Frog Pond: A Code-First Learning Environment on
Evolution and Natural Selection

Michael S. Horn, Corey Brady, Arthur Hjorth, Aditi Wagh, Uri Wilensky
Northwestern University
Learning Sciences and Computer Science
2120 Campus Drive, Evanston, lllinois 60208 USA

{michael-horn, cbrady, uri}@northwestern.edu,
{arthur.hjorth, aditiwagh2012}@u.northwestern.edu

ABSTRACT

Understanding processes of evolution and natural selection is both
important and challenging for learners. We describe a "code-first"
learning environment called Frog Pond designed to introduce
natural selection to elementary and middle school aged learners.
Learners use NetTango, a blocks-based programming interface to
NetLogo, to control frogs inhabiting a lily pond. Simple programs
result in changes to the frog population over successive
generations. Our approach foregrounds computational thinking as a
bridge to understanding evolution as an emergent phenomenon.

Categories and Subject Descriptors
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous.

Keywords
Children; agent-based modeling; code-first environment; evolution;
natural selection; design; learning.

1. INTRODUCTION

Understanding processes of evolution and natural selection is both
important and challenging for learners [9, 15]. We present a
learning environment called Frog Pond designed to introduce
natural selection to elementary and middle school aged learners.
With Frog Pond learners use NetTango [4], a blocks-based
programming interface to NetLogo [21], to control the actions of
colorful frogs inhabiting a lily pond environment (Figure 1).
Chains of simple block with names like hop, left, right, and
hatch form programs that can result in changes to the frog
population over successive generations—in particular, frogs can
become bigger or smaller (or both) depending on selection
pressures exerted by the environment and frogs' behaviors.
Importantly, children never program these outcomes directly; they
never write code that explicitly says, "make the frogs get bigger".
Instead, outcomes emerge as the aggregate result of hundreds of
individual frogs enacting rules from the same program. These
outcomes can be surprising and counterintuitive, but because they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
IDC'14, June 17-20, 2014, Aarhus, Denmark.

Copyright © 2014 ACM 978-1-4503-2272-0/14/06...$15.00.
http://dx.doi.org/10.1145/2593968.2610491

357

result from programs that learners create themselves, our hope is to
encourage explanations that attribute change to emergence resulting
from individual interactions ("bigger frogs are better hunters, so
they get to reproduce more and have babies that are also big"). In
this way our intention is to foreground computational thinking [10,
11, 27] as a bridge to understanding evolution as an emergent
phenomenon.

With this goal in mind, we designed Frog Pond as a code-first
learning environment (e.g. [20]). By this we mean three things.
First, the primary way to interact with Frog Pond is by creating
programs. Second, the programming interface is designed to be
very easy to learn and use. And, finally, it is possible to create very
short programs that nonetheless result in several distinct
evolutionary outcomes. To achieve these design objectives, we
have been conducting a design-based research study in which we
have iteratively developed and refined prototypes over the past year
and a half. As part of this process, we have tested versions of Frog
Pond with visitors in a natural history museum. In this paper, we
describe our resulting design and share findings from our most
recent round of testing with museum visitors. Our findings suggest
that Frog Pond enables learners to quickly build programs that lead
to population-level changes. This provides an opportunity to reflect
on mechanisms underlying evolutionary effects.

2. BACKGROUND

Understanding evolution is notoriously difficult for learners [2, 15,
23]. Developmental and cognitive psychologists have identified
cognitive biases such as teleology and essentialism that hinder
student understandings of evolution (see [15]). Other researchers
have argued that students' unfamiliarity with emergent processes in
general is problematic [2]. Wilensky and Resnick [22] note that in
trying to understand complex systems such as evolution, students
will often exhibit slippage between levels as they attribute
properties or behaviors at the individual level to the population as a
whole (or vice versa). For instance, when reasoning about natural
selection, students might believe that changes in the population are
the result of changes to individual organisms over the course of
their own lifespans.

Emergent phenomena are often simulated using computational
agent-based models (ABMs). In these models, individual
computational agents have properties and can enact behavioral rules
as the simulation runs. For example, the NetLogo modeling
environment [21] is widely used in middle schools, high schools,
and universities. By emphasizing the behavior of individual actors
in a system, ABMs can help students draw on their own bodily and
sensory experiences in the world [16, 24, 25].

This project builds on more than fifteen years of work on evolution
education using the NetLogo modeling environment [21]. This line
of work has sought to present evolution as a set of emergent
phenomena characterized by individual-level mechanisms that lead
to population level effects. In the SimEvolution project, middle and
high school students explored agent-based models of classic
evolutionary phenomena such as peppered moths and genetic drift.
In the EACH project [1], high school and undergraduate students
explored and built models that assessed the advantages and
disadvantages of selfish behavior and how cooperation could
evolve. In the BEAGLE project [23] students use both agent-based
modeling and participatory simulations to explore core mechanisms
of evolution. These projects resulted in increased understanding of
evolution and mechanisms that can lead to population-level
changes. In the past few years, there have been efforts to include
elementary students in this type of modeling [3, 5]. For example,
Evolution Readiness [5] is a curriculum that uses interactive
computer-based models and activities to help elementary students
learn about evolution and natural selection.

While experimenting with a pre-existing agent-based model can be
a powerful learning experience, there has been steady attention in
involving K-12 students in programming their own models [6, 7,
26, 18]. Proponents argue that programming can expose underlying
mechanisms and relationships [12, 17, 24] and can help students
develop more personal connections in making sense of math and
science [8, 17]. This emphasis on programming is also consistent
with Constructionist theories of learning in the sense that students
are engaged in building external artifacts that reflect internal
conceptual structures and thereby make their thinking available for
"debugging" [11]. Some of these recent projects have involved
text-based programming languages and some have used graphical
programming. Text-based languages are expressive and powerful,
but they can sometimes be daunting to students and teachers,
particularly at lower grade levels [28]. Blocks-based languages, on
the other hand, while perhaps more inviting, can limit the
complexity of programs and models that learners can create.

Several programming environments have been developed that
attempt to preserve the advantages of agent-based modeling while
being more accessible to younger learners. StarLogo TNG uses a
domain-general blocks-based programming interface to allow
learners to construct a wide range of models [7]. However, as it is a
fully-featured modeling environment, the task of programming
models can still be involved.

An alternative approach involves offering high-level primitives that
are specific to a domain of interest. For example, Modelling4All [6]
is an environment that allows for the construction of models from

micro-behaviors. Modelling4All has been used to design museum
exhibits and other short-duration learning experiences. Another
example of this approach is DeltaTick [18, 26], a blocks-based
programming available for NetLogo. DeltaTick enables designers
to create blocks that are semantically close to the modeled domains.
Building on DeltaTick, Wagh and Wilensky have involved middle
school students in constructing models of evolution in a project
called EvoBuild [18]. With EvoBuild, students model within-
species variation by adding traits and manipulating the distribution
of its variations in populations. Students can also assign rules to
individuals by using behavior-based primitives such as "reproduce”
or "die" that generate evolutionary outcomes over time.

To a certain extent these two efforts (addressing younger students
and involving students in building models) have traded off against
each other. For instance, the work of Dickes and Sengupta [3] have
provided considerable scaffolding for younger students to explore
models while model creation has been primarily tried with older
students. In this project, our emphasis is on increasing the
accessibility of programming even further, thus enabling young
students to program their own models and grapple with
evolutionary effects.

3. DESIGN OVERVIEW

We implemented Frog Pond using HTMLS, CSS, and the Dart
programming language. The use of these cross-platform web
technologies allows the environment to run on several different
types of devices including tablet computers, laptops, and multi-
touch tabletops. Frog Pond is now available through app stores for
some platforms. To reduce the visual separation between the code
and its effect on the frogs, the programming workspace is
superimposed directly on the pond. The workspace consists of a
menu bar at the bottom of the screen from which users can select
programming blocks; a toolbar with buttons for starting, stopping,
fast-forwarding and restarting programs; and the user's current
program (Figure 1). This language is similar to other blocks-based
languages like Scratch [13], Blockly (code.google.com/p/blockly/),
and Open Blocks [14], but it includes several interactive features
designed to make it easier for inexperienced users to get started.

There are four distinct evolutionary outcomes that learners can
generate with Frog Pond depending on the programs that they
build. The easiest result to achieve is for frogs to get smaller over
successive generations. This happens with programs similar to the
one shown in Figure 2 (left). The important ingredients are a
hatch block that allows frogs to reproduce and a hop block that
moves frogs forward on their lily pads. If a frog hops off a lily pad,
the app plays a "splash" sound effect and the frog is removed from

Figure 1. With Frog Pond learners use blocks-based programming to control colorful frogs in a pond.

the simulation. This mechanism creates a selection pressure that
favors smaller frogs that take shorter hops. The second outcome
results in an opposite effect: the frogs get bigger over successive
generations (Figure 2, right). One way to achieve this outcome is to
allow frogs to starve to death. Programs then need to include a
hunt block (which cause frogs to "hunt" for food by sitting and
waiting for a fly to pass into their field of view) and conditional
logic that causes starving frogs to die. Bigger frogs see farther and
have longer tongues, so larger size now conveys a survival
advantage. The third outcome extends the second program, but
creates a situation with countervailing selection pressures. This
balances out the advantage of being large (due to tongue length)
with the advantage of being small (due to hop distance). A final
outcome extends the second outcome by creating regions in the
environment that differentially favor larger or smaller frog
populations. This is accomplished by dragging lily pads around the
screen to form larger and smaller islands that frogs inhabit.

4. EVALUATION

We produced the current version of Frog Pond through iterative
cycles of development and testing in a natural history museum. In
our testing sessions, we recruited museum visitors between the
ages of 9 and 16. When possible we invited pairs of children to use
the software together. Families engaged with the environment for a
15-20 minute period. We collected a variety of data from theses
sessions, including a demographic survey, video and audio
recordings of the interactive sessions, and researcher field notes.

4.1 Findings

Accessibility and a low-threshold. In testing with our latest
version all of our users were able to create and run programs
within the first 1-2 minutes of encountering the Frog Pond. Of
course, many of these early "programs" were extremely simple
constructions, serving more to explore the space of functionality of
the available blocks, rather than expressing intentions to produce
emergent effects or to solve one of the programming challenges.
Nevertheless, this rapid progress from introduction to the
environment to first program execution in noteworthy, particularly
since some of these initial programs actually did produce interesting
emergent effects when they were run.

Advantages of the code-first environment. In part because the

programming and simulation environments of Frog Pond are
merged on a single screen, it was common for learners to attempt to
interact with frogs using direct touch or drag gestures. However,
the failure of these gestures to produce a response may have cued
exploration of particular programming blocks. For instance, after
failing to drag a frog that was facing the edge of a lilypad, one user
tried using the right block as her first programming command.
Observing the ways in which participants attempted to manipulate
Frog Pond as they learned the logic of the environment provided us
with several key insights. For instance, several users dragged a
programming block directly onto a frog. Interpreting this gesture as
a temporary command (e.g., as a way to preview a block's
functionality) might be a useful feature that could support users in
learning about the blocks. However, the design of Frog Pond
seemed to create a clear distinction between such "one-off"
commands on the one hand, and the program blocks that constitute
the frogs' nature on the other. For children of a wide variety of
ages, the code-first environment seemed to support reasoning about
collective behavior through programming and thinking about
patterns of behavior as a heritable trait.

Emergence and "runtime surprises". In spite of the increase in
transparency in the code achieved through the blocks-based
interface, the environment consistently provided "runtime
surprises" for users. We attribute these surprises to two causes,
each of which carries value for grappling with evolution and its
mechanisms. The first of these has to do with the fact that a user's
program is executed in a repeat loop. This is closely connected with
the idea that the program is a behavioral trait of the organism; it is
repeatedly executed and constitutes the frogs' relation to their
environment. Because the user creates the program while observing
inert frogs in initial locations and orientations, the effects on frogs
as these situations change can be a surprise. The second cause for
surprise has to do with the idea that the programmatic behaviors are
transmitted to offspring. In users' experimentation with the
environment, this emerges most clearly in their experience with the
hatch block. Most of our users initially created programs that did
not include reproduction; however, introducing and running a
program that included the hatch block produced surprised
laughter in multiple cases.

Effective engagement with evolutionary phenomena through
programming. In our testing to date, we have limited ourselves to

Figure 2. Frog Pond can produce four distinct evolutionary outcomes depending on users' programs: (a) frogs get smaller over
time (left); (b) frogs get larger over time (right).

15 to 20 minute sessions. In this time, middle-school aged
programming novices were able to produce one or more of the
target evolutionary outcomes described in the design section above:
most often, the small-frogs and big-frogs outcomes. In assessing
the significance of this feature of the environment, we consider not
only the emergent phenomena produced by users through their
code but also the ways in which Frog Pond motivated reasoning
about the mechanisms that led to those emergent effects. This meant
that all of our users created or copied a program that yielded a clear
change in the distribution of frog body sizes within a few minutes
of engaging with Frog Pond. At that point, our users were faced
with the challenge of making sense of this emergent result. Here,
we saw different levels of success in learner explanations.

S. CONCLUSION AND FUTURE WORK

While our preliminary results are promising there is substantial
work left to be done. In particular, we hope to test with a broader
audience in a diverse range of settings including elementary school
and middle school classrooms. In this way we will be able to
understand how far leaners can go with this relatively constrained
modeling environment.

6. ACKNOWLEDGMENTS

Amartya Banerjee contributed to this project. This work was
supported by the National Science Foundation (grant DRL-
1109834). Any opinions, findings, or recommendations are those
of the authors and do not necessarily reflect the views of the NSF.

7. REFERENCES

[1] Centola, D., Wilensky, U., & McKenzie, E. (2000). Survival of
the groupiest: Facilitating students' understanding of the multiple
levels of fitness through multi-agent modeling—The EACH
project. The Interjournal Complex Systems, 337.

[2] Chi, M.T.H., Kristensen, A.K., & Roscoe, R. (2012).
Misunderstanding emergent causal mechanism in natural
selection. In K. Rosengren, S. Brem, & G. Sinatra (Eds.),
Evolution Challenges: Integrating Research and Practice in
Teaching and Learning about Evolution (pp. 145-173). Oxford
University Press.

[3] Dickes, A.C., & Sengupta, P. (2012). Learning Natural Selection
in 4th Grade With Multi-Agent-Based Computational Models.
Research in Science Education, 1-33.

[4] Horn, M.S., & Wilensky, U. (2011). NetTango [computer
software]. Evanston, IL: Center for Connected Learning and
Computer-Based Modeling, Northwestern University.

[5] Horwitz, P., McIntyre, C. A., Lord, T. L., O'Dwyer, L. M., &
Staudt, C. (2013). Teaching "Evolution readiness" to fourth
graders. Evolution: Education and Outreach, 6(1),21.

[6] Kahn, K., Noble, H., Hjorth, A., & Sampaio, F.F (2012). Three-
minute Constructionist Experiences. In Proc. Constructionism.

[7] Klopfer, E., Scheintaub, H., Huang, W., & Wendel, D. (2009).
StarLogo TNG. In Artificial Life Models in Software, 151-182.

[8] Levy, S.T., & Wilensky, U. (2009). Crossing levels and
representations: The Connected Chemistry (CC1) curriculum.
Journal of Science Education and Technology, 18(3), 224-242.

[9] Miller, J.D., Scott, E.C., & Okamoto, S. (2006). Public
acceptance of evolution. Science, 313, 765-766.

[10] National Research Council. (2011). Report of a Workshop of

Pedagogical Aspects of Computational Thinking. Washington,
D.C.: The National Academies Press.

[11] Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York: Basic books.

[12] Parnafes, O., & diSessa, A. (2004). Relations between types of
reasoning and computational representations. International
Journal of Computers for Mathematical Learning, 9(3), 251-280.

[13] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver,
J., Sliverman, B. & Kafai, Y. (2009). Scratch: programming for
all. Communications of the ACM, 52(11), 60-67.

[14] Roque, R.V. (2007). OpenBlocks: an extendable framework for
graphical block programming systems (Doctoral dissertation,
Massachusetts Institute of Technology).

[15] Rosengren, K. S., Brem, S. K., Evans, E. M., & Sinatra, G. M.
(Eds.). (2012). Evolution challenges: Integrating research and
practice in teaching and learning about evolution. Oxford.

[16] Sengupta, P., & Wilensky, U. (2009). Learning electricity with
NIELS: Thinking with electrons and thinking in levels.

International Journal of Computers for Mathematical Learning,
14(1), 21-50.

[17] Sherin, B., diSessa, A., & Hammer, D. (1993). Dynaturtle
revisited: Learning physics through collaborative design of a

computer model. Interactive Learning Environments, 3(2), 91-
118.

[18] Wagh, A. & Wilensky, U. (2012). Evolution in blocks: Building
models of evolution using blocks. In Proc. Constructionism 2012.

[19] Wagh. A. & Wilensky, U. (2012). Breeding birds to learn about
artificial selection: Two birds with one stone? In Proc.
International Conference of the Learning Sciences (ICLS'12).

[20] Weintrop, D., & Wilensky, U. (2013). RoboBuilder: A
Computational Thinking Game. In Proc. ACM Technical
Symposium on Computer Science Education, 736-736.

[21] Wilensky, U. (1999). NetLogo [computer software]. Evanston,
IL: Center for Connected Learning and Computer-Based
Modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo.

[22] Wilensky, U., & Resnick, M. (1999). Thinking in Levels: A
Dynamic Systems Approach to Making Sense of the World.
Journal of Science Education and Technology, 8(1), 3-19.

[23] Wilensky, U., & Novak, M. (2010). Understanding evolution as
an emergent process: learning with agent-based models of
evolutionary dynamics. In R.S. Taylor & M. Ferrari (Eds.),
Epistemology and Science Education: Understanding the
Evolution vs. Intelligent Design Controversy. Routledge.

[24] Wilensky, U., & Papert, S. (2010). Restructurations:
Reformulations of Knowledge Disciplines through new
representational forms. In Proc. Constructionism 2010.

[25] Wilensky, U. & Reisman, K. (2006). Thinking like a wolf, a
sheep or a firefly: Learning biology through constructing and
testing computational theories. Cognition and Instruction, 24(2),
171-209.

[26] Wilkerson-Jerde, M. & Wilensky, U. (2010). Deltatick: Using
agent-based modeling to learn the calculus of complex systems.
In Proc. Constructionism 2010.

[27] Wing, J. M. (2006). Computational thinking. Communications of
the ACM, 49(3), 33-35.

[28] Xiang, L., & Passmore, C. (2010). The Use of an Agent-Based
Programmable Modeling Tool in 8th Grade Students' Model-

Based Inquiry. Journal of the Research Center for Educational
Technology, 6(2), 130-147.

360

