Mining students’ actions for understanding of complex systems:
Students’ explorations of gas models in the Connected Chemistry curriculum

ABSTRACT
We investigate students’ inquiry actions in computer-based models of complex systems,
studying whether and how they adapt to different mathematical regularities in the system;
examining how these explorations may relate to prior knowledge and learning. Students’ data-
collection choices while exploring models were data-mined and analyzed showing: In most
cases, students conduct mathematically-astute explorations, consistently adapting their
strategies to the model’s mathematical structure; Mathematically-fit explorations are associated
with deep conceptual knowledge, specifically understanding of the system as complex; Fit
explorations are somewhat associated with learning along complementary dimensions:
guantitative problem-solving and bridging micro-to-macro-levels in the system. These results
are discussed with respect to learning about complexity through exploring models and the
importance of such conceptual understanding even for quantitative problem-solving.

INTRODUCTION

Can we learn from students’ inquiry actions in a computer-based learning environment
about their understanding of the domain under inquiry? As the methods for data-mining of
students’ actions in digital environments advance, new expressions of knowing become
accessible. Detailed observation of each student’s interactions with learning materials is beyond
a single teacher’s capabilities. However, with the assistance of logging and data mining, such
observation and subsequent support for learning are made possible.

This investigation focuses on how students explore computer models of complex
systems and whether such explorations are indicative of understanding and learning. We
examine data that students collect through experimentation with the models when their goal is
to further use this data to construct equations. The spacing of this data is investigated as an
indicator of their understanding of the model’s underlying mathematical behavior. Usually, work
in school science structures a linear addition to the independent variable (100-150-20-250...).
Yet, when the inspected system behaves in a nonlinear way, varying the dependent variable at
constant intervals would better capture the system’s full range of change. In the study, we look
into students’ data collection strategies, describe the patterns to which they conform, their fit to
the model’s mathematical behavior, and relate them to the students’ prior knowledge and
subsequent learning.

The activities involve students’ construction of the gas law equations in high-school
chemistry class, as they engage with the Connected Chemistry curriculum (***, 2009a), part of
the Modeling Across the Curriculum project (***, 2003). Connected Chemistry (CC1) is a
computer-based environment for learning the topics of (macro) gas laws and (micro) kinetic
molecular theory (KMT) in chemistry through a complexity perspective. CC1 employs NetLogo
(***, 1999a) agent-based models that compute a system’s behavior from its components’
actions and interactions. These models are embedded in Pedagogica scripts (Horwitz & Christie,
1999) that provide several forms of guidance, assistance, and assessment, while logging
students’ actions and responses to questions.

Students’ understanding is described in terms of conceptual/qualitative and
“algorithmic” or well-practiced quantitative problem-solving types of knowledge. Several
researchers demonstrate how students may be capable of solving problems that involve using
equations to predict the properties of gases under a variety of conditions; nevertheless their



conceptual understanding lags far behind (Niaz & Robinson, 1992; Nakhleh, 1993; Russell et al.,
1997; however, see Chiu, 2001; Costu, 2007). Moreover, such understandings may be limited
when the problems do not fall into familiar and practiced problems (Lin & Cheng, 2000).

Students’ learning is examined through a complexity perspective: understanding the
micro and macro levels, and relating the two; shifting between equation-based and macroscopic
descriptions. Complex systems are made up of many elements, which interact among
themselves and with their environment, resulting in the system’s coherent self-organized
behavior (Holland, 1995; Kauffman, 1995). NetLogo is a programming language that supports
creating agent-based models, such as those used in CC1. Exploring such models of chemical
systems, that integrate multiple representations (visual representations of both the micro and
macro levels and symbolic representation of its properties) have been shown to be effective in
helping students gain a deeper understanding (Ardac & Akaygun, 2004; Kozma, 2000; Russell, et
al., 1997; Snir et al., 2003; van der Meij & de Jong, 2006).

RESEARCH QUESTIONS
1. What patterns describe how students explore computer models when they are engaged in
experimentation for the purpose of determining a system regularity--constructing an
equation relating the system’s variables?
2. How does prior knowledge impact students’ model exploration patterns?
3. What associations can be found between students’ exploration patterns and their learning
gains regarding the related content?

METHOD

Procedure

The students engaged with seven activities of CC1 as part of their high school chemistry
course during the 2005-6 year, replacing the topic of gas laws and KMT. Before and after the
activities, spaced 2-3 weeks apart, the students completed content knowledge questionnaires.
The students’ interactions with the computerized environment, answers to open and closed
guestions and manipulations of the models were logged through the Pedagogica environment.

We focus on sections from three of the later activities that involve mathematical
modeling. In these sections, the students constructed the gas laws based on scatter-plots of
data they collected from models in which they could manipulate one variable: the number of
particles (N), temperature (T) or volume (V) and observe the resultant pressure (P) (Figure 1).
They explored the models prior to the activity, and following it, tested their equations with the
models.
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Figure 1: A sequence of four screenshots from the “Volume and Pressure” activity, portraying
construction of Boyle’s Law through experimenting with the agent-based model. The focus
screen in the study is highlighted.

Participants
The sample included 81-368 students (depending on the portion of the data analyzed)

who participated in both pre-test and post-test, engaged with the activities, and their logs were
successfully captured. Of these, 49% were male students and 51% female students; 13% in ot
grade, 22% in 10" grade, 61% in 11" grade; 4% in 12" grade. 41.3% were in a regular class,
30.4% in an honors class, 17.2% in a Pre-AP class, 7.6% in a college-level class and 3.5% were
unspecified. These students come from 12 diverse high schools across the US.
Instruments

In this study, two main instruments have been used: a pre-test/post-test questionnaire
and logs of the students’ actions in exploring the models. The pre- and post-test content
knowledge questionnaire assessed students’ understanding of the gas laws and KMT. It is fully
described elsewhere (***, 2009b).
Data Analysis

The content knowledge pre- and post-test questionnaires’ responses were coded as
correct or incorrect and a total score was averaged. Two sets of subscales were created: one
distinguishing between conceptual/qualitative-algorithmic/quantitative questions; the other,
more fine-tuned, focused on complex systems and mathematical modeling (micro--macro--
mathematical--micro/macro--model/math).



Students’ data collection was analyzed in the following way. The series of five values
they entered into the table for the manipulated variable (N for the N-P relationship; T for the T-P
relationship; V for the V-P relationship) was converted into patterns (Figure 2): The first and
second derivatives of these sequences were calculated. The second derivative was then
recoded as its sign: positive (indicating increasing intervals), negative (indicating decreasing
intervals) or zero (constant intervals). The 27 combinations of the three signs of the second
derivative were sorted into four categories: mainly constant intervals (at least 2/3 constant
additions), mainly increasing intervals (at least 2/3 increasing additions), mainly decreasing
intervals (at least 2/3 decreasing additions) and mixed (otherwise).
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Figure 2: Example describing method of extracting students’ exploration patterns from their
table data entries.

These patterns were further coded as “fit” or “unfit” with respect to the model’s
behavior. Regarding the linear N-P and T-P relationship, a fit exploration strategy is “constant
intervals” as it covers the parameter space systematically; for the inverse V-P relationship, it is
“increasing intervals” as it captures the faster change in pressure for lower volumes. Figure 3
demonstrates how “increasing intervals” for an inverse relationship captures a larger range of
change than “constant intervals”. These patterns are described, related to prior knowledge to
learning gains. Learning gains are calculated as (posttest-pretest)/pretest.
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Figure 3: Demonstration of the greater coverage of the parameter space afforded by exploring
an inverse function with “increasing” rather than “constant” intervals.

FINDINGS

Model exploration patterns

Students’ explorations of the gas models are described in Figure 3. Distinct distributions
are observed for the different models. For the NP model, a clear mode is seen - the “constant
intervals” exploration pattern (66%). For the TP model, a rather flat distribution is observed, the
mode at “increasing intervals” (34%). For the VP model, the mode is the “increasing intervals”
pattern (47%), however the “decreasing intervals” pattern soon follows. When the patterns are
recoded for fitness, we can see that the students are using mainly fit patterns for the NP and VP
exploration, however no clear result is seen for TP. The number of fit explorations is M = 1.41,

SD = .851, about half of the explorations.
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Figure 3: Students’ model exploration strategies. Corresponding gas law equations are on the
left: k is a constant; P is pressure; N is the number of gas particles in a container; V is its volume;
Tis the temperature of the gas. n = 134.

Students’ consistency in the three explorations was tested by looking at the actual
patterns and at their fitness. Regarding the first, the Chi-square Test shows no consistency
between the three explorations. As for the second, the Chi-square Test shows no significant
relationships between NP and TP (Xz(l):0.27, ns), or between VP and TP (Xz(l):0.15, ns). A



significant relationship is found between NP and VP (Xz(l):4.55, p=.033). For the latter, the main
part of the students (37%) are using fit strategies in both explorations

Prior Knowledge and Model Exploration Patterns
Students’ pre-test and post-test results (Table 1) show greater learning gains for the
micro- and micro-to-macro subscales and for conceptual understanding.

Table 1
Descriptive and Comparative Statistics of Students’ Content Knowledge in the Connected
Chemistry Curriculum (CC1) with Respect to the Conceptual Framework

Test Effect size
Conceptual framework component ) ,
(# of items in questionnaire) Pre Post Paired t Cohen’s d
M (SD) M (SD) (95% ClI).
All (19) 56 (17) 66(19) -17.61** 0.55 (0.46-0.65)

Form of access
Micro (3) 45(28) 60(31) -13.14** 0.51(0.41-0.60)
Macro (3) 76(29) 82(27) -6.01** 0.21(0.12-0.31)
Mathematical (1) 42 (49) 58(49) -8.21**  0.33(0.23-0.42)
Bridge
Micro/Macro (8) 56 (21) 65(22) -11.72** 0.42(0.33-0.51)
Conceptual/ Mathematical models (4) 56 (28) 62(29) -6.83**  0.21(0.12-0.21)

Quantitative 56 (29) 65(30) -7.37** 0.31(-1.62-2.16)
Qualitative 55(18) 65(20) -17.33** 0.53(-0.76-1.68)
Note. Scores are mean percentages of correct answers on pre-test and post-test questionnaire.
* ok

p<.01

Results of a logistic regression between the students’ prior knowledge and the
exploration patterns’ fitness, and ANOVA for the cumulative fitness are presented in Table 2.
Figures 4-5 show significant associations. These results show that only some of the components
of knowledge impact the students’ model exploration patterns, and in different ways for the
different relationships: NP exploration is impacted by conceptual but not algorithmic
understanding; and more specifically by prior knowledge of both the micro- and macro-levels as
well as bridging the macro-level with its mathematical representations; TP exploration by
understanding of the macro-level alone; VP exploration by understanding of the micro-level
alone.



Table 2: Logistic regression testing the impact of prior knowledge on the three model

exploration patterns, and ANOVA of their cumulative fitness score.

Prior NP exploration TP exploration VP exploration All exploration
knowledge pattern pattern pattern patterns
component ¥ P ¥ P %2 P F(1,83) p
All 6.36 .01 0.02 ns 0.19 ns .584 ns
Micro 3.50 .03 0.20 ns 5.43 .02 2324 ns
Macro 3.51 .03 3.11 .04 0.10 ns .580 ns
Math 0.36 ns 0.14 ns 0.03 ns .147 ns
Micro/Macro 0.36 ns 0.40 ns 0.05 ns .213 ns
Math/Macro 8.53 .003 0.15 ns 0.32 ns 1.316 ns
Conceptual 7.67 .006 0.10 ns 0.11 ns .329 ns
Algorithmic 1.98 ns 0.01 ns 0.15 ns .018 ns

prior
knowledge
(pretest)

algorithmic

model (NP)(TP>(VP)
exploration
T~
~
~

learning gains -
(pre- to post- conceptual algorithmic
test)

Figure 4: Significant associations between prior knowledge and model exploration patterns,
exploration patterns and learning gains, sorted by conceptual and algorithmic. Associations

significant only at the 0.1 level are marked in dashed lines.
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Figure 5: Significant relationships between prior knowledge and model exploration patterns,
model explorations and learning gains, sorted by levels (micro, macro, math) and bridges
(micro/macro, math/macro) from the pre-test. Associations significant only at the 0.1 level are
marked in dashed lines.

Model Exploration Patterns and Learning

Independent t-tests related the explorations’ fitness and learning gains (Table 3). Small
associations between exploration patterns and learning are found. Fitness in NP exploration
(and more weakly for VP exploration) is associated with learning more advanced complexity
reasoning: bridging of micro/macro-levels. Less significant, cumulative fitness of the three
explorations and fit NP exploration is associated with overall learning gains, and, more
specifically along the quantitative dimension.
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Table 3: Impact of model exploration patterns on subsequent learning gains.

Knowledge NP exploration TP exploration VP exploration All explorations

component pattern pattern pattern
t-test® p t-test p t-test p F(3,n-1) p

All 1.76 .08 1.01 31 .55 .58 2.64 0.06
(244)° (222) (264) (81)

Micro -911 .36 -1.063 .29 .977 .33 .349 .79
(241) (178) (212) (66)

Macro .611 .54 1.429 .15 .198 .84 418 .74
(232) (212) (258) (78)

Micro/Macro 2.08 .039 112 91 1.82 .07 1.516 .22
(258) (225) (280) (81)

Math/Macro -1.497 14 .824 41 -.022 .98 .286 .84
(227) (202) (254) (76)

Conceptual 116 91 1.249 21 -1.414 .16 1.987 12
(249) (230) (268) (85)

Algorithmic -1.728 .085 .506 .61 1.010 31 .578 .63
(222) (201) (246) (73)

?Independent samples t-test
®n’s are in parentheses

DISCUSSION

How do students search for information within computer models? We have found that
the underlying model behaviors as well as prior knowledge interact in shaping the particular
form by which information is searched for. Furthermore, learning is related to how students
explore models, though to a lesser extent. These findings point to the potential of using such
probes in learning environments, as indicators of understanding and possibly as providing
information upon which support for learning can be based.

This study investigated students’ model exploration strategies as a possible reflection of
their understanding of the domain under inquiry. More specifically, the data they collected in
the process of constructing equations was examined. The data-points’ spacing was inspected as
providing the best information regarding the model’s mathematical behavior. We have found
that for two of three explorations, the students used mainly fit strategies, even when one of
them was the more difficult inverse function. Moreover, they were mainly consistent in their
adaptation to the model’s mathematical behavior.

Deep conceptual knowledge was found to impact how some of the models are explored
even though the students were focused on obtaining quantitative information. Though less
significant, one can also see that while conceptual knowledge guides search for information,
successful searches are also related to learning along the complementary
quantitative/algorithmic dimension of knowledge.

Regarding a more detailed framework that highlights a complexity perspective and the
relationship between conceptual and mathematical models, it was found that the explorations
were impacted by different components of prior knowledge. The fitness of the NP model
exploration, one more indicative of prior knowledge and learning, was found to be related to
understanding both micro- and macro-levels of the system, as well as bridging the conceptual
and mathematical models. Fit explorations of this model are also related to greater learning
gains in the more advanced problems of bridging the micro-and macro-levels. The TP model,
one more ambiguous with respect to the students’ strategies, was explored with more fit
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strategies when students had a greater understanding of the macro-level of the gas system. VP
model exploration, one more difficult as a result of its inverse function behavior (Nemirovsky,
1994), was more fit when students had a greater understanding of the micro-level.

In the final paper, we will provide a discussion of these results with respect to students’
understanding of complexity and the three relationships they explored, the study’s limitations
and extensions, and potential applications of these findings in supporting learning about
complex systems in computer model-based learning environments.
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