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ABSTRACT: The mathematics subject matter of probability is notoriously challenging, and in 
particular the content of random compound events. When students analyze experiments, they 
often omit to discern variations as distinct outcomes, e.g., HT and TH in the case of flipping a 
pair of coins, and thus infer erroneous predictions. Educators have addressed this conceptual 
difficulty by engaging students in actual experiments whose outcomes contradict the erroneous 
predictions. Yet whereas empirical activities per se are crucial for any probability design, because 
they introduce the pivotal contents of randomness, variance, sample size, and relations among 
them, empirical activities may not be the unique or best means for students to accept the logic of 
combinatorial analysis. Instead, learners may avail of their own pre-analytic perceptual judgments 
of the random generator itself so as to arrive at predictions that agree rather than conflict with 
mathematical analysis. I support this view first by detailing its philosophical, theoretical, and 
pedagogical foundations and then presenting empirical findings from a design-based research 
project. Twenty- eight students aged 9–11 participated in tutorial, task-based clinical interviews 
that utilized an innovative random generator. Their predictions were mathematically correct even 
though initially they did not discern variations. Students were then led to recognize the formal 
event space as a semiotic means of objectifying these presymbolic notions. I elaborate on the 
thesis via micro-ethnographic analysis of key episodes from a paradigmatic case study. Along the 
way, I explain the design-based research methodology, highlighting how it enables researchers to 
spin thwarted predictions into new theory of learning. 

 
A few years ago, I was kicked out of a party. I had told the hostess that I study people’s 
intuition for probability, and she wanted to hear more. So I did what I usually do in such 
situations: I asked her the two-kids riddle. Here’s a rough transcription of our dialogue. 
 

Dor: I have two kids. One of them is a girl. What’s the sex of my other kid? 
Hostess: I don’t get it. It’s just, like, 50-50—it’s the same chance of getting a boy 

or a girl. What does your other kid have to do with it? They’re totally 
independent events! 

Dor: Indeed they are independent events, but together they make a compound 
event. There’s double the chance that my other kid is a boy than a girl. 

Hostess: Well excuse me, but that just doesn’t make any sense at all. How could 
this possibly be true? And I resent your patronizing tone. 

Dor: You see, two-kid families are either Girl-Girl, Girl-Boy, Boy-Girl, or Boy-
Boy. That’s all the possibilities. Now, we know that one of my kids is a 
girl, so that rules out Boy-Boy. So we’re left with Girl-Girl, Girl-Boy, 
Boy-Girl. This means there’s only one option with the other kid being a 
girl, but there’re two options with the other kid being a boy. So it’s 2:1. 
Boy wins. 

Hostess: No you don’t. That’s just a mathematical model. In reality, it’s still 50-50. 
 

Abrahamson, D. (2014). Rethinking probability education: perceptual judgment as 
epistemic resource. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic 
thinking: presenting plural perspectives (pp. 239-260). New York: Springer. 
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She became very upset and things got out of hand. She said that mathematicians 
should not pry their logical tentacles into that which is most sacred—the life of an unborn 
child. This was Berkeley, so I took it all with a grain of jalapeño. I went home and wrote 
a paper—by all accounts a favorable outcome for an untenured professor. 

Still, probability has a bad reputation as being notoriously unintuitive—its 
assumptions opaque, its solution procedures arbitrary (see in Prediger, 2008; Rubel, 
2009; Vos Savant, 1996). So much so, that Kahneman, Slovic, and Tversky (1982) 
suggest we should refrain from applying gut feelings in making decisions with respect to 
complex randomness situations, and Fischbein (1987) advises substituting error-prone 
“primary intuition” with mathematically informed “secondary intuition.” 

Is this to be our fate? Is randomness to be indefinitely outside the province of 
informal reasoning? Are stochastic phenomena beyond the reach of our limited hominid 
brains? Perhaps textbook chapters on probability should begin with the banner, “Abandon 
intuition, all ye who enter here.” 

Perhaps, rather, the issue is not so much about probability phenomena or content 
per se but with how we teach this mathematical topic. Perhaps we choose to abandon 
intuition, because prevalent pedagogical praxis structurates probability content as 
patently alien to our gut feelings. Perhaps we all have remarkable informal intuitions for 
probability, only that traditional curriculum does not enable us to make use of this 
intuition beyond the very obvious cases of a single coin, die, or spinner. Perhaps there are 
better ways of introducing learners to the more advanced ideas of probability. Perhaps 
there are alternative materials and activities that empower students to engage their 
informal reasoning so as to build trust with the basic notions of the formal analytic 
frameworks for probability. Perhaps, specifically, informal intuition could be leveraged 
in the more complex cases of two coins, dice, spinners. At the same time, perhaps we 
would need to design a new compound-event random generator that is mathematically 
analogous to a pair of coins but is better tailored to accommodate relevant perceptual 
capacity. 

Granted, informal intuition stemming from tacit perceptual capacity is a curious 
epistemic resource. It may not be as accurate as stipulated by the disciplinary context, in 
that it yields qualitative heuristic estimates where precise quantitative indices are 
required. Moreover, intuition is susceptible to context, in that its successful application 
may require very particular forms of sensory presentation and, as such, does not transfer 
to semiotic systems typical of professional practice, such as alphanumerical symbols. 
Finally, intuitive reasoning may not lend itself to reflecting on the reasoning process and 
documenting it in forms that enable scrutiny of peers. 

That said, intuitive reasoning can ground formal knowledge by evoking meanings, 
schemas, familiarity, and coherence that can be brought to bear as we approach 
unfamiliar mathematical analyses, tools, procedures, and displays. Furthermore, intuitive 
reasoning enables instructors and students to share referents—they can talk about 
properties of phenomena, such as chance events, even before these phenomena have been 
formalized. As such, informal reasoning can be a useful epistemic resource for learning 
formal models in discursive contexts. Yet for this to work, informal inference needs to 
align with mathematical analysis. Enter designers. 

In this chapter I propose a rethinking of how students should be introduced to the 
fundamental principle of classicist probability theory, the rule of ratio, as it applies 
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beyond the simple cases of single events. I propose that students’ perceptual judgment of 
the stochastic propensities inherent to random generators should constitute an epistemic 
resource for making sense of the classicist approach to probability, particularly in the 
case of compound events. I argue that under auspicious conditions, students’ perceptual 
judgment of the stochastic propensities of a random generator can play a similar 
epistemic role as do actual experiments with the device in terms of evoking sensations of 
relative likelihood that, in turn, can be linked to the distribution of possible outcomes in 
the event space. In order to create these auspicious pedagogical conditions, I submit, 
educational designers should create materials and activities geared to accommodate 
humans’ evolved perceptual inclinations, such as sensitivity to proportional relations in 
the visual field. The chapter attempts to promote this rethinking by furnishing intuitive, 
empirical, and theoretical evidence as support for its validity. 

The conjecture that probability theory can be grounded in perceptual judgment 
drove a multi-year design-based research project. I will describe how the design was 
rationalized, engineered, and ultimately implemented over a set of iterated studies. In 
particular, the conjecture became refined through this designer’s reflection on his own 
intuitive rationales for the particular materials, activities, and facilitation developed over 
the project (Schön, 1983; Vagle, 2010). These reflections emanated from analyses of 
empirical data from implementing the design, specifically video footage from clinical–
tutorial interactions, in which twenty-eight 9-to-11 years old children and twenty-four 
undergraduate/graduate statistics students engaged the activities individually. 

The more general form of my conjecture, namely that conceptual understanding 
should be grounded in perceptual reasoning, is hardly new to the learning sciences 
literature. I will draw on seminal theoretical frameworks to suggest that unmediated, pre-
analytic perceptual sensation from a phenomenon under scrutiny may be an equally or 
even more powerful epistemic grounding for a mathematical model of the phenomenon 
than mediated, encoded information about the phenomenon’s behaviors. For example, 
visually analyzing a random compound-event generator may better ground its event space 
than visually analyzing its actual experimental outcome distribution. This suggestion 
invites a potentially interesting dialogue with those who claim that students’ inferences 
should be encoded directly in formal symbolic systems (Cheng, 2011). The suggestion 
also implies a central role for designers to customize phenomena so as to render them 
cognitively congenial (Kirsh, 1996) or cognitively ergonomic (Artigue, 2002), and 
specifically more conducive to the application of tacit perceptual capacity relevant to the 
targeted mathematical concepts (Abrahamson, 2006a; Abrahamson & Wilensky, 2007). 

I begin, below, by focusing on students’ difficulty with the logic of permutations, 
for example listing only [Heads–Tails] as the mixed result of a two-coin experiment 
rather than [Heads–Tails and Tails–Heads]. The conjecture evaluated in this paper was 
originally motivated as a response to students’ difficulty with this particular situation. 
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1. Compound Event Spaces: Rethinking an Enduring Pedagogical Challenge 

 
Adaptors [of mathematics to the school level] do 
not trust their eyes, they cannot believe it is so 
simple, or if they can, they do not trust other people 
to be able to believe it. (Freudenthal, 1974, p. 277) 
 

In 1814, Pierre-Simon Laplace put forth a theorem, by which the likelihood of an event 
occurring randomly is the ratio of the total number of outcomes favorable to the 
occurrence of that event and the total number of possible outcomes, where both 
uniqueness and equiprobability of outcomes are assumed. Implicit to a successful 
application of this algorithm is the construction of an event space that includes all 
possible, unique outcomes. Here lies the educational rub. 
 
1.1 The Problem of Differentiating Outcomes in a Compound Event Space 
Consider a fair coin tossed onto a desk. Students learning probability by-and-large readily 
accept that the chance of receiving a Heads is one-in-two. Formally, “one” is the total 
number of favorable outcomes (we discern only one way of getting Heads), and “two” is 
the total number of all possible outcomes (we discern exactly two possible outcomes: 
Heads, Tails). By and large, students familiar with the notion of proportions rarely 
encounter substantial difficulty in constructing a simple event space and applying the 
Laplace principle. 

Now consider a pair of coins. What is the chance of receiving Heads-and-Tails? 
The event “Heads-and-Tails” is compound, meaning that its occurrence depends on the 
intersecting occurrences of (two) simple events, here a Heads and a Tails. A pair of coins 
has a total of four possible outcomes. This number can be calculated by multiplying the 
total number of possible outcomes in each coin, so 2 x 2 = 4. These four possible 
outcomes are [HH, HT, TH, TT], and two of them, HT and TH, are favorable to the 
occurrence of the compound event in question Heads-and-Tails, whose chance is thus 
2/4, that is, 1/2. 

An enduring educational challenge lies in having students list a complete event 
space for compound-event experiments built of identical random generators, such as two 
pennies. Students often do not distinguish between variations, that is, possible outcomes 
that differ only in the order of constituent singleton events, such as HT and TH. Of 
course, students can see that “HT” and “TH”—the actual Roman characters written on 
paper—are different symbol strings, and they can learn to enact the combinatorial 
analysis algorithm by which such variations are generated. The issue is not visual or 
procedural per se but logical, conceptual. That is, in the context of analyzing a random 
generator, students typically claim that variations are redundant because the variations do 
not indicate different worldly eventualities; they believe that only one of these variations 
should be listed in the event space. For example, students build for the two-coin 
experiment an event space of only three possible outcomes—[HH, HT, TT]—and 
consequently determine via the rule of ratio a 1/3 chance of receiving “Heads-and-Tails” 
(Abrahamson & Wilensky, 2005b). This form of reasoning, which does not agree with 
probability theory or empirical results, is considered an impediment to the teaching and 
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learning of probability. The ubiquity and perseverance of this reasoning throughout the 
school years and into college makes it a major pedagogical challenge (Batanero, Navarro-
Pelayo, & Godino, 1997; Fischbein & Schnarch, 1997). 

Educators have sought to help students make sense of the Laplace principle as it 
applies in the case of compound events. In particular, designers and teachers have 
attempted to support students in understanding that and, ideally, why listing all variations 
on an event, such as both HT and TH, is critical to building the event space of a 
compound-event random generator. However, success has been mixed (Jones, Langrall, 
& Mooney, 2007; Shaughnessy, 1977). 

A prevalent design rationale for introducing the analysis of compound events is to 
have students witness its predictive utility. That is, it is hoped that students accept the 
importance of including permutations in the event space of a compound-event random 
generator via engaging in activities wherein event spaces that include variations turn out 
better to predict its actual experimental outcome distributions than do event spaces that 
do not include variations. Below, we first elaborate on this design rationale and then 
critique it and offer an alternative design rationale and solution. 

 
1.2 Empirical Experimentation as Epistemic Grounding for Classicist Analysis 
Many education researchers believe that students best learn classicist theory when 
combinatorial analysis activities are combined with empirical activities (Steinbring, 
1991). In practice, students operate a random generator and reflect on the results vis-à-vis 
their expectations (Amit & Jan, 2007). Some researchers use computer-based media to 
build microworlds wherein learners can author, run, analyze, and modify stochastic 
experiments. These chance simulators typically include animations of actual or 
hypothetical random generators as well as a variety of standard forms, such as graphs, 
tables, and monitors, that display cumulative results in real time (e.g., Abrahamson, 
2006b; Iversen & Nilsson, 2007; Konold, 2004; Pratt, 2000; Stohl & Tarr, 2002; 
Wilensky, 1995).1 

The underlying assumption of this empiricist approach is that learners are 
fundamentally rational beings. Learner are expected to accept experimental results as a 
valid epistemic resource bearing on the problem; accordingly, in the face of results that 
patently contradict their expectations, they will acknowledge the inadequacy of their 
reasoning and seek an alternative form of reasoning that better accounts for these results; 
in particular, they will recognize that compound event spaces with variations are better fit 
to the world and thus should be preferred over spaces without permutations (cf. 
Karmiloff-Smith, 1988; Koschmann, Kuuti, & Hickman, 1998; von Glasersfeld, 1987). 
For example, students whose erroneous analysis led them to expect that only a 1/3 of the 
two-coins experimental outcomes will be of the type Heads-and-Tails may take pause 
when simulations of this experiment repeatedly converge toward 1/2 (Wilensky, 1995). 

                                                
1 Some of this design work bears the concomitant far-reaching conjecture that cyber media can and should 
transform mathematics—not only serve mathematics as we know it—by offering alternative cognitive 
access to phenomena in question (Wilensky & Papert, 2010). For example, as human practice becomes 
increasingly “wired,” brute-force frequentist simulation could render classicist analysis a redundant 
anachronism shelved away with other precyber artifacts and procedures, such as logarithmic tables, slide 
rules, and long division. 
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In sum, students are expected to endorse experimental outcomes as veridical and 
accordingly seek to adjust their reasoning that has proven erroneous. 

Being proven wrong is a formative learning experience, because it stimulates 
reflection, which may result in conceptual change. As such, experimental empiricism 
appears to provide an epistemic resource that promotes student reasoning in ways that 
agree with the overall pedagogical objective. 

Yet being proven wrong might bear also implicit effects that transcend the content 
itself and result in pedagogically undesirable habits of mind (see Bateson, 1972, on 
deutero learning). That is, being proven wrong may cause students to distrust their 
intuitive judgment as an epistemic resource and develop epistemological anxiety with 
respect to the formal procedure (Wilensky, 1997); students may learn to rely solely on 
empiricism, which lends a sense of certainty but not a deeper sense of causality (Harel, 
2013); students will consequently forget a procedure they studied that is “not tied to lived 
reality with strong bonds” (Freudenthal, 1971, p. 420). Given these potentially 
deleterious effects of being proven wrong, are alternative pedagogical approaches 
feasible?  

Perhaps not. Some researchers believe that humans’ primary intuitions for 
compound-event probabilistic situations are inherently fallible (Kahneman et al., 1982). It 
follows that humans must perforce resign themselves to developing secondary intuitions 
better fitted to rational models of stochastics (Fischbein, 1987). 

However, it could be that humans’ primary probabilistic intuition is in fact well 
aligned with mathematical theory; studies that concluded otherwise may have been 
inauspicious to primary intuition by using materials and tasks that did not accommodate 
perceptual reasoning (Gigerenzer, 1998; Xu & Garcia, 2008; Zhu & Gigerenzer, 2006). 
More emphatically, I maintain that naïve reasoning, no matter how incompatible it might 
seem with respect to formal knowledge and practice, should be conceptualized as a 
resource—not an impediment—to designing, teaching, and learning (Borovcnik & Bentz, 
1991; Bruner, 1960; Gigerenzer & Brighton, 2009; Smith, diSessa, & Roschelle, 1993; 
Wilensky, 1997). More broadly, if somewhat lyrically, mathematics is a human 
invention—it was created in the image of (wo)man—and so other humans are 
biologically and cognitively equipped to share these images (Núñez, Edwards, & Matos, 
1999). 

I have thus furnished theoretical, pedagogical, and philosophical critiques of the 
prevalent approach to introducing the mathematical content of compound event spaces. 
These critiques suggest that empirical experimental evidence might not be the sine qua 
non epistemic resource for students to ground the logic of compound event spaces. I wish 
to propose perceptual judgment as an epistemic resource alternative, or at least 
complementary, to experimental empiricism. Given appropriate design, I maintain, 
perceptual judgment may enable learners to ground compound event spaces in correct 
rather than incorrect naïve judgment and thus relate to this content, beginning with its 
introduction and even on beyond. 
 
1.3 Perceptual Judgment of Likelihood as Epistemic Grounding for Classicist Analysis 
Even before one analyzes a random generator so as to build its event space, one is 
sometimes able to offer estimates for its stochastic propensities. In order for these naïve 
judgments to ground the event space, though, they must align with probability theory. Lo, 
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have we not been arguing that students’ naïve probabilistic reasoning about compound-
event random generators is the very source of their difficulty to accept the combinatorial 
analysis procedure? 

Let us interrogate the context inherent to that argument. In particular, I will attend 
to the particular types of materials and tasks related to that argument, in an attempt to 
understand how these dimensions affect the compatibility of informal and formal 
probabilistic reasoning. I begin with the task. 

When earlier we discussed an apparent incompatibility between students’ naive 
reasoning and formal probability theory, the task that students were erring on was 
combinatorial analysis of a compound-event experiment. Still, students’ pre-analytic 
reasoning, and in particular their visual judgments about the random generator’s 
stochastic propensities, may be compatible with formal probability theory. If so, then 
perceptual judgment might constitute an epistemic resource for grounding formal 
treatment of these experiments. The formal event space thus would not conflict with 
perceptual judgment. Rather, the event space would triangulate, explain, or elaborate 
perceptual judgment. 

The materials of the learning task—that is, the particular random generator—are 
also of relevance. In our earlier expository discussion, the compound-event random 
generator was a pair of coins. Perhaps students’ erroneous analyses of this particular 
device are due to it being non-conducive to pre-analytic perceptual reasoning aligned 
with mathematical theory. Perhaps there are alternative devices that are conducive to 
humans’ primitive statistical inclinations. If so, perceptual judgment of these devices’ 
propensities might complement or even improve on frequentist experimentation as 
epistemic resources for grounding compound event spaces. 

The next section of this chapter describes a design-based research project that 
explored perceptual judgment as an epistemic resource for grounding combinatorial 
analysis of compound event spaces. Coming into the study cycles, I asked: What 
structural forms might a random generator take that would elicit from students 
perceptual judgments in agreement with mathematical theory of probability? Later in the 
cycles, when I had a working answer for this design question, a new question emerged: 
Once we elicit from students perceptual judgments that agree with mathematical theory, 
how might the students come to express these judgments in mathematical form? 

These questions are important to mathematics education theory and practice. 
Findings from a research program pursuing these questions may imply that dice, coins, 
spinners, and slot machines—ecologically authentic random generators that played 
formative historical roles in the development of probability theory—do not make for 
optimal introductory materials for this mathematical subject matter, because they do not 
afford pre-analytic epistemic resources aligned with classicist theory as it obtains in the 
case of compound events. 

Up to now, I have discussed an intuitive rationale for the proposed “perceptual 
approach” to grounding probability. Subsection 1.4, below, bridges toward the empirical 
part of the chapter by explaining how theory evolves in design-based research projects. 
Section 2 then describes a design-based research project that investigated probabilistic 
reasoning. Interleaved into the design narrative is a Piagetian–Vygotskian framework that 
evolved through the course of analyzing empirical data gathered over that project. The 
framework underscores the role of pre-analytic perceptual judgment in learning 
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mathematical content. Section 3 draws on theoretical resources from the learning 
sciences to further support the framework. Section 4 integrates these intuitive, empirical, 
and theoretical supports for the chapter’s central conjecture and offers conclusions. 
 
1.4 The Evolution of Theory Through Cycles of Design-Based Research Studies  
The conjecture pursued in this chapter is that students may bear pre-analytic cognitive 
resources that are suitable for grounding fundamental notions of probability theory, only 
that curricular materials and tasks commonly employed in introductory probability units 
do not enable students to draw on these resources; by understanding the nature and 
function of these subjective resources, we may be able to engineer tasks and materials 
that better accommodate and leverage these resources. This chapter describes a research 
project that put the conjecture to the empirical test (see e.g., Confrey, 2005, on the 
design-based research approach). 

The rethinking of probability pedagogy proposed in this chapter evolved through 
design-based research in the domain of probability, and the assertions offered here were 
originally couched in terms of particular materials and activities developed in that 
project. More specifically, the rethinking is the researcher’s articulated 
reconceptualization of his own design in light of multi-year analyses of empirical data 
gathered in its iterated implementations. 

I will support the rethinking via tracing its evolution along project milestones 
(Collins, 1992). Each milestone is an instance where, having wrestled with an enduring 
challenge of analyzing empirical data gathered in our studies, I realized the purchase of a 
hitherto unconsidered theoretical model and methodology, typically from the learning 
sciences literature. Yet even as the research team embraced these theoretical models as 
tools applied to the empirical data, the models’ evident analytical utility impelled us to 
reconsider our theoretical assumptions. Namely, when multiple models are all taken to 
bear on the same data, one can promote theory via attempting to resolve tension among 
the models’ epistemological underpinnings (Artigue, Cerulli, Haspekian, & Maracci, 
2009; Cobb & Bauersfeld, 1995; Sfard & McClain, 2002). 

Indeed, I will offer a view on probability education that integrates cognitivist, 
sociocultural, and semiotics frameworks. I will propose a theorization of mathematical 
learning as guided, heuristic–semiotic coordination of sensations from two different types 
of epistemic resources: (a) tacit gestalts rooted in perceptual primitives; and (b) formal 
analysis mediated by artifacts. 

From a constructivist perspective, this view of mathematics learning implies a 
pedagogical dilemma that revisits Plato’s Meno: (1) on the one hand, students require 
gestalt perceptions of the phenomena they are studying—they need to know what they 
are learning about—even before they engage in analyzing it (Bereiter, 1985; Pascual-
Leone, 1996); on the other hand, (2) these gestalt meanings ironically cause students to 
resist formal analysis of these phenomena, because the analysis carves the phenomena 
along dimensions that appear to the child irrelevant to the intuitive gestalt perception 
(Bamberger & diSessa, 2003). In particular, how might students ground “order-based” 
compound-event spaces (e.g., [HH HT TH TT]) in “order-less” gestalt sensation of event 
representativeness or anticipated plurality? 

From sociocultural perspectives, this incompatibility does not present a dilemma, 
because learning in the disciplines necessarily involves conceptual reorganization 
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(Newman, Griffin, & Cole, 1989). Notwithstanding, I maintain, mathematical models of 
situated phenomena require pre-analytic gestalts as their aboutness, that is, as their core 
epistemic resource. 

The following section elaborates on this conceptualization of learning in the 
context of the design-based research project wherein the conceptualization evolved. 
 

2. Pursuing a Design-Based Research Conjecture to Build Learning Science Theory 
 
This chapter argues for the epistemic role of perceptual judgment in grounding 
probability notions. The thesis evolved through a set of empirical studies carried out over 
a multi-year educational research project that investigated issues of teaching, learning, 
and design pertaining to probabilistic reasoning. The project, initially named ProbLab, 
began during my Postdoctoral Fellowship at the Center for Connected Learning and 
Computer-Based Modeling at Northwestern University (Wilensky, Director) and 
continued as Seeing Chance, a NAE/Spencer Postdoctoral Fellowship at the Embodied 
Design Research Laboratory at the University of California, Berkeley, which I direct. 

The design-based research project drew inspiration from the connected 
probability work (Wilensky, 1993, 1995, 1997). The project grew into a three-pronged 
effort to develop products, theory, and frameworks (see Abrahamson & Wilensky, 2007, 
p. 25). Embarking from prior findings (Abrahamson & Wilensky, 2002, 2004, 2005a, 
2005b), I: (a) built mixed-media materials and activities for learning fundamental 
probability notions (Abrahamson, 2006b) and evaluated their pedagogical affordances 
(Abrahamson, 2007; Abrahamson & Cendak, 2006); (b) developed explanatory models 
for the roles of perceptual reasoning in conceptual learning (Abrahamson, 2009b, 2010, 
2011, 2012b; Abrahamson, Gutiérrez, & Baddorf, 2012); and (c) created a grounded 
mathematics design framework (Abrahamson, 2009a) and contributed to reflective 
discourse on design-based research practice (Abrahamson, 2009c, 2012a). 

The project was formative in shaping a theoretically balanced perspective on 
mathematics learning. The perspective emerged gradually through cycles of analyzing 
video footage gathered during the Seeing Chance tutorial interactions (n = 28, Grades 4 – 
6; n = 24, college seniors and graduate students). The collaborative analyses focused on 
episodes within these data that culminated in students expressing meaningful links among 
resources in the learning environment in ways that we evaluated as pedagogically 
desirable, in that they promoted the didactical objective of the interaction. Our theory 
development was motivated by a sense that the analytic tools we were using were not 
affording productive interpretations of these data episodes. As such, the theory 
development process was contingent on the researchers acknowledging the limitations of 
their analytic tools and, more deeply, problematizing the theoretical assumptions tacitly 
informing the selection of those tools. 

At it broadest, I wanted to understand how people articulate tacit judgment in 
mathematical form. I therefore showed students perceptual displays bearing quantitative 
relations, asked them a framing question related to those properties, and then introduced 
semiotic resources for them to express their inferences. In creating the perceptual 
displays, I sought to enable students to infer qualitative judgments that agree with 
mathematical theory. 
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a. b. c. 

Figure 1. Materials used in a design-based research project investigating relations between informal 
intuitions for likelihood and formal principles of an event space: (a) a “marbles scooper,” a utensil for 
drawing out ordered samples from a box full of marbles of two colors; (b) a card for constructing the 

sample space of the marbles-scooping experiment (a stack of such cards is provided, as well as a green 
crayon and a blue crayon, and students color in all possible outcomes); and (c) a “combinations tower,” a 

distributed event space of the marbles-scooping experiment, structured so as to anticipate the conventional 
histogram representation of actual outcome distributions. 

 
Specifically for the subject of probability, I created a set of recourses (see Figure 

1): (a) a concrete random generator; (b) media for building an event space via 
combinatorial analysis of the random generator; and (c) an innovative structural form for 
organizing the event space so as to make it more conducive to heuristic perceptual 
inference. In addition, I designed and built a suite of computer-based simulations of the 
experiment featuring schematic models of the random generator. In this chapter I do not 
feature these computer-based simulations, because my thesis here pertains primarily to 
students’ perceptual judgments of the random generator itself and, in particular, how 
students coordinated these judgments with their guided perceptions of the event space. 
But I will briefly mention the simulations in the general discussion so as to compare and 
contrast perceptual judgments and empirical experimentation with respect to their 
epistemic contributions to content learning.2 

I first had students briefly examine the random generator’s experimental 
mechanism (see Figure 1a). Immediately after, I asked them to offer their estimations for 
its expected outcome distribution. Importantly, the students did not conduct any actual 
experiment at all, so that their responses were based only on sensory perception and 
reasoning.  

The particular random generator designed for this project was such that students 
tended to offer likelihood judgments that agreed with mathematical theory. In particular, 
they predicted a plurality of two-green-and-two-blue samples (hence, “2g2b”), a rarity of 
both 4b and 4g, and, in between, the events 1g3b and 3g1b. When asked to support their 
responses, students referred to the equal number of green and blue marbles in the bin.  

Next I guided students to build the experiment’s event space. Instead of having 
them represent the possible outcomes as a list or tree of symbols on a single sheet of 
                                                
2 Strictly speaking, the marbles-scooping experiment is hypergeometric, not binomial, because as each 
marble is captured by a concavity in the scooper, there is one less of that color in the bin. However, the 
fairly minute ratio of the sample (4) to the total number of marbles in the bin (hundreds) enables us to think 
of this experiment as quasi-binomial and, for all practical effects, as actually binomial. 
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paper, I provided a stack of cards (see Figure 1b) as well as two crayons, and students 
used these media to create iconic representations of the possible outcomes. Typically, 
students organized the construction space on the desk by clustering the cards into five 
emergent groups, with 1, 4, 6, 4, and 1 items, respectively (Abrahamson, 2008). I then 
guided the students to assemble the sixteen cards according to these five event classes in 
a spatial configuration that highlighted the different number of outcomes per each event 
(see Figure 1c). 

In line with my theoretical stance coming into the study, I had conceptualized the 
event space as a formal concretization of intuitive reasoning. I therefore expected that the 
event space would stimulate students to abstract and encapsulate the schemas they had 
tacitly employed in judging the likelihoods of the device’s possible outcomes (Piaget, 
1968). Specifically, I expected the students to recognize the variations—such as [gggb, 
ggbg, gbgg, bggg]—as articulating their pre-analytic judgments. In so doing, I envisioned 
and hoped for a smooth continuity from naïve to informed views of the experiment; I did 
not envision tension between these views. 

My expectation was largely informed by the great care I had taken in the design to 
build a sampling device (the scooper) that configured each sample in a particular order. 
That is, I had designed “order” as an inherent structural property of the sampling device, 
because I had thought that this feature would impress upon students the uniqueness of the 
variations. I therefore implicitly took it for granted that the students were attending to the 
dimension of order. It never occurred to me that they might see the scoops different from 
how I saw the scoops; that they could construe gggb and ggbg as “the same thing.” 

However, throughout the construction of the event space, students tended to resist 
the variations as redundant objects. They thought that the event space should consist of 
five cards only, with one card per each of the five events 4b, 1g3b, 2g2b, 3g1b, 4g. They 
accepted the complete event space only once the combinations tower had been 
assembled. Specifically, students endorsed the variations only once they were able to 
perceive the event space’s five vertical projections as respectively signifying their 
sensation of the five events’ differential likelihoods per their earlier perceptual judgments 
of the marbles box. Only after having thus made sense of the event space in its totality as 
mapping onto their informal inference did the students retroactively accept the analytic 
procedure by which the event space had been constructed. 

As such, my implicit assumption that tacit judgment can be directly articulated in 
disciplinary form quickly became problematized. In particular, my research team came to 
acknowledge our implicit assumption and recognize that it apparently built on a lopsided 
constructivist conceptualization of learning. We thus gradually began to realize the 
overwhelming constitutive role of artifacts in mediating cultural forms of reasoning 
(Wertsch, 1985) as well as instructors’ formative role in framing and guiding this 
mediation process (Newman et al., 1989). 

Prior to this sociocultural calibration of our design rationale, we had focused 
exclusively on the student as the locus of education. We had regarded the phenomenon of 
learning essentially as the child’s solipsistic developmental process, which the researcher 
merely catalyzed for the purposes of the study. As such, we had construed the 
experimenter’s actions as necessary methodological means of eliciting from the study 
participant a targeted response. Yet the experimenter’s procedural action, we came to 
realize, was in fact simulating a culturally authentic interaction between a tutor and 
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student. In particular, we now surmised, learners do not articulate tacit judgment directly 
in mathematical form; rather, they objectify these presymbolic notions in semiotic means 
made available to them in the learning environment (Radford, 2003). Moreover, student 
expression cannot always be direct articulation of the tacit judgment, because the 
available cultural media often require a parsing of the source phenomenon in ways that 
are very different from naïve perception (Bamberger & diSessa, 2003; Bamberger & 
Schön, 1983). 

Still, if our study participants were struggling to objectify presymbolic notions in 
cultural forms, what was the source of these presymbolic notions? How did the students 
perform perceptual judgments in the first place, during the initial phase of the 
experiment, when they essentially gazed at the experimental utensils? Research on 
infants’ “statistical” reasoning, in empirical settings strikingly analogous to ours (Xu & 
Garcia, 2008), suggests that our study participants drew on early, unmediated perceptual 
capacity to judge the relative chances of random events. It could be that the order of 
singleton outcomes is ignored or downplayed in these judgments and only the color ratios 
are perceived. 

Students thus appear to be working with two resources, tacit reasoning and 
cultural artifacts. When tacit inference is aligned with mathematical theory, instructors 
can guide students to appropriate the cultural resource as a means of supporting and 
empowering their tacit inference. This insight into design bears concomitant insight into 
theory of learning, as follows.  

The sociocultural perspective, which underscores the mediating role of cultural 
artifacts in conceptual development, appears to require a constructivist complement so as 
together to afford a comprehensive explanation of what students are doing when they link 
tacit and cultural resources. We were thus heartened when diSessa (2008) called 
explicitly for “dialectical” theoretical work that seeks to combine and possibly synergize 
cognitivist and sociocultural models of learning. The call resonated with other urges to 
view the work of Piaget and Vygotsky as compatible (Cole & Wertsch, 1996; Fuson, 
2009; Stetsenko, 2002). 

Once we had aligned our theorizing with the sociocultural perspective, we could 
infuse into the swell of our data analysis seminal neo-Vygotskian contributions to the 
modeling of mathematics teaching and learning (Bartolini Bussi & Mariotti, 2008; Saxe, 
2004; Sfard, 2002, 2007). Consequently, we came to view mathematics learning as the 
elicitation and acculturation of subjective meanings via guided, goal-oriented, and 
artifact-mediated activity. As a result of this dialectical theorizing, we could offer a 
sociocultural interpretation of abductive inferential reasoning (Abrahamson, 2012b) as 
well as a reconceiving of discovery-based learning (Abrahamson, 2012a). 

This section answered our chapter’s research questions regarding the prospects, 
materials, tasks, and process of grounding a compound event space in perceptual 
judgments of random generators. Having outlined the evolution of our perspective on 
mathematics learning, what remains is to reflect on the epistemic nature of perceptual 
judgment and then compare perceptual judgment to experimental empiricism as 
complementary epistemic resources for grounding compound event spaces. 
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3. Discussion: Learning Sciences Views on Perceptual Judgment as Epistemic Resource 
 

What is the role of perceptual judgment in mathematical learning? Is it desirable for 
students to reason about properties of concrete objects, given that mathematical texts are 
symbolic? What are the epistemological and cognitive qualifications of a proposal that 
perceptual judgment of random generators can serve as an epistemic resource for 
understanding compound event spaces? 

Drawing on a broad reading of the learning sciences literature, I will now build 
the argument that perceptual judgments, and more generally multimodal dynamical 
images, are essential for conceptual development—they are what mathematical texts are 
about. 

The human species developed via natural selection the capacity to quantify 
aspects of phenomena relevant to their survival (Gigerenzer, 1998). Some of these 
enabling constraints on perception (Gelman, 1998) pertain to quantities whose 
mathematical modeling features in school curriculum, such as the intensive quantities of 
slope, velocity, chance, and aspect ratio (Suzuki & Cavanagh, 1998; Xu & Garcia, 2008). 
Do we, therefore, like the slave in Meno, know the concepts before studying them?  

Not quite. Perceptual capacity cannot be directly translated into mathematical 
knowledge. First, perceptual judgments are holistic and pre-articulated, such as when we 
perceive the gradient of a sloped line, whereas mathematical modeling is analytic and 
symbolic, such as when we measure and calculate “rise over run.” Second, perceptual 
judgments are tacit—the neural mechanisms of these cerebral faculties are cognitively 
impenetrable (Pylyshyn, 1973), and so we are conscious not of our perceptual process 
itself but only of our operatory reactions and contextual inferences that result from these 
tacit processes. Referring to the relation between object constancy and proportional 
reasoning, Piaget and Inhelder (1969) wrote, “However elementary they may be in the 
child, these concepts cannot be elaborated without a logico–mathematical structuration 
that....goes beyond perception” (p. 49). 

From a neo-Vygotskian perspective, this logico–mathematical structuration of 
perceptual judgment is achieved via social mediation. In particular, individuals 
appropriate cultural forms as means of realizing personal goals for solving collective 
problems (Saxe, 2004). In interactive contexts, such as tutorial or classroom activities, 
these personal goals may be discursive. In particular, the semiotic–cultural perspective 
(Radford, 2003) highlights the role of students’ presymbolic notions in educational 
interaction: students develop new mathematical signs by objectifying presymbolic 
notions using available semiotic means. 

Educators can thus play vital roles in students’ conceptual development by 
strategically placing pedagogically desirable cultural forms in the learning environment 
and steering students to re-articulate their naïve views by these particular semiotic means 
(Abrahamson, 2009a; Mariotti, 2009; Sfard, 2002, 2007). Students may appropriate 
cultural forms also as means of accomplishing enactive goals, and not just discursive 
goals, and in so doing they may bootstrap new operatory schemas by reconfiguring their 
naïve strategies (Abrahamson, Trninic, Gutiérrez, Huth, & Lee, 2011). 

I thus discern across a range of constructivist and sociocultural theorists a loose 
consensus, by which meaningful learning occurs when individuals instrumentalize 
cultural forms to accomplish tasks (Vérillon & Rabardel, 1995). When the tasks are 
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embedded in pedagogical activities and the forms are mathematical symbolic artifacts, 
students become acculturated into mathematical discourse and praxis. 

Implicit to this dialectical process by which personal sense meets cultural form, is 
the question of the cognitive form of personal sense, prior to its acculturation. Many 
scholars believe that personal sense is embodied as multimodal images. For example, 
scholars in mathematics (Davis, 1993), semiotics (Hoffmann, 2003; Peirce, 1867), 
developmental psychology (Arnheim, 1969), creativity (Getzels & Csikszentmihalyi, 
1976; Hadamard, 1945), and philosophy (Barwise & Etchemendy, 1991) believe that 
perceptual reasoning, such as visual or imagistic pattern recognition, is the sine qua non 
of conceptual development. Moreover, according to theories of cognition (Barsalou, 
1999; Glenberg & Robertson, 1999) and cognitive linguistics (Goldin, 1987; Johnson, 
1999; Lakoff & Johnson, 1980; Lakoff & Núñez, 2000), all reasoning is perforce 
imagistic by virtue of the fundamental cerebral architecture and mechanisms of reasoning 
and perception. It is therefore hardly provocative to explore mathematical pedagogy that 
fosters perceptual grounding for symbolic text (Kamii & DeClark, 1985). 
 

4. Conclusion: Perceptual Judgment Grounds Classicist Analysis 
 
Perceptual judgment of random generators enables students to meaningfully ground the 
products of formal classicist analysis procedures. As such, perceptual reasoning 
constitutes a viable pedagogical entry into fundamental probability content, and 
particularly into compound event spaces. 

I began this chapter by illustrating the need for effective probability curriculum. I 
then underscored the importance of designing materials and tasks appropriate to 
leveraging the epistemic resource of perceptual reasoning. Next, I demonstrated the 
plausibility of my thesis via describing milestones in a decade-long empirical design-
based investigation of probability learning. Finally I supported the conjecture with 
seminal theory from the learning sciences literature. 

The conjecture that this chapter has sought to promote should not by any means 
discourage educators from employing frequentist approaches in the instruction of 
probability. A fortiori, the empirical data discussed in this chapter represented only two 
of my three design phases, where the third phase consisted of running computer-based 
simulations of the stochastic experiment. In those activities, I guided students to draw on 
their intuitive sensations both from the static random generator and its event space so as 
to make sense of actual, “imperfect” outcome distributions that resulted from the 
experimental runs (Abrahamson, 2007, 2010). Linking intuitive, analytic, and empirical 
probabilistic activities appears to support a coherent and connected perspective on 
probability (Wilensky, 1993). 

Perceptual judgment of random generators and empirical experimentation with 
random generators play different curricular roles in terms of the conceptual content they 
explore. For example, perceptual examination of a random generator is a condition for its 
combinatorial analysis, whereas conducting experiments with the random generator 
creates opportunities to encounter randomness and sample size as they relate to variance. 
However, perceptual judgment and empirical experimentation play similar epistemic 
roles in understanding event spaces (see Figure 2): both activities evoke sensations that 
resonate with the distribution of possible outcomes across events; both activities may 
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result in implicating the event space as explaining the random generator’s propensities 
that we sense or witness; in both cases, adopting the event space is mediated by tacit or 
direct sensation of relative magnitudes. 

 

Activity:      Combinatorial 
    Analysis  Simulated  

Experiment  

Approach:       Naïve ⇔ Classicist ⇔  Frequentist 

 
Artifact: 

 
 

Random 
Generator 

Event 
Space 

Experimental 
Distribution 

 

       
 

Figure 2. Probability design trialogue.3 Conceptually critical coordination via two activities across three 
artifacts in a design for the binomial. Activities bridge complementary conceptualizations of the stochastic 

phenomenon. Double arrows indicate that learners need to interpret a new artifact they encounter as 
signifying meanings they had established for a previous artifact. The original device suggests its own 

stochastic propensity, the event space models the propensity, and the experimental distribution exemplifies 
the propensity. Both naïve and frequentist conceptualizations ground the classicist artifact. Accepting the 

event space retroactively grounds the combinatorial analysis procedure by which the space was built. 
 

Notwithstanding, naïve perceptual judgment of random generators is different 
from experimental activity, in that perceptual judgment directly evokes presymbolic 
notions of the property in question, whereas experimental outcome distributions 
indirectly evoke these notions. This difference between immediate and mediated notions 
may confer upon perceptual judgment a unique advantage over experiments in relation to 
selecting introductory grounding activities for probability designs. Elsewhere, we have 
demonstrated the extensibility of these introductory activities toward incorporating 
symbolic displays as well as cases of heteroprobable outcomes (Abrahamson, 2009a). 

Students possess natural capacity to perform powerful perceptual reasoning 
pertaining to the study of probability. Designers, teachers, and researchers may greatly 
avail themselves by leveraging this power so as to support the learning and continued 
investigation of this chronically challenging subject matter. 

 

                                                
3 The term trialogue is borrowed from Wilensky (1996) who, shifting attention to artifacts rather than 
activities, writes, “By engaging in computational modeling—this trialogue between the symbolism, the 
program output and the real world—and, then, reflecting on the feedback obtained, learners can make 
meaningful connections” (p. 128). Wilensky’s assertion was expressed in the context of constructionist 
activities, wherein learners themselves create the computer-based models, and so the “symbolism” element 
of the trialogue refers to alphanumerical expressions in the modeling language (the “code,” such as 
“forward 10”). Nevertheless, Wilensky’s notion of a trialogue among inquiry artifacts obtains in the case of 
ready-made models, too, such as in the case of Seeing Chance design discussed in this chapter. Therein the 
“symbolism” element refers to inscriptions generated via analyzing the real world, such as diagrams, icons, 
and concrete displays (i.e. the “combinations tower” event space). 
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Author’s Note 
 

I wish to dedicate this chapter to my dear friend Ólafur Elíasson, whose noble 
recording of the Adagio from J. S. Bach’s piano concerto in F minor inspired me as I 
wrote. Thanks to Maria Droujkova for excellent formative comments on an earlier draft. I 
really do have two kids: a girl and a boy (in that order). 
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