
5Universität Osnabrück, Universität Osnabrück, Fachbereich Humanwissenschaften,
Institut für Psychologie, Arbeits- und Organisationspsychologie, Seminarstr.20,
49069 Osnabrück, Germany,
khamborg@uos.de
6Visteon Deutschland GmbH, Visteonstr. 4 – 10, 50169 Kerpen, Germany,
rheers@visteon.com

Due to legal issues and economic reasons knowledge of human-computer interaction
is of growing importance to all people who develop interactive software. Many current
study programmes in informatics don’t teach HCI sufficiently. The task working group
on software ergonomics of the German informatics society (Gesellschaft für Infor-
matik e.V. – GI) has developed a curriculum for a basic module in HCI in order to teach
students and others who will design interactive software the most important funda-
mentals of HCI. This module is intended to give an introduction to software ergonom-
ics and to teach the fundamentals of usability and of user-centred design processes.
Its contents and objectives are meant to be an obligatory part of informatics educa-
tion.

Keywords
Curriculum, Human-Computer Interaction, Learning Objectives, Legal Issues, Standards

1 Introduction
Human-computer interaction is an interdisciplinary field of study and research combining
informatics, behavioural sciences, design, and others. Its importance is growing due to legis-
lative and economic reasons. Therefore every software developer should have a basic un-
derstanding of human-computer interaction.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

180

1.1 Human-Computer Interaction as a Field of Study

“Human-computer interaction is a discipline concerned with the design, evaluation and im-
plementation of interactive computing systems for human use and with the study of major
phenomena surrounding them.” [1] It uses methods and results from different fields like in-
formatics, cognitive psychology, linguistics, social sciences, graphic and industrial design,
and others.
As far as design of interactive computing systems is concerned the main goal of HCI is to
improve usability. Usability denotes the extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use [2]. Thus usability is a question both of functionality of an interactive system
and of design of its user interface. As in common applications the hardware for interaction is
given more or less, improvement of usability focuses on software functionality, on user inter-
face design, and on task allocation between human being and computer. These three topics
are often summarized under the term of software ergonomics.
Courses on HCI can be found in all the disciplines that contribute to this field. In most cases
these are optional and meant for students who want to specialize in HCI. According to each
discipline they may focus on different subjects. Thus not every student specialized in HCI is
an expert in developing usable software. As the number of usability experts is limited, we
assume that in the foreseeable future there will be still a large number of projects developing
interactive software in which no usability experts will participate.

1.2 The Importance of HCI for Software Developers

HCI is of growing importance for software developers who have to fulfill ergonomic require-
ments which have been set up by legislation during the last two decades in order to improve
health protection at work or to prevent discrimination of disabled persons.
In 1990 the European Economic Community passed the Council Directive on the minimum
safety and health requirements for work with display screen equipment [3]. It states that “in
designing, selecting, commissioning and modifying software, and in designing tasks using
display screen equipment, the employer shall take into account” certain principles which can
be seen as basic ergonomic requirements. Demanding that “the principles of software ergo-
nomics must be applied” the Directive refers to European and international standards like
ISO EN 9241 [4] which define those principles. In the 1990s the Member States of the EEC
have brought “into force the laws, regulations and administrative provisions necessary to
comply with this Directive”. In Germany, e.g., this has been done by the Bildschirmarbeits-
verordnung [5].
While the Council Directive deals with general usability of applications for work, there is a
second field of applied HCI covered by legislation, namely accessibility. Accessibility ad-
dresses the usability of software for people with the widest range of physical, sensory and
cognitive abilities, including those who are temporarily disabled, and the elderly. In several
countries accessibility of software applications is required by acts against discrimination of
disabled persons. Sometimes this applies for web applications only, for applications provided
by governmental institutions only, or both. Section 508 of the US Rehabilitation Act [6] de-
fines rules for accessibility of web sites referring to the Web Content Accessibility Guidelines
(WCAG) [7]. In Germany, the Barrierefreie Informationstechnik-Verordnung [8] closely fol-
lows the WCAG, too. Additionally there are internationals standards [9] or drafts of interna-
tional standards [10] for accessibility of a wide range of software.
Besides requirements by law there is an economic reason why software developers should
take care of usability. If there are different software products for the same tasks the one with
better usability obviously will sell better.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

181

2 Goals of a Curriculum for a Basic Module in HCI
There are several curricula for HCI which may be applied in teaching students of informatics
who focus on HCI. A curriculum which defines the basic knowledge on HCI for every soft-
ware developer has been missed so far.

2.1 Learning Outcomes of a Basic Module

In Germany, already in the early 1990s there have been complaints about teaching system
developers mainly technical know-how neglecting the aspects of ergonomical design of soft-
ware [11]. Since then, there have been many demands for the integration of HCI matters into
education of software developers. In 1997 Krasemann [12] stated a need for “project man-
agement and design methods which are much more end-user oriented”. Two years later a
task working group of the Gesellschaft für Informatik (GI, the German informatics society)
developed recommendations for informatics education at universities to become more appli-
cation-oriented. They claimed that the students should acquire basic competences in work
sciences, above all in analysis and design of working devices and especially in software er-
gonomics including computer graphics, virtual reality, and multimedia systems [13].
According to the GI recommendations for bachelor and master studies in informatics [14]
shall acquire a practical design competence in man-machine interaction. Accreditation pro-
cedures of study programmes in informatics should examine the achievement of this learning
outcome. One of the German accreditation agencies explicitly adopts this demand claiming
bachelors in informatics “are able to model man-machine interfaces adequate to the applica-
tion and ergonomical” [15]. Although there may be different ways to reach this goal, we as-
sume that a dedicated basic module in HCI will be best. It enables presenting the subject in
context and avoids scattering it to many different courses which often leads to neglect.
The module aims at a basic understanding of findings, methods and processes in developing
usable software. Students shall have a basic knowledge of software ergonomics, especially
of process models and methods for user-centred software development. As software devel-
opers they shall be able to avoid serious offences against usability and to fulfil basic re-
quirements of usability. On the other hand, in more complex software projects they shall be
able to realize whether participation of usability experts is necessary.

2.2 Target Groups for a Basic Module

The curriculum of the basic module aims primarily at informatics education at universities.
Thus students in study programmes with 55% to 70% of informatics (type 1 according to the
GI classification [14]) or 40% to 55% of informatics (type 2) make up the main target group.
Additionally, all other students who will develop interactive software belong to the target
group. This includes students from disciplines like communications design, media design,
information technology, psychology, cognitive science and so on.
The basic module in HCI applies not only to universities and universities of applied sciences
in campus and distance learning but to colleges and other institutions of education and train-
ing as well. It may be used as guidance for further training on the job. The curriculum defines
basic knowledge of usability for software developers in software companies or software de-
partments of companies and institutions.

2.3 Differences to Current HCI Curricula

In the USA a Special Interest Group of the ACM started work on HCI curricula in the 1980s
[1]. The IFIP Working Group 13.1 “Education in HCI and HCI Curriculum” maintains a web-

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

182

site on HCI education resources with an overview of HCI education programmes in several
countries [16]. In Germany a GI task working group defined a curriculum in software ergo-
nomics which became an official recommendation of GI in 1993 [17]. This curriculum defines
optional courses for students who want to specialize in HCI.
There are two substantial differences between the 1993 recommendation and the curriculum
we suggest here. On the one hand, new developments in the field of interactive software
have been taken into consideration. This includes new fields of applications (e-business, e-
learning, edutainment or computer games, e.g.), new user interfaces (PDAs, wearables or
augmented reality, e.g.) and new models and methods of usability engineering. On the other
hand, the course aims at an overview about HCI for every software developer and thus has
been limited to the necessary basic knowledge.

3 Overview of the Curriculum
The curriculum presented here has been developed by the task working group “Software
Ergonomics” of GI. It has been discussed in workshops at several German HCI conferences.
After having been reviewed by German experts who are teaching HCI and usability issues it
has become an official recommendation of GI [18]. The following chapter presents an over-
view of its structure and contents and discusses organizational questions of teaching it.

3.1 Structure

Figure 1 gives an overview of how the contents of the basic module have been structured.
There are three main blocks. The first one gives an introduction to software ergonomics as
an interdisciplinary field of study and research. The second one deals with foundations of
design for usability. The third one focuses on models and methods of a user-centred process
of software development.

Preface
Motivation – Definition – Target Group – Basic Module Specification
Introduction to Software
Ergonomics
• Human – Task – Software
• History of Software

Ergonomics
• Standards and Legal Issues

Usability of Software

• Human Information

Processing and Behaviour
• Input- / Output Devices and

Interaction Techniques
• Design of Work and Tasks

User-centred
Design Process
• Models of User-centred

Development
• Requirements Analysis
• Specification and

Prototyping, Evaluation
References
General – Textbooks – Legislation and Guidelines – Special Topics

Figure 1 Structure of the Curriculum for a Basic Module in HCI.

All three blocks follow the same structure. First there is an introduction to it with an overview
of its chapters. Each chapter contains a short introduction, a list of learning objectives, a list
of learning contents, and a list of exercises the students may work on.
References primarily refer to books presenting the contents of the curriculum in a way which
is adequate for teaching and learning. Furthermore, there is a list of standards and laws a
software developer should know. An additional list contains references for those who want to
focus on special topics or to broaden their knowledge.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

183

3.2 Workload

The curriculum presented here requires students of informatics in bachelor programmes of
type 1 or type 2 to work at least 120 hours on a basic module in HCI. That means, a work-
load of 4 ECTS credit points should be the minimum for HCI subjects. In study programmes
with a focus on design of interactive software like media informatics or communications de-
sign, e.g., all chapters of the curriculum should become extended and more detailed requir-
ing students working a longer time. In these cases it may be better to split the subject into
several modules.
If a study programme centres on software development of interactive systems, tools and
methods for implementation and design of user interfaces and interactive software have to
be taught additionally. According to the focus of a study programme, other subjects of HCI
like computer supported cooperative work, adaptivity and user modelling, or hardware ergo-
nomics, e.g., have to be added. Then a higher workload has to be allocated.

3.3 Lectures and Exercises

Teaching of the basic module requires at least 30 hours at 45 minutes each. In university
teaching this would correspond to a term having 15 weeks with a lecture of 90 minutes each
week. In order to acquire competences in designing usable software students should do
some practical work like exercises on paper or on screen. Such practical work should focus
on ergonomics. That means, necessary skills in software engineering and programming like
GUI programming with Java Swing, e.g., have to be taught in other courses.
As a course in continuing education for software developers the basic module can be taught
in four to five days.

4 Learning Objectives of the Curriculum
The following chapter explains the learning objectives of the basic module in HCI. For each
topic there are a short description of contents and the list of objectives. By reaching the
learning outcomes students shall get the necessary knowledge and skills to produce soft-
ware which fulfils the basic requirements of usability.

4.1 Part 1: Introduction to Software Ergonomics

The first part of the curriculum gives in introduction into HCI and its methods. It shows that
the design of usable software has to focus on the demands of the users relating to their tasks
within the context of use (technical, organizational and social environment). Here we define
fundamental terms like usability, satisfaction, or suitability for the task. Part 1 gives an over-
view of all the topics covered by this curriculum, too.

Human – Task – Software
As a basic introduction and a first overview of software ergonomics the first chapter of part 1
deals with layers of human-computer interaction, with relations between the design of soft-
ware and the design of work flows, with different types of applications like office systems,
web sites and embedded systems, with the different roles of people involved in software de-
velopment, and with the opportunities of optimizing user interfaces by software ergonomics.
Students shall
• understand how important an ergonomical user interface is for the quality of a software

product,

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

184

• realize the influence of software design on the tasks the user has to fulfil using the soft-
ware,

• know some fields in which software ergonomics are applied,
• know the benefits of a user-centred design process,
• understand that software ergonomics are a necessary part of the software engineering

process and thus a part of software quality,
• understand that interdisciplinary knowledge is required for software development.

History of Software Ergonomics
There are two main topics in this chapter, the evolution of computer technology and its influ-
ence on human-computer interaction, and the contributions of different disciplines to software
ergonomics. Different technologies like terminal systems, personal computers, client-server
systems and embedded and mobile systems with different output capabilities led to different
user interfaces and different ways of interaction. These, in turn, raised different ergonomic
questions. Several disciplines like work sciences, psychology and physiology have contrib-
uted their special views and methods to these topics.
Students shall
• know the history of software ergonomics in context of the history of computing,
• know how different disciplines contribute to software ergonomics.

Standards and Legal Issues
The last chapter of the introduction deals with standards which define properties of the soft-
ware product (ISO 9241 [4], ISO 14915 [19]) or the software development process
(ISO 13407 [20]) that are necessary to ensure usability. These standards define essential
terms and goals of software ergonomics and contain practical examples for the design of
usable software. In many countries there are laws and regulations demanding usability
and / or accessibility of software in certain fields of application by providing checklists or re-
ferring to special standards like ISO/TS 16071 [9].
Students shall
• be able to quote definitions which are central to human-computer interaction,
• know the standards of software ergonomics and be able to use them for their own work,
• know the legal issues and the fields in which they have to be met,
• know the fields of application in which accessibility is required,
• know about advantages and disadvantages of standardization.

4.2 Part 2: Usability of Software

Part 2 teaches the fundamentals of human-computer interaction. It starts from the human
and his or her physiological and psychological properties. The user interacts with the com-
puter via input and output devices. These devices are used to present information and to
execute a dialogue. Dialogues are executed in order to use software applications for certain
tasks. Thus part 2 ends with a discussion of the design of work and tasks.

Human Information Processing and Behaviour
In order to design adequate means of interaction software developers have to know how
humans perceive and process information. Therefore we start with important facts from
physiology and cognitive psychology about capabilities and limits of human perception,
memory, learning, and acting. This includes topics like colour perception, Gestalt theory, se-
lective attention, mental models, strain and stress, error handling, and cultural and individual
differences, for example.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

185

Students shall
• know about performance and limits of human perception and be able to apply such

knowledge to the presentation of information,
• be able to apply knowledge of human information processing and behaviour when de-

signing means of interaction,
• know how system design can ease learning the use of interactive systems,
• be able to design systems according to concepts of error avoidance and error manage-

ment,
• know about the significant differences between users which have to be taken into ac-

count in design of interactive systems,
• know about the factors of strain and stress on users of software applications.

Input and Output Devices
Input and output devices determine how users can interact with the computer. Although
standard interaction devices like two-dimensional colour display, keyboard and mouse are
very common a lesson about their ergonomic requirements is necessary as in practical use
there are often ergonomic deficits. Besides standard I/O devices this chapter deals with de-
vices for people with special needs (assistive technologies, e.g.) and with devices for special
applications (three-dimensional I/O by immersive and non-immersive devices, e.g.). Depend-
ing on the local focus of research and teaching some devices may get more attention than
others.
Students shall
• know the important input and output devices, their technical properties and their ergo-

nomic advantages and disadvantages,
• be able to state the ergonomic requirements that input and output devices have to fulfil,
• know the input and output devices for persons with special needs and for non-standard

applications,
• be able to choose adequate input and output devices for a given context of use.

Interaction Techniques
This chapter deals with principles and criteria for presentation of information and design of
dialogues. As graphical user interfaces with windows, menus and pointing devices (WIMP)
are common, an important topic is how to use of widgets, fonts, colours and highlighting.
Choosing the adequate type of dialogue (command dialogue, menu dialogue, multimedia
dialogue, e.g.), arranging and grouping its elements (menu items, data entry fields, buttons
on touch screens, e.g.) and finding adequate structures of information and navigation are
crucial points for usability.
Students shall
• know the basic principles and criteria for presentation of information and design of dia-

logues and be able to apply them to screen design of software applications,
• know the different ways of interaction and the different types of dialogues and be able to

choose the adequate ones for a given context of use,
• know the essential rules of design for each type of dialogue and be able to apply them,
• be able to establish usable structures of contents and navigation in information systems,
• be able to choose media and combinations of media which are appropriate to the pro-

spective users,
• know the different means of user guidance and be able to implement them.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

186

Design of Work and Tasks
As software is commonly used in order to fulfil certain tasks, the more software developers
know about the tasks of the users the better will be the usability of the software. On the other
hand, new software or a new release of existing software often leads to changes of the work-
flow or the organisational structures in a company. Therefore this chapter provides the es-
sential knowledge about the design of work and tasks.
Students shall
• know the interdependencies between design of work, tasks and software and be able to

explain them,
• know the influence of software design on the design of tasks and work of the users.

4.3 Part 3: User-centred Design Process

The third part deals with usability engineering. It shows how software ergonomics can be
integrated into software engineering following a model of user-centred design processes.
Special emphasis lies on methods for analyzing user and task requirements. In a next step,
there is a need to specify ergonomic goals of a project and to discuss them with prospective
users. In many cases this can be done by different ways of prototyping in order to establish
an iterative development process with user participation. Both prototypes and the completed
software system have to be evaluated whether they fulfil the ergonomic requirements of us-
ers and tasks.
In a basic module the relations between software engineering and usability engineering can
only be outlined roughly. In order to understand the models of user-centred development the
students should have a basic knowledge in software engineering, especially in the area of
requirements analysis and software quality management.

Models of User-centred Development
Part 3 is mainly based on ISO 12407 [20]. The first chapter gives an overview of the process
model for user-centred design. Its main activities are requirements analysis, prototyping and
evaluation which are covered in-depth in the following three chapters. Other important topics
are the different roles of people involved in the project and the question how users can par-
ticipate in the process of software development.
Students shall
• know the benefits of integrating software ergonomics into the process of software engi-

neering,
• be able to explain models of user-centred design processes and to illustrate them by

examples,
• be able to explain which phases of system development are influenced by user-centred

requirements,
• be able to explain means of user participation in the design process,
• know the necessity of analysis-design-evaluation cycles,
• be able to name supports and obstacles of user-centred process models.

Requirements Analysis
User-centred design requires analysis of all aspects of the context of use. Therefore we pre-
sent methods and techniques for analyzing work flows and tasks, conditions of the environ-
ment and properties of the users and the organisation like personas, contextual enquiry, and
scenario based development.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

187

Students shall
• be able to explain how methods for analyzing the context of use support the develop-

ment of usable software,
• know methods of user-centred requirements analysis,
• be able to name different means of user participation and explain their advantages and

disadvantages,

Specification and Prototyping
In a user-centred design process communication between the developers and the users is
crucial and needs special means like scribbles, mock-ups, story boards and others. Different
ways of prototyping (vertical or horizontal, low-fidelity or high-fidelity, e.g.) are taught as
means to communicate interaction design to the users as early as possible. Design decisions
may be influenced by style guides or in turn lead to a special style guide of a project.
Students shall
• be able to rate methods of software specification in relation to their comprehensibility to

the users,
• know methods of prototyping and of evaluation of prototypes and be able to explain their

value for a user-centred design process,
• be able to turn results of a user and task analysis into a design concept of a software,
• know about differences between style guides of software companies, users and projects.

Evaluation
In all phases of the development process the current design has to be evaluated. Topics of
this chapter are methods of evaluation like inspections, walkthroughs, questionnaires and
usability test, for example.
Students shall
• know methods of evaluation and how they can be used within the software life cycle,
• be able to name advantages and disadvantages of different methods of evaluation,
• be able to carry out simple evaluations,
• know the differences between software tests and usability tests.

5 Conclusions
Currently it is still possible to graduate in informatics without having learned the fundamen-
tals of HCI. One the other hand, competences in HCI are of growing importance in the work-
place of software developers. The curriculum for a basic module in HCI aims at filling the gap
between practical requirements and current study programmes. Its objectives and contents
should be an obligatory part of informatics education. If there is no special module in HCI,
they must be found within other modules like software engineering or programming of user
interfaces. Nevertheless, teaching of HCI will be easier in the context of a dedicated module.
The curriculum for a basic module is a first step in teaching HCI. While this module is to be a
part of any study programme in informatics there should be additional modules for students
who focus on HCI and for study programmes which centre on the design of interactive soft-
ware. In future we will develop additional modules for further studies in HCI dealing with sub-
jects like computer-supported cooperative work, speech processing, or usability of machines
and plants, for example.
As there are rather few study programmes in Germany in which all the necessary fundamen-
tals of HCI are taught [21], first of all the above curriculum has to be integrated into informat-
ics education in order to assure that future software developers are able to produce software
that fulfils the legal and economic requirements of usability.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

188

References
1 Hewett T T, Baecker R, Card S, Carey T, Gasen J, Mantei M, Perlman G, Strong G, Verplank W.

ACM SIGCHI curricula for human-computer interaction. New York, ACM: 1992
Web version http://www.sigchi.org/cdg/ 2008 April

2 ISO 9241 Ergonomic requirements for office work with visual display terminals (VDTs) – Part 11:
Guidance on usability. ISO: 1998.

3 Council Directive 90/270/EEC of 29 May 1990 on the minimum safety and health requirements for
work with display screen equipment. EEC Official Journal L 156, 21/06/1990 P. 0014 – 0018.

4 ISO 9241 Ergonomic requirements for office work with visual display terminals (VDTs) (older parts)
/ ISO 9241 Ergonomics of human-system interaction (newer parts). ISO: different years.

5 Verordnung über Sicherheit und Gesundheitsschutz bei der Arbeit an Bildschirmgeräten (Bild-
schirmarbeitsverordnung – BildscharbV). BGBl I 1996, 1843.

6 Section 508 of the Rehabilitation Act (29 U.S.C. 794d), as amended by the Workforce Investment
Act of 1998 (P.L. 105-220), August 7, 1998. http://www.section508.gov 2008 May.

7 W3C. Web Content Accessibility Guidelines 1.0 - W3C Recommendation 5-May-1999.
http://www.w3.org/TR/WCAG10/ 2008 May.

8 Verordnung zur Schaffung barrierefreier Informationstechnik nach dem Behindertengleichstel-
lungsgesetz (Barrierefreie Informationstechnik-Verordnung – BITV), BGBl I 2002, 49.

9 ISO/TS 16071 Ergonomics of human-system interaction – Guidance on accessibility for human-
computer interfaces. ISO: 2003-02.

10 ISO 9241 Ergonomics of human-system interaction – Part 171: Guidance on software accessibility.
ISO/DIS 9241-171: 2006.

11 Maaß S, Ackermann D, Dzida W, Gorny P, Oberquelle H, Rödiger K-H, Rupietta W, Streitz N A.
Software-Ergonomie-Ausbildung in Informatik-Studiengängen bundesdeutscher Universitäten. In-
formatik-Spektrum, 16 (1993) 1, 25-30

12 Krasemann H. Welche Ausbildung brauchen Informatiker? Informatik-Spektrum 20 (1997) 6, 328–
334.

13 Stärkung der Anwendungsorientierung in Diplom- Studiengängen der Informatik an Universitäten.
Empfehlungen der Gesellschaft für Informatik e.V. (GI) No. 42, 1999.

14 Bachelor- und Masterprogramme im Studienfach Informatik an Hochschulen. Empfehlungen der
Gesellschaft für Informatik e.V. (GI) No. 48, 2005.

15 Fachausschuss Informatik. Fachspezifisch ergänzende Hinweise zur Akkreditierung von Bachelor-
und Masterstudiengängen der Informatik (Stand 08. Dezember 2006). Düsseldorf, ASIIN: 2006.

16 IFIP Working Group 13.1 - Education in HCI and HCI Curriculum: http://www.hcieducation.org/
2008 May.

17 Software-Ergonomie-Ausbildung in Informatik-Studiengängen bundesdeutscher Universitäten,
Empfehlungen der Gesellschaft für Informatik e.V. (GI) No. 33, 1993.

18 Curriculum für ein Basismodul zur Mensch-Computer-Interaktion. Empfehlungen der Gesellschaft
für Informatik e.V. (GI) No. 49, 2006.

19 ISO 14915 Software ergonomics for multimedia user interfaces. ISO: 2002 / 2003.
20 ISO 13407 Human-centred design processes for interactive systems. ISO: 1999.
21 Dahm M, Latzina M, Stroick, R. Software-Ergonomie in der Lehre – Praxisanforderungen und Le-

hrangebot. In: Hassenzahl M, Peissner, M (Hrsg.). Usability Professionals 2005 – Jahrestagung
der gc-UPA 2005, 58-61.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

189

Recursive Thinking in CS1
Tamar Vilner1, Ela Zur2, Judith Gal-Ezer 3,
1 The Open University of Israel, 108 Ravutzki St., Raanana, Israel, tami@openu.ac.il
2 The Open University of Israel, 108 Ravutzki St., Raanana, Israel, ela@openu.ac.il
3 The Open University of Israel, 108 Ravutzki St., Raanana, Israel, glaezer@openu.ac.il

All agree on the importance of teaching recursion in the early stages of an
undergraduate program in computer science. Nonetheless, there is a consensus
among researchers about the difficulties involved in teaching recursion to both high
school and university students, even in advanced courses such as data structures.
This paper describes a study we conducted in order to examine the difficulties our
students encounter in a CS1 course – the introductory course to computer science.
We examined whether CS1 students, in the final exam of the course use a recursive
approach to solving problems which are inherently recursive. We found that the
majority of the students solved problems iteratively, even though the problems were
recursive in nature. Based on the results, we provide some recommendations oriented
to placing more emphasis on recursive thinking in a CS1 course, using meaningful
examples which are inherently recursive, and continuing to exercise recursive
algorithms after the concept has been introduced in the specific chapter on recursion.

Keywords
CS1, recursion, backtracking

1. Introduction

1.1 The Role of Recursion in Computer Science

Recursion is an important technique for solving various kinds of problems in computer
science (CS), for example problems on graphs and trees, artificial intelligence problems, etc.
As Ginat points out, "recursion is not just a concept-construct element, it also is a problem-
solving heuristic, which encapsulates backward reasoning and a reverse train of thought" [1].
In addition to its importance in problem-solving, recursion is also an excellent tool for
developing skills of abstract thinking, one of the biggest challenges in CS education [2].

1.2 Difficulties in Understanding Recursion

Though recursion is an important issue, and has many uses in CS, it is considered a very
difficult subject to learn and understand, especially when compared to iteration. There is a
consensus among researchers concerning the difficulties involved in teaching recursion to
both high school and university students, even in advanced courses such as data structures
[3, 2]. Many researchers and CS educators have tried to analyze the reasons for these
difficulties. Valazquez-Iturbide notes that the difficulties are caused by learning recursion
through a procedural (imperative) paradigm (such as in teaching Pascal or C), and are not
found when teaching it via a functional paradigm (such as in teaching Scheme) [4].

mailto:tami@openu.ac.il
mailto:ela@openu.ac.il
mailto:glaezer@openu.ac.il

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

190

Sanders et al. believe that an understanding of the mental models of recursion that students
develop will assist us in teaching them more effectively [5]. They found that although many
students develop the "correct" copies mental model of recursion, there are still many that
develop non-viable models [5].
Ginat and Shifroni [6] found that problems in understanding recursion occur when students
try to understand it based on previous knowledge in programming (loops, conditional
statements, etc.). They claim that it is difficult for students to understand that recursion is a
new approach, and not only an expansion of iterative structures. They suggest focusing, not
on the implementation of a recursive program, but on a perceptual explanation of the
concept.
In [7] Levy and Lapidot state that every program involves three components: a procedure
that runs a process which in the end produces a product. One of the difficulties in
understanding recursion stems from the discrepancy between the level of complexity of
recursive procedures (which look simple) and that of the processes that they produce (which
are complex). The reason for this discrepancy is that the procedure presents a static
situation, while the process is dynamic. Levi and Lapidot claim that in most courses that
teach recursion, too much emphasis is placed on the process and too little on the product. In
addition, other aspects of recursion get practically no attention. One of these is recursion as
a technique for solving backwards problems. Cognitive theories of problem-solving relate to
backwards problem solutions as advanced and efficient; solutions that often distinguish
between experts in the field and novices who are incapable of utilizing them.
Some studies show that even when students understand the concept of recursion, and are
able to use it in solving problems, they usually do so only (a) when they are specifically told
that the topic discussed is recursion; (b) when they are asked to solve the problem using
recursion; or (c) when the problem is expressed by a recursive definition. When there is no
indication that the solution is recursive, few students think of it themselves and try to solve
the problem using recursion [6, 8].

1.3 Problems in Teaching Recursion in CS1

Usually, the topic of recursion is taught quite late in the introductory course CS1. Often the
teacher tries to base students’ understanding of the concept on the Basic Computing Model.
The Basic Computing Model is the mental model that the students build when they learn
basic mechanisms of programming, like variables, assignment statements, conditional
statements, loops, etc. It is a concrete model that helps students to understand and trace
what is happening in the computer when it gets an instruction to execute the recursive
function. The problem is that focusing on this model comes at the expense of emphasizing
the declarative and abstract characteristics of recursion. The result found by many
researchers is that emphasizing the concrete aspect of the recursion mechanism creates
very limited understanding and causes confusion, while relating to the declarative abstract
aspect improves understanding and the ability to use recursion [6].
The chapters introducing recursion in most textbooks used in CS1 courses include very few,
and only standard, examples of recursion. Many of them give the factorial function as the first
example, or something similar like computing the sum of the numbers between 1 to n, or
computing 2n, etc. While this is a very simple example and thus perhaps a good one to start
with, it has a serious disadvantage when presenting the principle of recursion: such problems
are easily solved by iteration. The students are already familiar with iteration and they feel
that they already have the tools to cope with these problems - they don't need another
technique, especially when the technique is not easy to understand. In addition, when the
teacher presents the complicated runtime stack chart of recursion in contrast to the simple
stack chart of iteration, the student decides that the recursive solution is inefficient. Using
such examples, it is very difficult to convince students that recursion is an important

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

191

technique for solving problems, and that it will be relevant to them in their advanced studies.
As a result, students’ motivation to learn this new topic decreases, and since motivation is
very important in succeeding in learning a new concept, the study of recursion is negatively
affected.
Beyond the confusion created because iteration is studied before recursion, there is the
additional factor of the time spent teaching the concept of iteration as opposed to the time
spent on recursion. Since iteration is studied in the early stages of the course, students gain
a great deal of experience and confidence in working with this process. In contrast, because
recursion is studied only in the advanced stages of the course, they lack the time to become
thoroughly familiar with it. Iterative solutions to problems are more familiar to students, and it
is hard for them to understand and use recursion [9]. Students often write an incorrect
iterative solution instead of using recursion due to lack of familiarity and confidence [6].
In addition, many CS1 textbooks include only one chapter on recursion, and after teaching it,
there is no emphasis on the topic. The message passed on to students as a result is that
recursion is not an essential subject. The CS education community, however, thinks
otherwise, and believes that it is important to spend much more time on teaching recursion.
Researchers claim that when teaching recursion, one needs to keep in mind two overall
goals: reducing the complexity of the topic by emphasizing abstraction, and controlling the
complexity by using modularity.
Abstraction: Abstraction is a cognitive means that enables us to concentrate on the essential
features of a topic, and ignore details that are not relevant at a specific stage of problem-
solving situations. Abstraction is essential in solving complex problems, as it enables the
problem solver to think in terms of conceptual ideas, rather than details. Abstraction can be
expressed in different ways. We will not review all these aspects of abstraction. Relevant
literature is Hoare [10] and Abelson and Sussman [11].
Abstraction is the cornerstone of designing any good program. The essence of abstract-
functional thinking is feeling comfortable with considering what the function does, rather than
how it does it. This approach is necessary in order to understand recursion. The main idea in
abstraction is that the way something functions does not necessarily need to be the way to
work with it. Just as it is possible to use an electrical appliance without understanding how it
works, we can use recursion without understanding how things happen [2].
Modularity: This idea is expressed in the ancient Roman concept of “divide and conquer.” All
the students need to know is that they have to divide a big problem into a number of small
problems, to solve these, and to combine the solutions [2, 12].
Scholars suggest various solutions for overcoming the difficulty of understanding recursion.
One of these solutions is to use visual and concrete/perceptible models when teaching
recursion, like the models suggested by Haynes [13] and Wu et al. [9]. Another solution
suggested by Wu et al. [14] is to use software to simulate recursion. This helps the students
to understand the process which occurs in the computer during execution of the recursion;
however, it does not focus on solving problems using recursive thinking, which is the goal of
teaching recursion.

2. Teaching Recursion in Our CS1 Course
Our CS1 syllabus includes topics recommended in Computing Curricula 2001: basic logic;
algorithms and problem solving; fundamental data structures; fundamental programming
constructs; recursion; fundamental computing algorithms; basic computability; linked lists;
binary trees, etc. At the time we conducted our research the language introduced in our
course is C++, but mainly the procedural facet of the language, with very little time devoted
to the object-oriented facet.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

192

After teaching the basic elements of programming - variables and assignment statement,
conditional and loops statements, functions and arrays in C++ - we introduce the concept of
recursion. We present some simple examples like computing 2n, sum of 1 to n, the factorial
function, computing ab. Then we continued to some more complicated problems like the
Fibonacci sequence and computing the Greatest Common Divisor (GCD) using Euclid’s
algorithm. We then presented some examples that use the stack which is built during the
recursion process, with the aim of solving the problem; for instance, reading a sentence from
the input, and printing it in reverse, without using any data structure (such as array). Another
example is converting a number from the decimal base to its binary base. The Hanoi towers
problem was introduced to demonstrate how recursive thinking helps to solve a problem
which is almost impossible to solve otherwise. Another example is counting how many paths
there are in a grid, from point (0,0) to point (x, y), when you can move only North or East.
Here again, the backward recursive method is the simplest way to solve the problem. We
ended by teaching backtracking, using exercises such as escape from a maze or showing
the knight's moves on a chess board to demonstrate the backtracking process.
After teaching recursion, we continue to search and sort methods. Here we present
algorithms like binary search and merge-sort, and we give their recursive versions. In the
final part of the course we teach linked lists and binary trees. Because binary trees are
inherently recursive, all the examples given are recursive.
The learning process is accompanied by home assignments. The students are required to
hand in assignments, exercises or other types of tasks during the semester according to a
predefined schedule. At least one of the assignments deals with recursion.

3. The Study
To explore how our students perceive the concept of recursion, we considered checking
whether students use the recursive approach when given a problem which is inherently
recursive. Because students usually use recursion only when they learn the concept, and
avoid using it otherwise, we decided to test this in the final exam (the first and the second
sitting) of the CS1 course; that is, after studying the entire course and not just the chapter
related to recursion. We adapted two interesting and suitable problems from Ginat [1] without
suggesting to students that recursion is the preferable approach to use in solving the
problem.

3.1 Research Population

Our study was carried out on 252 CS1 students. The students could take one of two final
exam sittings. Their choice is made arbitrarily according to their own schedule. Only 124
students passed (49%) the exams. This low success rate is due to the university’s open
admissions policy, which means that there are no entry prerequisites.

3.2 Research Instruments

The research instruments were the two following questions related to recursion, included in
the two different sittings of the final exam.

Question 1 (First sitting)

Write a program for which the input is the positive integers X and Y, X<Y, and its output
is the minimal number of invocations of the operations +1 and ×2 that are required to
obtain Y from X.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

193

Example. For the input 10 17, the output will be 7 (due to 7 invocations of +1). For the
input 10 21, the output will be 2 (due to ×2 and then +1).
The function can be a recursive one or an iterative one, as you like.

Question 2 (Second sitting)

Write an algorithm for which the input is a positive integer N, indicating the number of
points a team accumulated in a basketball game, and its output is the number of different
ways that these points could have been accumulated. Recall that in basketball the
number of points can increase by 1, 2, or 3 at a time.

Example. For the input 3, the output will be 4, since there are 4 different ways to
accumulate 3: 1+1+1, 1+2, 2+1, 3.
The function can be a recursive one or an iterative one, as you like. Please note that you
do not have to write the possibilities themselves but only how many there are.

4. Results

4.1 Question 1

At the first sitting of the exam, students were given Question 1. Of 121 students who chose
to take the first sitting, 61 passed. The correct solution is based on backward reduction,
which may be recursive or iterative. Here is the code for the recursive backward solution:

int minOps (int x, int y)
{
 if (2 * x > y)
 return y-x;
 else
 if (y%2 == 1)
 return (minOps (x, y-1) + 1);
 else
 return (minOps (x, y/2) + 1);
}

Only 6 of the 61 students who passed the exam (10%) gave this solution. The same
algorithm could be approached by iteration. Here is this solution:

int iterOps (int x, int y)
{
 int numOfOps = 0;
 while (x < y)
 {
 if ((y%2 == 0) && (y/2 >=x))
 y = y/2;
 else
 y = y-1;
 numOfOps++;
 }
 return numOfOps;
}

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

194

Of the 61 students, eight (13%) gave the iterative version of the backward solution.
Many of the students who passed the exam answered this question incorrectly. Their solution
was based on forward thinking, which led to an incorrect solution. Here again we found two
kinds of solutions, iterative and recursive. Below is a typical iterative solution proposed by
students:

int wrongIteration (int x, int y)

{
 int numOfOps = 0;
 while (x < y)
 {
 if (2 * x <= y)
 x = x*2;
 else
 x = x+1;
 numOfOps++;
 }
 return numOfOps;
}

57% of the students (35) gave this kind of iterative solution.
Surprisingly, we found that 20% of the students (12) did write a recursive solution, but used
only a recursive technique without using recursive thinking. Here is a typical recursive
function written by students:

int wrongRecursion (int x, int y)
{
 if (x == y)
 return 0;
 else
 {
 if (2 * x <= y)
 return wrongRecursion (2*x, y)+ 1;
 else
 return wrongRecursion (x+1, y)+ 1;
 }
}

Figure 1 shows the distribution of answers to question 1.
From analyzing the results, we see that 70% of the students gave an iterative function, while
only 30% gave a recursive solution. In the question we specifically noted that they could do
either, and indeed, as we expected, the students felt more comfortable using the iterative
than the recursive approach. Of the 70% who gave an iterative function, only 19% gave a
correct solution, while of the 30% who gave a recursive function, one-third answered
correctly. We can infer that because the problem was inherently recursive, students who
thought recursively were more successful in writing a correct solution.
Although it is disappointing to see that only 23% answered the question correctly either
through recursion or iteration, there may be an explanation for this. The examples in the
question were not entirely representative. In both examples the correct answer can be
obtained by using a greedy algorithm which tries to multiply by 2 first, and then to add 1. If
we had given an example like x = 10 and y = 22, the correct answer (+1 ×2) would have
been a hint that a greedy algorithm is not the right one.

Figure 1 Distribution of answers to question 1.

4.2 Question 2

The second sitting of the exam included question 2. Of 131 students who chose to take the
second sitting, 63 passed. The correct solution is based on backward reduction, which may
be recursive or iterative. Here is the code for the recursive backward solution:

int noOfPath (int n)
{
 if (n==1)
 return 1;
 if (n==2)
 return 2;
 if (n==3)
 return 4;
 return noOfPath(n-1) + noOfPath(n-2) + noOfPath(n-3);
}

Most of the students, 36 out of 63 (57%) were able to solve this problem, and gave this
recursive solution.
The same algorithmic thinking could be iterative (much more efficient). Here is the solution:

int iterPath (int n)
{
 int first = 1, second = 2, third = 4;
 int newNum = first + second + third;
 for (int i=1 ; i < n-3; i++)
 {
 first = second;
 second = third;
 third = newNum;
 newNum = first + second + third;
 }
 return newNum;
}

Only 3 excellent students (5%) chose this approach, which combines backward thinking and
considering the efficiency of the algorithm. 24 of the students (38%) wrote various wrong
solutions (iterative or recursive ones).

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

195

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

196

The answers to this question were better. 62% of the students gave a correct solution. 92%
of them wrote a recursive function and 8% of them wrote an iterative one.

5. Discussion and Recommendations
Our results show that for the first question, which was inherently recursive, the majority
(70%) of the students gave an iterative solution. Ginat's results showed the same
phenomenon [1]. Ginat conducted his study with 23 CS college-level students who were
studying towards a CS teaching certificate. His students completed several courses that
involved recursion (like CS1, CS2, Introduction to Algorithms etc.), and the study was
conducted some time later during a didactic course.
We thought that the results of Ginat's study showing that the majority of the students did not
invoke or follow backward reasoning, was due to the fact that this didactic course took place
some time after the students took the courses that introduced recursion. Surprisingly, we
anticipated the same phenomenon, despite the fact that our exam took place just after the
CS1 course, which introduces and practices recursive thinking.
When we re-examined the results of the second question, we observed that many of the
students (62%) succeeded in solving the question. Since there were no differences between
the students who took either of the two sittings of the exam, we realized that there must be
some reason which led to this success. Indeed going through the examples given in the
course, we saw that two examples were quite similar to the second question given in the
second sitting of the exam. One was the Fibonacci sequence, and the other was the counting
of the North-East paths between points (0, 0) to (x, y) on a grid. We can see that the students
used algorithmic patterns. Though the best solution to this problem is to use iteration in
backward thinking specifically, most of the students used a recursive algorithm similar to the
ones with which they were already familiar.
To conclude, we recommend presenting different kinds of examples when teaching
recursion, starting with visual examples, such as fractal figures or Russian dolls. Then giving
the students some exercises on algorithmic recursive thinking, without concentrating on the
language syntax of recursion. We think that giving simple examples like factorial
computation, at this point, causes difficulties in convincing students that recursion is an
important technique for solving problems.
A good candidate to present as a non-trivial problem is the problem of question 1 – a
question which can be better solved by using a recursive algorithm. The teacher can
demonstrate the solution by giving each student his/her task to remember his/her move and
"sending" the next call to another student.
We believe that such problems will increase students' motivation to learn and use recursion.
After the students understand the recursive way of thinking, one can proceed to the syntax,
and start writing recursive functions. Now, of course, is the time for simple examples like
factorial or Fibonnacci sequence, so the students can follow the function flow.
We suggest providing some simple examples first, and then proceeding to more complicated
ones. Here one can present examples like Hanoi towers. Later, the subject of backtracking
has to be presented, and one can present examples like solving a maze or the 8-Queens
problem. In our course, we adopted these recommendations and changed out method of
teaching recursion accordingly.
In the following we show a nice and non-trivial example which uses backtracking. It is a
variation of the famous "knapsack problem": Write a recursive Boolean function which gets
as parameters a one-dimension array full of integers, and an integer number x. The function
has to return true if there are some numbers in the array, whose sum is equal to x. For
example, if the array is {5, 22, 13, 5, 7, -4}, and x = 42, the function returns true since
22+13+7 = 42. If x = 7, the function returns false.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

197

The solution for this problem is:

int cover (int [] a, int i, int amount)
{
 if (amount == 0)
 return 1;
 if (i == n)
 return 0;
 return (cover (a, i+1, amount-a[i]) || cover (a, i+1, amount));
 }

Finally, as we all know, sometimes quantity is as important as quality. In the case of
recursion, it is important to provide as many different problems as possible so that the
students are convinced of the importance of recursion in solving problems even though it is
not always the most efficient solution. Also, it is important to continue and practice recursive
algorithms after the concept has been introduced in the chapter on recursion. The teacher
can show recursion when teaching linked lists, arrays, searching and sorting algorithms, and
of course, in binary trees.

References
1 Ginat, D., Do Senior CS Students Capitalize on Recursion?, Proceedings of ITiCSE 2004, Leeds,

UK, 2004, pp. 82-86.
2 Sooriamurthi, R., Problems in Comprehending Recursion and Suggested Solutions. SIGCSE

Bulletin, 2001, 33, 3, pp. 25-28.
3 Levy, D., Lapidot, T. & Paz, T., 'It's Just Like the Whole Picture, but Smaller': Expressions of

Gradualism, Self Similarity and Other Pre-Conceptions while Classifying Recursion Phenomena.
Proceedings of the 13th Annual Workshop of the Psychology of Programming Interest Group,
2001, pp. 249-262.

4 Velazquez-Iturbide, J. A., A Progressive Approach to Recursion, Proceedings of the 29th
ASEE/IEEE Frontiers in Education Conference, San Juan, 1999, Session 12a9, pp.34-38.

5. Sanders, I., Galpin, V. & Gotschi, T., Mental Models of Recursion Revisted, SIGCSE Bulletin, 2006,
38, 3, pp. 138-142.

6 Ginat, D. & Shifroni, E., Teaching Recursion in a Procedural Environment - How Much Should We
Emphasize the Computing Model? Proceedings of the 30th SIGCSE Technical Symposium on
Computer Science Education, New-Orleans, LA, 1999, pp.127-131.

7 Levy, D. & Lapidot T., Recursively Speaking: Analyzing Students' Discourse of Recursive
Phenomena, SIGCSE Bulletin, 2000, 32, 1, pp. 315-319.

8 Benander, A. C., Benander, B. A. & Pu, H., Recursion vs. Iteration: An Empirical Study of
Comprehension, Journal of Systems Software, 1996, 32, pp. 73-82.

9 Wu, C-C., Dale, N. B. & Bethel, L. J., Conceptual Models and Cognitive Learning Styles in
Teaching Recursion, SIGCSE Bulletin, 1998, 30, 1, pp. 292-296.

10 Hoare, C. A. R., Mathematics of programming, Byte, 1986, pp. 115-124, 148-150.
11 Abelson, H. and Sussman, G. J., Structure and interpretation of computer programs, MIT Press

and McGraw-Hill, 1986.
12 Turbak, F., Royden, C., Stephan, J. & Herbst, J., Teaching Recursion before Loops in CS1, Journal

of Computing in Small Colleges, 14, 4, pp. 86-101.
13 Haynes, S. M., Explaining Recursion to the Unsophisticated, SIGCSE Bulletin, 1995, 27, 3, pp. 3-6.
14 Wu, C-C., Lin, M. & Hsu, I. Y-W., Closed Laboratories using SimLIST and SimRECUR, Computers

& Education, 28, 2, 1997, pp. 55-64.

When does Algorithm Visualization Improve
Algorithm Learning? – Reviewing and Refining
an Evaluation Framework
Tobias Lauer
Albert-Ludwigs-Universität, D-79098 Freiburg, Germany, lauer@informatik.uni-freiburg.de

We present a review of recent evaluations of the pedagogical value of algorithm
visualizations in informatics education, most of them carried out within a common
research framework known as the engagement taxonomy. In the light of seemingly
contradictory results from otherwise similar experiments, we propose refined
categories for the taxonomy and modified hypotheses to be tested within the
framework in future research.

Keywords
Algorithm visualization, animation, engagement taxonomy, evaluation

1. Introduction
Algorithm visualizations such as interactive animations have been popular learning aids in
informatics education since at least 1980, when Ron Baecker created his famous animation
film Sorting out Sorting [1]. Almost three decades later, it is still far from clear how effective
such visualizations actually are for improving learning. While both instructors and learners
are often intuitively convinced of the value of algorithm visualizations when asked in
evaluations, this is of course no objective measure of the effectiveness of these learning
aids. Most evaluations of algorithm visualizations unanimously report that students were
“excited”, “enthusiastic”, or “motivated”, and that they “enjoyed” working with the
visualizations, and often the learners express their firm belief that they have learned better
because of the visualizations [1, 2]. However, as has been said in [3], while such tools may
enhance the learning experience, they do not necessarily improve learning. On the contrary,
even a reduction of students' performance has been observed if presentations are laden with
too much (and possibly irrelevant) multimedia materials [4].
Since the late 1990s, an increasing number of empirical studies have been carried out in
order to assess the pedagogical value of algorithm visualizations; an excellent overview is
given in [5]. However, the outcomes of these evaluations were very mixed. While some
studies reported significantly improved learning, others could not detect any difference to
traditional teaching without visualizations or even indicated a negative effect. This
dissatisfying result may be attributed to the fact that the settings and designs of the studies
were, in most cases, not comparable and hence a great variety of influencing factors might
be responsible for the discrepancies.
However, an extensive meta-review of former studies by Hundhausen et al. suggested that
there was indeed one factor which could – at least in part – explain the differences of 21
earlier evaluations under consideration [5]. The authors found that out of the 9 experiments
which focused on purely representational aspects of the visualizations such as sophisticated
graphics and animation, only 3 produced significant results, while 10 of the remaining 12

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

198

evaluations found significant effects. These latter 12 experiments were different from the
former 9 in that they all engaged the students in activities beyond (passive) watching. The
obvious conclusion was that it is not so much important what learners see but what they do
with visualizations [6].
Hundhausen’s work was groundbreaking for the research on the effectiveness of algorithm
visualizations in the sense that it set a new trend. In the light of the above meta-study, the
focus of research has shifted from studying representational aspects of visual tools towards
examining the level of engagement that learners exert when learning with visualizations.

2. The Engagement Taxonomy
In 2002, a working group at the ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE) put forward a research framework including a taxonomy of
learner engagement, together with a number of hypotheses and testing methods for further
evaluations [7]. We will describe the framework in some detail, as it is important for our work
described in the following sections.

2.1 Levels of learner engagement

In a learning scenario, students exert a certain level of engagement with the visualization of
an algorithm. The actual degree of engagement certainly depends a great deal on the
students’ attitudes towards the learning contents and methods and their willingness to
engage. However, the visualization itself and the context in which it is used also allow or
even enforce a certain level of engagement. A rough division into several categories can be
made. The six levels of learner engagement as proposed in [7] are:
(1) NO VIEWING: This category describes the situation where learners are not provided with

any visualization and is thus the default case.
(2) VIEWING: This is the most basic form of engagement with visualization which includes all

the following categories. When purely viewing, learners watch an algorithm visualization
more or less passively, i.e. without any interaction other than navigational controls of the
execution or changing between different views. In particular, there is no interaction with
the algorithm under consideration.

(3) RESPONDING: At this level, learners still cannot manipulate the visualization, but at certain
points, the visualization is interrupted and learners have to answer questions or quizzes
before the visualization proceeds. Examples of questions could be predictions (“What will
happen next?”), assigning a segment of the code of the algorithm to the currently
visualized part, assessing the correctness of the algorithm, or efficiency analysis.

(4) CHANGING: Students can modify the visualization. For instance, they have to select the
input to the algorithm so they can compare the behaviour in different cases. Another
example would be for learners to choose a sequence of operations carried out on a
visualized data structure. Depending on the algorithm or data structure, changing can be
done either offline (i.e. before the algorithm visualization starts) or online, in the course of
the visualized algorithm.

(5) CONSTRUCTING: In this category students are expected to create their own visualizations
of an algorithm. This is probably the most diverse category in the taxonomy, as there is a
multitude of options for constructing visualizations. Hand-constructed visualizations are
not connected to the algorithm; they can be created as a movie with any given animation
editor [8] or even without computer assistance using art supplies [9]. This type has
sometimes been referred to as “low fidelity” or “low tech” algorithm visualization and has
been extensively studied by Hundhausen. Obvious advantages are very short production
times and concentration on the workings of the algorithm rather than on implementation

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

199

details. At the other end of the spectrum, direct construction builds on an implementation
of the algorithm. Students either map a given algorithm to a visualization or annotate the
code of the algorithm with visualization commands, or they completely program the
algorithm from scratch together with a visualization. Yet another construction scenario
has the learners work on a given graphical representation, on which they are expected to
simulate the steps of the algorithm. The graphical representation is linked to an actual
implementation of the data structure and can be manipulated via the graphical user
interface. This approach is suitable for assessing students’ knowledge and has been
used for exploratory learning [10] and automatic assessment [11], and also within an
evaluation carried out by ourselves [12].
Note that in [7] the heterogeneity of this category is not further addressed when
hypotheses about the effects on learning are proposed. We will discuss later why an
explicit subdivision should be part of both the taxonomy and the hypotheses.

(6) PRESENTING: Learners themselves present the algorithm or data structure to an audience
using visualizations – either created by themselves, or existing ones that they find
helpful.

Note that although these categories are, in a certain sense, ordered by an increasing level of
engagement with visualizations, the list is not to be understood as a hierarchical scale. With
the exception of categories (1) and (2), no category necessarily includes or excludes any of
the others. Instead, the last four categories can occur in any combination in a specific
learning scenario. Also note that only engagement levels (3), (5) and (6) allow students a
degree of freedom where they can actually make mistakes during their activities (and
possibly get automatic feedback).

2.2 Hypotheses

The major hypothesis of the framework in [7] is that each level of engagement will result in
significantly better learning than the previous ones. For instance, one sub-hypothesis claims
that RESPONDING should result in significantly better learning than VIEWING.
Note that there is one exception to this: VIEWING is not hypothesized to result in better
learning than NO VIEWING. In fact, one of the hypotheses given in [7] is that passively viewing
an algorithm visualization will not improve learning when compared to no visualization. This
claim may seem rather surprising at first, but the hypothesis – like all others – is borne out of
and consistent with the results of the majority of former evaluations, most notably the ones
reviewed in the meta-study by [5].
In addition, when several levels are combined, one additional hypothesis can be
paraphrased as “more is better” [7]. This means that scenarios including more than one of
the levels (3) to (6) in the taxonomy will result in better learning than those with only a single
level of engagement.

2.3 Methodology

In addition to the taxonomy and hypotheses, the research framework provides guidelines for
the practical realization of future experiments. These guidelines include examples of test
scenarios, each comparing two or more engagement levels. They also contain possible test
questions for assessing different types of learning and understanding according to the well-
known taxonomy proposed by Bloom and Krathwohl, who distinguish six different levels of
educational objectives: knowledge, comprehension, application, analysis, synthesis, and
evaluation [13].
Moreover, other aspects to be measured and covariant factors which might influence the
results are proposed. For example, a study conducted by Naps and Grissom [14] found that

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

200

the experience of students with the visualization tool, as well as the fact whether the outcome
of a test counts toward the final grade or course credit, can also influence the outcome of an
experiment.

3. Subsequent research
The engagement taxonomy has been a great success in that it had an enormous impact on
the subsequent research conducted to assess the pedagogical value of algorithm
visualization. A considerable number of studies have been carried out within the framework
since it was first proposed. It should be noted that some of these studies did not strictly
adhere to all guidelines suggested in [7]. Nevertheless, the framework has provided a
common language which makes it much easier to put different experiments in relation to
each other, even though the results may not always be directly comparable. In this section,
we give an overview of the picture that has emerged from recent empirical studies.

3.1 Recent experiments

Goldstein et al. Conducted an experiment to test the effectiveness of an interactive
simulation tool in the computer networks domain [3]. Students were able to manipulate a
virtual network that was visualized; hence the engagement level in the study was CHANGING.
While the evaluation found significantly improved understanding of the learners after the self-
study session with the visualization tool (as compared to before the session), the results of a
control group who had a traditional tutor-led session on the same topic could not be used for
comparison (for statistical reasons). Hence, unfortunately, this experiment shows only that an
additional practical session with a simulation tool can foster learning. However, we do not
know whether it is better than a traditional session, nor can we conclude that the simulation
itself or the engagement with it was actually responsible for the improvement. It would be
possible that reviewing the same topic from a textbook for the same amount of time could
have led to the same improved understanding.
On the other hand, an experiment carried out at the same institution [15] and on a similar
topic found evidence for the hypothesis that mere VIEWING of an animation will not improve
learning. The study was originally designed to compare verbally narrated animations with
and without an accompanying on-screen text of the narration. No differences in the learning
outcome could be detected between the two conditions. Moreover, apparently no learning at
all was going on; students did not do significantly better in a post-test than in the pre-test
conducted before the visualization session. Naturally, while other influences on the result,
such as the introductory lecture on the topic, can never be excluded, it appears that simply
watching movie-style animations as accompanying materials does not result in improved
learning.
Grissom et al. compared the effects of the levels NO VIEWING, VIEWING and RESPONDING [16].
They found no significant differences between NO VIEWING and VIEWING (as predicted by the
hypothesis), but did not find any significant difference between VIEWING and RESPONDING
either (contrary to the hypothesis). However, a significant improvement was measured
between NO VIEWING and RESPONDING. Hence, while the overall claim that more engagement
is better was supported, not all of the individual hypotheses were substantiated. The
differences in the learning outcome between increasing levels of engagement may not be as
discrete as the levels proposed in the taxonomy, but might be rather gradual. Moreover, as
we shall point out later, there can be differences regarding the degree of engagement within
the VIEWING category.
The hypothesis that a simple “movie-style” animation is no better than no visualization at all
is apparently challenged in the light of a study by Ahoniemi and Lahtinen [17]. They studied

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

201

the effect of visualizations when students prepared for a programming course session. In
addition to printed course material, one group received simple visualizations of the new
contents before a homework assignment. The authors observed a significant difference in
the test grades between the two treatments when only the “novices and strugglers” of each
group were considered (unfortunately, without detailing how they arrived at this separation of
the learners). They conclude that the visualizations did help the weaker students but not the
stronger ones. However, this result could not be replicated in a second run of the experiment
carried out one week later. Another methodical problem of that study is that the two
treatments used completely different tools to accomplish the assignments. While the
students in the control group used paper and pen, the VIEWING group had a specialized tool
which allowed them to verify and visualize their code. Hence, the effect might be caused by
the students’ method of coding and feedback rather than the movie-style visualizations.
Our own experiment reported in [12] was set up to compare the levels of VIEWING, CHANGING
and CONSTRUCTING, using a fairly complex data structure (Fibonacci heap) as the learning
content. In this experiment, the VIEWING condition involved a very ‘active’ kind of watching the
animations, allowing students to freely navigate backwards and forwards in small algorithmic
steps and change the speed of the animation. On the other hand, the CONSTRUCTING
condition used a rather ‘weak’ type of construction, namely the simulation of the algorithms
on a given visualization by assembling operations out of smaller algorithmic building blocks
(with instant feedback on the correctness). Although students in all three groups clearly
acquired new knowledge, no significant differences in the learning outcome between any of
the three levels of engagement were found.
The study by Urquiza-Fuentes and Velázquez-Iturbide [2] is the only other experiment known
to us comparing the VIEWING and CONSTRUCTING levels and is probably the one that can best
be compared to the above evaluation [12]. However, their two treatments were more different
from each other than the VIEWING and CONSTRUCTING groups in our experiment: while their
VIEWING group also only watched a pre-fabricated animation, the CONSTRUCTING group
received the source code of the algorithm and had to create an animation from it with the
authors’ visualization system WinHIPE. Hence, their type of construction was different from
ours, since students also had to deal with the code of the algorithm rather than just a visual
representation. The authors found a significantly better learning outcome on the application
level of Bloom’s taxonomy, but also regarding the comprehension level (for one out of four
questions). However, this result must be treated with caution. The difference might also be
attributed to the time the students spent with the visualizations: while both groups were
allowed to take as much time as they needed, the students in the CONSTRUCTING group took
almost three times as long as those in the VIEWING group on average. This is not surprising,
as the latter had to actually create an animation and not just watch one. However, it is
unclear whether the longer time of exposure to the problem or the level of engagement was
responsible for the different learning outcome. Nevertheless and despite the low number of
only 15 participants, the significant results indicate that this type of construction involving the
code of the algorithm, can actually lead to improved learning.
Rhodes et al. present a study on the effect of interactive pop-up questions built into algorithm
animations [18]. In addition to testing the hypothesis claiming that RESPONDING leads to
improved learning compared to just VIEWING an animation, the authors were also interested
in differences regarding the type of questions and whether or not immediate feedback was
provided to the students’ answers. As in our own experiment, great care was taken in order
to eliminate any additional factors that might influence the result. However, one severe
weakness is the relatively low number of participants (N = 29 distributed between six
treatments). Interestingly, the students who had to answer pop-up questions performed
worse than those who simply viewed the animation (although the difference was not
statistically significant). This may be surprising, but the result is in line with that of an earlier
experiment on the same aspect reported in [19]. Despite this finding, those students who
received immediate feedback on their pop-up questions performed significantly better on the
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

202

pop-up questions than those who got no feedback. The difference was not significant for the
regular (non pop-up) questions in the post-test. Also, there was no significant difference
between students who answered predictive questions (“What will happen next?”) and those
who had to answer questions about previous steps (“What did you just see?”). The authors
assume that the overall negative impact of the pop-up questions is due to the interruption of
the higher-level visualization of the whole algorithm by lower-level questions on small details.
Myller et al. [20] conducted a study comparing VIEWING and CHANGING (or CONSTRUCTING, cf.
the discussion in section 5) in a collaborative algorithm visualization scenario. Although their
results showed a tendency towards better learning in the CHANGING group, the difference was
not significant. However, in an additional run of the same experiment, in which some
methodical shortcomings were removed, the difference between the treatments turned out to
be statistically significant [21].

3.2 Representational aspects of animations

In addition to studies relating directly to the framework and engagement taxonomy proposed
in [7], there have also been recent experiments studying the effects of representational
aspects of algorithm visualizations on the learning outcome. They are interesting in this
context because they specifically focus on algorithm animation, rather than attempting to
answer the questions for animations in general, i.e. independently of the discipline and
subject domain.
Reed et al. report on an experiment evaluating the specific representational aspects of visual
cueing and exchange motions in a Quicksort animation [22]. Visual cueing is the attempt to
attract the viewer’s attention to specific objects, for instance by highlighting or flashing two
objects in an array in order to signal that they are being compared. Also, an exchange of two
objects (such as swapping two elements in an array) can be animated in different ways. A
very common method is to have the visual representations of the objects trade places, i.e.
one is moving to the location of the other and vice versa. Another way would be to leave the
objects at their original positions but change their shape in such a way that at the end, each
one looks like the other one did before. The experiment compared CUEING vs. NO CUEING as
well as MOVE vs. CHANGE SHAPE for element exchanges in the Quicksort animation.
No significant effects were discovered for questions asking for the overall comprehension of
the algorithm. However, for two specific subsets of pop-up questions classified as cue-
specific (e.g. “Which two elements were just compared?”) and exchange-specific (e.g.
“Which two elements were just exchanged?”), a significant benefit of CUEING over NO CUEING
and MOVE over CHANGE SHAPE, respectively, was detected.
In summary, these variables show some influence on learning the low-level behaviour of an
algorithm when asked immediately after these low-level steps occur, but not on the much
more important overall comprehension of an algorithm. This finding is in line with the meta-
study by Hundhausen et al., which has observed that representational details seem to have
no significant effects on learning [5].

3.3 Visualizations as programming aids

The focus of the framework described in [7] is on students’ understanding of algorithms and
data structures. This understanding is usually tested with the help of questions in a (written)
post-test. What is often neglected in these tests is the learners’ ability to actually code the
respective algorithms. This aspect has not been evaluated in most of the above evaluations
– and in fact, none of the six levels in the engagement taxonomy necessarily involves active
coding.
One can argue that although the ability to code an algorithm is very strong evidence for its

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

203

understanding, the opposite might not necessarily be true: for the comprehension of the
abstract concept of an algorithm, it may not be required to be able to program it. However, a
survey reported by Jain et al. [23] indicates that one major reason for the high drop-out rate
of computer science students is the missing bridge between understanding fundamental
principles and their implementation. Even students with appropriate expertise in a
programming language apparently lack the skills to code the concepts they have understood.
This is also supported by our own practical experience in advising students’ projects where
they create algorithm visualizations; a student’s own successful implementation of an
algorithm is very important and often takes as much or even more time than augmenting it
with a suitable visualization.
Jain et al. argue that the gap between understanding a concept and the ability to implement it
as an algorithm may be bridged by programming environments which include automatically
produced visual representations of the algorithms and data structures that students are
coding. They conducted two experiments to test whether such views help students produce
and debug code more efficiently and more accurately. While the time taken by the test
subjects with and without visualizations was nearly identical, there were significant
differences both for the correctness of written programs and the number of errors found in
debugging tasks. Students who had the visualizations performed significantly better than
those who used the same programming and debugging environment without visualizations. It
seems as if visualizations can be particularly helpful for those tasks.

4. Critical discussion
Given all the results we have compiled here, it would seem that the pedagogical value of
algorithm visualizations is not too overwhelming, even if they are engaging and require
interaction from the users. However, it also seems as if certain navigational features can
enhance the benefit of visualizations. In addition, our own experiment has led us to the
conclusion that other learning materials accompanying the visualizations such as
introductory lectures may play an important role and can even be stronger than possible
effects of the engagement level of visualizations. Rather, we tend to claim that higher
engagement is effective only if it involves more than just a visual representation of the data
structures and algorithms. Most experiments reporting significantly better results for the
CONSTRUCTING level involved students’ working with the code of the algorithm, not just
constructing visual representations [2]. Similarly, more recent results such as those reported
in [23] confirm that the importance of actually coding the algorithms must not be
underestimated for the students’ success. Indeed, this study found significant improvement
when programming tasks are supported by visualizations that are part of the developing
environment. More research is required to verify this hypothesis.
This issue points to another weakness – or, vagueness – in the engagement taxonomy.
Coding as one important form of engagement is not explicitly included there and only may be
part of the CONSTRUCTING level. It would certainly be beneficial to subdivide that level into
forms of construction that involve programming and those that do not.
The findings of experiments conducted within the framework of the engagement taxonomy
have only partially confirmed the proposed hypotheses. In general, the results are still
inconsistent and often even contradict each other. This may be due to the fact that a number
of the experiments did not strictly adhere to the proposed methods and procedures of the
framework, often because of factors that could not be modified by the experimenters or that
are not explicitly covered by or described in the research framework.
When looking at the contradicting results of seemingly similar evaluations, it is striking that
almost all of these studies involve the VIEWING or the CONSTRUCTING levels. For example,
both [2] and [12] compare those two categories and arrive at opposite conclusions. A close
look revealed that what was regarded as “constructing” in both studies was quite different:
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

204

while in the former the students had to code the algorithms using a visual tool, the latter had
them construct an animation by simulating the algorithm on a pre-defined visualization.
Despite the discrepancy, the categorisation of the tasks as CONSTRUCTING is correct for both
experiments, according to [7]. A similar point can be made for the VIEWING level when
comparing experiments with different conclusions, for instance [12] and [18].

5. Refining the engagement taxonomy
In the light of our own results and those of other studies, we propose refinements to the
engagement taxonomy, including an explicit subdivision of two of the engagement levels,
VIEWING and CONSTRUCTING.
Instead of a single VIEWING category, in [24] we suggested a distinction between PASSIVE
VIEWING and ACTIVE VIEWING. Recently we have been informed that Myller and colleagues
also propose extensions to the engagement taxonomy which have been submitted for
publication.1 While one main goal of their modification is to adapt the taxonomy to
collaborative learning, it also involves essentially the same refinement of the VIEWING level as
our own, only with different category names. In order to avoid confusion, we adopt their
terminology and suggest the distinction between VIEWING and CONTROLLED VIEWING.
The former describes those scenarios where viewing is unidirectional and uninterrupted. This
means that learners cannot go back and there are no fixed break points after intermediate
steps (even though users may be able to pause the animation manually). Note that a large
number of existing algorithm animations belong to this category. In most cases, the missing
rewind function is due to the tight coupling of the animations actual algorithm. Since the
algorithm cannot be rewound, neither can the visualization. Conversely, the category of
CONTROLLED VIEWING includes visualizations which allow users to go back to earlier stages of
the algorithm and/or provide break points at which the animation stops to better highlight
intermediate steps. Previous results have suggested that CONTROLLED VIEWING leads to
better learning than (passive) VIEWING. This hypothesis should be tested in future
experiments.
We have already pointed to the great heterogeneity among possible learning scenarios
belonging to the CONSTRUCTING level and the resulting problems. We therefore propose an
explicit subdivision of that category into what could be labelled SIMULATING (which we
referred to as “constructive simulation” in [24]), HAND-CONSTRUCTING, and CODE-BASED
CONSTRUCTING. Only the third of these categories involves working with actual code. This
means that learners either program an algorithm themselves or augment the given source
code in order to visualize it. Hence, the outcome of such a scenario is always a visualization
directly connected with the respective algorithm. In contrast, HAND-CONSTRUCTING includes
those settings where learners work, for instance, with graphical editors or use art supplies to
create visualizations. Thus, Hundhausen’s low-fidelity type of visualization would belong to
that category [6].
By SIMULATING, we understand settings where learners carry out individual steps of an
algorithm in a predefined visualization environment, thus “assembling” a visualized algorithm
out of small building blocks. Examples include the MA&DA system used for the study in [12],
as well as the approaches described in [10] and [25]. This is the weakest – or most passive –
form of construction, since students neither code the algorithm nor do they have to come up
with their own ideas for a suitable visualization. One might even consider this engagement
level as being closer to CHANGING than to CONSTRUCTING. In fact, Myller et al. have classified
this engagement level in their TRAKLA2 simulation of binary heaps as CHANGING [20],
whereas the same simulation tasks are listed as an example for CONSTRUCTING in the original
definition of the taxonomy [7]. Similarly, Furcy et al. seem to mix up the same two categories

1 Niko Myller, personal communication, 30th June 2008.
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

205

in their report on Sorting out Sorting – The Sequel (a recent state-of-the-art interactive
“remake” of Baecker’s film), when they classify the possibility for the user to select one out of
several sorting algorithms and its input – clearly an instance of CHANGING according to [7] –
as belonging to the CONSTRUCTING level [26]. (Ironically, both these papers were co-authored
by members of the very same working group who came up with the engagement taxonomy.)
Apparently, a refined hierarchy, also including a separate SIMULATING category, will be helpful
to resolve such and other confusions. The refined taxonomy is shown in Figure 1.

Levels of learner engagement [7]: Refined categories:

eraction is restricted. No rewind function,
no break points for stepwise navigation.

 along explicit sub-
steps of the algorithm and/or unrestricted rewind
function.

raction with given visualization of a
data structure, where basic operations can be carried
out on objects to “assemble” an algorithm
visualization.

n is not directly
connected to the implementation of an algorithm.
Usually only one or a few particular instances of an
algorithm’s execution are visualized.

dents work with and
manipulate the code of the algorithm they visualize.

NO VIEWING: Le

VIEWING: Most b

RESPONDING: At

CHANGING: Stud

CONSTRUCTING:

PRESENTING: Lea

arners are not provided with any
visualization.

asic form of engagement; visualiz-
ation is watched more or less passively, interaction
consists of navigation in media.

certain points, the flow of the visual-
ization is interrupted and learners have to answer
questions or quizzes before the visualization
proceeds.

ents can interact with the visualized
algorithm. Depending on the visualization, changing
can be done either offline (i.e. before the algorithm
visualization starts) or online.

Students create their own visualiz-
ations of an algorithm. This is probably the most
diverse category in the taxonomy, as there is a
multitude of options for constructing visualizations.

rners themselves present the
algorithm or data structure to an audience using
visualizations – either created by them, or existing
ones that they find helpful.

VIEWING: Int

CONTROLLED VIEWING: Navigation

SIMULATING: Inte

HAND-CONSTRUCTING: Visualizatio

CODE-BASED CONSTRUCTING: Stu

Figure 1 The engagement taxonomy (left) and the proposed refinements (right).

The proposed subdivisions allow us to also refine the hypotheses associated with the
taxonomy. For example, the original general hypothesis “CONSTRUCTING is better than
VIEWING” [7] may have been confirmed for CODE-BASED CONSTRUCTING vs. (passive) VIEWING,
but it would also predict that mere SIMULATING results in better learning than CONTROLLED
VIEWING, which is rather doubtful in the light of our results. Similarly, an earlier study by
Hundhausen suggested that HAND-CONSTRUCTING is probably not better than CONTROLLED
VIEWING [9]. Judging from the other studies reviewed above, another hypothesis we propose
for evaluation is that CODE-BASED CONSTRUCTING leads to better learning than HAND-
CONSTRUCTING or SIMULATING.

6. Conclusions
We have proposed refinements to the engagement taxonomy by diving two of its six
categories into further subcategories and adjusting the corresponding hypotheses
accordingly. Our refinements resolve most seemingly contradicting results of different
experiments conducted within the framework.
We note that these are not the only possible subdivisions within the framework. However, we
are also aware that refinements to any taxonomy are useful only if the resulting categories
are still general enough to group entities in a reasonable way. With our refined taxonomy,
results of previous studies can still be compared; moreover, the comparison is more accurate
and accounts for differences that we consider important.
Finally, we hope that future research on the effectiveness of algorithm visualization will

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

206

benefit from more specific categories describing different levels of learner engagement and
that a clearer picture of the influential factors in this area will emerge.

6. Acknowledgements
The author would like to thank participants of the ITiCSE 2008 conference for enlightening
talks and conversations. Special thanks go to Niko Myller for information on research results
which had not been published at the time of completion of this paper.

References
1 Baecker R. ‘Sorting out sorting’: a case study of software visualization for teaching computer

science. In: Stasko J T, Domingue J, Brown M H, Price B A (eds). Software Visualization:
Programming as a Multimedia Experience, Cambridge: MIT Press, 1998, 369-381.

2 Urquiza-Fuentes J, Velázquez-Iturbide J Á. An evaluation of the effortless approach to build
algorithm animations with WinHIPE. Proceedings of the 4th Program Visualization Workshop,
Florence, Italy, June 2006.

3 Goldstein C, Leisten S, Stark K, Tickle A. Using a network simulation tool to engage students in
active learning enhances their understanding of complex data communications concepts.
Proceedings of the 7th Australasian Conference on Computing Education, Newcastle, Australia,
January 2005, 223-228.

4 Mayer R E, Heiser J, Lonn S. Cognitive constraints on multimedia learning: when presenting more
materials results in less understanding. Journal of Educational Psychology, 93, 2001: 187-188.

5 Hundhausen C D, Douglas S A, Stasko J T. A meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing 13 (3), 2002: 259-290.

6 Hundhausen C D. Toward effective algorithm visualization artifacts: designing for participation and
negotiation in an undergraduate algorithms course. Proceedings of CHI ’98, 1998, 54-55.

7 Naps T L, Rößling G, Almstrum V, Dann W, Fleischer R, Hundhausen C, Korhonen A, Malmi L,
McNally M, Rodger S, Velázquez-Iturbide J A. Exploring the role of visualization and engagement
in computer science education. ACM SIGCSE Bulletin 35 (2), June 2003.

8 Rößling G. The ANIMAL algorithm animation tool. Proceedings of the 5th Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE 2000), Helsinki, Finland, 2000.

9 Hundhausen C D, Douglas S A. Using visualization to learn algorithms: Should students construct
their own, or view an expert’s? Proceedings of the IEEE International Symposium on Visual
Languages (VL '00), September 2000.

10 Faltin N. Structure and constraints in interactive exploratory algorithm learning. In Diehl S (ed.),
Software visualization. Berlin: Springer, 2001.

11 Malmi L, Korhonen A, Saikkonen R. Experiences in automatic assessment on mass courses and
issues for designing virtual courses. Proceedings of the 7th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2002), Aarhus, Denmark, June 2002.

12 Lauer T. Learner interaction with algorithm visualizations: viewing vs. changing vs. constructing.
Proceedings of the 11th ACM Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2006), Bologna, Italy, June 2006, 202-206.

13 Bloom B S, Krathwohl D R. Taxonomy of Educational Objectives; the Classification of Educational
Goals, Handbook I: Cognitive Domain. Addison-Wesley, 1956.

14 Naps T L, Grissom S. The effective use of Quicksort visualizations in the classroom, Journal of
Computing Sciences in Colleges, 18 (1), October 2002: 88-96.

15 Dowling G, Tickle A, Stark K, Rowe J, Godat M. Animation of complex data communications
concepts may not always yield improved learning outcomes. Proceedings of the 7th Australasian
Conference on Computing Education, January 2005, Newcastle, Australia: 151-154.

16 Grissom S, McNally M, Naps T. Algorithm visualization in CS education: comparing levels of
student engagement. Proceedings of the ACM Symposium on Software Visualization, San Diego,
CA, USA, 2003.

17 Ahoniemi T, Lahtinen E. Visualizations in preparing for programming exercise sessions.
Proceedings of the 4th Program Visualization Workshop, Florence, Italy, June 2006.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

207

18 Rhodes P, Kraemer E, Reed B. The importance of interactive questioning techniques in the
comprehension of algorithm animations. Proceedings of the ACM Symposium on Software
Visualization (SOFTVIS 2006), Brighton, UK, September 2006, 183-184.

19 Jarc D J, Feldman M B, Heller R S. Assessing the benefits of interactive prediction using web-
based algorithm animation courseware. Proceedings of the 31st SIGCSE Technical Symposium on
Computer Science Education, Austin, Texas, USA, March 2000, 377-381.

20 Myller N, Laakso M, Korhonen A. Analyzing engagement taxonomy in collaborative algorithm
visualization. Proceedings of the 12th ACM Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2007), Dundee, UK, June 2007.

21 Laakso M J, Myller N, Korhonen A. Analyzing the extended engagement taxonomy in collaborative
algorithm visualization. To appear in Journal of Educational Technology & Society, 2008.

22 Reed B, Rhodes P, Kraemer E, Davis E T, Hailston K. The effect of comparison cueing and
exchange motion on comprehension of program visualizations. Proceedings of the ACM
Symposium on Software Visualization (SOFTVIS 2006), Brighton, UK, September 2006, 181-182.

23 Jain J, Cross J H II, Hendrix D, Barowski L. Experimental evaluation of animated-verifying object
viewers for Java. Proceedings of the ACM Symposium on Software Visualization, Brighton, UK,
September 2006, 27-36.

24 Lauer T. Reevaluating and refining the engagement taxonomy. Proceedings of the 13th ACM
Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE 2008),
Madrid, Spain, June 2008.

25 Korhonen A, Malmi L. Matrix – concept animation and algorithm simulation system. Proceedings of
the Working Conference on Advanced Visual Interfaces, Trento, Italy, May 2002, 109-114.

26 Furcy D, Naps T, Wentworth J. Sorting out Sorting – the Sequel. Proceedings of the 13th ACM
Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE 2008),
Madrid, Spain, June 2008, 174-178.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

208

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

209

Teaching Intelligent Agents using NetLogo
Ilias Sakellariou1, Petros Kefalas2, Ioanna Stamatopoulou2

1Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece,
iliass@uom.gr
2Department of Computer Science, CITY College, Thessaloniki, Greece,
kefalas@city.academic.gr, istamatopoulou@seerc.org

In the context of an Agent and Multi-Agent Systems course, satisfying the students
demands for hands-on practice presents an interesting challenge. Educators have
reported a variety of environments and techniques they use in order to increase active
learning. In this paper we record our experience using NetLogo as part of the practical
coursework that students need to carry out within an Intelligent Agents course. We
argue that NetLogo meets most of the requirements that suit our criteria. In addition,
we describe two extra NetLogo libraries provided to students, one for BDI-like agents
(goal-oriented agents) and one for ACL-like (Agent Communication Language)
communication. We present a few scenarios that we use in coursework handouts and
how the partially developed environment we provide for each scenario facilitates
practical agent design and simulation, thus satisfying the learning outcomes of the
practical work and the course as a whole.

Keywords
Artificial Intelligence, Intelligent Agents, Practical Assessment, Agent Simulation Platforms

1. Introduction
Courses on Agents and Multi-Agent Systems (AMAS) have started to complement Computer
Science and other related curricula during the last decade. AMAS is listed in the ACM/IEEE
Computing Curricula [12] as part of Intelligent Systems and University Departments have
chosen to offer a course on AMAS (under a wide variety of titles) either as a core or an
optional course during undergraduate and/or postgraduate studies. Some chose to integrate
AMAS principles into other courses. Due to the wide foundations and applicability of AMAS, it
is expected that there is also a lot of diversity with respect to the learning outcomes and
content (focus on theory or applications) as well as the context (Artificial Intelligence related
or mainstream Computer Science related) in which such course is offered. This also explains
the variety of valid options (teaching and assessment methods, practical work, tools,
demonstrations etc.) when designing the syllabus as well as the wide variety of experiences
reported in teaching.
It is therefore important to briefly define first the context to which this paper refers to. We
introduced a course entitled "Intelligent Agents'' (IA for short) 7 years ago in our 3 year
Computer Science undergraduate curriculum. This is a final year, final semester course
obligatory for all students, ranging from 25 to 50 since 2001. It covers a wide range of
standard topics in AMAS (mixture of theory and practice as shown below) with no particular
emphasis on any, and is assessed through coursework (practical work) and unseen final
examinations. We felt that exposing the students to advanced technologies like those
involved in AMAS would significantly broaden their horizons on cutting-edge information
technologies.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

210

During the first couple of years, we have intensively tried to enrich the lectures with software
and video demonstrations, but the feedback from the students reported that, although they
enjoyed the concept and score highly the overall teaching, they felt that the course was too
theoretical with no hands-on experience. On the other hand, we knew that any attempt to
assess them through some kind of IA program development would add significantly to the
existing heavy load of the last semester and their effort to complete a parallel individual third
year project, which is worth 4 times as much as a single course and 20 times as much a
single coursework for any course in that semester. It was a challenge for us to solve the
obvious problem, that is, keep the course but allow space for some practical program
development. The requirements we set for driving our final decision were the following:
• have a simple environment that presents the minimum installation problems,
• provide easy visualization in order to better view of the agent behaviour and increase

student interest,
• choose an easy to learn and use language thus keeping a small learning curve,
• the environment should clearly demonstrate the difficulties in AMAS programming,
• it should have support for at least reactive architectures,
• it should preferably support BDI-like and hybrid architectures,
• it should provide means for, at least limited, communication, message exchange and

interaction.
Apparently, the final decision was not easy, since all these are not fully met by existing
development environments. We came up with NetLogo [18] which at that time was at early
stages of development but offered the minimum required to our needs. We dealt with the rest
in a way that is described later on in this paper.
In section 2, we discuss in more detail the requirements and the choices available in order to
integrate some practical experience in a IA course. Section 3 provides an analytic description
of the IA course we offer at the Computer Science Department of CITY College. NetLogo is
briefly presented in Section 4 and the extensions we suggested and implemented are listed
in Section 5. In the following section 6, we present sample coursework assignments given to
students. Finally, we conclude with discussion and future work.

2. Practical Work in AMAS Courses
It is widely recognised that some kind of practical program development related to AMAS
courses is needed, in order for the students to understand the concepts and meet the
learning outcomes of the course. It is also reported that there are several choices educators
may follow, depending on the emphasis and focus they give to certain aspects of AMAS, e.g.
architectures, communication and interaction protocols, applications etc. For example,
various tools and environments for AMAS have been reported to assist the educational
process, like RoboCup, NetLogo, TAC, FIPA-OS, JADE, JadeX, Jason, Protege etc.
[2,10,19,3,5,6]. All aim to improve students' active learning in the context of AMAS, others by
engaging students in writing code (e.g. Java), others by allowing development of peripheral
to agents structures (e.g. Ontologies).
Obviously, educators feel happy about the value of integrating tools into their courses, but
admittedly, most of the times express concerns about their complexity and the time spent by
the students to reach the required level of skills in order to produce something useful to their
eyes. Given the short period of a semester course, normally ranging from 10 to 15 weeks
maximum, this is always going to be an issue.
On the other hand, students would like to see a more realistic outcome of their work. If this is
the process of a competition like game (e.g. Trading Agent Competition) or a visualisation of
the agents' environment (e.g. RoboCup), the understanding and satisfaction seems to be

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

211

increasing. One could also argue that a simple robotic platform (e.g. Lego Mindstorms,
RoboSapiens, i-SOFT etc.) [4,7] could also serve the purpose, since in the students
perception a robot (from a science fiction perspective) matches with their perception of an
agent. Although, such an approach is feasible and sometime desirable in more engineering-
oriented courses, it still suffers from complexity issues due to the fact that students need to
take into account non-symbolic percepts and additional hardware devices and protocols.

3. An Intelligent Agents Course
The IA course offered at CITY College is designed as a natural sequel of three other AI
related courses taught in the previous three semesters, namely "Logic Programming'', using
Prolog, "Artificial Intelligence Techniques'', introducing students to AI covering search and
knowledge representation issues, and "Artificial Intelligence'', which exposes students to
more advanced AI issues such as genetic algorithms, fuzzy rule-based systems, planning,
knowledge-based systems, machine learning etc. The aims of our IA course are to:
• introduce the student to the notions of intelligent agents and provide an introductory

study of the various types of intelligent agents, their architecture, strengths and
limitations;

• introduce multi-agent systems and the various issues involved in agent communication
and interaction;

• discuss possible application areas of the intelligent agent technology through examples
and case studies as well as demonstrate how agents can revolutionize human-computer
interaction;

• present the advantages of the agent-based approach to engineering complex software
systems.

By the end of the course we expect a student to be able to (learning outcomes):
• understand the basic notions of agent systems;
• explain the difference between agents and other programs;
• understand the key concepts involved with modelling agents and multi-agent systems;
• discuss and synthesise agent solutions;
• sensibly design multi-agent systems;
• cope with key issues in implementing agent-based and multi-agent systems;
• identify tasks in information systems that present possible applications areas of the

technology;
• critically analyse the expected benefits of using AMAS technology.
More particularly, the topics covered include, among others, agent architectures (logic,
reactive, BDI, hybrid), communication and interaction protocols (speech acts theory, agent
communication languages, knowledge communication, blackboards, Contract Net protocol,
auctions, negotiation), biology-inspired agents (Ant Colony Optimization, Bio-Networking,
Artificial Life), planning, learning and mobile agents, agent theories (intentional notions:
information, motivation and social attitudes), multi-agent system software engineering
methodologies (AAII methodology, Cassiopeia, Agent UML), Semantic Web basics etc. The
recommended textbook is [20], with additional readings from [17,13] and custom made
slides.
The material of the course is delivered through a series of formal lectures, summing a total of
30 hours over ten of the weeks of the semester (three hours/week). The idea is that roughly
one hour per week is a demonstration session during which students may, for example,
watch educational videos, tool demonstrations and be exposed to applications of AMAS,
while the other two hours per week is an interactive lecture. Finally, there is also a two-hour

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

212

consolidation class, in the middle of the semester and another two-hour revision class at the
end of it. The students' performance is assessed through two assignments, each contributing
15% of the total mark, and a two-hour formal examination at the end of the semester, for
70% of the total mark.
As in any typical IA course, it was very important for us that through the assignments during
the semester we manage to assess a number of different aspects involved with the design
and development of agent-based and multi-agent systems, such as agent architectures,
communication protocols and languages, and interaction issues including coordination,
negotiation, auctions etc. Most importantly, however, what we aimed for is that the students
gain hands-on experience and that they are being assessed from a very practical perspective
(even more so since assessment of the theoretical aspects is being achieved through the
formal examination). With this motive, which had been further reinforced by our previous
experience and students' feedback, we decided that the assignments should involve the
development of multi-agent systems in an appropriate environment that would be both easy
to use, not imposing an extra burden to the students, as well as maximally rewarding.
We chose NetLogo as an environment to assign assessed coursework to our students.
Although it is not designed so as to target all the aspects involved in AMAS, it meets several
of the requirements listed section 1. It is easy to install and provides with a plethora of
interesting examples ready to run. The language is functional and although learning another
programming paradigm might put some burden, our students have been acquainted with
declarative programming through their previous courses and students appear to be less
"intimidated'' by it, in comparison to Java or Prolog for example. Therefore, the learning curve
seems to be small and students are ready to produce a decent program in a short time.
Additionally, it allows the visualisation of the developed systems; this is valuable to students
as it helps them both to gain a better understanding as well as get immediate feedback for
their efforts.
On the other hand, since NetLogo is not specifically designed for AMAS, it suffers from not
being able to provide ready-made constructs for symbolic perception, goal-oriented agents,
communication and coordination. In order to compensate for the features NetLogo lacks, we
decided to work towards these issues in advance and give the students an appropriate small
set of extensions that have been particularly developed to facilitate a BDI-like agent
architecture and inter-agent communication issues.

4. NetLogo as an Educational Tool
NetLogo is a modelling environment targeted to the simulation of multi-agent systems that
involve a large number of agents. The platform aims to provide "a cross-platform multi-agent
programmable modelling environment'' [18].
The system offers a simple and expressive programming language and facilities for GUI
creation on which custom visualizations of the studied multi-agent systems can be created
with particular ease. There is an extensive set of primitives, good support for floating point
mathematics, random numbers and plotting capabilities. The environment is an excellent tool
for rapid prototyping and initial testing of multi-agent systems, particularly suited to systems
with agents situated and operating in a restricted space, as well as an excellent animation
tool of the modelled system. It also proved to be an excellent educational platform for
teaching IA.
The main entities of NetLogo are the patches, the turtles and the observer1. The observer
simply controls the experiment, in which turtles and patches actively participate. Patches are
stationary "agents'', i.e. components of a grid on which turtles exist, i.e. agents that are able
to move, "live'' and interact. Both patches and turtles can inspect the environment around

1 The recent version (4.0) also offers links, however this work does not involve these new entities.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

213

them, for example detect the existence of other agents, view the state of their surrounding
patches/turtles, and modify the environment. Probably the feature that most greatly
enhances the modelling expressiveness of the platform is the fact that each patch and turtle
can have its own user-defined variables: in the case of patches this allows modelling
complex environments by including an adequate number of variables that describe it
sufficiently and in the case of turtles it simply means that each agent can carry its own state.
The programming language allows the specification of the behaviour of each patch and
turtle, and of the control of the execution. Monitoring and execution of the agents is
controlled by the observer entity that "asks'' each agent to perform a specific computational
task.
As it has been argued elsewhere [16], we found NetLogo to be suitable for modelling multi-
agent systems that we were dealing with in our course, since each NetLogo agent2:
• perceives on its environment and acts upon it,
• carries its own thread of control,
• is autonomous.
However, although NetLogo is an excellent tool that exposes the students to the difficulties of
MAS development, it lacks build-in support for implementing communicating agents with
intentions and beliefs.

5. Extending NetLogo with Libraries for Intelligent Agents
Being a platform that is primarily targeted to modelling social and natural phenomena,
NetLogo supported fully the creation and study of reactive agent systems. Indeed, one of the
first models that we studied was the Luc Steels Mars Explorer experiment [15] that presents
many similarities to the ant colony foraging behaviour experiment included in the library
models (ants can be modelled and studied as reactive agents [9,14]). However, the study of
BDI-like agents (those that exhibit goal-oriented behaviour through Beliefs-Desires-
Intensions) that are able to communicate with explicit symbolic message exchange was not
supported. Thus, taken into consideration the fact that NetLogo fulfilled the majority of our
requirements we decided to extend the platform by providing the students with one library for
building simple BDI-like agents and one for FIPA-like message exchange, with their
accompanying manuals.

5.1 BDI-like agents in NetLogo

Although, we could have adopted as an option to link through the JAVA interface of NetLogo
an already existing BDI development platform, as for example JAM [11], this would have
made the installation of the coursework platform a lot more difficult for students and would
have increased significantly the learning curve, due to the complexity of such a fully fledged
development environment. Thus, we decided to provide a simpler alternative to develop
limited BDI-agents by providing the necessary primitives through a NetLogo library3.
The simple BDI architecture that we have followed, follows a PRS-like [8] model, i.e. there is
a set of intentions (goals) that are pushed into a stack; of course the implementation is far
from delivering all the features of systems like JAM, but still can be used in implementing
simple BDI agents in the NetLogo simulation platform.

2 Actually, the excellent page that Jose Vidal (http://jmvidal.cse.sc.edu/) maintains for NetLogo models, was a
starting point for our work.
3 NetLogo being a simple platform, does not support libraries in the classic sense found in other programming
environments; by the term library we refer to a set of procedures and functions (reporters) that the students are
given and include in their own code

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

214

An intention consists of two parts: the intention name and a condition that we call intention-
done. The former maps to a NetLogo procedure (possibly user defined) while the latter maps
to boolean NetLogo reporter (function) (again possibly user defined). The semantics are the
standard followed by other architectures: an agent must pursue an intention until the
condition described in the intention-done part evaluates to true. For example the following
intention of a luggage carrier agent working at an airport:

 ["move [23 20]" "at-gate 3"]

states that the agent is currently committed to moving towards the point (23, 20) and it will
retain the intention until the reporter function "at-gate 3'' evaluates to true. Note that the
user has to specify both the procedure and the reporter, that map to the two parts of the
intention.
The main concept behind the present implementation is the intention stack where all the
intentions of the agent are stored. Agents follow the execution cycle shown below:

IF the intention stack is not empty THEN do:
 1. Get the top intention I from the stack
 2. Execute I
 3. If intention-done evaluates to true then remove I from stack
ELSE do nothing

The NetLogo implementation is rather straightforward: each intention is represented by a list
of two elements, one for each part. The intention stack is a list stored in a specific turtle-own
variable, which simply means that each agent has its own stack. The execution cycle is
encoded in the procedure execute-intentions, that is called to invoke the agent's
behaviour. The library also provides a set of reporters and procedures to the user (student)
for adding and removing intentions on the stack, inspecting the current intentions, set time-
outs as intention-done conditions, etc. For example, the following line:

add-intention "move [23 20]" "at-gate 3"

will add the corresponding intention to the stack of the calling agent.
To further support the BDI architecture, facilities for managing beliefs were also created.
Although, the latter was not really necessary, since it is rather simple to store any information
on a related turtle variable, we have designed a set of procedures and reporters that would
form an abstraction layer that facilitates the students to manage agent beliefs, without getting
into too many details about how to program in the NetLogo language.
A belief consists of two elements: the type and the content. The former declares the type of
the belief, i.e. indicates a "class'' that the belief belongs to. Examples could include any
string, e.g. "position'' "agent'' etc. Types facilitate belief management, since they allow to
check for example whether a belief of a specific type exists or the removal of multiple beliefs
at once. The content on the other hand, is the specific information stored in the belief. It can
be any NetLogo structure (integer, string, list, etc.). Obviously, there might be multiple beliefs
of the same type with a different content, however two beliefs of the same type and content
cannot be added. For instance, ["agent" 5] and ["location" [3 7]] are examples of
beliefs that the agent can have.
Belief management is done through a set of reporters and procedures that allow the creation,
removal, checking of the agent's beliefs. For example, the following line:

add-belief create-belief "plane-at" [23 15]

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

215

will include a belief of type "plane-at'' with content "[23 15]'' in the agent's beliefs. In the
current implementation, all agent beliefs are stored in an agent own variable named
beliefs.

5.2 FIPA-like Message Passing

The ability to exchange symbolic messages is rather important in a course that includes
agent communication and interaction protocols, such as the contract net protocol. Thus, it
was necessary for us to somehow enhance NetLogo with explicit message communication
primitives. Messages closely follow the FIPA ACL (the Agent Communication Language of
the Foundation for Intelligent Physical Agents) message format, i.e. are lists of the form:

[<performative> sender:<sender> receiver:<receiver>
 content: <content>..]

For example, the following message was send by agent (turtle) 5 to agent 3, its content is
"plane-at 23 15'' and the message performative (FIPA) is "inform''.

["inform" "sender:5" "receiver:3" "content:" "plane-at 23 15"]

A message may only include the above fields (performative, sender, receiver, content),
omitting others such as the ontology field, for example, used by FIPA, thus assuming that all
agents use the same ontology. The library, however, allows the creation and addition of any
custom field that may be considered necessary.
As can be seen from the above, agents are uniquely characterized by an ID (number) that is
in fact an integer value automatically assigned at the time of their creation by NetLogo ("who''
NetLogo variable). We have adopted this naming scheme since it greatly facilitates the
development of the message passing facilities. Message passing is asynchronous. A set of
reporters and providers allow easily creating/sending/receiving/processing messages
between NetLogo agents. For example the code below (assuming that the calling agent is 8):

let somemsg create-message "inform"
set somemsg add-receiver 5 somemsg
set somemsg add-content "plane-at 23 15" somemsg
send somemsg

will send to agent 5 the message that follows:

["inform" "sender:8" "receiver:5" "content:" "plane-at 23 15"]

Of course, both libraries (BDI and FIPA) take advantage of functional features of the NetLogo
programming language. The exact message will be send by simply issuing the following
command:

send add-content "plane-at 23 15"
 add-receiver 5 create-message "inform"

It should be noted that there are also primitives that allow broadcasting a message to a
"class'' (breed) of NetLogo agents.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

216

Incoming messages for each agent are stored in a variable named incoming-queue, which
is in fact a list. This is a "user-defined'' variable that each agent must have in order to be able
to communicate. Sending a message to an agent simply means adding the message to its
incoming-queue list; it does not require an explicit receive command to be invoked on the
receivers side. At any time the agent has the ability to obtain the messages from its queue
using the reporters and procedures provided.
Both libraries, FIPA and BDI, were fully implemented in the NetLogo language: thus, their
"installation'' was trivial, since students had only to include the given library code in their
models. Error checking and debugging facilities were kept to a minimum to avoid having
efficiency issues.
We have used both libraries for a number of years in our classes: students have found them
easy to use and did manage to implement multi agent systems that involve communicating
BDI agents under an interaction protocol. The interested reader may find the libraries, brief
manuals and examples, at [1].

6. Practical Assignments using NetLogo
Using the programming facilities described in the previous sections, we have designed a
number of practical assignments for the IA course. Each year, there are two practicals
handed to the students: the first aims to allow students to have a gentle introduction to
NetLogo and involves developing a reactive agent system. The second involves BDI agents
that cooperate via message exchange and under the Contract Net interaction protocol. We
have always tried to have close to the real world scenarios, so that the students' interest and
motivation is higher. In one academic semester, both practical handouts refer to the same
scenario, so that students see different aspects of applying AMAS technology to the same
problem.

6.1 Practical #1: rescue units scenario

One of the scenarios that we have used, is the rescue units scenario, in which agents
operate in a disaster area to efficiently locate and rescue victims. The rescue procedure is
rather simple: a rescue unit locates the civilian in need (victim) and provides oxygen and
water to the victims, so that they can be sustained in life until transportation arrives. Thus the
rescue team consists of rescue-unit agents, i.e. autonomous vehicles that can move around
the disaster area, locate (detect) any civilians in danger (victims) and temporarily rescue
them. In the scenario there also exists a base station, installed in a central location, that
provides refuelling and renewal of medical supplies (oxygen, water, etc.) services.
Rescue units have a very limited set of sensors, including a sensor for detecting civilians in
danger, which operates at a very close range, an obstacle detection sensor (to avoid
obstacles and other rescue units), sensors detecting low fuel levels etc. Agents also have
limited abilities; they can move around in the disaster area, provide immediate attention to
the victims, move towards the base, since the latter transmits a signal they can follow, etc.
Agents do not have message exchange capabilities and are to follow the reactive
architecture. The similarities of the above scenario with Luc Steels Mars explorer are
obvious. This scenario is found in the first handout of the semester and upon completion of
the practical we expect the students to:
• understand in depth the reactive agent architecture, its advantages and disadvantages,
• design a simple reactive agent to perform a task,
• build a simple prototype of a reactive agent system in NetLogo,
• evaluate the design choices made based on simulation results.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

217

6.2 Requirements and assessment

In order to allow students to concentrate on the above, we provide all the sensors and agent
abilities implemented in NetLogo, as well as an initial setup of the experiment environment;
what we ask is the agent architecture, any enhancement that could help to increase the
efficiency of the system and experimental results. Students are assessed according to the
following criteria:
• Correctness, originality and justification of the proposed agent architectures;
• Implementation and code documentation;
• Analysis and presentation of experimental results;
• Presentation of the report (clarity, structure).

6.3 Practical #2: extended rescue units scenario

The same scenario, augmented appropriately, acts as the basis of the second practical,
which is far more demanding. In this case, there are also ambulance agents that are
autonomous transportation units, able to collect the rescued civilians and bring them to the
base. However, an ambulance can save a victim only if it has been discovered by a rescue
unit. In this extended scenario, all agents have the ability to exchange explicit symbolic
messages and follow BDI or hybrid architectures. Overall, agents are far more complex but
since students have already been exposed to the NetLogo platform, they are now asked to
contribute a bit more code. For this second assignment students are asked to implement a
cooperation protocol between rescue-units and ambulances, specify the FIPA-ACL
messages needed to be exchanged under the cooperation protocol and implement
everything they propose in NetLogo, using the libraries mentioned in the previous sections.
The expected learning outcomes of the second practical are that the students:
• understand in depth the issues and the difficulties involved when building a multi-agent

system, such as agent communication languages, interactions protocols, language used
etc.,

• use an existing library to construct FIPA ACL-like messages and implement an
interaction protocol,

• propose a suitable agent architecture to perform a problem solving task,
• build a simple prototype of a multi-agent system in NetLogo,
• evaluate the design choices made based on simulation results.
Students are assessed according to the following criteria:
• Correctness, originality and justification of the proposed agent architectures;
• Correctness and justification of the cooperation protocols proposed;
• Implementation and code documentation;
• Analysis and presentation of experimental results;
• Presentation of the report (clarity, structure).
It should be noted that the code provided to the students, allows them to modify various
parameters of the experiment, i.e. the number of rescue units, the number of ambulances,
initial fuel, number of obstacles, as well as measure various efficiency criteria, such as total
time, total distance travelled by all agents, etc. Figure 1 shows the complete environment of
the rescue unit scenario.

Figure 1 NetLogo ScreenShot of the Rescue Unit Scenario

6.4 Other similar scenarios

A scenario similar to the above one that has been presented to students in another academic
year, involved forest fires, keeping the same spirit and structure as in the rescue scenario,
but in a different setting: for the first practical, students had to implement reactive agents that
patrol a forest and extinguish small spots of fire before they spread. For the second practical,
there are scouters that detect fire spots in the forest and ground units that move to the
specific location and extinguish the fire, after a fire has been detected by a scouter.
In this model, fire spots (i) appear randomly during the execution of the experiment, and (ii)
are spreading in adjacent trees over time, if they are not put out, i.e. there is a close to reality
fire spread model against which the agents were competing. Various parameters can be set
as, for example, the number of fire spots that randomly appear, the density of the forest, the
number of scouter and ground units, the water supply of each unit, etc. The learning
outcomes and assessment criteria have been as stated above and the students were again
given the environment setup, sensors and actions of the participating agents. Figure 2 shows
a screenshot of the forest fires environment.
Naturally, the same assignment "template'' can be used in a variety of other scenarios such
as taxis transporting passengers in a city, vacuum cleaning a floor (which has been actually
used in another academic year), logistics problems, etc. The above presented coursework
handouts may also be found at [1].

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

218

Figure 2 NetLogo ScreenShot of the Forest Fires Scenario.

7. Discussion and Conclusions
The overall impression that we gain from students is that they enjoy the practical aspect of
the course. This is reported in the formal evaluation of the course at the end of the semester.
The overall student satisfaction increased in comparison to the early years of the introduction
of the course in which the practical component was restricted only to design issues. The
interest factor of the course has also increased. In addition to student formal feedback, it is
also clear to us that the overall student performance in final examinations is increased due to
better and deeper understanding of the issues around AMAS. The final examination contains
only theoretical questions and design exercises (no programming involved) but the students
present better solutions to the problems posed. Formal analysis of the data is an issue which
we need to pursue in the coming years.
We have distributed a questionnaire to our final year students asking about their opinion on
NetLogo and its use in the coursework assessment as well as whether the platform facilitated
better understanding of the theoretical issues. The results which are listed in Table 1
demonstrate that our initial objectives about using NetLogo as a tool for teaching AMAS were
met. In particular, the vast majority of students agrees that use of another programming
language would not be preferable. In addition, students realise that the libraries provided for
BDI and FIPA-ACL facilitated the development of a fully functional NetLogo code for the two
assignments. Further collection of data is necessary in order to have a full validation of our
approach, since our research involves only one academic year.
In informal discussions we had with students, they are happy with the coursework
assignments. They appreciate the fact that a partial program and an initial setup of the
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

219

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

220

environment is given to them in advance. Although, at first they express their concern about
yet another programming language to deal with, their worries were relaxed when they had
their first encounter with NetLogo. They really liked the sense of seeing and experimenting
with the virtual world they developed with minimum programming effort. Thus, they had more
time to design and implement the "real thing", i.e. the agent systems requested from them.
The NetLogo libraries and the associated manuals we provided, facilitate their concentration
on developing the systems for the given scenarios to a great extent. Finally, they appreciated
the fact that the scenarios given seemed realistic enough to attract their interest.

Table 1 Students opinion on NetLogo.

 Strongly
Disagree or

Disagree
(%)

Neutral
(%)

Strongly
Agree or

Agree
(%)

NetLogo was easy to install 0 0 100
NetLogo's visual environment helped to better understand
agents behaviour 0 6.2 93.8
NetLogo demos helped to better understand the agent theory 6.2 31.3 62.5
NetLogo practicals increased my interest in the unit 0 18.8 81.2
NetLogo practicals helped me to better understand the agent
theory 0 18.8 81.2
NetLogo language was easy to learn 0 12.5 87.5
Previous encounter with logic prog. helped me in learning
NetLogo language 12.5 56.2 31.3
Practical#1: Initial code given helped me in developing the
solution 0 6.2 93.8
Practical#2: Libraries for BDI and FIPA-ACL helped me in
developing the solution 7.1 21.4 71.4
I would prefer to use another language (e.g. Java) for the
practicals. 62.5 25 12.5
I would prefer to use another language (e.g. Prolog) for the
practicals. 68.7 31.3 0
I would prefer to use actual robots for the practicals. 25 18.8 56.2
NetLogo practicals were fun!!! 12.5 31.3 56.2

We believe that the teaching objectives for this course are met through the proposed
approach. All learning outcomes are assessed and in particular we have managed to
accomplish the learning outcomes related to hands-on experience. It is also somehow
important to us that a relatively good percentage of our graduates seek a postgraduate
programme in the area of AI and AMAS.
Through the two libraries described in this paper, we managed to enable students to develop
something more than a reactive agent. The libraries are by no means complete or fully
fledged to meet the complete BDI and FIPA-ACL requirements. Future work is directed
towards such extensions. For example, NetLogo offers a JAVA interface, through which a
link to complete BDI packages, such as JAM, is possible. Although we consider it not
suitable for educational purposes, as argued above, the idea could offer new opportunities
for using the platform for research purposes. In addition, we are considering a rather
ambitious development of an extendible/customisable game platform in NetLogo, in which
educators will be able to setup game environment and rules, such as tank battles, RoboCup,
etc., that will offer the possibility to apply the platform in an even simpler manner in the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

221

context of a course. Towards this direction, we have already implemented a prototype, but
the work is not fully completed yet.

References
1 ‘Extending NetLogo to support BDI-like architecture and FIPA ACL-like message passing: Libraries’

manuals and examples’.http://eos.uom.gr/~iliass/projects/NetLogo.
2 M. D. Beer and R. Hill, ‘Teaching multi-agent systems in a UK new university’, in Proceedings of

1st AAMAS Workshop on Teaching Multi-AgentSystems, (2004).
3 M. D. Beer and R. Hill, ‘Multi-agent systems and the wider artificial intelligence computing

curriculum’, in Proceedings of the 1st UK Workshop on Artificial Intelligence in Education, (2005).
4 S. Behnke, J. Muller, and M. Schreiber, ‘Playing Soccer with RoboSapien’, in RoboCup-2005:

Robot Soccer World Cup IX, volume 4020 of Lecture Notes in Artificial Intelligence, 36–48,
Springer, (2006).

5 R. H. Bordini, ‘A recent experience in teachingmulti-agent systems using Jason’, in Proceedings of
the 2nd AAMASWorkshop on Teaching Multi-Agent Systems, (2005).

6 M. Fasli and M. Michalakopoulos, ‘Designing and implementing e-market games’, in Proceedings
of the IEEE Symposium on Computational Intelligence in Games, pp. 44–50. IEEE Press, (2005).

7 E. Ferme and L. Gaspar, ‘RCX+PROLOG: A platform to use Lego MindstormsTM robots in artificial
intelligence courses’, In Proceedings of the 3rd UK Workshop on AI in Education, (2007).

8 M. P. Georgeff and A. L. Lansky, ‘Reactive reasoning and planning’, in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI’87), pp. 677–682, (1987).

9 M. Gheorghe, I. Stamatopoulou,M. Holcombe, and P. Kefalas, ‘Modelling dynamically organised
colonies of bio-entities’, in Unconventional Programming Paradigms: International Workshop,
(UPP’04), Le Mont Saint Michel, France, September 15-17, 2004, Revised Selected and Invited
Papers, eds., J.-P. Banatre, P. Fradet, J.-L. Giavitto, and O. Michel, volume 3566 of Lecture Notes
in Computer Science, 207–224, Springer-Verlag, (2005).

10 H. Hara, K. Sugawara, and T. Kinoshita, ‘Design of TAF for training agent-based framework’, in
Proceedings of 1st AAMAS Workshop on Teaching Multi-Agent Systems, (2004).

11 M. J. Huber, ‘JAM: a BDI-theoretic mobile agent architecture’, in Proceedings of the 3rd Annual
Conference on Autonomous Agents, New York, NY, USA, (1999). ACM.

12 Joint ACM/IEEE Task Force on Computing Curricula, ‘Computing curricula 2001’, ACM Journal of
Educational Resources in Computing, 1(3), (2001).

13 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2002.
14 I. Stamatopoulou, I. Sakellariou, P. Kefalas, and G. Eleftherakis, ‘Formal modelling for in-silico

experiments with social insect colonies’, in Current Trends in Informatics, eds., T. Papatheodorou,
D. Christodoulakis, and N. Karanikolas, volume B of Proceedings of the 11th Panhellenic
Conference in Informatics (PCI’07), May 18-20, Patras, Greece, pp. 79–89, (2007).

15 L. Steels, ‘Cooperation between distributed agents through self-organisation’, in Towards a New
Frontier of Applications, Proceedings of the IEEE International Workshop on Intelligent Robots and
Systems (IROS’90), pp. 8–14, (1990).

16 J. M. Vidal, P. Buhler, and H. Goradia, ‘The past and future of multiagent systems’, Iin Proceedings
of 1st AAMAS Workshop on Teaching Multi-Agent Systems, (2004).

17 G.Weiss,ed. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.
MITPress, 1999.

18 U.Wilensky. Netlogo. http://ccl.northwestern.edu/netlogo. Center for Connected Learning and
Computer- based Modelling. Northwestern University, Evanston, IL.,1999.

19 A.B.Williams, ‘Teaching multi-agent systems using AI and software technology’, in Proceedings of
the 1st AAMAS Workshop on Teaching Multi-Agent Systems, (2004).

20 M.Wooldridge, An Introduction to Multi Agent Systems, John Wiley & Sons, 2002.

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

222

Author Index

Almeida, Ana Maria 67

Aszalos, Laszlo 30

Beck, Astrid 179

Boyle, Roger 80

Cerioli, Maura 37

Cinelli, Pierpaolo 37

Cortesi, Agostino 1

Cowling, Tony 155

Dahm, Markus 179

Denny, Paul 140

Efford, Nick 80

Fuchs, Karl Josef 52

Gal-Ezer, Judith 189

Gomes, Anabela 67

Hamborg, Kai-Christoph 179

Hamer, John 140

Hatziapostolou, Thanos 125

Heers, Rainer 179

Heinecke, Andreas M. 179

Henriques, Joana 67

Hermann, Christoph 17

Heumann, Christoph 17

Jahnke, Isa 105

Kefalas, Petros 125, 209

Lauer, Tobias 198

Lissoni, Angelo 134

Lonati, Violetta 134

Luccio, Flaminia 1

Luxton-Reilly, Andrew 140

Mattick, Volker 105

Mendes, Antonio Jos 67

Michel, Gabriel 3

Monga, Mattia 134

Morpurgo, Anna 134

Nahapetian, Ani 170

Neagle, Royce 80

Ottmann, Thomas 17

Pacheco, Ana 67

Ribaud, Vincent 92

Rocchi, Paolo 115

Sakellariou, Ilias 209

Saliou, Philippe 92

Sotiriadou, Anna 125

Stamatopoulou, Ioanna 209

Strauss, Friedrich 179

Torelli, Mauro 134

Vilner, Tamar 189

Zur, Ela 189

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

223

	000_Preface.doc
	005_Michel.pdf
	017_Ottmann.doc
	030_Aszalos.rtf
	037_Cerioli.rtf
	052_Fuchs.pdf
	067_Pacheco.pdf
	080_Boyle.pdf
	092_Ribaudl.doc
	105_jahnke.rtf
	115_Rocchi.rtf
	125_Hatziapostolou.rtf
	134_Lissoni.rtf
	140_Denny.pdf
	155_Cowling.doc
	170_Nahapetian.pdf
	179_Heinecke.rtf
	190_Vilner.rtf
	205_Lauer.rtf
	215_Sakellariou.rtf
	221_AuthorIndex.rtf

