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Chapter 7

From Artificial Life to In Silico
Medicine: NetLogo as a Means of
Translational Knowledge
Representation in Biomedical Research

Gary An and Uri Wilensky

Biomedical research today stands at a crossroads. There is a widening gulf be-
tween the extent of knowledge regarding basic mechanistic processes and the
ability to integrate that information into explanatory hypotheses of system-
level behavior. Techniques from the Artificial Life community can aid in
bridging this gulf by providing means for visualizing and instantiating mech-
anistic hypotheses. This will allow the development of in silico laboratories
where conceptual models can be examined, checked, and modified. NetLogo is
a “low threshold, high ceiling” software toolkit that has been used to develop
agent-based models (ABMs) in a multiplicity of domains and provides a good
platform for the computational instantiation of biomedical knowledge. This
chapter presents a brief overview of NetLogo and describes a series of ABMs
of acute inflammation at multiple levels of biological organization.

7.1 Introduction

7.1.1 A Different Type of “Artificial Life”

Artificial life, as the name suggests, consists of reproducing the processes of
life in a man-made, often computational, setting. A great deal of Artificial
Life research has focused on examining the core properties of life by stripping
away those aspects that may be present in our world resulting from histor-
ical accidents in order to develop general theories of life [43]. Software tools
that have arisen to enable this type of investigation have the capabilities
to reproduce those presumptive central characteristics of biological systems.
However, the development: of these tools has also led to a parallel but related
area of investigation, one that focuses on the use of Artificial Life-derived
methods to recreate and represent existing biological systems. This capabil-
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ity has enabled the creation of a new laboratory environment, an “in silico”
environment that can serve as a vital adjunct to traditional in vitro (in a test
tube) and in vivo (in an experimental animal) experimental methods. In this
fashion, Artificial Life-derived techniques and the use of ABMs, in particu-
lar, can serve a vital integrating role to address some of the major hurdles
facing biomedical research. In this chapter we present examples of the use of
the NetLogo integrated agent-based modeling environment [79] as a labora-
tory environment for biomedical research. NetLogo is a widely used general-
purpose agent-based modeling environment. It is designed with the principle
of “low threshold, high ceiling” [67] - that is, easy learnability for novices yet
high performance for researchers. As such, NetLogo is in widespread use in
both research and educational contexts. This dual-audience flexibility makes
NetLogo ideal for use in interdisciplinary research contexts where its general-
ity and ease of use enable all the research team members to participate in the
modeling activity and to communicate via the NetLogo model. As such, Net-
Logo is well suited to the context of biomedical research, where, in general,
most biomedical researchers are not cross-trained in mathematical modeling
or computer simulation and often do not have the spare intellectual capital
to invest in acquiring the expertise required to master general-purpose com-
puter programming. The “low threshold, high ceiling” property of NetLogo
has the following potential benefits as a biomedical research tool:

1. The rapidity with which non-computer-programming biomedical researchers
can produce a tangible in silico representation of their existing mental mod-
els provides vital early positive feedback to encourage continued pursuit
of & new methodology.

. Enabling the researchers themselves to do the actual coding and modeling
provides a basic practical literacy with respect to the application of simu-
lation and computational tools to biomedical problems and will facilitate
future communications with computer scientists/applied mathematicians
as these applications develop and may evolve to other platforms.

3. The actual exercise of creating a NetLogo model enables formalization of
existing mental models, can stimulate beneficial introspection on the part
of the biomedical researcher regarding his/her underlying assumptions,
and help hone in on further directions in a particular research plan.

4. The ease of “reading” and widespread use of NetLogo enable researchers
to communicate and disseminate their work clearly and broadly.

o

The examples of NetLogo models presented in this chapter take advantage of
all these benefits, with the overall goal of demonstrating dynamic knowledge
representation of a particular multi-scale biomedical system: acute inflamma-
tion.
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7.1.2 Modern Medicine and Limits of Reductionism:
The Translational Challenge

Over the last 50-75 years biomedical research has made huge strides. The
advent of molecular biclogy, arising from the discovery of DNA, opened &
new mechanistic frontier for the examination and analysis of biological sys-
tems. Based on the principle of reductionism, the concept that finer and
finer-grained analysis of components and mechanisms would provide under-
lying core principles and understanding, biomedical research generated huge
volumes of data and hypotheses regarding the basic processes associated with
health and disease. However, starting in the 1970s, it was becoming evident
that biological behavior and the health /disease dynamic were very much more
than the sum of their parts. The efficacy of biomedical research to provide ad-
vances in the areas of infectious disease, public health, and surgical technique
was not being reproduced in addressing “systems” diseases such as cancer,
critical illness, autoimmunity, diabetes, and acquired immune deficiency syn-
drome (AIDS). This simmering crisis was crystallized in the United States by
a publication by the United States Food and Drug Administration (USFDA)
of a monograph titled /nnovation or Stagnation: Challenge and Opportunity
on the Critical Path to New Medical Products [27]. The central problem ad-
dressed was the steadily decreasing efficiency of the output of health-care
research dollars between 1993 and 2003 in terms of release of effective medi-
cal therapeutics. This represented a widening translational gulf between the
bench and the bedside.

What is the basis of the translational divide? To a great degree the
translational challenge arises from a combination of the multi-scale, multi-
hierarchical nature of biological systems and the existing research structures
that have evolved to study them. The hierarchical structure of biological sys-
tems is well recognized: gene to protein/enzyme to cell to tissue to organ
to organism. The existence of these levels (which can be thought of as rep-
resenting successive levels of emergent phenomena) presents significant bar-
riers to the inference of'cause-and-effect mechanistic knowledge at one level
to behavior at a higher one. This epistemological barrier between scales of
biological organization is one of the hallmarks of complex systems and why
these systems need to be studied in an integrated fashion [94]. Conversely,
the organization of the biomedical research community that has evolved to
study these different scales has been based on a reductionist paradigm. The
treatment of each of these levels as a separate focus of investigation has led to
a compartmentalized structure and organization of the biomedical research
community. As pointed out in the USFDA Critical Path statement referenced
above, the consequences of structure are seen primarily in attempts to develop
effective therapies for diseases resulting from disorders of internal regulatory
processes. Examples of such diseases are cancer, autoimmune disorders, and
sepsis, all of which demonstrate complex, non-linear behavior and are insuf-
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ficiently characterized when their components are studied in isolation. The
investigation of such processes therefore presents a significant challenge that
must be met by the development of translational methodologies that need to
function as bridges both vertically from the bench to the bedside and link
horizontally across multiple researchers focused on different diseases.

Thus, there is a growing recognition within the biomedical research com-
munity of the limits of reductionism and the need to apply a systems- level
approach to attempt to reintegrate the mechanistic knowledge being gen-
erated [68, 71, 59]. In particular, it was recognized that such attempts to
apply complex systems analysis to biomedical problems should not strive to
supercede reductionist methods, but rather provide a synthetic adjunct to
ongoing research endeavors [68, 8]. The development of in silico biomedical
research is the response to this recognition.

Accomplishing this goal requires dealing with the “nine hundred pound
gorilla” in the room of biomedical research: a seemingly unsolvable paradox
between the volume of information and the completeness of information. On
one hand, the sheer volume of biomedical knowledge that has been (and con-
tinues to be generated) is overwhelming. It is extremely challenging for a
single researcher to have even semi-comprehensive knowledge of the state of
even a small fraction of this information; expanding the scope of this knowl-
edge to approach the integrative goal needed for translational interpretation
is functionally impossible. However, even if it were possible for a researcher
to know everything that was published regarding and connected to a par-
ticular disease process or biclogical function, that knowledge would still be
incomplete, as the multiplicity of components and their interactions neces-
sarily means that there likely will always be additional information yet to be
identified. Therefore, the common charges against the use of computer sim-
ulation and mathematical modeling focus on these two paradoxical aspects:
(1) there is too much information to include and (2) something is left out.

The solution to this paradox lies in maintaining appropriate expectations
and placing the development of synthetic translational tools in the appro-
priate context: Mathematical modeling and computer simulation are not in-
tended to be a panacea to the challenge of integrating biomedical knowledge,
but rather as improvements on methods currently employed. The synthetic
process of integrating experimental results into hypotheses and conceptual
models relies, as it is currently executed, heavily upon intuition. As such, it
is poorly formalized and thus difficult to probe and parse when things do
not turn out as expected. What is sought, therefore, are methods of formal-
izing the process of knowledge representation, particularly in terms of the
dynamic instantiation of knowledge as a means of hypothesis visualization
and evaluation. The goal is to produce probeable synthetic constructs that
can be tested by both their creator and other researchers and unambigu-
ously communicated to the community as a whole. In this context, the use
of computational models should be considered a means of “conceptual model
verification” [90], in which mental or conceptual models that are generated
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by researchers from their understanding of the literature and used to guide
their research are brought to life such that the behavioral consequences of
the underlying beliefs can be evaluated. It is in addressing the synthetic as-
pect of science that the lessons of Artificial Life, and agent-based modeling
in particular, come to the fore.

7.1.3 Agent-Based Dynamic Knowledge
Representation and In Silico Laboratories

One of the major lessons from Artificial Life research is that biologically com-
plex behaviors can be generated and substantial insights can be obtained,
with relatively simple, qualitative models. The fact is that biological systems
are robust, existing in a wide range of conditions while retaining a great de-
gree of stability with respect to form and function. When Artificial Life is
used to examine core biological processes (such as evolution, swarm behavior,
and morphogenesis), the search for the minimal rule-set that can recogniz-
ably reproduce the desired behavior is seen as a proxy for identifying the
most general and therefore most basic principles. If, however, the goal is to
narrow the focus of investigation and increase the resolution of the behaviors
under study, then the progressive addition of more and more details provides
a mechanism for approaching a more realistic model. While one must always
be careful to conflate a plausible solution with an exact solution, the cor-
relative relationship between a set of generative mechanisms and abserved
recognizable behaviors has a strong tradition within both the Artificial Life
and bioscience community as a basis of inference and hypothesis formation.
In particular, this has been formalized as Pattern Oriented Analysis as a
means of developing and interpreting ABMs, one of the primary computa-
tional techniques used in the Artificial Life community [31].

The development of ABMs is a computational modeling methodology that
employs computational objects, and is rule based, discrete event and discrete
time. Agent-based modeling focuses on the rules and interactions between
the individual components (“agents”) of a system, generating populations
of those components and simulating their interactions in a virtual world to
create an in silico experimental model. There are several characteristics of an
ABM that sets it apart from other rule-based modeling systems:

¢ ABMs are spatial. As the field of agent-based modeling was much influ-
enced by work in two-dimensional (2D) cellular automata many ABMs are
grid based. This legacy enables spatial representation of structural rela-
tionships within a system. Non-mathematicians can model fairly complex
topologies with relative ease, leading tc more intuitive knowledge transla-
tion into a model. The spatial nature of an ABM also supports modeling
agents with limited knowledge (i.e., input constrained by locality rules that
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determine its immediate environment). The emphasis on behavior driven
by local interactions also matches closely with the mechanisms of stimulus
and response observed in biology.

e ABMs utilize parallefism. In an ABM, each agent class has multiple in-
stances within the medel, forming a population of agents that interact
in (an usually emulated) parallel processing environment. Thus, heteroge-
neous individual agent behavior within a population of agents results in
systemic dynamics that yield observable output that mirrors the behavior
at the higher-hierarchical level. A classic example of this is how relatively
simple interaction rules among birds can lead to sophisticated flocking
patterns [58, 74].

» ABMs incorporate stochasticity. Many systems, particularly biological
ones, include behaviors that appear to be random. “Appear to" is an
important distinction, since what may appear to be random is actually
deterministically chaotic. However, from a practical point of view, despite
the fact that a particular system may follow deterministic rules, at the
observational level it is impossible to actually define the initial conditions
with enough fidelity to apply formal deterministic mathematics. Thus,
capturing the sensitivity of a system to initial conditions is obscured by
limitations on the resolution in characterizing the state of the system.
Agent-based modeling addresses this issue via the generation of popula-
tions of agents, and a subsequent distribution of agent-behaviors. It is
possible to establish probabilities of a particular behavior for an agent
population as a whole (i.e., an experimentally determined response distri-
bution of a particular cell type to & particular stimulus). This allows the
generation of a probability function for the behavior of & single agent-type,
which is, in turn, incorporated into the agent-type’s rules. For instance, a
rule may look like “In the presence of Stimulus A there is a 80% chance
Receptor B will be activated.” When the entire ABM consisting of a pop-
ulation of agents is instantiated, each individual agent follows a particular
trajectory of behavior as its behavior rules’ probabilities are resolved with
each step of the ABM’s run. The behavior of the overall system is gen-
erated by the aggregated behavioral trajectories of the individual agents,
each model run producing one instance of system behavior. Performing
multiple runs of the ABM thus generates a “population” of behavioral
outputs to produce system behavior spaces consistent with epidemiologi-
cal biological observation.

* ABMs reproduce emergent properties. Due to the parallelism, intrinsic
stochasticity, and locally-based agent rules, a central hallmark of agent-
based modeling is the fact that they generate systemic dynamics that often
could not have been reasonably inferred from examination of the rules of
the agents, resulting in so-called emergent behavior. To return to the ex-
ample of the bird fock, superficial observation would seem to suggest the
need for an overall leader to generate flock behavior, and therefore rules
would seem to need to include a means of determining rules for flock-wide
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command and control communication. This, however, is not nature’s way:
Birds function on a series of locally constrained interaction rules and the
flocking behavior emerges from the aggregate of these interactions [58].
The capacity to generate emergent behavior is a vital advantage of using
an ABM for conceptual model verification, as it is often the paradoxi-
cal, non-intuitive nature of emergent behavior that “brealks” a conceptual
model. The structure of ABMs facilitates the development of aggregated
multi-scale models (8, 100]. They have an intrinsically modular structure
via the classification of agents based on similar rules of behavior. ABM
rules are often expressed as conditional statements (“if-then” statements),
making agent-based modeling suited to expressing the hypotheses that
are generated from basic scientific research. Individual agents encapsulate
mechanistic knowledge in the form of & set of rules concerning a particular
compornent. The importance of this encapsulation in agent-based mod-
eling (as opposed to the compressed representation of knowledge with a
mathematical formula, such as a biochemical rate law) is the placement
of the mechanistic knowledge within a compartmentalized object. Instan-
tiating agents and their governing rules in a virtual world creates an in
silico experimental environment, or a virtual laboratory [6, 7, 65]. In do-
ing so, agent-based modeling goes beyond the mere instantiation of this
knowledge as a single case by concurrently generating multiple instances
of a particular encapsulation/object. Because of this property, an ABM
is an expansion of mere rule-based and object-oriented methods. Multiple
individual instances have differing initial conditions by virtue of exist-
ing in a heterogeneous environment. Because stochastic components are
embedded in their rule systems (a well-recognized property of biological
objects [45]}, individual agents have differing behavioral trajectories as
the ABM is executed. This results in population-level dynamics derived
from the generation of these multiple trajectories, population dynamics
that, when viewed in aggregate, form the nested, multi-scalar/hierarchical
organization of biological systems [90, 91, 92).

In this environment, researchers can instantiate thought experiments in an
in silico environment, to test the veracity and validity of their conceptual
models by comparing the simulated experiments against more traditional
in vitro and in vivo experimental results. ABMs have been used to study
biomedical processes such as sepsis [G, 7, 9], cancer (100], inflammatory cell
trafficking [11, 64], and wound-healing [49, 73].

One vital aspect of the use of agent-based modeling is to perform the
trans-hierarchical function desired in an integrative modeling framework.
"This moves toward the goal of communicable dynamic knowledge representa-
tion, easing the way for biomedical researchers to transiate their conceptual
models into executable form. While the era of multi-disciplinarily trained
researchers is dawning, it is most likely that for the foreseegble future the
majority of biomedical researchers will not be extremely facile in the use
of computational tools and methods. Agent-hased modeling, by its object-
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oriented nature, maps well to the current expression of biomedical knowledge.
It is generally more intuitive for non-mathematicians/computer scientists to
use. Nonetheless, it is a daunting software engineering task to provide a user-
friendly ABM development environment for computer/math novices while
including sufficient, comprehensive capabilities to capture the full richness of
ABM utilization. Fortunately, the introduction and ongoing development of
NetLogo provides just such a platform.

7.2 Facilitating Dynamic Knowledge Representation:
The NetLogo Toolkit

7.2.1 Description and Origins of NetLogo

NetLogo is a general-purpose agent-based modeling environment for model-
ing complex systems. It includes the core NetLogo modeling language as well
as an integrated modeling environment with a graphical user interface and
many modeling tools. NetLogo was designed by Wilensky in the mid-1990s.
Having collaborated with Resnick on StarLogo in the late 1980s and early
1990s [56, 55, 93, 57, 94], Wilensky set out to remedy limitations of StarL-
ogo and create the next generation of the Logo-based agent-based modeling
environment. Like Starlogo, NetLogo borrowed from the Logo programming
language [25, 52] both core syntactic language elements and the central object
of a “turtle,” the default name for a mobile agent in NetLogo. Basic NetLogo
also includes stationary agents called “patches” and connective agents called
“links.” New classes of agents can be defined using the “breeds” construct, so
users can populate their models with wolves and sheep, atoms and molecules,
or buyers and sellers. Constructing a NetLogo model involves choosing agents
to represent aspects of the to-be-modeled system and giving them rules of
behavior and interaction which they execute at every tick of a clock. One
can then run the model and observe the emergent behavior of the system.
Patches are typically used to model aspects of the environment, such as earth,
grass, or atmosphere, that are computationally active, though stationary. So,
at each time tick, grass may grow and be available for sheep agents to eat,
earth may absorb percolating oil, and atmosphere patches may harbor car-
bon dioxide molecules [77, 76, 66]. In most natural science models, mobile
agents affect each other through local interaction, thus the spatiality of the
patches becomes the vehicle for agent interaction. Agents interact with their
spatial neighbors. In many social science models, spatiality is not the domi-
nant form of interaction. Agent communication can happen at a distance and
is governed by social connection between (human) agents. The “links” agents
typically model these social connections. In such models, agents interact with
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their “link neighbors,” the agents with whom they are linked regardless of
their spatial locations.

NetLogo comes with an extensive library of sample models (over 300 as
of release 4.0.2 of NetLogo in December 2007) from a wide variety of con-
tent domains (80], including natural sciences such as physics, chemistry, and
biology, and social sciences such as sociology, psychology, and linguistics,
and engineering domains such as materials science, industrial engineering,
and computer science, and professional disciplines such as medicine, law,
and business. NetLogo is freely available from [86] and comes with extensive
documentation, code examples, and tutorials. For a good introduction to
the methodology of agent-based modeling, including exploring constructing,
testing and verifying models, see the textbook by Wilensky and Rand [90].

7.2.2 Design Philosophy Behind NetLogo

A core design principle of NetLogo, also originating in the early Logo com-
munity, is the principle of “low threshold, high ceiling” (sometimes rendered
as “low threshold, no ceiling”) [52, 67). What this principle means, on the
one hand, is that the language should be simple enough for a novice without
programming background to be able to learn and productively use within
minutes of starting. On the other hand, the language should be powerful
and robust enough to be used by researchers in their scientific worl. These
twin design objectives are traditionally seen as conflicting: One either designs
an educational tool for novices and students or one designs a professional
tool suitable for scientists in their research. However, Wilensky started out
with the hypothesis that these goals could be reconciled in one environment
and, together with his colleagues at the Center for Connecied Learning and
Camputer-Based Modeling {CCL), has been continuously developing and re-
fining NetLogo so as to be more useful to each of these communities.

Core aspects of NetLogo design addressed to novices are natural-language-
inspired syntax, graphical world present at start-up, easy-to-build drag and
drop interfaces, and extensive help, documentation, sample models, and code
examples. Core design features addressed to power users include an exten-
sions application programming interface (API) through which users can write
their own NetLogo libraries (in Java), support for replicability of model runs,
programmatic control of agent execution order, and support for probability
distributions of agent variables and for a variety of network layouts.

Although the criterion of low threshold is typically interpreted as being
targeted to novices and high ceiling being targeted to researchers and ad-
vanced users, the design rationale for NetLogo hypothesized that both goals
are actually important to both communities [82, 67). On the high-ceiling side,
the reasoning is that novices benefit from being able to smoothly move from
elementary modeling to more advanced modeling without having to change
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modeling languages or platforms. Moreover, and this is important for educa-
tional adoption, schools are much more easily persuaded to adopt software
that is used in universities and in research contexts — one need not convince
them that the software helps the students learn better, one can just point
them to the scientific and commercial uses and they become interested in
giving their students the same tool as they will use later on in life. On the
low-threshold side, we have argued that low threshold is very important for
researchers as well. Many researchers do not consider themselves program-
mers, and therefore, once they have created a conceptual model, they delegate
the task of implementing the model to a programmer. This practice can lead
to mismatches in understanding between the two parties and, consequently,
to incorrect models [89]. Moreover, if the researcher can build the model him-
self/herself, then the researcher can much more rapidly and fluidly explore
the design space of the model and make better progress in his/her research.
Finally, the easy readability of a low-threshold language enables researchers
to read and verify each others’ models, leading to greater cumulativity in
the scientific community. From the widespread adoption of NetLogo in both
scientific research communities and in educational contexts, we conclude that
the hypothesized compatibility of the two design goals has been successfully
implemented. NetLogo has a large and active community numbering in the
tens of thousands, with over 160,000 downloads in 2008 (and millions of web
page hits). Its discussion lists are very active and include researchers, ed-
ucators, students, businesspeople and policy-makers. NetLogo is in use in
scientific research across a wide range of content domains and there is a
rapidly increasing inclusion of NetLogo models in scientific research publi-
cations (e.g., [4, 37, 18, 42, 44, 17, 32, 38, 40, 64, 62, 29, 69]). This list is
not intended to be comprehensive, as it is constantly being added to; inter-
ested parties should visit the NetLogo homepage and lock in the “Community
Models” section for an updated list of projects [85].

In a recent comparison of research-oriented agent-based modeling plat-
forms [54], the authors admitted that, at first, they did not plan to include
NetLogo in the comparison set, as, given its educational intent, they assumed
it would be too limited for research purposes. However, after examining it
more closely, they found that it was eminently suitable for research: “we found
we could implement all our test models in NetLogo, with far less effort than
for other platforms,” that “NetLogo is by far the most professional platform
in its appearance and documentation,” and that it “is quite likely the most
widely used platform for ABMs.”

NetLogo is also in use in many thousands of educational contexts, es-
pecially in middle schools, high schools, and universities as well as muse-
ums and other informal learning contexts. Wilensky and colleagues have
designed a number of effective model-based curricula for use in both pre-
collegiate and undergraduate contexts. Topics covered include probabil-
ity and statistics, kinetic molecular theory, reaction chemistry, electricity
and magnetism, ecology, evolution, robotics, materials science, and micro-
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economics [12, 87, 2, 13, 1, 14, 88, 95, 61). The CCL and colleagues have con-
ducted hundreds of NetLogo workshops for teachers, researchers, students,
and would-be modelers of all stripes.

7.2.3 NetLogo Features

NetLogo is a full-featured agent-based modeling environment and contains
many sophisticated capabilities suitable for modeling Artificial Life. NetLogo
15 in continuous active development. Since version 1.0 in 1999, NetLogo has
advanced considerably on both low-threshold and high-ceiling dimensions.
Notable features include the HubNet [98] architecture that supports partic-
ipatory simulations [57, 80, 19, 97, 41], where users can assume the role of
agents alongside virtual agents, facilitating social science experimentation on
a large scale [39, 30]. NetLogo also contains (1) NetLogoLab[15] that connects
NetLogo to external hardware-based actuators and sensors and enables the
grounding of models in local real-world data, (2) BehaviarSpace [96], a model
analysis package that enables automated parameter sweeping, experimental
analysis, and parameter space visualization, and (3) System Dynamics Mod-
eler [83], a stocks and flows simulator that can be used alone or integrated
with multi-agent simulations to create hybrid models that combine ABM and
System Dynamics features [72). Furthermore, NetLogo 4.0.2 was released in
December of 2007 and contains many new and improved features. For in-
stance, a major component of NetLogo is its models library, which contains
hundreds of pre-built models, each with detailed explanations and extensive
curricular activities, ready to be used as seed models. In the latest version of
NetLogo, there are new models of biological evolution, mathematics, physics,
neural networks, evolution of social cooperation, linguistics, psychology, man-
agement, and geographic information software (GIS). Some major new com-
ponents that have been recently added include the integration of language
primitives that facilitate the building, analysis, and examination of network
models, enhancements to analysis and visualization of multiple model runs,
and enhanced facilities for user-authored extensions of the core language.
Users have taken advantage of the latter to build many such extensions, Of
particular note to researchers and Artificial Life modelers are two new ex-
tensions: an extension that enables NetLogo to import GIS data files into a
model and to generally play well with existing GIS software and a second
extension that provides a library of genetic algorithm primitives for use in
evolutionary computation.

The features and design philosophy of NetLogo offer several benefits to its
use in the biomedical community. In keeping with its legacy as an educational
tool, we note that there is great potential for use of NetLogo in medical school
education, and we have made plans to integrate NetLogo intc medical edu-
cation here at Northwestern University. As alluded to above in Section 7.1,
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its “low threshold, high ceiling” characteristics make NetLogo well suited to
implementation as a computational adjunct to current biomedical research.
Evidence of its utility can be demonstrated in the range of research areas
where NetLogo has been applied: intracellular signaling [10], acute inflam-
mation [6, 7, 9, 72], inflammatory cell trafficking [64, 11], wound healing [49],
and morphogenesis [46]. This chapter will focus on demonstrating how Net-
Logo can be used to effect multi-scale knowledge integration through the use
of agent-based modeling, as well as demonstrating some of the capabilities
of the NetLogo toolkit, particularly with respect to three-dimensional (3D)
topologies.

7.3 NetLogo Models of Acute Inflammation

This chapter presents & series of NetLogo ABMs representing multiple scales
of organization and integration. These models all involve aspects of the acute
inflammatory response (AIR). The inflammatory response represents the
body’s initial reaction to injury and infection and is a ubiquitous process
found in all tissues. In addition to dramatic expression in the face of severe
infection or injury (as seen in sepsis and massive trauma), inflammation also
provides a key link between damage and repair, as the healing process relies
upon signals initiated during the AIR. Furthermore, it is increasingly recog-
nized that inflammatory processes are essential to the maintenance of normal
homeostasis, as the body exists in an ever-changing environment and is in-
volved in such ubiquitous conditions as atherosclerosis, obesity, and aging.
Therefore, acute infammation is a prototypical example of a multi-scale bio-
complex system and thus suited to examination and characterization using
agent-based modeling.

The series of NetLogo ABMs have been developed at multiple levels of res-
olution, extending from intracellular signaling leading up to simulated organ
function and organ-organ interactions. The specific model reference system
for these ABMs is the clinical manifestation of multi-scale disordered acute in-
flammation, termed systemic inflammatory response syndrome (SIRS), mul-
tiple organ failure (MOF), and/or sepsis. These clinical entities form a con-
tinuum of disseminated disordered inflammation in response to severe levels
of injury and/or infection and represent one of the greatest clinical challenges
in the current health-care environment.

7.3.1 NetLogo ABM of Intracellular Processes: The
Response to Inflammatory Signals

Perhaps the greatest translational challenge for biomedical research exists in
the step between intracellular mechanism and the behavior of cellular pop-
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ulations. The extensive characterization of intracellular processes forms the
bulk of ongoing biomedical research, and the ability to integrate this infor-
mation is the subject to the burgeoning field of Systems Biology. While there
are notable exceptions (see [16, 53] for examples of ABMs used to character-
ize intracellular processes), in general, the systems biology community has
used more traditional methods of mathematical modeling based on differen-
tial equations and stochastic algorithms. This method has been successful
in modeling kinetic processes in well-mixed systems, classically manifested
as biochemical reactions. However, at a basic level, biochemical processes
involve discrete events between molecules and particles. If the goal is to char-
acterize these processes in the context of their influence on cellular behavior,
it is possible to accept a level of abstraction that eliminates the details of
the molecule-molecule interaction by labeling them generically as interac-
tion events. The emphasis is shifted to representing the interaction—event.
Accomplishing this requires two realizations (1) Molecules do not have voli-
tion to direct their movement to find their reaction partner and (2) cells are
not bags of molecules (i.e., cells are not well mixed systems), and because
molecules have no volition, spatial and environmental conditions within the
cell must somehow direct signaling pathways by increasing the likelihood
that participants in steps of a signal cascade will actually contact each other.
Incorporating a spatial component to the characterization of signaling path-
ways, such as relating enzymes to the internal cytoskeletal architecture or
simulating the effects of molecular crowding (that suggest that biochemical
rate constants are dependent on an intracellular context [59]), can accom-
modate this. A modeling system can utilize abstraction at the level of the
signaling event, without details as to what happens at a molecular struc-
tural level during the event. Interaction rates can be qualitatively scaled,
as similar classes of interactions act within the same general time frame,
and the emphasis on physical proximity renders fine parsing of these rates
unnecessary. Rather, the focus is on characterizing conditions that lead to
interaction events: molecular movement across space, likelihood of interac-
tion events occurring, and the ordering of signaling enzymes. This leads to
a particle view of signal transduction, where interactions within a reaction
cascade follow a spatial architecture that is defined by the sequence of the
signaling pathway. “Particles” are used to represent signaling events, and
viewing the trajectory of the particle through the various reaction spaces can
simulate transduction through a signal cascade. This modeling architecture
is termed Spatially Configured Stochastic Reaction Chambars (SCSRC) [10).
Of note, the SCSRC utilizes and expands upon one particular type of ba-
sic NetLogo model, the GasLab models in the Models Library representing
gas behavior via particle dynamics (78, 80, 81]. The transition from discrete
particle behavior to the global system behavior expressible via the Ideal Gas
Law equations provides an analogy for the underlying precept of the SCSRC:
modeling biochemical reactions, which are usually expressed as rate equa-
tions, from a discrete, particle-based standpaint. This is an example of how
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Fig. 7.1 Architecture of NetLogo ABM of intracellular signeling and metebalism: A SC-
SRC model of a gut epithelial cell.

NetLogo’s extensive model library can serve as a source of seed models to aid
in the development of specific biomedical models.

In the SCSRC each simulation space represents a single cell. The space is
a grid of 2D squares. The agent level is at the particle level, where each agent
represents an abstracted molecule within the signal transduction cascade. The
space is subdivided into a series of smaller rectangular compartments. The
particular example presented here represents the pro-inflammatory signaling
events in a gut epithelial cell and the effect those events have on tight-junction
protein metabolism, an important component of epithelial barrier function
(Fig. 7.1). The design features of the SCSRC are derived from the two central
premises listed above: (1) Molecules do not behave volitionally and (2) spatial
and structural factors influence the sequence of molecular interactions and
signal transduction. The movement rules for agent-molecules in the SCSRC
follow a semi-Brownian random-walk while they are simulating the molecu-
lar events of signal transduction. The subdivided compartments are reaction
spaces that represent the close proximity of spatially located signaling en-
zymes. This proximity simulates either the arrangement of enzymes along cy-
toskeletal elements or the effects of molecular crowding in the cytoplasm. The
apposed borders of the reaction spaces represent sequential enzymes of the
signal cascade. The entry of a molecule-agent into the reaction space through
one of these “enzyme” borders represents the chemical reaction event cat-
alyzed by the enzyme, producing the signal molecule and introducing it into
the reaction space. The molecule-agent moves in a random fashion eventually
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encountering the opposite border representing the next enzyme in the signal-
ing pathway, and is transformed as it passes through that border into the next
reaction chamber. As mentioned above, the specifics of the chemical reactions
are abstracted into a state transition for the molecule-agent. Primarily, the
state transition is merely a change in the labeling of that molecule-agent (to
keep track of the signal as it propagates), but accasionally it results in altering
the way it interacts with subsequent enzyme-borders. For instance, inhibitory
activity is simulated by agent-border interactions that lead to the affected
areas of the enzyme border being unable to execute the signaling state transi-
tion for subsequent encounters with up stream molecule-agents. The number
of molecule-agents of a particular type represents the strength of a signal.
The spatial configuration of the chambers of the SCSRC is defined by the se-
quence of a signaling/synthetic pathway. Each enzymatic step is represented
by the horizontal “bars” abutting a reaction chamber. Specific qualitative
types of enzymatic reactions, such as signal amplification, inhibition, or ac-
tivation, can be specified in the encounter rules between the agent-molecules
and the enzyme-borders. The reference model for the molecular processes
in this SCSRC model is a well-described human cultured enterocyte model
(Caco-2) and its responses to inflammatory mediators, including nitric oxide
(NO) and a pro-inflammatory cytokine mix (“cytomix”) that includes tumor
necrosis factor (TNF), interleukin-1 (IL-1), and interferon-gamma (IFN-
gamma) [33, 36, 35, 60]. Figure 7.1 demonstrates the structural architecture
of these signaling pathways. This is a screenshot of the SCSRC model of
a single gut epithelial cell, representing the pro-inflammatory signaling and
tight-junction protein components. The inflammatory signaling complexes
are at the top of the model and tight-junction protein pethway chambers are
at the bottom. “Dots” present in each chamber represent malecules being
synthesized and transported by the various enzyme complexes. In this fig-
ure, the only “Dots” present are in the tight-junction proteins present in the
baseline cellular state.The response of the model to inflammatory stimuli can
be seen in the screenshots displayed in Fig. 7.2.

7.3.2 NetLogo ABM of In Vitro Gut Epithelial Barrier
Ezxperiments

This subsection describes the translation of the mechanisms and behaviors of
the SCSRC into a cell-as-agent-level ABM as seen in an in vitro experimental
model of gut epithelial barrier function (epithelial barrier agent-hased model
= EBABM) [9]. As opposed to the agents being molecules and signaling en-
zymes in the SCSRC, each agent in the EBABM represents a single cell. The
output of the SCERC has been transleted into a series of algebraic relation-
ships for agent state variables corresponding to the molecular agent classes in
the SCSRC. The EBABM utilizes a model architecture derived from another
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Fig. 7.2 Screenshots of gut epithelial cell SCSRC in response to inflammatory stimuli.
The top panel is a screenshot of the SCSRC just after the addition of the inflammatory
signal. “Dots” representing signaling molecules can be seen in each chamber. The graphs
demonstrate the rise in levels of “NF-kB," and the activation of “iNOS" and “NO.” The
bottom panel is a screenshot of the SCSRC near the end of a run. The signaling molecules
have disappeared, “iNOS” is starting to decrease while residual *NO" is still present.

paradigmatic type of NetLogo model, the “patch-centrie” cellular automata—
like 2D grid models [75, 76, 68).

The topology of the EBABM is a 2D square grid. The grid has 21 x 21
cells, in each of which there is an epithelial cell agent (“epi-cell”). The size of
this grid was chosen as a representative portion of a total cell culture surface
for reasons of computational efficiency; the processes being modeled by the
EBABM are propartianal to the cell surface area and the model could be,
if desired, scaled up to any size. There are also two additional simulation
“spaces” - one layer representing the apical extracellular space (from which
the diffusate originates) and another layer representing the basal extracelly-
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Fig. 7.3 Screenshot of the graphical user interface of the EBABM. Control buttons are
on the left; Graphical Output of the simulation is in the center. In the Graphical Qutput,
Caco-2 agents are seen as squares, those with intact tight junctions with light borders
(letter A), those with failed tight junctions are bordered in black (letter B). This particular
run is with the addition of cytomix (letter C) seen after 12 hours of incubation (letter D).
The heterogeneous pattern of tight-junction failure can be seen in the Graphical Output.
Graphs of variables corresponding to levels of mediators (letters E and F) and tight-junction
proteins (letters G and H) are at the bottom and right. This figure is reprinted under the
terms of the Creative Commons license from [9).

lar space (into which the diffusate flows if there is permeability failure). A
screenshot of the EBABM during an experimental run can be seen in Fig. 7.3.

Each epi-cell has eight immediate neighbors, and at each contact point
there is a simulated tight junction (TJ). The integrity of the TJ requires
both apposed epi-cells to have adequate production and localization of T
proteins.

The importance of the EBABM lies in the translational function it plays
as a transitioning step between the intracellular behavior represented and
modeled using the SCSRC, and the aggregated cell-type models that are de-
scribed in the following subsections. The EBABM is thus a critical validation
step in the modular construction of a multi-scale ABM architecture.
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7.3.8 NetLogo ABM of Organ Function: Gut Ischemia
and Inflammation

The next level of ABM development is intended to simulate Organs as a syn-
thesis of two distinct hypotheses of disseminated inflammation and organ
failure: viewing disordered systemic inflammation as either a disease of the
endothelium [5] or a disease of epithelial barrier function [26]. The endothe-
lial surface is the primary communication and interaction surface between the
body's tissues and the blood, which carries inflammatory cells and mediators.
Endothelial activation is a necessary aspect of the initiation and propagation
of inflammation, particularly in the expansion of lacal inflammation to sys-
temic inflammation [5]. On the other hand, end-organ dysfunction related
to inflammation can be seen as primarily manifest in a failure of epithelial
barrier function. Pulmonary, enteric, hepatic, and renal organ systems all dis-
play epithelial barrier dysfunction that has consequences at the macro-organ
level (impaired gas exchange in the lung, loss of immunclogical competence
in the gut, decreased synthetic function in the liver, and impaired clearance
and resorptive capacity in the kidney) (26]. The organ-level ABM recon-
ciles these two hypotheses by integrating the epithelial barrier component,
used to represent the consequence of individual organ failure, and the en-
dothelial /inflammatory cell component that provides the binding interaction
space that generates, communicates, and propagates the inflammatory re-
sponse [9]. The primary cell classes in this architecture are endothelial cells,
blood-borne inflammatory cells (with their attendant subtypes), and epithe-
lial cells. Therefore the structure of the organ ABM involves the 3D linkage of
the cellular surface ABMs already developed representing these two systerns,
the EBABEM representing epithelial function and a previously published en-
dothelial /inflammatory cell ABM [B, 7]. The result is a bilayer organ model
(see Fig. 7.4).

Both the original endothelial /inflammatory cell ABM and the EBABM
were developed as 2D models. In order to create the bilayer topology of the
organ ABM, it was necessary to convert hoth of these models to the 3D
version of NetLogo [84], with each model represented as a layer of agents
projected in the XY plane. The two layers were then juxtaposed: the en-
dothelial layer below and the epithelial layer above along the 7 axis. The
simulated blood vessel luminal space occupied another XY plane one place
inferior to the endothelial surface along the Z axis. Inflammatory cells move
only in this plane. The organ luminal space occupied the XY plane at one
place superior to the epithelial axis along the Z axis. This space contains the
“diffusate” that leaks into the gut in cases of epithelial tight-junction failure.

In vivo models that examine the inflammatory behavior of the gut either
look at a local effect from direct occlusion of gut arterial flow [70, 63] or as a
result of some systemic insult, be it hemorrhagic shock, endotoxin adminis-
tration [50], or burn injury [47, 24]. These studies suggest that the primary
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Fig. 7.4 Screenshots of bilayer configuration of the gut ABM, following the structure for
hollow organs described in the text. The left panel is the view of bilayer from endothelial
surface. The lower surface consists endothelial cell agents, with spherical inflammatory cell
agents seen just below, Inflammatory cell agents move in the plane immediately below the
endothelial surface. The right panel is the view of bilayer from epithelial surface. Each
cube represents an epithelial cell agent, governed by rules transferred from the EBABM.
Impairment of TJ protein metabolism is shown by darkening of the shade of the epithelial
cell agent, with the epithelial cell agents eventually turning black and changing their shape
to a “cone” when TlJs have failed. This figure is reprinted under the terms of the Creative
Commons license from [9)].

process that initiates inflammation in the gut is ischemia and reperfusion and
the subsequent effects on the endothelial surfaces within the gut. The measur-
able outputs of the reference models exist at different scales. At the cellular
level, tight-junction integrity and epithelial barrier function is one measured
endpoint [99, 35], however, the organ as a whole also has an output: the
nature of the mesenteric lymph. Multiple studies suggest that ischemia to
the gut (and subsequent inflammation) leads to the excretion of an as-of-yet
unidentified substance in the mesenteric lymph that has pro-inflammatory
qualities. Some characteristics of the substance can be identified from the
literature: It is an acellular, aqueous substance [21], is greater than 100 kDa
in size [3], does not correspond to any currently recognized cytokine, and
is bound or inactivated by albumin [51]. The time course of the production
of the substance is identified to some degree (22, 20] but it is unclear if it
arises from a late production of inflamed cells or is a product of cellular
degeneration or apoptosis (programmed cellular death) or is a transudated
bacterial product from the intestinal lumen. The uncertainty with respect to
an identified mediator provides a good example of how the ABM architecture
deals with incomplete knowledge. Based on the characteristics defined above,
we make an hypothesis regarding this substance with respect to its origin,
but we acknowledge that this is, to a great degree, a “best guess.” Doing so
establishes a knowledge bifurcation point, allowing the development of po-
tential experiments and/or data that would nullify the particular hypotheses.
A specific example will be demonstrated next.

The nature of the initial perturbation was altered to match that seen in
the reference experiments (i.e., tissue ischemia). With the premise that the
inflammatory response was generated at the endothelial surface, the initial
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perturbation was modeled focusing at the endothelial layer, with the response
of the epithelial component being subsequently driven by the output of the
endothelial-inflammatory cell interactions. Rather than having a localized in-
sult with either infectious agents (simulating infection) or sterile endothelial
damage (simulating tissue trauma), as was the case in the base endothelial-
inflammeatory cell ABM, gut ischemia was modeled as a percentage of the
total endothelial surface rendered ischemic. The degree (or percentage af-
fected) of the initial ischemia was controlled with a slider in the NetLogo
interface. Therefore, “Percentage Gut Ischemia” (= %Isch) represents the in-
dependent variable as initial perturbation for this model. To address the issue
of modeling the production of the post-ischemic, pro-inflammatory lymph, at-
tention is focused on linking the knowledge that has been acquired regarding
the characteristics of the substance and relating this information to the com-
ponents of the organ ABM. The known characteristics listed above are used
to exclude potential candidate substances/actors from consideration. Specif-
ically, this group comprises any of the cellular agents and any of the included
cytokines. Therefore, the search is limited to the following:

1. An as-of-yet unidentified compound linked to cellular damage. An exam-
ple of such a compound would be high-mobility box protein 1 (HMGB-
1), which to date has not been looked for in the post-ischemic mesen-
teric lymph. In the organ ABM, this variable is termed “cell-damage-
byproduct,” and it is calculated as a function of total endothelial damage
with a set decay rate consistent with that of other bio-active compounds
associated with inflammation.

2. A luminal compound that diffuses in response to TJ barrier failure, This
would correspond to potential byproducts of gut bacterial metabolism, or
bacterial toxins, or other soluble aspects of the gut luminal environment
that would leak into the gut tissue by virtue of the loss of harrier function.
This variable is represented by “gut-leak,” which is equal to the “solute”
(from the EBABM) that penetrates the failed barrier.

3. A downstream metabolite of compounds generated by the inflammatory
process. These would most likely be compounds generated by superoxide
and nitric oxide (NO} reactions. For purposes of these simulations, levels
of NO will be used as a proxy for this possible candidate.

Therefore, the goal of the organ ABM simulation runs will be to exam-
ine the time course levels of these three values and identify which one (if
any) matches the reported time course effects of the post-ischemic mesen-
teric lymph. The first step was to determine the greatest non-lethal level for
“Percentage Ischemia” (%Isch). It should be noted again that the name of
this variable is descriptive for how it is implemented in the ABM, and not
intended to match quantitatively, per se, with measured ischemia in vivo.
Rather, %lIsch is representative of the initial conditions for the simulation
that will produce a pattern of simulation behavior that matches that of the
in vivo system [31]. A parameter sweep of this value was performed, using a
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previously described method [6] with the goal of identifying the greatest non-
lethal level of %Isch, which was %Isch = 35. The output from the organ ABM
with %Isch = 35 evaluated the time courses for three global output variables:
“cell-damage-byproduct,” “gut-leak” and NO. The pro-inflammatory prop-
erties of the post-ischemic mesenteric lymph were noted to increase the most
at 3 hours and 6 hours and remain out to 24 hours [22, 20]. Examining the
time courses of these three global output variables the candidate compound
that most closely approximates the pattern identified in the literature was
the “cell-damage-byproduct.”

As discussed above, this possible source of the unknown compound in the
post-ischemic mesenteric lymph is based on the recognition of certain late pro-
inflammatory mediators produced by activated and damaged cells, HMGB-1
being the most studied as a possible key mediator in the pathogenesis of
sepsis (48]. To date, there have been no studies examining the production or
presence of HMGB-1 in the post-ischemic mesenteric lymph. However, based
on the information generated by the organ ABM, and placed in the context of
the knowledge framework concerning the characteristics of pro-inflammatory
mesenteric lymph, we will make a hypothesis that some later byproduct of
damaged gut tissue, rather than a diffused material or direct metabolite of
first-pass inflammatory mediators, is the responsible compound in the post-
ischemic mesenteric lymph. It is recognized that this is “guided speculation;”
however, it also demonstrates how the construction and use of models in the
ABM architecture is an evolving process that parallels the development and
refinement of conceptual models. As will be seen in the next subsection, the
next scale of biological organization to be addressed in the ABM architecture
involves the extension and integration of this hypothesis.

7.8.4 NetLogo ABM of Multi-organ Interactions: The
Gut-Pulmonary Azis of Inflammation

The ultimate goal of all of these modeling endeavors is to create some facsimile
of clinical conditions, with the hope of developing a platform that represents
the complexity seen clinically. In Ppatients, organs do not exist in isolation;
their mutually complementary functions interact to sustain the organism as
a whole. Disease states can lead to a breakdown of these interactions, causing
a cascade effect, as single-organ dysfunction can lead to multi-system failure.
Sepsis and MOT are characterized by a progressive breakdown in these inter-
actions, leading to recognizable patterns of linked organ failure [28]. There-
fore the next scale of biological organization represented in the multi-scale
ABM architecture is that of organ-organ interaction [9]. The gut-pulmonary
axis of MOF [47, 22, 23] is used as the initial example of organ-to-organ
crosstalk. This relationship is relatively well defined pethophysiologically (al-
though not completely, as indicated by the uncertainty of the identity of
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the pro-inflammatory compound in the post-ischemic mesenteric lymph) and
represents an example of multi~organ effects of disseminated disordered in-
flammation. Disordered acute inflammation of the lung is termed Acute Res-
piratory Distress Syndrome (ARDS) and is manifested primarily by impaired
endothelial and epithelial barrier function, leading to pulmonary edema. This
leads to impaired oxygenation of arterial blood, requiring support of the pa-
tient with mechanical ventilation. While the comprehensive pathogenesis of
ARDS involves additional subsequent issues related, to a great degree, to
the consequences of mechanical ventilation (specifically the effects of baro-
trauma and shear forces on the airways, and the persistent propagation of
inflammation that results), for purposes of this initial demonstration only
the initiating events associated with the development of ARDS will be mod-
eled. Those events concern the production and release into the mesenteric
lymph by ischemic gut (resulting from shock) of various pro-inflammatory
mediators and their effects both on circulating inflammatory cells and the
pulmonary endothelium as they circulate back to the lung via the mesenteric
lymph (as discussed above). At this point, the hypothesis regarding the na-
ture of the pro-inflammatory mediator in the mesenteric lymph is extended
to the assumption that, for modeling purposes, the levels of “cell-damage-
byproduct” will be the proxy for the unidentified compound that is produced
in the ischemic gui and circulated to the lung, leading to inAammation of the
pulmenary endothelium.

Drawing upon the endothelial-epithelial bilayer configuration for a hol-
low organ, a pulmonary ABM was developed utilizing the same endothelial-
inflammatory cell component as the gut ABM and using rules for pulmonary
epithelial cells with respect to tight-junction metabolism and epithelial bar-
rier function [34). The functional consequence of the intact pulmonary ep-
ithelial barrier is effective oxygenation of arterial blood (expressed at the en-
dothelial lumen) via diffusion from the alveolar epithelial surface. Pulmonary
barrier failure manifests as increased egress of fluid from the endothelial Ju-
men into the alveolar space, affecting the transfer of alveolar oxygen to the
endothelial surface. Thus, systemic oxygenation may be altered with the con-
sequence that progressive pulmonary dysfunction would feed back to the sys-
tem as whole. This leads to impaired oxygenation into the endothelial lumen,
which is summed across the surface of the model to produce a measure of
systemic arterial oxygen content.

The topology of the linked gut and pulmonary ABMs consists of two paral-
lel bilayer planes, each bilayer representing one of the organ ABMs (Fig. 7.5).

The Z-axis orientation of both bilayers is the same: to allow conservation
of the agent rules for equivalent agent: classes (i.e., endothelial-epithelial-
lumen relationships are consistent ). The simulated blood fow continues to be
modeled by movement in the XY plane immediately inferior to the endothelial
surface. Blood fiow hetween organs is simulated by adding a “perfusion”
variable. For purposes of the model, large-caliber blood vessels and the heart
are treated as biologically inert with respect to inflammation. Similarly, the
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Fig. 7.5 Screenshot of multi-bilayer gut-lung axis ABM. The letter A labels the pui-
monary bilayer, with cubes in the upper portion of the bileyer representing pulmonary
epithelial cell agents, while the lower surface represents pulmonary endothelial cell agents,
and below are spherical inflammatory cell agents. The letter B labels the gut bilayer, with
a similar configuration, epithelial cell agents above and endothelial cell agents below. Cir-
culating inflammatory cell agents move between these two bilayers in the fasion described
in the text. This figure is reprinted under the terms of the Creative Commons license from

(9)-

flow of the mesenteric lymph is transferred from the gut ABM endothelial
space to the lung ABM endothelial space.

The effects of mesenteric ischemia on pulmonary barrier dysfunction were
then evaluated using a parameter sweep of %lIsch to identify the inflection
point between lethal and sub-lethal perturbation levels. Screenshots of both
these outcomes can be seen in Fig. 7.6.

This parameter sweep demonstrated that the corresponding lethality of
mesenteric ischemia in the gut-lung ABM is significantly increased as com-
pared to the gut ABM alone, dropping the sub-lethal %Isch from 35 for the
gut ABM to 11 for the gut-lung ABM. This results from the addition of
the lung ABM and its effect of decreasing the maximally available “oxy”
to non-perturbed endothelial agents via the consequence of pulmonary ep-
ithelial barrier function (“pulm—edema”). With increasing pulmonary edema
and worsening oxygen delivery, gut epithelial agents “die” owing to a decrease
in the available maximal “oxy” level to below the threshold for generalized
endothelial agent activation. The impaired systemic oxygenation due to a pul-
monary leak arises from pulmonary epithelial barrier failure. At the sublethal
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Fig. 7.6 Effect of gut ischemia on pulmonary barrier dysfunction and pulmonary edema:
sublethal and lethal outcomes. The left panel is a screenshat of a representative run with a
sub-lethal initial %Isch = 11 over a 72-hour run. Pulmonary epithelial cells show gradual
recovery as inflammation subsides up to the screenshot time of 72 hours. The right panel
demonstrates a “lethal” initial level of %Isch = 13, where impaired oxygen delivery from
the lung leads to greater ischemia and cellular death in the gut. This run is terminated
at 24 hours because endothelial damage is nearly complete. The letter A points to black
cubes representing “dead” endothelial cell agents. The letter B points to the only remaining
intact pulmonary epithelial cell agents. The letter C points to the only remaining intact
gut epithelial cell agents. The letter D points to the only remaining patches of surviving
endothelial agents (seen through the cones of “dead” epithelial cell agents). This figure is
reprinted under the terms of the Creative Commons license from (9]-

%lIsch level of 11 the system is able to correct itself, with attenuation of gut
ischemic damage and recovery of the pulmonary epithelis! cells, mostly oc-
curing by 72 hours. This pattern is consistent with that seen clinically in the
recovery of pulmonary edema secondary to inflammatory causes. However,
the transition to lethal outcome is accomplished by only a slight increase of
%lsch to 13, where the oxygen delivery consequences of pulmonary epithelial
failure leads to a forward feedback loop with progressive gut bilayer ischemia.
Thus, the survival space of the system would appear to be greatly limited,
and it may initially suggest that this model would be unsuited to examining
the range of dynamics of interest in the study of sepsis. However, it should
be noted that the high lethality of mesenteric ischemia, which implies the
presence of hemodynamic shock, is historically correct. Shock states, prior to
the development of fluid resuscitation and respiratory support, were nearly
universally fatal. ‘This is the circumstance that is being represented with the
gut-lung ABM at this point. If the goal is to simulate the clinical conditions
associated with sepsis and MOF, then it is necessary to simulate the effects
of argan support, to shift the survival space to the right. Doing so reproduces
the fact that sepsis and MOF are diseases of the intensive care unit (Icu),
arising only after the advances of resuscitative, surgical, antimicrobial, and
organ-supportive care allowed the maintenance of patients in situations where
they previously would have died. Therefore, sepsis and MOF can be thought
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of as a previously unexplored behavior space of systemic inflammation, one
where the inflammatory system is functioning beyond its evolutionarily de-
fined design parameters [6, 7.

Therefore, a very abstract means of organ support is modeled in the form
of “supplementary oxygen.” This function increases the amount of “oxy”
that is able to be diffused through the pulmonary epithelial barrier and is
the qualitative equivalent of increasing the fraction of inspired oxygen, and
therefore alveolar oxygen, to increase the partial pressure of oxygen diffused
in the blood. It is qualitative insomuch as there is no attempt to reproduce
the dynamics of gas exchange, or the binding of hemoglobin to oxygen in the
bloed, or the effects of redistributed ventilation-perfusion matching in the
lung as a result of hypoxia. This degree of detail is beyond the scope of this
initial demonstration model; however, the qualitative behavioral effects do
show that this type of support, even abstractly modeled, increases the rich-
ness of the behavior of the model as a whole and can extend the examinable
behavior space of the model to situations that can approximate the effects of
organ support in the ICU. The corresponding changes in outcome with this
type of simulated organ support can be seen in Fig. 7.7.
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PFig. 7.7 Effect of simulated supplementary oxygen on previously lethal gut ischemia.
This is a screenshot of a representative run with an initial %Isch = 15 and the addition of
simulated organ support in the form of “Supplementary Oxygen” at 50%. The stabilization
and initiation of recovery of pulmonary epithelial TJs at 72 hours is consistent with the
clinical time course of ARDS due to an episode of shock. The letter A demonstrates the
intact endothelial agent layer due to “Supplementary Oxygen” support (compare with
Fig. 7.6, the panel on the right). The letter B demonstrates the recovering pulmonary
epithelial cell agents. The letter C demonstrates intact and recovering gut epithelial cell
agents. This figure is reprinted under the terms of the Creative Commons license from [9).
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In Fig. 7.7, the initial %Isch = 15, greater than the lethal level seen in
Fig. 7.6; however, the survival of the overall system is enhanced by blunting
the negative consequences of impaired pulmonary function on the gut. The ef-
fect of “Supplementary Oxygen” is additive to the level of “oxy"” generated by
the lung ABM and distributed to the endothelial surface, effectively blunting
the effect: of the resulting pulmonary edema and keeping the “oxy” level above
the threshold ischemic level for activation of the generalized endothelial cell
agent population. As a result, the endothelial surface is maintained through
the period of most intense inflammation and this allows the epithelial cells
to begin recovery of their TJs. This dynamic is consistent with current man-
agment of these types of patients and thus needs to be effectively modeled if
the appropriate disease state is to be examined,

This sequence illustrates an important paint in creating translational mod-
els of disease states. The tendency may be to attempt to model the patholog-
ical state being studied (i.e., creating a model of sepsis). However, it needs
to be remembered that pathological states result from transitions from nor-
mal physiological behavior, and if the intent of a model is to facilitate the
eventual transition from disease back to health, then the normal mechanism
must be the basis of a translational model. The need to capture transitions
from one state to another takes on further importance when the pathological
state results, as with sepsis, from medical/clinical interventions. Therefore,
the architecture of a modeling structure needs to be flexible enough to ac-
commodate the addition and integration of these factors, and it is hoped that
the presented modular structure of the ABM architecture demonstrates this
capability.

7.4 Conclusion

The biomedical research community today faces a challenge that has paradox-
ically arisen from its own success: As greater amounts of information become
available at increasingly finer levels of biological mechanism, it becomes pro-
gressively more difficult for individual researchers to survey and integrate
information effectively, even within their own area of expertise. It still falls
upon the individual researcher to create mental models to guide the direction
of his/her individual research and, in aggregate, form the components of the
evolving structure of community knowledge. However, the formal expression
of mental models remains poorly defined, leading to limitations in the ability
to share, critique, and evolve the knowledge represented in these conceptual
models, particularly across disciplines.

These limitations can be overcome by developing methods of formal dy-
namic knowledge representation to enable researchers to express and com-
municate their mental models more effectively. By being able to “see” the
consequences of a particular hypothesis-structure/mental model, the mech-
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anistic consequences of each hypothesis can be observed and evaluated. In
addition, this type of dynamic knowledge representation enables the instan-
tiation of thought experiments, of trying out possible alternative solutions,
so long as these hypotheses and assumptions are made explicit. Again, this
draws upon the experience in the Artificial Life community by creating al-
ternative worlds driven by these proposed rules. These models can aid in
the scientific process by providing a transparent framework for this type of
speculation, which can then be used as departure points for the planning and
design of further wet lab experiments and measurements.

In short, the agent-based paradigm, with its defining characteristics of
encapsulation, modularity, and parallelism, can provide an over-arching de-
sign architecture for the computational representation of biological systems.
However, for this to be effective, there needs to be participation on the part
of the biomedical community and its participants. Modeling and simulation
toolkits such as NetLogo serve a vital role in giving novices to computer
modeling an opportunity to represent and visualize their conceptual models.
In particular, NetLogo provides a highly effective mixture of ease-of-use and
modeling capability to make the initial foray into this arena most rewarding.
It is hoped that the increasing use of this type of knowledge representation
and communication will foster the further development of virtual laboratories
and in silico investigations.
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Chapter 8

Discrete Dynamics Lab:

Tools for Investigating Cellular
Automata and Discrete Dynamical
Networks

Andrew Wuensche

DDLab is interactive graphics software for creating, visualizing, and analyzing
many aspects of Cellular Automata, Random Boolean Networks, and Discrete
Dynamical Networks in general and studying their behavior, both from the
time-series perspective — space-time patterns, and from the state-space per-
spective — attractor basins, DDLab is relevant to research, applications, and
education in the fields of complexity, self-organization, emergent phenom-
ena, chaos, collision-based computing, neural networks, content addressable
memory, genetic regulatory networks, dynamical encryption, generative art
and music, and the study of the abstract mathematical/physical /dynamical
phenomena in their own right.

8.1 Introduction

Networks of sparsely interconnected elements with discrete values and up-
dating in parallel are central to our understanding of a wide range of natural
and artificial phenomena drawn from many areas of science: from physics to
biology to cognition; to social and economic organization; to parallel compu-
tation and artificial life; to complex systems of all kinds.

Abstract, idealized networks — Cellular Automata {CA), Random Boolean
Networks (RBN), and Discrete Dynamical Networks in general {DDN) - pro-
vide insights into complexity in nature by providing the simplest models
of self-organization and bottom-up emergence. They are also fascinating in
themselves as mathematical, physical, dynamical, and computational systems
with a large body of literature devoted to their study [1, 5, 6, 8, 9, 14, 15, 16].

The dynamics that play out on these signaling — “decision-making” — dis-
crete networks are difficult if not impossible to investigate by classical math-
ematics; numerical methods are therefore essential.
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