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The learning sciences community has made significant progress in understanding
how people think and learn about complex systems. But less is known about how
people make sense of the quantitative patterns and mathematical formalisms often
used to study these systems. In this article, we make a case for attending to and sup-
porting connections between the behavior of complex systems, and the quantitative
and mathematical descriptions. We introduce a framework to examine how students
connect the behavioral and quantitative aspects of complex systems and use it to ana-
lyze interviews with 11 high school students as they interacted with an agent-based
simulation that produces simple exponential-like population growth. Although the
students were comfortable describing many connections between the simulation’s
behavior and the quantitative patterns it generated, we found that they did not
readily describe connections between individual behaviors and patterns of change.
Case studies suggest that these missed connections led students who engaged in
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 205

productive patterns of sense-making to nonetheless make errors interpreting quan-
titative patterns in the simulation. These difficulties could be resolved by drawing
students’ attention to the graph of quantitative change featured in the simulation
environment and the underlying rules that generated it. We discuss implications for
the design of learning environments, for the study of quantitative reasoning about
complex systems, and for the role of mathematical reasoning in complex systems
fluency.

Complex systems have been a major focus of current learning sciences research
(Forrester, 1994/2009; National Research Council [NRC], 2012b; Wilensky &
Jacobson, in press). This has yielded important insights into how people think and
learn about complex systems (Chi, 2005; Hmelo-Silver & Pfeffer, 2004; Jacobson,
2001; Penner, 2000; Wilensky & Resnick, 1999) and how to make complex sys-
tems principles more accessible to students (Chi, Roscoe, Slotta, Roy, & Chase,
2012; Colella, 2000; Hmelo, Holton, & Kolodner, 2000; Wilensky & Reisman,
2006; Wilensky & Stroup, 2000). But most such work focuses on students’ under-
standing of the behavioral aspects of complex systems: their constituent elements
and interactions, and how these generate system-level outcomes. Less has focused
on whether or how students connect these understandings to quantitative patterns
to make sense of the mathematical formalisms that describe such systems.

Exploring how learners make sense of such connections is important for
both theoretical and practical reasons. Across the K–12 curriculum, students are
expected to use quantitative data and mathematical representations to describe
and make predictions about scientific systems and their constituent elements
(Common Core State Standards Initiative, 2010; NRC, 2012b). Helping learners
understand these connections is a major challenge for mathematics and science
educators (Ganter, 2001; NRC, 2012a), especially in the context of complex sys-
tems, in which mathematics may be used to measure or represent interconnected,
indirect, or counterintuitive phenomena (Goldstone, 2006; Van Dyke Parunak,
Savit, & Riolo, 1998). Despite these needs and difficulties, many learning envi-
ronments designed to engage students in thinking about complex systems include
mathematical representations such as graphs while taking for granted that stu-
dents will make sense of them even when their connection to system behavior is
not transparent (Chi et al., 2012).

In this study we interviewed 11 high school precalculus students about the con-
nections between the behavioral and quantitative aspects of a NetLogo simulation
(Wilensky, 1999). In the simulation, “humans” each had a probabilistic chance
to reproduce, approximating an exponential pattern of growth. Drawing from the
literature on complex systems and math education, we analyzed what resources
(graphs in the simulation, ideas about reproduction, etc.) students leveraged to
make sense of the individual behaviors, group interactions, patterns of change,
and patterns of accumulation that together described the population system. Our
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206 WILKERSON-JERDE AND WILENSKY

goal was to articulate how students connected these aspects of the simulation and
how to support students in doing so. Our questions were as follows: (a) What
resources did students use to describe the quantitative patterns generated by the
simulation? (b) What resources did students use to describe connections between
different quantitative and behavioral aspects of the simulation? (c) What connec-
tions did students hesitate or struggle to describe, and how were such struggles
resolved?

Our analysis reveals that even when asked exclusively about quantitative pat-
terns, students cited resources that spoke to both quantitative and behavioral
aspects of the simulation. Yet although they cited both aspects, many hesitated
to describe the specific connections between individual behavior and patterns of
change in the simulation. These difficulties led students to make errors similar
to those documented in the complex systems thinking literature but that arose
specifically with respect to mathematical representations in the simulation. Case
studies further suggest that these difficulties could be resolved by drawing stu-
dents’ attention to the jagged nature of the graph of quantitative change featured
in the simulation environment. Our findings suggest that although many studies
in the complex systems literature focus on understanding the behavior of complex
systems and their qualitative impact on system dynamics, learners may also be
able to explore formal mathematical descriptions of those systems with carefully
designed supports. Our study has direct implications for the design of learn-
ing environments, contributes analytic tools and baseline data for the study of
students’ quantitative reasoning about complex systems, and illustrates the impor-
tance of attending to quantitative and mathematical issues as a key component of
complex systems fluency.

BACKGROUND

Complex systems are dynamic: Their behavior, interlevel structure, and outcomes
of interest unfold over time. Although most complex systems education literature
focuses on how learners make sense of the behavioral aspects of complex systems
and their organization, mathematics also plays an important role in describ-
ing such properties (Bar-Yam, 2003; Holland, 2000). Many complex systems
are characterized by quantitative patterns of change over time, such as oscilla-
tion, escalation, and equilibration (American Association for the Advancement of
Science, 1993; Mitchell, 2009). Because of this, studying how learners make sense
of patterns exhibited by complex systems requires attending to learners’ think-
ing about both the behavior of complex systems and the mathematics of change.
We situate our work at the intersection of these two literatures. We then describe
why computer simulation environments make an especially well-suited context
for exploring student thinking at this intersection.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 207

Thinking and Learning About Complex Systems

Neither the scientific community nor the educational community has converged on
a formal definition of complex systems (Guckenheimer & Ottino, 2008; Holland,
2000; Kolodner, 2006; Wilensky & Jacobson, in press). However, there is general
consensus that reasoning about complex systems can be difficult for a number
of reasons. These systems are unpredictable and have a variety of potential out-
comes (Chinn & Malhotra, 2002); involve multiple interacting elements, which
can task working memory (Feltovich, Coulson, & Spiro, 2001; Hmelo-Silver &
Azevedo, 2006); and exhibit counterintuitive behavior and relationships because
events at one level of the system can have unexpected consequences at another
(Casti, 1994; Penner, 2000). Correspondingly, there are a number of perspec-
tives for exploring learners’ understanding of complex systems. These include the
structure–behavior–function framework, which emphasizes the roles and interde-
pendencies of heterogeneous components in a system (Hmelo-Silver & Pfeffer,
2004; Vattam et al., 2011); mindset theories, which focus on learners’ attention
to the decentralized and stochastic nature of complex systems (Jacobson, 2001;
Resnick & Wilensky, 1998); and analytic approaches that explore students’ under-
standing of the different types of causal relationships that exist within a system
(Chi, 2005; Perkins & Grotzer, 2005).

Our study adopts an emergence-based perspective toward complex systems
(Bar-Yam, 2003; Chi, 2005; Wilensky & Resnick, 1999). Complex systems
exhibit emergence when many entities at a micro level interact locally and simul-
taneously to produce behavior at a global or macro level of observation. For
example, the movement and collision of molecules in a gas at the micro level
collectively create what is observed to be air pressure at the macro level (Holland,
2000; Wilensky, 2003). Emergent phenomena are interesting from a quantitative
perspective precisely because of these different levels. Mathematical and quantita-
tive measures can describe the dynamics of these systems at one level of analysis,
but those dynamics are indirectly generated by collective elements and interac-
tions that occur at a different level. Moreover, mathematics does not distinguish
among these levels. For example, the ideal gas law PV = nRT is used to describe
and predict patterns in air pressure (P) by articulating relationships between the
number of particles in the gas (n), the volume of the container (V), and the tem-
perature of the gas (T). These factors describe both macro-level attributes such as
the volume of a container and micro-level elements such as the number of parti-
cles in the gas, as well as emergent effects such as pressure, which results from
the frequency of collisions between particles and their container.

Research suggests that students’ difficulties in making sense of emergence in
complex systems stem from a confusion, or slippage, between these different lev-
els of analysis (Sengupta & Wilensky, 2009; Wilensky & Resnick, 1999). Students
may not explicitly consider a system’s behavior at more than one level of analysis
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208 WILKERSON-JERDE AND WILENSKY

or may incorrectly assign behavior at one level to dynamics at a different one. One
common example of such “levels confusion” (Wilensky & Resnick, 1999, p. 3) is
understanding of traffic jams. Each car in a traffic jam moves forward, but the jam
itself does not move forward; in fact, it propagates backward. Even after students
understand the different levels of analysis in an emergent system, they may still
struggle to understand the causal relationships that link behaviors at one level to
outcomes at another (Penner, 2000). To understand these causal links between lev-
els, students must consider the aggregated and simultaneous effects of individual
behavior. Research suggests that this might be accomplished by considering how
these individual behaviors relate to the net effects of group interactions within
subsets of entities (Levy & Wilensky, 2008) or an entire collection of entities
considered simultaneously (Chi et al., 2012).

Thinking and Learning About the Mathematics of Change

Mathematics education research suggests that there are two important factors in
understanding patterns of quantitative change. First, students need to understand
linkages between the particular parameters and relationships highlighted by a
mathematical model or set of data and the corresponding dynamic situation they
describe (Keene, 2007; Roth & Bowen, 2003; Thompson, 1994). This helps
students interpret mathematical patterns and make inferences or predictions about
the underlying system. It also enables them to leverage what they may know
about the situation to understand how they should expect quantities or parameters
to covary (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Doerr, 2000; White &
Mitchelmore, 1996). Envisioning bacteria iteratively splitting, for instance, can
help students better understand the structure of exponential growth (Confrey &
Smith, 1994, 1995).

Second, students must disentangle which aspects of a system correspond to
the rate of change of the system versus which correspond to the accumulation or
summation of those changes over time. These two ideas are closely intertwined
mathematically and conceptually (Johnson, 2012; Piaget, 1970; Schwartz, 1988).
For example, a bicyclist who starts from a standstill and steadily increases her
speed by 1 mph for every minute she pedals is travelling faster as time goes on
and covering more distance as time goes on. When she decides to slow down, she
will cover less distance from moment to moment, but she will still be adding to
the total distance she has travelled during her trip. If this bicyclist’s total distance
travelled were graphed relative to time, values plotted on the graph would always
rise relative to time. However, the slope of the graph at different points would
reflect relative increases or decreases in speed during the trip. In this case, the rate
of change is the bicyclist’s speed, and the accumulation is distance. These quanti-
ties and their relationship to each other are the foundation of reasoning about the
mathematics of dynamic systems (Kaput, 1994; Nemirovsky, 1994; Stroup, 2002).
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 209

Learning With Agent-Based Simulations

One way in which educators have successfully engaged learners in making sense
of complex systems is through simulation (Clark, Nelson, Sengupta, & D’Angelo,
2009; Hmelo-Silver & Azevedo, 2006; Klopfer & Yoon, 2004; Repenning,
Ioannidou, & Zola, 2000; Wilensky & Jacobson, in press). Agent-based simu-
lation environments such as NetLogo (Wilensky, 1999), AgentSheets (Repenning
et al., 2000) and StarLogo TNG (Begel & Klopfer, 2005) are especially well suited
for students to explore how many interacting agents can produce unexpected
emergent outcomes.

But although there is evidence that agent-based simulations can help students
understand the behavior of complex systems, not much is known about how stu-
dents understand the mathematical representations that often accompany them.
Some studies claim that agent-based simulations are effective because they pro-
vide an alternative to formal mathematical representations (Goldstone & Janssen,
2005; Sengupta & Wilensky, 2009; Tan & Biswas, 2007; Wilensky & Reisman,
2006) and highlight mechanisms that mathematical formulas may not (Goldstone
& Wilensky, 2008). Others indicate that agent-based simulations can help students
develop a conceptual grounding for scientific formulae or mathematical patterns
but focus on qualitative trends rather than measurable relationships (Blikstein &
Wilensky, 2009; Wilensky, 2003; Wilensky & Stroup, 2000). Still others claim that
interacting with agent-based simulations can help students make sense of mathe-
matical ideas such as statistical variation or probability (Abrahamson & Wilensky,
2005; Wilensky, 1997) but not explore how these ideas might connect back to a
particular mathematical model or scientific context.

The relationship between agent-based simulations and mathematical represen-
tations of complex systems is nuanced. Like mathematical models, simulations
highlight the quantities, relationships, and changes over time that define a system.
Simulations execute and record these relationships as quantitative data, whereas
mathematical models encode them symbolically. Moreover, agent-based simula-
tions define relationships in terms of individual behaviors rather than in terms
of aggregate measures like mathematical models (Holland, 2000). These nuanced
relationships, combined with the established potential for agent-based simulations
to engage students in constructing scientific knowledge, make agent-based simu-
lation an ideal context in which to explore how students connect quantitative and
mathematical knowledge to complex systems behavior.

CONCEPTUAL FRAMEWORK: THE CALCULUS OF COMPLEX
SYSTEMS

To make sense of the quantitative change exhibited by complex systems, we
bring together the literature on complex systems thinking and reasoning about
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210 WILKERSON-JERDE AND WILENSKY

quantitative change to argue that learners need to understand and construct
connections across four interrelated aspects. To make sense of the emergent pat-
terns that are characteristic of complex systems, learners need to identify how
micro-level Individual Behaviors within the system generate Group Interactions
evident at a macro-level of observation. Learners must also understand how quan-
titative patterns generated by the system are substantively connected to these
individual and group-level behaviors. To build these connections, they need to
distinguish between the Patterns of Change and Patterns of Accumulation that are
reflected in a given quantitative pattern and what each measure illustrates about
the complex system’s behavior. We call these four aspects (and the connections
between them) the calculus of complex systems (CCS) framework.

The CCS framework highlights Individual Behaviors, Group Interactions,
Patterns of Change, and Patterns of Accumulation as mutually informative lev-
els of description. By levels, we do not refer to a developmental trajectory for
understanding complex systems. Instead, we refer to descriptions that highlight
some aspects of a system of interest, such as individual interactions, that constrain
(but may not entirely illuminate) aspects at a different level, such as mathematical
patterns (Holland, 2000; Stroup & Wilensky, 2014). For example, describing the
micro-level physical relationship between gas particles and their container high-
lights what sort of behavior might emerge from an air pressure system. However,
the mathematical formula PV = nRT that describes a macro-level aspect of
the system highlights how air pressure is affected by changes in particle count,
temperature, or volume.

We are interested in whether and how students learn to navigate across these
levels of description as they interact with simulation-based learning environ-
ments. Therefore, our theoretical orientation focuses on how students make use
of and build connections between their existing knowledge and the mediating
tools with which they are engaged. We draw from theories of learning that focus
on learners’ existing resources for sense making and the role those resources
play in helping learners build connections across different representations, expe-
riences, and bodies of knowledge (diSessa, 1993; diSessa & Sherin, 1998; Noss
& Hoyles, 1996; Wagner, 2010). By resources, we draw from Pratt and Noss’s
(2002) notion of resources as “both external tools and internal knowledge”
(p. 456) that learners leverage in activity to coordinate existing understand-
ings and construct new knowledge. By connections, we are interested in the
links students are constructing between the levels of description in the CCS
framework. This allows us to explore “the complementary roles played in inter-
nal (cognitive) and external (physical or virtual) sources of meaning making”
(Pratt & Noss, 2002, p. 456) that are the basis for simulation-based educational
environments.

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
2:

22
 0

9 
M

ay
 2

01
6 



QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 211

An Example: The Case of Population Growth

To illustrate the CCS framework, we consider the example of population growth
dynamics. Mathematical models of population growth are part of most high
school math and science curricula (American Association for the Advancement
of Science, 1993; Common Core State Standards Initiative, 2010; NRC, 2012b).
But the study of population growth also includes attention to the behaviors that
cause populations to fluctuate, such as birth, death, immigration, competition for
resources, or population density (NRC, 2003; Sandholm, 2010).

Mathematical models of population growth typically focus on describing
dynamics in terms of a Pattern of Accumulation of total population. A logis-
tic model represents the growth of a population that is eventually limited by
resource or space constraints. It is often represented with a graph of population
over time that follows a characteristic logistic S shape or by the Verhulst equation

P (t) = KP0ert

K+P0(ert−1)
. These two external resources—the graph and the equation—

focus on descriptions of Patterns of Accumulation. They can also be used to find
information about Patterns of Change: Examining the slope of the graph indi-
cates how many members are added to the population during a given interval
of time. Population models also incorporate assumptions about what important
Individual Behaviors and Group Interactions underlie a system and constrain its
global behavior. Certain implicit information about these levels might also appear
in resources that deal primarily at a different level of description. The Verhulst
equation, for instance, assumes that there is some carrying capacity K after which
more reproduction cannot occur because of the competition for space or resources
introduced by Group Interactions.

Depending on what resources learners leverage to make sense of different lev-
els of description, they might arrive at either contradictory or logically consistent
understandings of the system as a whole. Recalling our example, a logistic pattern
of population growth does not necessarily mean that each member of the popu-
lation reproduces slowly, then quickly, then slowly again over the duration of the
population’s existence. Therefore, resources that describe the population’s Pattern
of Accumulation might not be the most appropriate ones to leverage to make sense
of Individual Behavior. However, learners may also have some implicit knowl-
edge of how Individual Behaviors such as reproducing or dying might combine
to generate Patterns of Change—the total number of births and deaths per year.
This in turn might help them build a connection between Individual Behavior and
Patterns of Accumulation.

In this study, we focused on exponential population growth as a first step toward
understanding how students identify relevant resources and use those resources to
build connections across different levels of description. However, we anticipate
that the insights drawn from the example we explore here illustrate how the
CCS framework can accommodate phenomena that involve more behaviors and
interactions, as do many complex systems.
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212 WILKERSON-JERDE AND WILENSKY

METHODS

Our research questions were as follows: (a) What resources did students use to
describe the quantitative patterns generated by the simulation? (b) What resources
did students use to describe connections between the individual behaviors, group
interactions, patterns of change, and patterns of accumulation in the simulation?
(c) What connections did students hesitate or struggle to describe, and how was
this resolved?

We conducted 11 one-on-one semistructured clinical interviews (Clement,
2000; Ginsburg, 1997) with six male and five female 11th- and 12th-grade
students enrolled in a summer preparatory calculus program at a large urban mid-
western public high school. The students had completed a lesson on exponential
growth and its rate of change a week earlier in class. We introduced a NetLogo
(Wilensky, 1999) agent-based simulation as an alternative way to explore pop-
ulation growth (Figure 1). The simulation is based on individual probabilities
rather than the overall growth rates used for exponential models. Participating
students did not have experience using NetLogo or other agent-based modeling
environments. Each interview lasted between 30 and 45 min.

FIGURE 1 NetLogo simulation interface used during student interviews.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 213

The simulation focused specifically on simple exponential population growth.
The pattern produced in the simulation was generated by probabilistic individ-
ual reproduction. It intentionally featured human agents so that students were
likely to have existing commonsense expectations about individual behavior that
might inform their interpretation of the simulation. This combination of study
design and student educational background allowed us to focus specifically on
what new challenges and relationships might arise when students work to make
sense of quantitative change in the context of complex systems dynamics, even
when they have considerable background from which to draw. Our introduction
of the NetLogo simulation explicitly prompted students to explore the relationship
between a complex systems treatment of population growth (i.e., the explicit link-
ages between individual and group behavior), how that pattern is expressed using
the simulation, and the familiar mathematical models traditionally used to make
predictions about population.

Simulation

We first introduced participants to the simulation paused in its initial state, with
100 people (computational agents) randomly distributed in the visualization win-
dow. We explained that agents would move within the window a small amount in a
random direction1 and would have a .01 probability of cloning themselves during
each unit of time (or tick, as we refer to them in this article). The simulation inter-
face also featured two graphs: One, labeled population, would dynamically plot
the total number of simulated agents during each tick while the simulation ran;
the other, labeled people born, would plot the number of new agents in the world
each tick (see Figure 2). These graphs were vertically aligned with the population
graph on top, so that each point along the time axes was aligned vertically.

Next we ran the model for approximately 200 ticks, during which the simu-
lated agents moved about and replicated in the visualization window. The graphs
of population and people born were plotted over time as the simulation ran (see
Figure 3). Because each simulated agent was known to have a .01 probability of
reproducing during each tick, approximately 1% of the total population would
reproduce and be added to the original population during each tick, creating an
exponential-like pattern of growth. The number of individuals added to the pop-
ulation would be plotted in the people born graph, whereas the total number of
individuals (including those recently added) would be plotted on the total pop-
ulation graph. The probabilistic rule in the simulation introduced variability in

1Movement was not important mathematically. However, if agents did not move the simulation
would “stack” them in the visualization so that the population did not appear to grow. Therefore, we
introduced a rule to make them move so that students could use the visualization to observe changes
in the number of agents over time.

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
2:

22
 0

9 
M

ay
 2

01
6 



214 WILKERSON-JERDE AND WILENSKY

FIGURE 2 Detail of corresponding population and people born graphs produced by one
execution of the NetLogo simulation.

FIGURE 3 Time lapse of one execution of the NetLogo simulation at 0, 66, 132, and
198 ticks.

the number of humans added to the population, so that sometimes fewer simu-
lated humans would be added later during the simulation, even though one would
expect the number to consistently rise. This produced a jagged graph of the num-
ber of people born—something not expected from the purely mathematical model.

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
2:

22
 0

9 
M

ay
 2

01
6 



QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 215

For example, in Figure 2 there is a peak of 10 individuals born at about three
fourths of the way through the duration of the simulation’s run. The probabilis-
tic element of the simulation caused 10 individuals to be born during that unit
of time, which was much higher than the expected 1% of the total population
(around only 300 agents at the time). However, during the next unit of time,
only four agents were born, which was much closer to the expected value. This
variation in the number of individuals added per tick also created small pertur-
bations in the exponential-like shape produced by the graph of total population
over time. In Figure 2, a small bump in total population can be seen at the same
time that the 10 individuals were born. The simulation was truly probabilistic in
that each simulation run generated slightly different specific results. Screenshots
of one execution of the simulation at Times 0, 66, 132, and 198 are featured in
Figure 3. Readers can interact with an online version of the simulation at http://
bit.ly/10avPIz.

Interview Protocol

After the simulation reached 200 ticks, we paused it and left it in its paused
state on the computer screen for reference. Next we asked participating students
a series of questions designed to probe their understanding of different aspects of
the system, corresponding to the four levels of description articulated in the CCS
framework. Interviews were semistructured, such that the interviewer (Michelle)
asked the same set of questions to students but would probe or follow up on stu-
dents’ ideas differently depending on how they responded to questions. First, to
determine what resources students used to describe and justify the quantitative
patterns generated by the simulation, we asked them to describe when the popula-
tion was highest and why (Pattern of Accumulation) and when it was changing the
most and why (Pattern of Change). Next, to better understand whether and how
students established connections across the behavioral and quantitative aspects of
the simulation, we asked them to describe the relationship between an individual
agent in the simulation (Individual Behavior) and the total population measure, to
describe the relationship between the graphs of people born and total population,
and to explain why the graph of people born was so jagged (something that was
ostensibly contradictory to the lesson on exponential growth they had had just a
week before; Group Interactions).

Each interview was video recorded using two cameras—one positioned to cap-
ture activity on and students’ gestures toward the computer screen and the other
to capture interactions between the interviewer and each participant. The inter-
views were transcribed, and gestures toward simulation elements on the computer
screen were noted in the transcript as evidence for the use of specific graphs or
other resources within the simulation.
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216 WILKERSON-JERDE AND WILENSKY

METHODS OF ANALYSIS

Our analysis corresponds to our three research questions as follows. First we
coded students’ responses to each interview question for the presence of each
of nine resources, described in the next section. This allowed us to determine
what students attended to when describing the various quantitative patterns gener-
ated by the simulations (Research Question 1). Next we identified which levels of
description in the CCS framework students were reasoning about when they cited
each of those different resources. This allowed us to determine which resources
students leveraged to make sense of particular levels of description within the sim-
ulation (Research Question 2) and to identify when and how different resources
highlighted connections across those four levels (Research Question 3). Finally,
we selected two interviews to analyze in further depth that exemplified the dif-
ficulties that emerged from the missed connections we identified through our
coding.

Resource Coding

To identify what resources students attended to over the course of the interview,
we iteratively developed a set of resource codes. These codes described those
resources within and beyond the simulation that at least two students leveraged
to describe or justify quantitative aspects of the simulation at any point during
the interviews. We started by first identifying a set of resources that we expected
students to rely on when reasoning about each of the four CCS levels of descrip-
tion within the simulation.2 For example, we expected students to reference the
visuospatial component of the simulation to find information about agents’ behav-
ior and the behavior of the population as a whole. We also anticipated that students
would consult the graph of the number of agents born per tick to find information
about quantitative change.

We coded each student transcript using this first iteration of codes, paying
attention to resources that were not adequately captured by the existing scheme.
We eliminated codes for resources that were not cited by at least two students
(e.g., visuospatial) and added or reconceptualized others. For example, although
our programmatic code was intended to capture students’ reference to the compu-
tational simulation rules, this only manifested as attention to the random command
as representing the probabilistic nature of the program and was hence redefined
as chance. Similarly, our graphical code proved too broad, as students used the
graphs of total population and people born differently. So we divided this initial

2The initial set of codes included eight categories: visuospatial, quantity, graphical, behavioral—
agent level, behavioral—aggregate level, functional, programmatic, and systemic.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 217

code into two codes to indicate the appropriate graph. Our finalized resource codes
are identified in Table 1.

During our analysis, we at times refer to particular resources as “mathematical”
or “behavioral.” We do not argue that this is how the students perceived their
use of those resources; rather, we make these distinctions as designers to better
understand whether and when students are beginning to construct connections
across what we identify as “quantitative/mathematical” and “behavioral” aspects
of the simulation environment per our research question and design goal. We have

TABLE 1
Summary of Resource Codes

Resource Code Description

Population graph (M) Explicit use of the graph of total population, including
reference to or gestures toward the shape of the
graph, slope, height of the graph at specific points,
and so forth.

Exponential (M) Explicit mention of the exponential function as an
algebraic, graphical, or qualitative pattern or
operation.

Monotonic (M) References to the monotonic (always increasing)
quantitative behavior.

People born graph (M) Explicit use of the graph of people born, including
reference to or gestures toward the shape of the
graph, slope, height of the graph at specific points,
and so forth.

Population actions/properties (B) Explicit reference to the population as a whole.
Examples include (a) referencing actions performed
by the population as a whole, such as growing or
reproducing more and more as a collective unit; or
(b) referencing properties that exist at the collective
level, such as a population’s size.

Chance/probability (M) Explicit reference to mathematical chance, probability,
or randomness in the simulation.

Person actions/properties (B) Explicit reference to an individual member of the
population as an autonomous actor. Examples include
(a) citing actions, such as giving birth, seeking
partners, or choosing to have kids; or (b) referencing
properties at the individual level, such as
indivisibility or describing each person.

Quantities (M) Explicit reference to a specific quantity revealed in the
simulation interface (typically when the mouse is
hovered over the graph).

Systemic (B) Explicit reference to previous knowledge of general or
known patterns for population growth systems.

Note. M = mathematical; B = behavioral.
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218 WILKERSON-JERDE AND WILENSKY

marked those resources deemed mathematical with an M in Table 1 and those that
we refer to as behavioral with a B.

Once our categories were established, we analyzed student responses to each
interview question for the presence of each code. For example, the following
excerpt is Irene’s response to the question “Why is population growing fastest
at the end of the simulation?”:

[Irene] If you have a single number and that’s raised, if you have a constant rate of
change but your initial value is greater then your end amount will be greater.

Irene’s response was coded as featuring exponential as a resource (“a . . . num-
ber . . . raised”) to justify why the Pattern of Accumulation was highest at the
end. Appendices A and B feature a more complete set of example responses and
resource codes for each interview question. An independent second rater used the
same coding scheme and Appendices A and B as a training set to analyze four
additional randomly selected answers to each interview question (more than 30%
of the total data). Interrater agreement on resource codes was 86% raw agreement
and 75% agreement on presence.3 We met to discuss conflicts and revised our
codes correspondingly, after which agreement rose to 95% and 93%, respectively.
Two codes, quantity and systemic, were each referenced by only two participants
over the course of the entire interview, and so these codes are not reported in our
analysis.

Levels of Description

Next we wanted to find out which of these resources students leveraged to make
sense of different levels of description in the CCS framework. Our first set of
interview questions made the level of description explicit by asking students to
describe Patterns of Change (when the most people were being born, and why)
and Patterns of Accumulation (when the population was highest, and why). Our
next set of questions prompted students to describe connections across differ-
ent levels of description. For each resource coded, we also coded what levels of
description the student was using to make sense of that resource. In the following
excerpt, Kevin is answering the question “What is the relationship between the
people born graph and the total population graph?”:

3Raw agreement is the total percent agreement between coders on the presence and absence of
each code for each response: # agreed present + # agreed absent

total opportunities for present or absent . Agreement on presence is agreement
only on the presence of a code and so adjusts for inflation when only a few codes might be applied to
each response: 2∗ # agreed present

# present per coder A + # present per coder B .
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 219

[Kevin] To, um, I mean you could simply like we already related how this
graph’s irregular [indicates people born graph] and so is this [indicates population
graph] but um, simply putting um, this [population graph] isn’t going to model
dips in population nearly as well as this [people born graph], so you could simply I
guess say that this graph is simply almost like a best fit line of this graph so it takes
like the top points are the most important pertinent points of the bottom graph and it
simply shows up on the top.

This response was coded as involving the people born graph (“bottom graph”),
the population graph (“top graph”), and the actions or properties of the population
as an entity (“dips in population”) as resources. In terms of levels of description,
Kevin describes the population graph as a best fit line that reproduces impor-
tant points of the people born graph, implying that he is using both graphs to
speak to the Pattern of Accumulation of the population. Kevin is also referring to
actions/properties of the population to describe both the Pattern of Accumulation
and the Group Interactions those patterns reflect (“dips in population”).

Appendix B features a more complete set of example responses and level of
description codes for each interview question. Interrater agreement on level of
description codes was 89% agreement on the presence or absence of each level
and 82% agreement on presence (Smith, Feld, & Franz, 1992). We met to discuss
conflicts and revise our codes correspondingly, after which agreement rose to 93%
and 90%, respectively.

RESULTS

As we describe in further detail below, we found that although students lever-
aged both behavioral and mathematical resources to make sense of quantitative
change in complex systems, they made some connections across levels of descrip-
tion more readily than others. It is noteworthy that most students did not articulate
connections between Individual Behaviors and Patterns of Change, even though
they were comfortable describing the relationships between a single agent in
the simulation (Individual Behavior) and overall population growth (Pattern of
Accumulation), and between the graph of population (Pattern of Change) and
graph of people born in the simulation (Pattern of Accumulation). In fact, most
students only connected Individual Behaviors and Patterns of Change when they
were explicitly asked to explain why the graph of people born was jagged.

To better understand the implications of this missed connection, we present
two more detailed case studies (complemented with data from other interviews).
These case studies reveal that missed connections between Individual Behaviors
and Patterns of Change led participating students to experience difficulty when
describing the mathematical relationships that underlay the simulation. In both
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220 WILKERSON-JERDE AND WILENSKY

cases, these difficulties were resolved once students’ attention was drawn to the
jagged nature of the people born graph.

Part 1: Resources Cited By Participants

Our first objective is to describe what resources in the simulation students cited
when answering questions specifically about quantitative change. We do this by
exploring students’ responses to our first set of interview questions: “When is
population highest in this simulation?” and “Why is population highest then?”
(Pattern of Accumulation) and “When is population growing the most in this
simulation?” and “Why is it growing the most then?” (Pattern of Change).

Resources for describing the pattern of accumulation. Table 2 shows
which resources each student (indicated by the first letter of his or her pseudonym)
cited to describe when population was highest in the simulation and why.
To identify when the population was highest, all participating students referred to
mathematical representations and ideas, citing the population graph or the mono-
tonic pattern of growth, rather than behavioral ones. But when asked to describe
why the population was highest at the end, more than half of the students cited
behavioral resources, and almost half also cited more than one resource as part of
their explanation.

Resources for describing the pattern of change. Table 3 shows which
resources each student cited to describe when the population was changing the

TABLE 2
Resources Cited by Participants When Responding to Questions About Patterns of

Accumulation

When Is Population Highest? Why Is Population Highest?

T S M K I G E Z C B A T S M K I G E Z C B A

Population graph X X X X X X X X 8 X 1
Exponential X X X X 4
Monotonic X X X 3 X X X 3
People born graph
Population actions/

properties
X X X X X X 6

Chance X X 2
Person actions/

properties
X 1

Note. Individual letters stand for students’ pseudonyms.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 221

TABLE 3
Resources Cited by Participants When Responding to Questions About Patterns of Change

When Is Population Changing the
Most?

Why Is Population Changing the
Most?

T S M K I G E Z C B A T S M K I G E Z C B A

Population graph X X X X X X X X 8 X X X X 4
Exponential X X 2 X X 2
Monotonic X 1
People born graph X 1
Population actions/

properties
X 1 X X X X X X X X X 9

Chance X X 2
Person actions/

properties
X X X X X 5

Note. Individual letters stand for students’ pseudonyms.

most in the simulation, and why. As in questions related to accumulation, all but
one participant cited mathematical resources in their responses. Note that many
of the students cited the total population graph by attending to the slope of the
graph (see Alex in Appendix A for an example) in contrast to attending to its
height during the question about total population. When asked to explain why
the population was changing the most at the end, all but two students cited at
least one behavioral resource as part of their explanation, and all students who
cited at least one behavioral resource cited multiple resources as part of their
explanation.

Table 4 summarizes the resources cited by each student across all four inter-
view questions focused on quantitative patterns in the simulation. All participating
students leveraged both behavioral and mathematical resources at some point dur-
ing this portion of the interview; in addition, all but one student used more than one
resource to respond to at least one question. This suggests that these participants
already attended to and recognized the utility of both mathematical and behavioral
resources for answering questions about the quantitative patterns generated by the
simulation. They readily leveraged those resources and the connections between
them to make sense of those quantitative patterns of change—a key component of
making sense of complex systems.

Across both Tables 2 and 3, results show that participating students more fre-
quently used behavioral resources and more frequently cited both mathematical
and behavioral resources together to answer questions about quantitative patterns
when explaining why those patterns emerged rather than when describing the pat-
terns themselves. This was particularly true when students explained why patterns
of change emerged the way they did. Together, this suggests that asking learners
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222 WILKERSON-JERDE AND WILENSKY

TABLE 4
Summary of Resources Cited by Participants Across First Four Interview Questions

T S M K I G E Z C B A
Total #

Participants

Population graph 2 2 1 3 1 1 2 3 3 2 1 11
Exponential 1 3 1 1 2 5
Monotonic 1 1 1 1 1 1 7
People born graph 1 1
Population actions/properties 2 1 1 2 1 3 1 1 1 1 2 11
Chance 2 2 2
Person actions/properties 1 1 1 1 2 5
Total resources used 7 5 5 6 4 5 5 6 5 5 8

Note. Individual letters stand for students’ pseudonyms.

to explore the causes of patterns of change can help build on learners’ existing
strengths to explore and articulate connections across different types of resources
and levels of description for a given complex system.

Although all students recognized the utility of a diverse collection of both
mathematical and behavioral resources for describing the quantitative patterns in
the simulation, there were notable differences in which types of resources each
preferred. For example, Gary relied heavily on resources that were most appro-
priate for describing individual behaviors in the system, such as person actions
and probabilistic rules. This suggests that Gary was especially attuned to agent-
level descriptions of system behavior, even when answering questions about the
aggregate-level quantitative patterns that emerged in the simulation. Sarah, in con-
trast, cited mathematical resources most appropriate for describing patterns of
accumulation, such as the population graph and the idea of exponential growth,
and mentioned the actions or properties of the population only once. This sug-
gests that Sarah found mathematical descriptions of the system behavior to be
more useful than behavioral or agent-level information. Thus, even though stu-
dents articulated connections across a diversity of types of resources and levels of
description, these connections did not necessarily extend across all four levels of
connection we identified or reflect fluidity across those levels.

Finally, we found that participating students rarely attended to some resources
during this portion of the interview. Only two participating students ever refer-
enced the “1% chance to reproduce” rule that was the programmatic basis for the
simulation, and only one cited the graph of people born during the first set of
interview questions. This was especially surprising because the people born graph
directly represented the pattern of change (number of individuals added to the
population per tick), something we explicitly asked about. That participants did
not attend to these two resources becomes more important later in our analysis.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 223

Part 2: Identifying Connections Across Levels

Our second objective is to understand which resources students used to describe
connections across different levels of description as outlined in the CCS
framework. In this section, we report patterns in student responses to three ques-
tions designed to probe their understandings of various connections across levels
of description. For each question, we feature a table that shows what resources
were leveraged to describe the relationship between an individual person agent
in the simulation and overall population growth and at what level(s) of descrip-
tion those resources were used. Each cell in the matrix includes the first initial of
each student who used a particular combination of resource and level. Initials are
aligned across cells to make it easier to track the responses of each student.

Describing connections between a person agent and total population
growth. Table 5 shows the resources and levels of description participating stu-
dents leveraged to describe how the behavior of a person agent in the simulation
(Individual Behavior) would contribute to the total pattern of population growth
(Pattern of Accumulation). Most students leveraged the chance and/or person
agent behavior resources to describe connections between Individual Behavior
and Group Interactions and leveraged the actions of the population as a whole
to describe connections between Group Interactions and the overall Pattern of
Accumulation.

Our participants stitched these descriptions together to yield coherent multi-
level explanations for how each person agent, even with a low and consistent
probability of reproducing, contributed to a total population growth pattern that

TABLE 5
Resources Cited by Level for Each Participant Describing Connections Between a Person

Agent and the Overall Pattern of Population Growth

Resource
Individual
Behaviors

Group
Interactions

Patterns of
Change

Patterns of
Accumulation Total

Population graph M A M E A 3
Exponential G S GE 2
Monotonic
People born graph 0
Population actions/

properties
C T MKI E CBA T TSMKI EZCB 10

Chance TS KIGE BA T KI E B T S 8
Person actions/

properties
KIGEZCB K EZ B 7

Total 10 9 2 11

Note. Individual letters stand for students’ pseudonyms.
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224 WILKERSON-JERDE AND WILENSKY

increased at an increasing rate. Most participants described qualitative connec-
tions across levels rather than more precise mathematical connections. Indeed, the
only mathematical resource that was heavily leveraged by participants during this
portion of the interview was chance. Even this was not usually used quantitatively
but rather as evidence that individual behavior was probabilistic in general. This
excerpt from Irene’s interview is an example:

[Irene] Because there’s so many people like the, it, you eventually have, let’s say
100 people there and so someone’s bound to have another person or have another
reproduce and so that why, that’s why you have a population growth because, as, as
the population grows there’s more chances of people being born.

Although nearly all participants made productive qualitative connections
across three of the four main levels of description identified in our framework—
Individual Behaviors, Group Interactions, and Patterns of Accumulation—few
explicitly talked about Patterns of Change during this portion of the interview.

Describing connections between the people born graph and total popu-
lation graph. Table 6 shows the resources and levels of description participating
students leveraged to describe how the graph of people born (Pattern of Change)
was related to the graph of total population growth (Pattern of Accumulation).
Most participating students leveraged resources that spoke to aggregate levels
of description—the graph of people born, the graph of total population, and the
actions of the population as a whole as resources—to describe these connections.

TABLE 6
Resources Cited by Level for Each Participant Describing Connections Between the People

Born Graph and the Total Population Graph

Resource
Individual
Behaviors

Group
Interactions

Patterns of
Change

Patterns of
Accumulation Total

Population graph T M BA TSMKIGEZCBA 11
Exponential S 0
Monotonic 0
People born graph Z A T IGEZCBA SMK G 11
Population actions/

properties
S GEZCBA M GE CBA SMKIGEZCB 10

Chance S S S 1
Person actions/

properties
S I I I S 2

Total 2 8 9 11

Note. Individual letters stand for students’ pseudonyms.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 225

Whereas the connections participants described between Individual Behaviors
and Total Population Growth were typically qualitative, many participants
described mathematical connections between change, accumulation, and group
interactions by noting that the number of people born is added to the population
and hence changes it. This makes sense given that participants leveraged more
mathematical than behavioral resources in general to describe these connections.
An excerpt from Zoe’s interview provides one example of how students identified
the actions or properties of the population as the underlying cause for quanti-
tative connections between Group Interactions and the Patterns of Change and
Accumulation:

[Zoe] Um, well, you see the, an increase of people born [indicates people born graph]
and that’s because as the population’s growing, you have more population [indicates
population graph] to have more kids you’re gonna have more kids born, (okay) so
that’s like the correlation.

Though many students made productive quantitative connections across Group
Interactions, Patterns of Change, and Patterns of Accumulation, few students
included any description of Individual Behaviors as part of their responses. This
is especially notable because the graphs were generated by the behaviors of these
individual person agents. Similarly, few students leveraged resources that spoke
directly to individual levels of description, such as chance or person actions.

Across Tables 5 and 6, results reveal that although participating students noted
connections across most levels of description, including levels that were not
explicitly part of the question asked, they rarely leveraged connections between
Individual Behaviors and Patterns of Change. Although participants’ connections
between Individual Behavior and Patterns of Accumulation were qualitative and
focused on connections between individual-level and population-level behavior,
their connections between Patterns of Change and Patterns of Accumulation were
quantitative but did not include the agent level.

Describing why the people born graph is jagged: Linking individual
behavior and patterns of change. It was not until we asked students to
describe why the graph of people born in the simulation was so jagged that most
participating students connected resources that spoke to both Individual Behavior
and Patterns of Change (see Table 7). Responding to this question was also the first
time that many students quantitatively connected aspects of the simulation that
described Individual Behavior to aggregate-level Patterns of Change and Patterns
of Accumulation within the simulation.

Excerpts from Caroline and Kevin provide examples of how students lever-
aged agent behavior generally (in Caroline’s response), and the probabilistic
reproduction rule specifically (in Kevin’s response), to describe the jagged nature
of the graph:
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226 WILKERSON-JERDE AND WILENSKY

TABLE 7
Resources Cited by Level for Each Participant Describing Why the People Born Graph Is

Jagged

Resource
Individual
Behaviors

Group
Interactions

Patterns of
Change

Patterns of
Accumulation Total

Population graph B B G B B 2
Exponential 0
Monotonic 0
People born graph TS Z TS KIGEZCB KIG BA T A 10
Population actions/
properties

A MKIGEZCBA MK G A T 10

Chance S K BA S K B 4
Person actions/
properties

TSMK EZCBA TSMK EZCB M 9

Total 9 11 6 4

Note. Individual letters stand for students’ pseudonyms.

[Caroline] Um, well, there are, there could be years where no one was born because
they were wandering around or whatever so they couldn’t reproduce.

[Kevin] Like you said that um, they have a 1% chance of reproducing and for
instance, at the spikes maybe here and here, the, just at that moment of that 1%
chance actually occurred, so, they had a higher of reproducing, while at the dips over
here it just didn’t come through and then, um, the other chances of not reproducing
kicked in and just right there they didn’t reproduce as much.

Before being asked about the jagged nature of the people born graph, even
though they leveraged both mathematical and behavioral resources to make sense
of many aspects of the behaviors and quantitative patterns in the simulation,
most participating students did not articulate a quantitative connection between
specifically individual behavior and quantitative patterns. Figure 4 provides a
diagrammatic summary of these findings, using the CCS framework as an organiz-
ing device. In the next section, we argue that strengthening connections between
the individual behaviors in a system and the patterns of change that result from
those behaviors is critical for learners to develop fluency with the mathematics of
complex systems.

Part 3: Missed Connections, Complications, and Resolutions

Part 2 reveals that the students in our study were adept at making sense of the
population growth simulation using both mathematical and behavioral resources.
They readily identified many connections across these resources to describe the
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 227

FIGURE 4 Summary analysis of Part 2, organized using the calculus of complex systems
framework. pop. = population.

system across multiple levels of description. However, most students did not iden-
tify connections between Individual Behavior and Patterns of Change until they
were explicitly asked why the graph of people born was so jagged. In this section,
we present two case studies (along with supplemental data from other interviews)
that suggest that without this particular connection between Individual Behavior
and Patterns of Change students’ reasoning about the mathematics that underlie
complex systems dynamics can become problematic. We suggest that explicitly
drawing students’ attention to the jagged nature of the people born graph is one
effective way to encourage students to make sense of this particular connection,
which in turn can help them make progress toward understanding the system’s
mathematical connections across levels of description.

The two cases we have selected to focus on are those of Gary and Sarah. These
interviews were chosen for three reasons. First, they exemplified two different
complications we saw in our data more generally: describing an inappropriate
mathematical connection from Individual Behavior to a Pattern of Accumulation
(exemplified by Gary) and struggling to interpret quantitative patterns generated
in the simulation environment (exemplified by Sarah). Second, in both cases the
resolution of these complications unfolded in a way that yielded rich oppor-
tunities for analysis. Third, each student began the interview with a different
pattern of response: Gary relied on resources related to the probabilistic rules and
behaviors in the simulation to describe the mathematical trends, whereas Sarah
relied primarily on mathematical ideas and representations (see Table 4). Despite
these differences, both Gary and Sarah resolved their complications in the same
way—by attending to the jagged nature of the graph of people born.

Gary: Learning to connect individual behavior to mathematical repre-
sentations. Like most participants in our study, Gary readily described the
qualitative connections between individual reproduction and exponential-like
accumulation in the simulation. Unlike most of his peers, he also worked to artic-
ulate these connections mathematically. But even though Gary drew on many
appropriate resources and worked hard to make sense of the connections between
them—both productive practices that should be encouraged in mathematics and
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228 WILKERSON-JERDE AND WILENSKY

science education—he still struggled to develop a coherent explanation of the
mathematical connections between individual probabilistic behavior and over-
all exponential patterns of accumulation in the simulation. After Michelle drew
Gary’s attention to the jagged nature of the graph of people born in the simula-
tion, however, he began to draw more clear and coherent connections between
quantitative descriptions of Individual Behaviors, their influence on Patterns of
Change, and resulting Patterns of Accumulation he would expect to see in the
simulation.

In the following excerpt, Michelle had just asked Gary to describe the con-
nections between how people agents behaved and the resulting patterns of
accumulation generated in the simulation. When Gary mentioned that people
agents had more of a chance of reproducing, Michelle asked him to clarify what
he meant:

1 M: So when you say they have more chance of reproducing if we’re
2 talking about that blue guy right there does he have more chance of
3 reproducing?
4 G: He starts at 1%, right? And it’s 1% every tick isn’t, then isn’t it that
5 af—there’s 1% every tick then for every tick that goes his chance
6 like increases? or does it, like, I think, yeah.
7 M: Can you talk more about that?
8 G: If it’s, can I write on?
9 M: Yeah, oh yeah, that’s why there’s paper here.

10 G: So there’s, hold on, 1% chance for every tick right? So for, if it’s
11 1%, wait, let me think in my head real quick.
12 M: Yeah that’s fine, if you can say what you’re thinking, too, you know
13 [laughs]
14 G: So I’m trying to remember how I do this, if it’s 1% probability per
15 tick, over the span of five ticks, I think the probability increases, you
16 multiply this, oh wait no, it decreases, I think. Cause it’s .01 to the fifth
17 power cause it’s for every tick you multiply again by .01.
18 M: I see, so you’re saying for like the blue guy, since, since each tick
19 it’s a .01 chance that for five ticks altogether it’s—
20 G: .01 times .01 five times. Which is actually smaller then, yeah I think
21 it’s smaller.
22 M: Does that make sense?
23 G: Yeah
24 M: Okay, why is that? Like if you just think about a person in the world,
25 you know?
26 G: Because as they get older, their uh reproduction system it like, it’s
27 not as healthy because it peaks at a certain point and then like, as you
28 age, it becomes harder to produce like you know, like
29 reproduce.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 229

In many ways, what Gary did here was evidence of productive reasoning. He
leveraged a number of relevant resources: his understanding of person behaviors
such as reproduction and aging, his understanding of the 1% chance simulation
rule, and the mathematical idea of exponentials—likely because this was the shape
made by the total population graph and exponential population growth models had
recently been discussed in class. He also worked to connect these resources in a
way that was coherent and connected to his understanding of real phenomena.

During the exchange, Gary first noted the individual behavior embodied by the
simulation—that the “blue guy,” an agent within the visualization featured in the
simulation environment, starts at and maintains a 1% chance of reproducing (lines
1–3). But in the same turn of talk, Gary also suggested that “every tick that goes
his chance like increases?” (line 4). One possible explanation for this is that Gary
was attributing behavior at one level of observation (exponential growth at the
population level, P[t] = P0ert) to behavior at another level (individual agents)—
that is, exhibiting “slippage between levels” (Wilensky & Resnick, 1999, p. 3).

Next, when Michelle asked Gary to elaborate, he wrote the expression “(.01)5”

to describe what he understood to be an individual agent’s probability of reproduc-
ing over 5 units of time (lines 14–17). This is not the exponential growth formula
applied to an individual but rather a formula that includes an exponential term and
calculates the probability of repeated independent events.4 However, as he wrote
and worked through this new mathematical description, Gary realized that this
solution implies that an individual’s likelihood of reproducing would decrease as
time increases, in contrast to his initial prediction. Michelle asked him to explain
his calculation again, and he confirmed that an individual’s probability of repro-
ducing will decrease over time (lines 20–21) and seemed to accept this description
of individual behavior. Michelle asked Gary to make sure that his claim made
sense, as it conflicted with what he proposed in lines 4–6 of the excerpt, that an
agent’s chance to reproduce should stay the same or increase. Gary responded that
a decreasing probability of reproducing makes sense, as it can represent decreased
fertility with age.

One interpretation for the inconsistencies in Gary’s explanation is that in
describing the connection between an individual agent’s behavior and the overall
pattern of population growth, Gary actively worked to reconcile the 1% proba-
bilistic behavior of individual agents with the exponentially growing behavior of
the overall population. To do this, he leveraged a formula that included both prob-
abilistic and exponential elements: a formula used to calculate probabilities over

4The formula for calculating the probability of repeated independent events is P(e1 and e2 . . . en)
= P(e1) × P(e2) . . . P(en), where ex represents an event. In this case the probability for each event,
individual reproduction during each successive tick in the simulation, is the same at 1%. This reduces
to .01 × .01 × .01 . . . n times, or (.01)n—(.01)5 if one were to seek the probability of five births
happening in a row.
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230 WILKERSON-JERDE AND WILENSKY

multiple event trials (or in Gary’s case, over multiple ticks) that included an expo-
nential term. However, neither the exponential growth formula nor the formula for
calculating the probability of repeated independent events can be applied to indi-
vidual behaviors in a way that illuminates how those behaviors connect to overall
population growth patterns. We argue that this exchange provides clear evidence
that even though he leveraged appropriate resources and pieced those resources
together in creative and locally coherent ways, Gary experienced difficulty cre-
ating broadly coherent mathematical connections across Individual Behavior to
Patterns of Accumulation.

Later during the same interview, Gary continued to assign this exponential rep-
resentation to agent behavior in this way. When at one point he suggested that the
exponential trend in population growth resulted from multiplying 1% by smaller
versus larger numbers (rather than individual behavior), Michelle asked him how
this corresponded to his earlier claim that individuals had less of a chance to
reproduce. Gary said,

Um I think this [pointing to written .015] is uh only counting one person, because
it’s just one person’s probability, (mhm) but then you also have to take into account
that there’s multiple people that have that .1, .01 percent chance.

It seems that although here Gary described mathematical patterns in the simulation
as they related to Group Interactions rather than Individual Behaviors, he still
applied the exponential idea directly to Individual Behavior as well.

Directly following this interaction, Michelle asked Gary to talk more about the
people born graph and its relationship to the total population graph:

30 M: So, okay, now we got this second graph down here, and it’s the number
31 of people born at each tick. What does this tell you about the model, er,
32 does it look the way you expect?
33 G: Yes, because as the ticks increase, and as you see from here
34 (points to upper graph) as it relates to this as the population increases, the

number
35 of people born also increases.
36 M: Okay, can you talk more about they’re related? I mean are
37 there more specific ways that they’re related?
38 G: I think it’s be . . . uh, this is . . . this kinda looks like the area
39 under the population, kinda (hmm) like the shape, (okay) it’s not like the

same
40 amount of space, but it looks that shape because as more people are
41 born, the population will increase more, so as this gets higher, this will
42 also get higher.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 231

This time, Gary related both graphs to the system’s behavior at the level of
Group Interactions—that the number of people born was dependent on the num-
ber that were already present in the population (lines 33–34). As he continued
to explain, Gary also articulated the relationship between the people born graph
and the total population graph in terms of the mathematical relationship between
Patterns of Change and Patterns of Accumulation, stating that “ . . . if we start off
at fifty and four people are born, then it’s gonna be fifty-four.” However, Gary still
did not relate the graphs specifically to Individual Behaviors in the simulation.

Next Michelle drew Gary’s attention to the jagged nature of the people born
graph:

43 M: Does it makes sense that this is as jagged as it is?
44 G: Um, kinda because, I’m kinda confused by why peaks to
45 nothing, like is this over like, is this like just squished amount the ticks,

like is this
46 one year at the bottom or is this, like within one— is this one tick
47 exactly or is it in between two?

To address Gary’s question, Michelle reran the simulation so that he could see
it draw on the screen. The interview continued:

48 M: If I kept running this model we already predicted what this
49 [points to total population graph] would look like, but what would
50 this one [points to people born graph] look like you think?
51 G: I think it would um, it would either increase or stabilize because,
52 does, does this program, uh, uh factor in how old each, like person is?
53 M: That’s a good question. It doesn’t now but you can add that later if you
54 want.
55 G: Cause um if it doesn’t, then it should start to increase because it won’t
56 factor in how each person’s probability of 1% will decrease over time,
57 but if you do include that then uh the pop— the people born should
58 either close to level off because the older people will not produce as
59 much while the younger people will produce the same amount and
60 since they produce more younger people, it starts, it starts to balance
61 out for the people, the older people who are not producing.
62 M: Okay I gotcha, okay. Would there, do you think it’d still be as jagged or
63 would it smooth out?
64 G: I still think it would be jagged because this is just, is this random is it?
65 How is it determined, it just does the math based on like the 1%
66 chance for people born?
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232 WILKERSON-JERDE AND WILENSKY

In the first excerpt of this case, Gary attempted to directly connect Individual
Behavior to mathematical formalisms in ways that did not maintain the coherence
of agent-level and aggregate-level behavior in the simulation. However, after
attending specifically to the jagged nature of the people born graph, Gary began
to connect his understanding of Individual Behavior (such as the probability of
reproduction; line 56) to the people born graph as a description of the Pattern of
Change in the simulation instead of directly to resources that described Patterns
of Accumulation. He then considered how those interactions would produce the
resultant quantitative patterns he would expect in mathematical representations in
the simulation (lines 57–61). We return to Gary’s case at the end of this section
to explore why attending to the jagged nature of the graph might have prompted
this shift.

Sarah: Learning to connect patterns of change to simulation
behavior. During early portions of her interview, Sarah was hesitant to con-
nect the mathematical aspects of the simulation to other resources—she rarely
cited behavioral resources when responding to questions and never cited resources
that spoke specifically to the individual level of behavior. Instead, Sarah relied
on mathematical ideas, procedures, and manipulations of quantitative data to talk
about rate of change and accumulation. Later during the interview, Sarah noticed
and started questioning why the graph of people born in the simulation included
unexpected “dips.” With prompting from Michelle, she began to explain the cause
of those dips as the probabilistic individual behavior in the simulation—a level of
description she had not attended to before describing and working to understand
the dips in the people born graph. After making this connection between individ-
ual behavior and patterns of change in the simulation, Sarah was able to interpret
the mathematical ideas she relied on early in the interview in terms of what they
implied for individual and group-level behavior in the simulation.

In the following excerpt Sarah used the graph of total population and its
exponential nature to describe how she might measure change for one tick in
the simulation. Even when Michelle prompted Sarah to consider other possible
resources available within the simulation, Sarah suggested that she was “stuck” in
a mathematical way of thinking:

1 M: Okay, and then one tick, to find the rate of change, what would you
2 measure?
3 S: You could use derivatives.5 [laughs].

5A mathematical derivative measures how much a function f (x) will change as x changes. Here
Sarah was proposing to find the derivative of a function that describes total population growth over
time, which would reveal specifically how much the population is changing at a particular time.
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QUANTITATIVE CHANGE IN COMPLEX SYSTEMS 233

4 M: Mhm, is there any other way you could do it?
5 S: Uh, I dunno cause the problem with exponential functions using uh,
6 solving for the slope in general, is that you come out with a straight line
7 if you were to use it like you would solve for linear? Which isn’t
8 realistic for a population. I mean I guess it would be if you were only
9 using one tick.

10 M: So, okay, can you think of any other way, with all the information
11 you’re given here [gestures toward simulation environment], that you
12 could do it?
13 S: To do what? To just . . .

14 M: To like, for a given tick, to say what the rate of change is.
15 S: Um, I dunno, I’d have to think about that. Kind of like derivatives all
16 stuck in my mind [laughs].

To describe how she might find the measure of change for a given tick during
the simulation run, Sarah cited mathematical procedures she could perform using
the total population graph as a resource, such as calculating a derivative (line
3) or solving for the slope of the graph for the time of interest (line 6). Michelle
attempted to redirect Sarah’s attention to other resources within the simulation
that also provided information about how the population was changing over time
(lines 10–12) to probe whether and how Sarah might navigate the connections
between the idea of rate of change and simulated behavior. However, Sarah did
not take up Michelle’s proposal.

In terms of resources and levels of description, Sarah was leveraging the expo-
nential as a mathematical idea, the population graph from which she identified
that exponential pattern, and her understanding of the actions/properties of the
population as resources in this excerpt. She used all three of those resources to
describe the Pattern of Accumulation in the simulation and considered how she
could use the exponential function or the population graph to find the correspond-
ing Pattern of Change. However, Sarah never directly linked her ideas about the
Pattern of Change to Group Interactions or Individual Behavior.

Like Gary’s case, many aspects of Sarah’s case are interesting and productive.
She volunteered more than one relevant solution to Michelle’s question, draw-
ing from what she had learned in class. She also considered how reasonable or
“realistic” those approaches might be given the nature of population dynamics as
the phenomenon under study (lines 7–8). Given that the interview occurred dur-
ing a mathematics class and dealt with mathematical patterns that were similar to
those studied in class, Sarah might have believed that she was expected to pro-
vide only mathematical answers to the interviewer’s questions and that leveraging
nonmathematical ideas was not appropriate in this context. Or she might have
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234 WILKERSON-JERDE AND WILENSKY

been struggling to understand how the mathematical notions of rate of change that
she was considering were connected to the specific behavior of the simulation (a
problem not uncommon in mathematics education). We argue that regardless of
whether it was because of her expectations from the interview or her understand-
ing of the simulation, Sarah was clearly not leveraging all of the resources she
had available to connect Patterns of Change to the Individual Behavior or Group
Interactions within the simulation during this exchange, and this interfered with
the degree to which she could describe the system and constituent parts across all
levels of description.

Later Michelle asked Sarah to explain whether the people born graph was what
she expected in terms of its appearance and trajectory. Sarah responded that she
had previously thought that the graph was “another version of population” that
would “take the highest and lowest points and find the average between them and
that would somehow equal this [population graph].” Once this became clear, Sarah
spontaneously noticed the “dips” in the graph:

17 S: Okay, um, then it’s saying as incre—, as time increases more and more
18 are being born throughout the population. It’s kind of easy to look at it
19 with these numbers, um, cause you can watch as time increases uh
20 people increases cause sometimes like you can see these kind of dips
21 um, yeah.
22 M: Why do you think those dips are there?
23 S: Uh, cause those are the dips that are just like I don’t know how
24 to really word it but the, the, I don’t know how to say it, like I can’t say the
25 minimum people born [laughs]
26 M: Oh yeah I know, I think I know what you’re talking about.
27 S: Uh yeah, but, as like opposed to here where the highest peak would be,
28 you know what is it, one person? But then most people would have
29 zero?

During this exchange, Sarah was beginning to connect her understanding of
the actions/properties of individual people (people being born) and of the pop-
ulation as an entity (more and more people born over time) as resources to the
people born graph. This allowed her to describe connections between the lev-
els of Individual Behavior and Group Interactions. However, it is unclear from
this excerpt whether at this point Sarah understood that the graph of people
born related to the Pattern of Accumulation generated by the simulation, or even
whether people born represented a Pattern of Change in the simulation.

Given that Sarah understood the graph of people born in a new way, Michelle
decided to run the simulation again for her. Sarah responded as follows:
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30 S: So um, as time kind of like increases some people won’t be having, like
31 people born at certain times, more people won’t be born at certain
32 times.
33 M: And does that make sense knowing what you know about how this
34 works?

35 S: Yeah
36 M: And why is that?
37 S: Because if they only have a .01 chance of reproducing, it doesn’t mean
38 they’re gonna be doing it every second.

During this exchange, Sarah maintained the connections she had articulated
before between Individual Behavior and Group Interactions, but this time also
cited the specific probabilistic rules of the simulation as a new resource to describe
these levels. Soon afterward, Michelle decided to ask Sarah to articulate the rela-
tionship between the graphs of total population and people born again, now that
she had a better understanding of the latter:

39 S: Um [points at lower graph, then top graph] okay our original
40 population is taking this [points to lower graph] added to uh people
41 that there were, that there were beforehand, before they were the people
42 were born. Um so it’s taking in account to adding to the uh population
43 beforehand, which is kind of the deal of exponents which is multiplying
44 and multiplying and multiplying from the original
45 M: And so does that help you talk about rate of change at all?
46 S: In terms of population or in terms of . . . ?
47 M: In terms of population.
48 S: People weren’t, um, then I guess, oh, I guess this could be the rate of
49 change.
50 M: And why’s that?
51 S: Uh, because, well this divide, is it, yeah, because their rate of
52 change is saying like oh, well this is how many people were added to the

original
53 population over a period of time
54 M: Mhm and how does that relate to kind of like the ideas you learned in
55 class?
56 S: Um, about derivatives and stuff?
57 M: Yeah.
58 S: Um, that derivatives is basically taking like an exact point divided by
59 another exact point finding the exact um, like change, but this gives us
60 the exact change over the exact time. It gives us the exact number of
61 people born at a certain time which is what derivatives is, is solving for.
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In the first excerpt of this case, Sarah was unable or unwilling to articulate the
connection between her understanding of the Pattern of Change in the simulation
(which she thought of as derived mathematically from an exponential) and the
Individual Behavior or Group Interactions in the simulation. After attending to
and making sense of the jagged nature of the people born graph, however, Sarah
was able to use that graph to describe Individual Behaviors and Group Interactions
within the simulation (lines 17–38). She then related those behaviors to the total
population graph by noting that the number of people who are born are added
to the total population (lines 39–42). It is important to note that this means that
Sarah was implicitly using a measure of the population as an entity—the total
born during a tick of time—as a resource to describe a Pattern of Change. Because
the number of people born depends on the size of the existing population, Sarah
was also able to coordinate her understanding of the actions/properties of the
population as a Pattern of Change with her understanding of how exponential
growth describes a Pattern of Change as “multiplying and multiplying from the
original” (line 44).

It appears that it is not until lines 48–49 that Sarah referred to the graph of
people born itself as an expression of the Pattern of Change exhibited by the sim-
ulation. However, by this point she had added behavioral descriptions of Patterns
of Change, based on the collective sum of agent births over time, to her previous
mathematically based understandings of Patterns of Change that were based on
her ideas about derivative. This time, Sarah was able to articulate this notion of
derivative in terms of the specific behaviors and interactions in the simulation that
generate population growth.

Synthesis of the case studies: Connecting individual behavior and pat-
terns of change. We claim that although the two complications exhibited by
Gary and Sarah seem different, both emerged because these students did not attend
to the connections between Individual Behavior and Patterns of Change in the
simulation. For this reason, both were resolved by drawing Gary and Sarah’s
attention explicitly to the jagged graph of people born. This prompted each stu-
dent to attend to how the probabilistic and agent-based resources that described
Individual Behavior (probabilistic reproduction) also emerged within mathemati-
cally based descriptions of Patterns of Change (making the graph of people born
jagged even though it was mathematically unexpected). Once this happened, the
connection between Individual Behavior and Pattern of Change enabled learners
to construct coherent quantitative understandings across all levels of description
illustrated within the simulation.

In Gary’s case, the lack of a connection between Individual Behavior and
Patterns of Change led him to connect descriptions of Individual Behavior in the
simulation directly to Patterns of Accumulation without considering that mul-
tiple individuals should be aggregated first. Even when asked to describe the
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relationship between the graph of people born and the graph of total population,
Gary did not describe either graph as representing only a collective measure of
many individuals. However, once he was asked to attend to why the graph of
people born was jagged, Gary linked this graph to the probabilistic behavior of
multiple individual agents in the simulation. This provided Gary with a way to
consider the role of multiple individuals collectively contributing to quantitative
patterns, rather than those patterns being assigned to a particular agent.

In Sarah’s case, the lack of a connection between Individual Behavior and
Patterns of Change led her to ignore the relationship between mathematical
descriptions of Patterns of Change (such as the idea of a derivative, or a rate of
change) and what those ideas represented within the simulation itself. Like Gary,
Sarah began to connect the idea of probabilistic behavior to the graph of people
born once she was asked to explain why that graph was so jagged. Once this con-
nection was made, Sarah recognized the graph of people born both as a measure
of change in the mathematical descriptions of population as well as a measure of
the results of the probabilistic reproduction behavior the simulation was based on.

Although Gary and Sarah were the clearest examples of the complications that
can emerge from a missed connection between Individual Behavior and Patterns
of Change, there was evidence that other students experienced similar difficulties.
In addition to Gary, four other students (including Sarah) explicitly attempted to
connect individual behavior directly to the graph of population or the idea of an
exponential. These attempts led to statements like “even though it stays at .01 it
seems it’s becoming exponential” (Eddie) or “I don’t know, but it is increasing
exponentially, so uh, each person you said has a 1% chance of reproducing, so
like, I dun, I don’t know how to explain it” (Caroline). In addition to Sarah, three
other students referenced the people born graph as though it were a measure of
total population or a representation of raw population data from which the total
population graph was determined using a line of best fit and struggled to connect
it to other aspects of the simulation.

It is interesting that the two complications we explored here emerged from
two different sides of the Individual Behavior to Pattern of Change connection:
Gary struggled to connect Individual Behavior to other resources in the simula-
tion, whereas Sarah struggled to connect Patterns of Change to other resources
in the simulation. In both cases, it is unclear whether Sarah or Gary made these
errors based on their actual understandings of the system or because they thought
their task was to focus on mathematical relationships of the sort they had studied
in class. In other words, Gary and Sarah might not have known the connections
between Individual Behavior and Patterns of Change or might not have thought
that those connections were relevant for this particular class. Either way, attending
to the jagged nature of the people born graph helped them privilege those connec-
tions so that they could better understand the relationships between the behavioral
and quantitative aspects of the population growth simulation.
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DISCUSSION

Interacting with agent-based simulations is a promising way to engage students in
thinking about complex scientific systems. However, little is known about whether
or how students make sense of the mathematical representations that accompany
those simulations. In this article, we take a first step toward understanding how
students make sense of the mathematical aspects of agent-based simulations, what
difficulties they may experience doing so, and how to support students in build-
ing those connections. Drawing from research on how students think and learn
about complex systems and the mathematics of change and variation, we devel-
oped the CCS framework as an analytic tool. The CCS framework highlights the
importance of understanding and connecting the (a) Individual Behaviors that
make up a complex system, (b) Group Interactions that emerge within that sys-
tem, (c) Patterns of Change the system exhibits over time, and (d) Patterns of
Accumulation that are often used to describe and track the system’s dynamics
in order to fluently make sense of a complex system and its quantitative aspects.
We used this framework to analyze how students who had recently studied the
mathematics of exponential growth made sense of an agent-based simulation
that generated simple exponential-like population growth from probabilistic rules.
This allowed us to focus on what new ways of reasoning and challenges arose
specifically when learners worked to make sense of complex systems, in which
mathematical patterns are often generated by multiple, simultaneous, probabilistic
underlying events.

Our analysis suggests that students were adept at describing many connec-
tions between simulation behavior and the mathematical patterns it produced
across most levels of description identified in the CCS framework. For exam-
ple, when asked to explain why particular quantitative patterns emerged within
the simulation (Patterns of Accumulation), almost all of the students we inter-
viewed cited the behavior of the simulated population (Group Interactions) in the
model at least once. When asked to explain why the quantitative pattern in the
simulation changed the way it did (Patterns of Change), nearly all students cited
agent behaviors or the probabilistic nature of the simulation (Individual Behavior).
Similarly, when asked to describe the connections between different resources
within the simulation (such as the available graphs, visuospatial rendering of the
simulation, simulation rules, and mathematical ideas), most students generated
explanations that incorporated multiple levels of description, including predomi-
nantly behavioral aspects such as Individual Behaviors or Group Interactions as
well as predominantly mathematical ones such as Patterns of Change or Patterns
of Accumulation.

However, although our participants clearly understood the mutual relevance of
behavioral and mathematical resources for making sense of the simulation as a
whole, there were some missing connections in their descriptions. Although they
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could provide mathematically sophisticated descriptions and specific quantitative
examples of the connections between Group Behavior, Patterns of Change, and
Patterns of Accumulation, Individual Behaviors were not part of those descrip-
tions. Instead, connections between Individual Behaviors, Patterns of Change, and
Patterns of Accumulation were described qualitatively, with a focus on general
trends rather than measurable mathematical aspects. Students did not engage with
the mathematical contributions of Individual Behaviors in the simulation, even
though the quantitative patterns within the simulation were generated exclusively
by those behaviors (i.e., the 1% probability for reproduction that translated to an
approximate, though jagged, 1% rate of population growth). When they did, they
often experienced difficulties or inconsistencies.

Our analysis suggested one possible source for this problem in connecting
mathematical aspects of individual behaviors to the quantitative patterns gener-
ated by the simulation. Looking across students’ responses to different interview
questions, we found that most students did not attend to connections specifically
between Individual Behavior and Patterns of Change. When they talked about one
of these levels of description, they did not talk about the other. Participating stu-
dents only began to articulate these connections when we asked them specifically
why the graph of people born (which represented the Pattern of Change) was so
jagged (a result of Individual Behavior—the probabilistic reproduction rule in the
simulation—that was much more exaggerated than it was in the graph of total
population growth). We conjectured that attending to this graph’s jagged nature
helped engage students in constructing connections across Individual Behaviors
and Patterns of Change that could then address the errors and difficulties they
experienced when describing the mathematical influence of individual behavior.

We explored this conjecture further through two case studies that reflected
broader patterns in our data. One student, Gary, attempted to directly attach an
exponential formula to individual behavior, which led him to a contradictory inter-
pretation of individual behavior in the simulation. After attending to the jagged
people born graph, he more clearly articulated how he expected individual patterns
of reproduction to quantitatively contribute to change in the population, ultimately
changing overall patterns of growth. Another student, Sarah, relied mainly on
mathematical procedures to describe patterns of change in the simulation but was
hesitant to interpret what those procedures meant in the context of the simulation.
After noticing and working to make sense of unexpected dips in the people born
graph, Sarah connected the probabilistic reproduction of individual agents in the
simulation to this quantitative representation of change. She later meaningfully
interpreted taking the derivative of population growth as finding the change in the
number of people in the simulation. We argue that in both of these cases, Gary and
Sarah already possessed productive resources for making sense of the simulation
and productive dispositions. However, the jagged nature of the people born graph
provided an organizing device that helped them connect those resources into a
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meaningful, coherent understanding of the simulation, its quantitative output, and
related mathematical ideas.

These findings have implications for research on complex systems thinking
and the design of learning environments. In terms of complex systems thinking,
our findings highlight nuances in what it means to understand the relationship
between levels of observation (or levels of thinking, as described in Levy &
Wilensky, 2008; Wilensky & Resnick, 1999) and their relationship to measurable
patterns and mathematical formalisms. Often, simulation-based learning environ-
ments for complex systems include quantitative patterns such as the emergence
of dynamic equilibrium in ecological systems (Wilensky & Reisman, 2006) or
canonical mathematical formulas such as the Maxwell-Boltzmann distribution law
(Wilensky, 2003) as part of their learning objectives. However, these quantitative
patterns are calculated through aggregation mechanisms that are not readily appar-
ent to students, and little work has been done to explore what reasoning is needed
for learners to build those connections (Chi et al., 2012).

Our findings suggest that even if students are quite comfortable describing rela-
tionships between levels of the behavior of the system, and even between some
quantitative and mathematical aspects of those same systems, they still may not
attend to the relationship between the agent-level behaviors that comprise a sys-
tem and their measurable contributions to those quantitative patterns. This in turn
can lead to specifically quantitative forms of complex systems difficulties, such as
slippage between (mathematical) levels. It also limits the degree to which learn-
ers might be able to interpret the implications of those quantitative patterns, and
their corresponding mathematical representations and predictions, for constituent
agents in the system and hence the complex system as a whole.

For participating students in our study, building these connections was not
particularly difficult or inaccessible. When we drew learners’ attention to math-
ematical resources that emphasized the ongoing probabilistic contributions of
individual agents, learners began to identify new connections across resources
they were already using that helped them navigate the quantitative and measur-
able contributions of individual agent behaviors. In our case, the graph of people
born helped learners recognize this connection because it featured dramatic and
unexpected jags or dips that could only be reasonably explained by connecting it
to the probabilistic aspect of the simulation rules.

Together, these findings have important implications for the design of
simulation-based environments for learning about complex systems. Designers
cannot assume that simply including quantitative descriptions of systems such as
graphs alongside visuospatial and programmatic representations of those systems
implies that students will automatically work to make sense of how the system,
its constituent members, and its behavior are reflected in those graphs. However,
encouraging students to attend to and make sense of resources at the intersection
of Individual Behavior and Patterns of Change that illustrate clearly how nuances
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of agent-level behavior contribute to and are recorded within larger quantita-
tive measures can help foster such connections. We have also been exploring
the potential of allowing students themselves to construct agent-based simula-
tions and linked quantitative representations using high-level descriptions of agent
behaviors, with the goal of foregrounding the connections between individual
behaviors, their quantitative manifestations, and how the result of those behaviors
can be measured over time (Wilkerson-Jerde, 2012; Wilkerson-Jerde & Wilensky,
2010).

This study also illustrates the utility of the CCS framework we introduce as
an analytic tool and guide for environment design. The framework allowed us
to identify what resources students relied on for different patterns of quantitative
change. It also brought students’ inattention to the connections between Individual
Change and Patterns of Change to the surface as a potential reason why some
students struggled to make mathematical connections in the simulation. Although
our current study dealt with relatively simple emergent behavior in the particular
context of agent-based simulations, we believe that the framework holds promise
for informing the study of student reasoning about quantitative change in complex
systems more generally.

Finally, this study illustrates the importance of explicitly attending to quantita-
tive and mathematical issues in the context of complex systems reasoning. There
are nuanced and powerful connections between the individual agents that make
up a complex system and the quantitative and mathematical methods that those
agents generate together over time. Exploring these connections is not currently
emphasized in curricula, has not been explored much in the literature, and was
not spontaneously undertaken by students in our study. However, these connec-
tions were certainly accessible to learners and led Gary and Sarah to engage in
meaningful and sophisticated reasoning that allowed them to clarify and elabo-
rate their understandings of the system more generally. Given the prevalence of
mathematical representations in the study of science, complex systems, and even
educational simulations, we argue that mathematical and quantitative reasoning
should be considered key components of complex systems fluency.
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APPENDIX A: CODE EXAMPLES FOR IDENTIFYING RESOURCES

When Is Population Highest?

[Betsy] Where is it the, uh, [points at population graph] when x is 184.

This statement is coded as referencing the population graph to reason about
accumulation, as Betsy gestures to and reads from it “x is 184.”

[Gary] The later the tick, which is at like uh, 153ish.

This statement is coded as referencing monotonic/programmatic behavior to
reason about accumulation, as Gary notes that the population would always be
highest “the later the tick” or at the end of the simulation’s execution. It is also
coded as the population graph, which he gestures to and reads the value “153”
from.

Why Is Population the Highest at the End?

[Eddie] It doesn’t, it doesn’t decrease it’s just increasing so the latest tick is the
highest.

This statement is coded as referencing monotonic/programmatic behavior to
reason about accumulation, as Eddie notes that the population in this particular
simulation can only increase and refers to simulation “ticks.”

[Kevin] It’s um, because um, in an exponential growth as time increases the
amount of people increases so it’s generally given that as more time elapses there
will be more people.

This statement is coded as referencing the general properties of exponential
growth (as the independent variable time increases, so does the dependent vari-
able) to reason about accumulation as well as connecting this growth to the
collective behavior of a population (“the amount of people increases”).

When Is Population Changing the Fastest?

[Alex] Uh, the rate of, well the rate of change if gonna be tor—it’s gonna be greater
when the, if you were to make a tangent line to the curve [on the population graph],
if the tangent line was steeper that technically means the rate of change is getting
greater.
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This statement is coded as referencing the population graph to reason about
rate of change, as Alex uses it to determine where the rate is highest by visually
evaluating the slope of the graph.

[Mani] When is it changing the fastest? Um, probably by the next time you go,
it’s gonna be fastest, because there’s um a bigger, a big population right now, so
by next, 1%, let’s say how many people there are right now, 1% of 287, it’s gonna
be 2.87 people next time, so.

This statement is coded as referencing quantities, collective properties, and
monotonic/programmatic aspects to reason about rate of change, because Mani
refers to the size of the collective population, notes that this will be largest at the
end or “the next time you go,” and notes with a specific quantitative example that
1% of a large number represents more differential change than 1% of a smaller
number. Note that although Mani cites 1% in her explanation, this is not cited as
probability/chance because she does not apply it this way (in fact, she contradicts
such an application by applying it to the population as a whole).

Why Is Population Changing the Fastest?

[Irene] If you have a single number and that’s raised, if you have a constant rate of
change but your initial value is greater then your end amount will be greater.

This statement is coded as referencing the general properties of exponen-
tial growth (“a . . . number . . . raised”)—in this case, that the constant rate
characteristic of exponential growth can produce differentially larger values.

[Todd] Um because there’s more people to create that change. There’s a
higher probability I guess of a person being born when there’s more people that can
have that child.

This statement is coded as referencing collective behavior (“more people”),
chance/probability, and individual behavior (“probability . . . of a person being
born”) to explain the rate of change in the simulation.
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APPENDIX B: CODE EXAMPLES FOR IDENTIFYING RESOURCES
AND LEVELS OF DESCRIPTION

How Is an Individual Agent Related to Overall Population Growth?

[Betsy] No, him, as like more people, it’s not him alone but in a population there are
more chances that more people will reproduce.

[Michelle] Okay I see. Okay

[Betsy] Because there is a greater number, a greater population.

In terms of resources, this response is coded as connecting indi-
vidual behavior/properties because Betsy references an individual alone,
probability/chance, and collective behavior/properties because she notes that
when there are a greater number of people there are more individual chances to
reproduce.

In terms levels of description, this response is coded as using both agent
behavior and probability/chance to describe the system at both the Individual
Behavior and Group Interaction levels of description. This is because by noting
that individuals’ role in population growth is “not alone,” their individual behavior
(“him”) can also be thought of as happening “in a population” to create multiple
“chances.” We code Betsy’s reference to collective behavior in terms of “more
people reproducing” a Group Interaction and her reference to a “greater num-
ber” in the population to speak to population as a Pattern of Accumulation. It is
unclear from this exchange alone whether Betsy recognizes quantitative or only
qualitative connections between individual behavior and population growth.

[Zoe] So at first you start with a smaller amount of people and then they
each have like a kid or something then the next time around you have
twice as much people so you have a bigger base so therefore, that change, the next
change is gonna be greater because you’re gonna have two times the amount of
people doing the same thing.

In terms of resources, this response is coded as involving individual
behavior/properties because Zoe describes that “each” agent “has a kid,” collec-
tive behavior/properties to describe properties of the population, and a specific
quantity.

In terms of levels of description, this response is coded as using agent
behavior/properties to describe both Individual Behavior and Group Interactions
(“each have like a kid”). Collective behavior (“start with a smaller amount of peo-
ple”) is coded as describing Group Interactions. Finally, the quantity is used to
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describe Group Interactions (“each have a kid . . . twice as much people”) and
Patterns of Change (“the change is gonna be greater because you’re gonna have
two times the amount of people”). Note, however, that although Zoe is specify-
ing specific quantitative connections across these levels, she is not considering the
actual 1% chance rule that drives the simulation she is interacting with.

What Is the Relationship Between People Born Graph and Total
Population Graph?

[Kevin] To, um, I mean you could simply like we already related how this graph’s
irregular [gestures toward born graph] and so is this [gestures toward population
graph] but um, simply putting um, this [population graph] isn’t going to model dips
in population nearly as well as this, so you could simply I guess say that this graph
is simply almost like a best fit line of this graph so it takes like the top points are the
most important pertinent points of the bottom graph and it simply shows up on the
top.

In terms of resources, this response is coded as involving the people born graph
(“bottom graph”) and the population graph (“top graph”). Kevin also explic-
itly relates these graphs to the collective behavior/properties of population as an
entity.

In terms of levels of description, Kevin describes the population graph as a best
fit line that reproduces important points of the people born graph, which suggests
that he is using both graphs to describe the Pattern of Accumulation of the popu-
lation. Kevin is also referring to collective behavior/properties of the population
to describe its Pattern of Accumulation and the Group Interactions it describes
(“dips in population”).

[Irene] Well, yes, I, there is a relation because the population depends on the
number of people being born (mhm), but um, the people being, the, it’s not vice
versa, so, like the people being born is almost independent and the population
depends on that, so.

[Michelle] Okay, almost independent how, can you talk a little more about that?

[Irene] Um, because, you’re um, people being born, is, is going to affect the population
but, the number of people there isn’t going to really affect the number of people
being born. Yeah, I don’t know if that makes sense.

In terms of resources, this response is coded as involving the population
graph and the people born graph. Irene also talks about the population’s collec-
tive behavior and dependent and independent relationships within that behavior.
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Irene’s insistence that people being born is “almost independent” from the popu-
lation provides some evidence that Irene is aware of behavior at something other
than the collective level of population. This excerpt represents an example of
when looking at other portions of Irene’s transcript is useful. Returning to her
interview, we can say that Irene’s responses to the previous questions indicated
that she was aware the individuals have a “one percent chance” and that when
there are more people “someone’s bound to have another person.” Therefore, we
interpret the claim for independence in this excerpt as also implying individual
behavior/properties.

In terms of levels of description, Irene is using the population graph to describe
Patterns of Accumulation and using the people born graph to describe Patterns of
Change. Although she knows the two are interdependent, she does not articulate
how these resources embody information at different levels of description. Irene
uses agent behaviors to describe Individual Behaviors and Group Interactions
(“people being born”). She also connects agent behavior to Patterns of Change
and population behavior to Patterns of Accumulation.

Why Is the People Born Graph Jagged?

[Mani] I think so, cause you can’t have half a person or .8 person.

[Michelle] Mmkay. So sometimes it’s, it gets kind of lower and then it goes back up,
does that make sense?

[Mani] Well uh, [pause] I guess so, uh.

[Michelle] It’s okay to say no.

[Mani] Um, cause, I don’t know if this simulation is like, perfect like, cause peo-
ple may not choose to have kids. So some years there might be less and some years
there might be more. But it evens out since it’s an average 1, .01%, er 1%.

In terms of resources, this exchange is coded as citing individual
behavior/properties and quantities to justify a feature of the people born graph,
as people cannot be reasonably treated as divisible entities. After further probing,
Mani cites more individual behavior (“people may not choose to have kids”) and
asserts that individuals born comprise a collective behavior/property. However,
there is no more evidence in the interview that Mani identifies mathematically
random or probabilistic behavior as an element of the simulation—instead, she
identifies the 1% as resultant average.

In terms of levels of description, Mani is using chance to describe Group
Interactions. She considers agent behavior/properties that “you can’t have half a
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person,” specific quantities, and the people born graph as resources for describing
the Pattern of Change exhibited by the simulation. She also considers differ-
ent agent behaviors, that “people may not choose to have kids,” to describe the
Individual Behaviors in the simulation.

[Kevin] Like you said that um, they have a 1% chance of reproducing and for
instance, at the spikes maybe here and here, the, just at that moment of that 1%
chance actually occurred, so, they had a higher uh reproducing, while at the dips
over here it just didn’t come through and then, um, the other chances of not
reproducing kicked in and just right there they didn’t reproduce as much.

In terms of resources, this statement is coded as involving individual
behavior/properties, as Kevin is referencing the chance individuals have to
reproduce, as well as collective behavior/properties, as he suggests the collec-
tive “they” reproduce more or less at different points in time, to describe the
people born graph. Although this excerpt could be interpreted as Kevin claim-
ing that the population as a whole (rather than each individual) has a chance
to increase by 1% at any point in time, we code the except as also involving
probability/chance because there are other moments in the interview when Kevin
refers to the 1% chance as belonging to an individual, and he specifically mentions
1% chance “like you said” (when the interviewer described the agent-based rules
of the simulation).

In terms of levels of description, Kevin is relating agent behavior/properties
(“reproducing”) to the 1% reproduction chance rule and is using both of these
resources to describe Individual Behavior and Group Interactions. He also con-
nects this agent behavior and chance to Patterns of Change by describing how they
directly affect the graph of people born, which also measures Patterns of Change.
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