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ABSTRACT: To successfully integrate simulation and computational methods into K–12
STEM education, learning environments should be designed to help educators maintain
balance between (a) addressing curricular content and practices and (b) attending to stu-
dent knowledge and interests. We describe DeltaTick, a graphical simulation construction
interface for the NetLogo modeling environment designed to make computational model
construction a more accessible and responsive part of science and mathematics curricular
activities through domain-specific, customizable construction libraries. With DeltaTick,
learners assemble and reassemble predefined sets of “behavior blocks” to build simulations
that represent a particular domain of study. When needed, blocks can be added, adjusted,
or replaced to better reflect student knowledge, interests, or questions. We present coding
analyses and vignettes from DeltaTick enactments in middle and high school classrooms to
illustrate ways these features allowed learners to explore core curricular ideas, while also
accommodating emergent student or classroom needs. From these findings, we posit two
principles, curricular example space and levels of responsivity, for the design of computa-
tional modeling environments intended for classrooms. We argue that this design approach
can bring into better alignment the complex relationships between computational modeling
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activities, student knowledge, curricula, and teacher supports in K–12 classrooms. C© 2015
Wiley Periodicals, Inc. Sci Ed 99:465–499, 2015

INTRODUCTION

There are increasing calls to integrate computational modeling and simulation into K–12
science and mathematics education. Interacting with and constructing simulations allows
learners to explore the specific mechanisms that underlie a phenomenon of interest (Sherin,
2001; White & Frederiksen, 2005; Wilensky & Reisman, 2006), to engage in inquiry (de
Jong & van Jollingen, 1998; Kali & Linn, 2008; Windschitl, 2000), and to interact with
scientific and mathematical ideas that might otherwise be difficult or inaccessible (Kaput,
1994; Roschelle, Pea, Hoadley, Gordin, & Means, 2000; Wilensky & Resnick, 1999). It
can also expose learners to professional practices in STEM fields, where computational
methods are changing what it means to generate intuition and conduct experiments (Borwein
& Bailey, 2011).

These calls come at a time when educators are already asked to balance a number of
curricular and pedagogical goals. Policy documents and standards emphasize core content
and key scientific practices in science and mathematics (Council of Chief State School
Office [CCSSO], 2010; NGSS Lead States, 2013; National Research Council [NRC],
2012). Educators are also asked to encourage students to conduct their own investigations,
and to make sense of and evaluate their peers’ ideas (Berland & Reiser, 2009; Duncan,
Rogat, & Yarden, 2009; Levin, Hammer, & Coffey 2009; Sherin & van Es, 2005). These
goals can be in tension, as educators balance curricular goals with students’ own intellectual
pursuits. Navigating this tension requires teachers to be responsive—that is, to elicit and
build upon their students’ existing ideas and ways of making sense, and find ways to
connect that knowledge and sensemaking to curricular goals (Ball & Bass, 2000; Dewey,
1904; Hammer, 1997; Metz, 1997; Simon, 1995).

We are interested in exploring how K–12 classroom-based computational modeling
activities can be designed to support these connections between students’ knowledge and
interests, and curricular goals. Often, computational modeling toolkits are described as static
components of a dynamic classroom ecology, around which specially aligned curricula and
teaching strategies must be developed (Fretz et al. 2002; Louca & Zacharia, 2012; VanLehn,
2013). We agree that modeling toolkits require curricular alignment and support. However,
we argue that they can also be designed to allow educators to make adjustments that align,
adapt, and expand students’ computational explorations based on classroom needs. In this
way, modeling toolkits themselves can serve as responsive components of the classroom
ecology, supporting both curricular and emergent pedagogical goals.

In this paper, we describe DeltaTick1 (Wilkerson-Jerde & Wilensky, 2010), a visual
block-based construction interface for NetLogo (Wilensky, 1999). DeltaTick allows stu-
dents to construct simulations for specific domains of study, and allows educators to
adapt blocks according to student needs. Using in-depth vignettes and video coding
analyses, we report ways learners used DeltaTick to explore core curricular topics, and
ways we adapted explorations for pedagogical purposes. From these findings, we pro-
pose two principles, curricular example space and levels of responsivity, for the design of
computational environments for classroom integration. These principles shed light on new
ways to address persistent issues related to computational modeling in K–12 classrooms.

1The name DeltaTick was chosen to reflect the environment’s emphasis on describing the behaviors
each agent performs within one tick or iteration of simulated time, and the resulting quantitative change or
delta that results from the aggregation of those behaviors.
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BACKGROUND AND MOTIVATION

Simulation and modeling are core to contemporary mathematics and science (NRC,
2010, 2012). Computational methods help practitioners generate intuition (Bailey & Bor-
wein, 2011), represent and test scientific theories (Grimm et al., 2005), and reveal hidden
connections across ostensibly disparate domains (Goldstone & Wilensky, 2008; Sabelli,
2006). Given the central roles that computational modeling and simulation play in STEM
professional practice, it is not surprising that educators have also begun to explore their ped-
agogical potential (Clark, Nelson, Sengupta, & D’Angelo, 2009; Hoyles & Lagrange, 2010;
NGSS Lead States, 2013). Much of this work has focused on using preconstructed sim-
ulations and models as visualizations (Gilbert, 2005), experimental tools (Buckley et al.,
2004; Zacharia, 2007), or sites for inquiry (Edelson, 2001; Ketelhut, Nelson, Clarke, &
Dede, 2010; Williams & Linn, 2002). In this project, we focus on the role that constructing
computational simulations can play in middle and high school STEM classrooms as a way
for students themselves to express, test, and refine their ideas about how the world works.

Constructionism and Programming to Learn: Building From Student
Ideas

There is a long history of integrating programming into mathematics and science educa-
tion, starting with constructionist (Harel & Papert, 1991; Kafai, 2006; Papert, 1980) tools
for K–12 learners such as LOGO. These environments, inspired by constructivist theories
of learning (Ackermann, 2001; Piaget, 1952), are based on the premise that constructing
external physical or digital artifacts can facilitate knowledge construction. The argument is
that by constructing such artifacts using primitive rules that connect to their existing ways
of navigating the world (such as physical movement), learners’ prior knowledge can be
reorganized, debugged, and built upon to generate new ideas.

Studies reveal that engaging in programming can help learners reason about the mecha-
nisms and relationships that underlie key phenomena (Blikstein & Wilensky, 2009; Parnafes
& Disessa, 2004; Sherin, 2001; Wilensky, 1995), better connect with their experience of
the world (Ackermann, 1996; Sherin, diSessa, & Hammer, 1993), and develop symbolic
and generalizable ways of describing ideas (Noss, Healy, & Hoyles, 1997; Papert, 1993;
Wilensky & Reisman, 2006). Recent calls to incorporate computational literacy (diSessa,
2001) and computational thinking (NRC, 2010; Wing, 2006) into K–12 education empha-
size the utility of ideas from computer science for thinking about problems broadly across
domains, as well as deeply for particular topics.

But there have been challenges to integrating programming into K–12 science and
math explorations. Many programming environments are domain general and use primitive
elements that might not easily map to complex scientific or mathematical topics (Louca
& Zacharia, 2008; Schwartz, 2007). This allows significant flexibility in what students
can construct, but may also require significant support for users to build complex models
(Harvey & Mönig, 2010; Hmelo-Silver & Azevedo, 2006) and take longer than matched
activities for the same content (Xiang & Passmore, 2010). A common response to the need
to scaffold particular learning goals under this time pressure is to employ more curricular
structure, which can leave less space for students to pursue their own interests.

We agree that learning programming as a general literacy is essential (Stonedahl,
Wilkerson-Jerde, & Wilensky, 2011; Weintrop & Wilensky, 2013; Wilensky, 1995).
However, complementary research is needed to design for the immediate pedagogical
and curricular needs of current classrooms. Several newer generations of computational
construction environments have started to address some of these concerns.
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New Paradigms to Support Simulation and Modeling in the Math
and Science Classroom

Designers and researchers have explored ways to make computational modeling toolk-
its better suited for complex curricular explorations. Some environments offer primitives
that foreground specific classes of phenomena, such as geometry (Logo) or emergent phe-
nomena (NetLogo). To address the difficulties teachers and students experience related to
the syntax and structure of programming, environments including ToonTalk (Kahn, 1998),
Alice (Conway & Pausch, 1997), StarLogo TNG (Klopfer, Yoon, & Um, 2005), Scratch
(Resnick et al., 2009), SimSketch (Bollen & van Joolingen, 2013), Tern Tangible (Bers
& Horn, 2010; Horn & Jacob, 2007), and NetTango (Horn & Wilensky, 2012) have in-
troduced visual paradigms that make it easier for students to know what instructions they
have available to use, illustrate how different computational primitives fit together, and
eliminate syntax errors. Other environments such as Stagecast Creator (Smith, Cypher, &
Tesler, 2000), the Simulation Creation Toolkit (Basawapatna, Repenning, & Lewis, 2013),
and SiMSAM (Wilkerson-Jerde, Gravel, & Macrander, 2013) allow learners to visually
demonstrate how objects should move, relate, and interact.

Other toolkits such as Agentsheets (Repenning & Sumner, 1995), MathSticks (Noss
et al., 1997), and Behavior Composer (Kahn, 2007) include high-level primitives that make
sense for only a particular domain of study. For example, constructing simulations of
disease spread in Behavior Composer might involve primitives such as “avoid” or “infect.”
Other environments provide existing, “broken,” or partly constructed simulations for a given
content area. Examples include the NetLogo Models Library (Wilensky, 1999), microworlds
such as ChanceMaker (Pratt, 1998) constructed in the Boxer environment, which allows
components of a system to be “opened” to modify underlying code (diSessa & Abelson,
1986; diSessa, 1997), and Kynigos’ (2007) half-baked microworlds. Rather than having
students start construction from scratch, these approaches invite them to explore curricular
targets through modification, repair, and extension.

While such approaches have made complex content more accessible for computational
exploration, they have also reduced the flexibility students have to hypothesize test, and
revise their own ideas through simulation. Preconstructed simulations offer students less
opportunity to hypothesize about, create, and test their own models. High-level primitives
may restrict access to particular aspects of a phenomenon, and may not be aligned with
students’ own understandings of a domain.

Moving Forward: Contributions of the Current Work

Rather than focusing on one or the other—creating highly flexible languages or mak-
ing complex curricular content more accessible—we take a different approach. DeltaTick
leverages the accessibility and focus of block-based paradigms and domain-specific pro-
gramming libraries to provide learners with construction units that reflect the “simplest
elements” (Bamberger, 1996, p. 34) that make up a domain of interest.2 However, we
recognize that these “simplest elements” may differ across contexts, and that educators
themselves are most likely to understand which elements can best serve the needs and
interests of a given group of learners. Therefore, DeltaTick also allows designers or educa-
tors to add and customize construction blocks themselves, and permits users to access and

2Bamberger contrasts the “simplest elements” for a novice in a domain with the “smallest elements”
that make up the normative description of that domain. For example, structures such as melody, rhythm,
and repetition might more “simply” describe a musical composition for a novice, rather than the specific
pitch and duration of individual notes used in formal musical notation.
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change the low-level code assembled from those blocks to explore a phenomenon in more
depth.

We have been iteratively refining and studying DeltaTick for the past 5 years in middle
and high school classrooms with different curricular foci. Our work builds on arguments that
computational tools should be “extensible” (Wilensky, 1999), and “open” (diSessa, 1997) so
that their objects, processes, and interface elements can be flexibly edited and combined. We
explore these notions of extensibility and openness specifically at the level of computational
primitives—the building blocks learners have available to construct simulations during
curricular exploration. A major contribution of this work is that it reconceptualizes the
role of computational modeling toolkits vis-à-vis student knowledge, curricular supports,
and pedagogy, and offers principles and examples to support this reconceptualization. We
argue that such a reconceptualization can address persistent issues in the STEM education
literature regarding the appropriateness and nature of computational modeling activities for
K–12 classroom settings.

THE DELTATICK CONSTRUCTION KIT

DeltaTick is a block-based drag-and-drop interface for the NetLogo agent-based mod-
eling environment. NetLogo is a simulation construction environment based on LOGO
(Papert, 1980) that allows users to program collections of computational microlevel agents
(such as molecules in a gas or animals in an ecosystem). The program can then be executed
to observe how agents act and interact to produce a system-level outcome of interest, such
as air pressure or predator–prey oscillations (Wilensky, 2003; Wilensky & Reisman, 2006;
Wilensky & Resnick, 1999).

The standard NetLogo interface includes three tabs: One provides access to the text-
based “Code” of a model, one provides access to interface elements to “Run” and explore
the model, and one provides more “Info” (including hints for educators, technical details,
and references to relevant publications). DeltaTick replaces the “Info” tab with a new tab
called “Build” (Figure 1).3 A video of DeltaTick in action has been included as Supporting
Information at http://bit.Iy/MvI511.4

To create a simulation using DeltaTick, users load at least one behavior library, a
specially formatted text file that creates domain-specific blocks that can be assembled
to create simulations. Users then add a species (a “breed,” in NetLogo parlance) to their
simulation with the “Add Species” button. This creates a window that represents a collection
of simulated agents. The window includes options to give the species a name, shape,
color, and assign traits. Users can define how agents of the species will behave by adding
combinations of purple “behavior” blocks and green “conditional” blocks, which will be
executed once per “tick” or single simulation execution. Users can also add graphs to their
simulation by using orange “quantity blocks.” As blocks are assembled in the DeltaTick
interface, underlying NetLogo text code is dynamically constructed, and can be accessed
by clicking on the “Code” tab.

Figure 1 shows a simulation involving individuals of two different species, “tortoises”
and “hares,” built within DeltaTick. The simulation starts with 20 tortoises and 40 hares.
Both species perform some of the same behaviors: they “wander” (move randomly about
the visuospatial world), and each has a chance to reproduce. Both also have a chance

3DeltaTick, like NetLogo, is open source. The open source project is available at http://bit.ly/DT_github,
and packaged software and additional resources can be accessed at http://ccl.northwestern.edu/deltatick/.

4DeltaTick has been through several rounds of development and refinement. Some of the screenshots
featured in this paper are of older versions of DeltaTick, and may not look exactly as we describe here.
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Figure 1. DeltaTick interface. Simulations are constructed by assembling different combinations of blocks within
the appropriate species window.

of dying once they reach a certain age, since purple “die-with-chance-of [n]%” behavior
blocks are placed inside of green “if age-more-than [n]?” conditional blocks. However, the
parameters of these behaviors are different for the two different species. Tortoises wander
more slowly, reproduce less frequently, and live longer than hares. If hares find any tortoises
in the same location as themselves (“if any-here? [tortoises]”), they wander an additional
step.5 The “graph of [population]” window adds a plot of hare and tortoise populations to
the simulation interface.

Figure 2 illustrates how traits are used in DeltaTick to represent within-species variation
(Wagh & Wilensky, 2012). Users select a trait for a species, and define how that trait will
vary in the species at the start of a simulation. Once a trait is added, a corresponding trait
block appears that can be used with relevant behaviors. In Figure 2, 100 hares will be
created, 50 with a vision range of 1 patch, and 50 with a vision range of 2 patches. When
the simulation runs, each hare will approach and eat grass within its vision range. When a
hare reproduces, its offspring inherit its vision.

MODE OF INQUIRY

In this paper, we explore the degree to which specific design features of DeltaTick allowed
us to (1) focus student explorations of targeted materials and activities (curricular goals)
and (2) modify or extend those activities in-the-moment in response to student needs and
interests (pedagogical goals). We approach our analysis as an interpretive, multisite case
study (Yin, 2009) focused on the use of DeltaTick as a modeling toolkit for classroom-based
curricular exploration. We present and analyze vignettes drawn from data collected during
three middle and high school classroom enactments to provide a rich description of use.

5The hares are aware of how important it is to stay one step ahead of tortoises (Aesop, as cited in
Pinkney, 2000).
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Figure 2. Trait window (top) allows users to define within-species variation for a trait. Once a within-species
variation for a trait is introduced, a trait block is added to the library (here, “vision of hares”; bottom) and can be
used with corresponding behaviors.

We situate these vignettes by reporting results from coding analyses that reveal broader
patterns of use across participants and enactments.

Utilizing a case study methodology within a design-based research context allows us to
develop and revise theory about how modeling toolkits can be designed for and used in
classroom settings (Khan, 2008). Indeed, over the course of our work with DeltaTick, we
discovered a need to modify our conjectures about what role it would serve within classroom
activity based on our experiences. Our original intention was to design an environment
and associated materials that would make computational construction activities productive
and accessible in classroom settings. However, we often found ourselves revising the
environment in response to immediate pedagogical needs, and began to recognize the
potential of these unexpected patterns of use.

Data Sources

Our data are drawn from two design-based (Brown, 1992; Cobb, Confrey, Disessa,
Lehrer, & Schauble, 2003; Collins, Joseph, & Bielaczyc, 2004) curriculum development
and research projects across three sites. The projects used DeltaTick to engage learners
in constructing, testing, and debugging simulations of natural selection and population
dynamic systems, respectively. We worked in classroom settings to engage students in
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exploring key curricular structures and relationships through multiday, guided simulation
construction activities. Students did not have prior experience with DeltaTick or the NetL-
ogo modeling environment. Table 1 provides details regarding the schools and classrooms
where our studies took place.

Our focus was on small group patterns of interaction to inform subsequent iterations
of our software and curricula. We therefore collected video of student small group work
synchronized with captures of their on-screen activity using Camtasia (TechSmith Corpora-
tion, 2010). We also collected video of whole classroom activity (Derry et al., 2010), digital
artifacts including behavior libraries we constructed and revised for each classroom enact-
ment, students’ simulation constructions, collaborating teacher reflections, and researcher
journal notes and reflections.

Case Selection

We selected vignettes from our enactments that illustrate how DeltaTick was used to
support curricular exploration and accommodate students’ pedagogical needs. To illustrate
curricular exploration, we present excerpts from video of small group curricular activity
from one population dynamics (high school) and one natural selection (seventh grade)
study. These vignettes (curricular examples C1 and C2) were drawn from different study
sites to illustrate typical DeltaTick use across grade levels and domains of inquiry. Together,
they illustrate how students sometimes used DeltaTick by incrementally adding blocks to
“build up” an inquiry into a core phenomenon, and sometimes used it to “break down” a
complex simulation by identifying and reflecting on its basic underlying components.

To illustrate pedagogical accommodation, we describe three instances in which we lever-
aged features of DeltaTick in unexpected ways to accommodate student needs, interests,
and questions (pedagogical examples P1, P2, and P3). We selected these instances to il-
lustrate the breadth of adaptations that can be supported by DeltaTick: from small edits
to behavior libraries, to the development of new libraries that support extensions or new
investigations, to microadaptations that are made directly in existing NetLogo code.

Coding Analysis

To establish the representativeness of the vignettes we present, we also conducted a
coding analysis of video collected across studies. Here, we present the details of this
analysis only briefly; more information about our coding procedures is available in the
Appendix.

Investigating Curricular Needs. First, we were interested in the degree to which learners
in our studies were able to use DeltaTick to construct and explore computational models that
illustrated curricular target ideas. Since our data are from different studies (see Table 1), we
focus on episodes that could be meaningfully compared. We identified segments of video
from each of the three classroom enactments that (a) constituted one complete, designed
lesson from each of the curricula, (b) engaged students in small group model construction
and exploration with DeltaTick, (c) asked students to build at least one simulation that
exhibited a target outcome aligned with curricular goals, and (d) did not specify which
blocks or parameters students should use (e.g., was not a tutorial). We eliminated any
videos that captured less than half of the planned lesson (usually as a result of technical
difficulties; these were 30 minutes of video in both population dynamics enactments, and
23 minutes in the natural selection enactment). All remaining video episodes of student
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group work using the DeltaTick tools during these times are included in our analysis.
These included six group episodes from Day 1 of population dynamics study 1, 11 group
episodes from Day 3 of population dynamics study 2, and ten group episodes from Day 2
of the natural selection study. In all three cases, students had not worked with the DeltaTick
environment for more than 1 hour total at the beginning of the episodes analyzed.

For each episode, we marked to the nearest minute each interval of time during which
students were actively engaged in model construction. For each of these intervals, we iden-
tified whether students (a) successfully constructed a simulation that exhibited the behavior
specified in their curriculum materials, and (b) actively engaged in exploring the causal
chains that underlie that behavior. We also marked whether (c) students’ model construction
behavior could be best described as “building up” or “breaking down.” By “building up,”
we mean students added or adjusted blocks in their simulation incrementally as they worked
on constructing a target model or making sense of the phenomena under investigation. By
“breaking down,” we mean students removed blocks or modified parameters for existing
blocks to deconstruct the mechanics of a simulation to make sense of or create a model of
a target phenomenon.

Investigating Pedagogical Needs. Second, we were interested in the degree to which
design features of DeltaTick did, or could have, supported educators in making adjustments
for students and student groups depending on their pedagogical needs and interests. Since
this was initially unexpected and less frequent than students’ use of the tool for meeting
curricular goals, we did not restrict the scope of our analyses to particular intervals of time
in this case. Instead, we analyzed all available data including group-level video, research
notes, and behavior library files from classroom enactments.

Across these data sources, we documented each unique instance where educators (a)
adapted existing behavior libraries or blocks, (b) created new behavior libraries or blocks, or
(c) worked with students to directly edit NetLogo code. We also documented opportunities
where we found clear potential for such adaptations that we did not pursue, for example,
when learners themselves suggested new behavior blocks or modifications to existing blocks
to one another while working with the environment, or directly viewed or edited NetLogo
code without a facilitator.

FINDINGS PART I: USING DELTATICK TO CONDUCT CURRICULAR
INVESTIGATIONS

The majority of participating groups successfully created models that illustrated curricu-
lar concepts and engaged substantively in investigations using those models with DeltaTick.
We found that 22 (81%) of the 27 groups we analyzed constructed at least one model that
reflected target dynamics and 17 (60%) of them explicitly engaged with the conceptual
content of the problem, rather than simply treating the problem as a “puzzle” (Löhner et al.,
2005, p. 458) without considering underlying causal linkages (Table 2).

These findings represent patterns of model construction after only one class period
of working with the DeltaTick tool. This is notable, since many studies report that it
takes learners several weeks to learn a modeling tool well enough to construct one’s own
simulation (VanLehn, 2013) and that both these curricular topics (population dynamics and
natural selection) are challenging, as we describe further below. In the following sections,
we describe both curricular interventions in more detail and provide detailed vignettes to
illustrate patterns of successful use.
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TABLE 2
Results of Coding Analysis for Students’ Degree of Curricular Engagement
Using DeltaTick

Episodes
Target
Model

Causal
Reasoning

Building
Up

Breaking
Down

Population dynamics 17 13 12 12 7
Natural selection 10 9 4 9 8
Total 27 22 (81%) 16 (60%) 21 (78%) 15 (56%)

Modeling Natural Selection

Aditi and Uri have been using DeltaTick with middle school students to model microevo-
lutionary change on a project called EvoBuild (Wagh & Wilensky, 2012). The main goal of
EvoBuild is for students to explore how distributions of genetic variations in a population
change over time due to natural selection and genetic drift (NGSS Lead States, 2013; NRC,
2012) through a series of model-building activities.

We pilot tested EvoBuild with students in a seventh-grade science class in a large,
socioeconomically diverse public middle school. As part of the unit, students were presented
with a counterintuitive simulation illustrating natural selection. The simulation featured an
ecosystem with predators and prey, in which slow-traveling prey always out-survived their
faster peers. Students were then asked to work together to build a simulation that reproduces
this pattern, and develop an explanation for why it occurred. Here, we focus on an excerpt
featuring Andy and Nikhil, two students who were working together on the activity. The
blocks for this activity had been designed to enable exploration of how the distribution of a
trait, speed, in a prey species would shift over generations due to selection pressures from
predators.

Example C1: Andy and Nikhil Explore Variation and Natural Selection. Andy and
Nikhil started by adding two species called “steve” and “buddernaug” to their model. They
added a “speed” trait to the “buddernaug” species so that 20% of the buddernaug population
would be “very slow,” “slow,” “medium,” “fast,” and “very fast.” They added the “move”
behavior to both species and programmed steves to eat a buddernaug whenever they were
physically next to it.

At this point, Andy and Nikhil decided to run their simulation. Given the rules assigned,
buddernaugs would each move at different fixed speeds until eaten by a steve. However, on
running their model, they noticed an unexpected outcome:

1 [Model begins]
2 Nikhil: Yay!
3 Andy: There’s a bunch of dots [predator agents in the model appear as dots]

eating them! (Laughing)
4 [All the buddernaug in the model get eaten]
5 Nikhil: Now there’s nothing left.
6 Andy: Oh wait–I forgot to put “reproduce.” [Looks at Nikhil]
7 Nikhil: Oh yeah.
8 Andy: Well let’s go put some reproduce.

Upon running the model, Andy and Nikhil noticed that the prey all died out (lines 3–
5). This led Andy to realize that the prey would need to reproduce to survive past one
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generation (line 6). He went back to the Build tab and added a reproduce behavior to both
the predators and prey. They decided to set the chance for reproduction to 100% for both
species because they “didn’t want to lose all of them” again.

This instance of building up by adding a “reproduce” behavior is important for two
reasons. First, regardless of whether Andy and Nikhil wanted to study variation across
generations or simply to sustain the model over time, here they explicitly noted reproduction
as a core mechanism for their simulation. Second, as we will see below, this addition helped
Andy and Nikhil bridge ideas of change at the level of individual behaviors, such as dying
or eating prey (line 3), to the idea of change in traits at the level of the population’s
characteristics later on in their investigation.

Prompted by their activity worksheet, Andy and Nikhil continued building up their model
by adding a histogram to track how the distribution of the speed trait in prey changed over
time (Figure 3, top). The histogram revealed systematic differences in which buddernaug
speed traits survived multiple generations:

9
10

[Andy adds a histogram block on the Build tab, clicks on the Run tab, hits setup,
notices the histogram on the model interface, and starts running the model]

11 Andy: Ah, this is kind of cool.
12
13

Nikhil: Well, that’s sort of weird . . . this one. [One of the variations die out from
the population]

14 Andy: Ah, one species died out.

On running their model, Nikhil and Andy were surprised to see one bar become smaller
and then die out (lines 12–14). Andy suspected that it was because there were too many
predators, so he lowered the number of predators and ran the model again.

This time, Andy and Nikhil closely monitored the histogram to track the distribution
of speeds as the model ran. They were surprised to see some speeds dying out from the
population even after they had lowered the number of predators in the model. As they
continued exploring, they eventually came to expect that certain variations would always
die out, and turned their attention to which variations consistently survived:

15 Andy: The slow ones are winning.
16
17

Andy: Oh my god, the dots [Predators in their model are shaped like dots] are
so evil. They’re destroying them. Look at that. Nom, nom, nom. [Laughing]

18 Nikhil: Only two speeds remain. The fastest and the slowest. Fastest going to
lose?

19
20
21
22

Andy: Let’s see if they all die out because they’re the only ones to eat. Can they
reproduce fast enough? Yeah, they-there’s too many of the slow ones. I’m
surprised the slow ones—[Andy decides to increase the number of predators
to 100]

This time, Nikhil and Andy ran the model until only two variations remained in the
population, fast and slow (line 18; Figure 3, bottom). Presumably based on their previous
model runs, Andy and Nikhil began to anticipate that the slow ones would survive (line
18), though Andy was still surprised by this outcome (lines 20–21).

It is telling that Andy and Nikhil continued to be surprised that the slow members of the
buddernaug species survived at the population level; from an intuitive, individual’s point
of view, we might expect faster creatures to be able to more easily “escape” their predators
than slower ones. However, in this simulation, creatures moved randomly and lacked an
ability to sense a predator to “escape.” Andy and Nikhil’s surprise, then, suggests they
were working to connect an intuitive sense of predation behavior—that faster is better for
survival—to the multigenerational population-level patterns they observed in the histogram.
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Figure 3. Andy and Nikhil monitor the distribution of speed as it changes from including a variety of speeds
(histogram in top screenshot) to many slow and only a few fast “buddernaug” (histogram in bottom screenshot)
in their simulation.

They increase the number of predators, in an effort to break down the simulation and better
understand the differential contributions of different behavior components.

Andy and Nikhil began to work to make sense of this discrepancy—that is, to make
sense of how and why the slow buddernaugs were surviving. They became curious to know
whether all the slow buddernaugs would die out because they were the only source of food,
or if they would reproduce fast enough to remain in the simulation (lines 19–20).

Later in the activity, Andy and Nikhil reasoned about the patterns they were noticing to
a researcher in the class:

23 Andy: Certain ones are selected; the other ones just die off because they’re hunted.
24
25
26
27

Nikhil: Yeah. The medium is sort of going good because it’s neither too fast nor too
slow but then the fast are dying off because they run into the predators but while
the slow, they don’t, because they just well, now the fast ones died, umm, the
slow one just like reproduced, making more slow ones than fast, see.
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Pointing to the changing histogram while the model was running, Andy explained that
some variations were being selected while others were being eaten by the predators (line
23). Nikhil further noted a specific individual mechanism through which this population
level pattern emerged: the fast ones ran into predators and died, while the slow ones did
not and were hence able to reproduce to make more slow ones (lines 24–27).

In this vignette, Nikhil and Andy explored a core content idea, natural selection, through
their investigation. Building up their simulation using content-specific primitives and break-
ing it down by adjusting parameters provided them with a window into a surprising out-
come of this evolutionary mechanism. The simulation also offered tools to help them make
sense of natural selection by connecting their expectations of individual-level behavior—
predation and death—to population-level behavior across trait variation and multiple gen-
erations. Andy and Nikhil were able to pursue additional questions of interest by proposing
and testing theories in their simulation, making explicit the mechanisms at work. This led
them to a key learning goal, the differential distribution over time of speed in a prey species.

Overall, we found that 9 of the 10 participating groups who worked on natural selec-
tion activities engaged in some kind of “building up,” while 8 of 10 engaged in some
kind of “breaking down.” Over the course of the activity, 9 of the 10 participating groups
successfully constructed simulations that exhibited the target curricular phenomenon, dif-
ferential distribution of speed over multiple generations in the prey species. Four of the 10
groups explicitly engaged in the chain of causal interrelationships that make up this target
phenomenon, as Andy and Nikhil did in this vignette.

Modeling Population Dynamics

Michelle and Uri have used DeltaTick to explore high school students’ thinking and
learning about emergent patterns of mathematical change in population dynamic systems
(Wilkerson-Jerde & Wilensky, 2010). Our learning objectives were to engage students with
key population growth patterns and help them develop systematic ways to predict how
combinations of behaviors and interactions contribute to patterns of population change
over time.

Typically, population growth patterns are represented mathematically with algebraic
expressions that describe the collective influence of individual-level behaviors such as
mating, birth, death, predation, and competition. These parameters build on top of and
influence one another. For example, the common Malthusian or exponential model of
population growth can be constructed using a general rate of change for the population
(P(t) = P0ert), or a combination of birth and death rates (P(t) = P0e(b-d)t). It can be
combined with carrying capacities or other environmental influences (the Verhulst model
includes carrying capacity K: P (t) = KP0e

rt

K+P0(ert−1) ). Multiple populations can be modeled
by relating parameters among one another to reflect predation, competition, or other
interactions, such as the Lotka–Volterra equations, which describe predator–prey dynamics
(as cited in Wilensky & Reisman, 2006).

Using DeltaTick, we designed a library that includes sets of behaviors and conditions
(constraining factors) that roughly correspond to each of the mathematical parameters
that may or may not be included in a typical algebraic model of population. For example,
patterns of growth or decay that approximate exponential models can be generated by giving
a population rules to reproduce or die with a given probability, and patterns approximating
logistic growth are generated by introducing spatial constraints on reproduction behaviors.

We used the population dynamics behavior library with 10th, 11th, and 12th graders in
mathematics and science classes at two urban public high schools. One of our main goals
was to get students to consider how different individual and population-level factors work
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in interaction, rather than just additively or in sequence, to generate a pattern of interest.
For example, when space or age constraints are introduced to a simulation, the population
may grow, shrink, or stabilize differently depending on the size or age distribution of the
population over time. We were interested in how students made sense of these dynamics
on both a behavioral and mathematical level.

Example C2: Mayra and Jessica Explore Interacting Causes for Population Growth.
In this excerpt, AP Biology students Mayra and Jessica were tasked with finding combina-
tions of behaviors that generate a pattern of relative stability in a population. They began
by assembling a somewhat complex set of blocks: a 1% probability of reproduction for
all members of the population and a conditional 5% probability of death when population
members were between the ages of 30 and 70. This combination of behaviors worked
reasonably well to produce relative stability in the simulation, with only a small decrease
in total population over time. They decided to adjust the simulation to further stabilize the
population:

1 Jessica: Let’s do it with probability of .02 and make the death rate decrease it.
2 Mayra: They shouldn’t die that much.

Jessica changed the values in all three of the boxes: she increased the probability of
reproduction for all members of the population from 1 to 2%, narrowed the age limits
in the green “if age-between?” box from 30–70 to 65–70, and decreased the probability
of death for population members within this range of ages to 2% (Figure 4, top). While
they did not explicitly articulate why they made these particular decisions, one reasonable
explanation is that they were working to moderate the drop in population they observed in
their prior simulation by reducing the possibility for death (lines 1 and 2). After making
these adjustments, Jessica executed the simulation a second time. Figure 4, bottom, shows
that the new simulation rules created dramatic exponential growth, which surprised the
students. While the simulation ran, Jessica and Mayra continued to read prompts from
their worksheet that encouraged them to consider what the driving factors were behind the
pattern their simulation was producing:

3 Jessica: Oh, they’re increasing.
4 Mayra: That’s because they’re also reproducing with a higher rate.
5
6
7
8

Mayra: [Reads prompt aloud: The overall rate of change in a population reflects a
number of different factors. In your model, what different factors are affecting
the rate of change?] Well, the probability of reproduction, because we
increased it at one point.

9 Jessica: And the death rate.
10 Mayra: The death rate. Especially with the different ages. So like . . .
11 Jessica: I think that reproduction affects it more than death.
12
13

Mayra: Yeah, for sure. Death rate, not that much. Because, it’s going to be steady,
you know?

Initially, Jessica was surprised that the population increased so much more than it did
in the prior simulation (line 3). Mayra associated the pattern of growth with the increase
from 1 to 2% in the probability that members of the population could reproduce (line 4).
When considering the question of which factors were influencing the pattern they were
observing, both Jessica and Mayra argued that reproduction was affecting the pattern more
than death. However, the modifications Jessica and Mayra introduced to the death behavior
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Figure 4. Mayra and Jessica revise their original simulation (top). The new simulation produces a more dramatic
pattern of growth (bottom) (in plot, black represents current simulation population levels and gray represents prior
simulation run).
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were quantitatively more significant than the changes they made to the birth behavior. They
had severely reduced the number of population members who had a probability of dying
from an interval of 40 years to only 5, and also cut the probability with which this population
could die by 3%. Despite these changes and both students’ explicit acknowledgment of the
death rate (lines 9–10), they still describe the system as dominated by one influence rather
than the interaction of many.

With more prompting from their worksheets, Mayra and Jessica switched back to the
“Build” interface and reinspected the blocks they used to construct the simulation. This
time, they began to attend more to the simultaneous interaction of factors that influenced
the population level over time:

14
15

Mayra: Um . . . [Reads prompt aloud: how much does each factor affect the rate]
Oh, we just did that. Birth rate, I think, affects it more.

16 Jessica: Mmhmm.
17
18

Mayra: But then again, we also made this one slower. So they both kind of
affect the same . . . yes, but I mean, I think overall birth rate.

19
20

Jessica: Isn’t the birth rate and the death rate the same? Did you make it the
same for this one?

21 Mayra: No.
22 Jessica: I thought you made them both .02.
23
24
25

Mayra: I thought I made one .025, [Mayra switches back to “Build” tab to expose
simulation blocks] but also I changed the ages. Yea, remember? I changed
the ages. Like from 65 to 75.

Here, Mayra and Jessica engaged in important content and practices related to population
modeling by reflecting upon an existing model’s components as laid out in the DeltaTick
interface. When they encountered some of the basic mathematical patterns used in popu-
lation modeling, relative stability caused by balanced inputs and exponential growth, they
began to make sense of how combinations of input behaviors could produce those patterns
in new or unexpected ways by inspecting and comparing relative proportions of inputs and
outputs in the simulation rules. There is also evidence that like the case of Andy and Nikhil,
Mayra and Jessica made sense of these topics by connecting to other relevant knowledge:
for example, they used age ranges that made sense given human lifespans. This balance of
curricular focus and pedagogical connection made it possible for Mayra and Jessica to for-
mulate commonsense rationales for what they were observing and to check their rationale
against the resources they had available to them through the DeltaTick environment.

Overall, we found that 14 of 17 groups who completed the population dynamics activities
engaged in “building up” strategies to create their population dynamics models. Nine
groups engaged in “breaking down” in a manner similar to Mayra and Jessica. Thirteen of
the 17 groups successfully constructed curricular target models, simulations that exhibited
specific patterns of birth, decay, relative stability, and/or logistic-like growth. Twelve of the
17 groups meaningfully engaged in an explicit discussion of the causal and quantitative
interrelationships that underlay these patterns, like Mayra and Jessica did in this vignette.

FINDINGS PART II: USING DELTATICK TO ADDRESS PEDAGOGICAL
NEEDS

The examples above reflect the ways in which curricular libraries have permitted students
to explore target patterns and interactions for a given topic of interest. However, we have
also had experiences where those libraries had to be refined in unexpected ways in response
to the particular knowledge, experiences, or interests of the students we were working
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TABLE 3
Instances When Facilitators Used Features of DeltaTick to Respond to Ped-
agogical Needs (Checkmark), and Further Evidence of the Potential for Re-
sponsivity (Bullet)

Population Dynamics Natural Selection

Responsivity:
adaptation

√
Facilitator added new “reproduce” and
“die” blocks between studies to make
models easier to construct without
specific parameters.

√
Facilitator removed blocks
to help focus students’
explorations (Case P1).√
Facilitator renamed
“step-size” block to
“speed.”

Reponsivity:
extension

√
Facilitator elicited and received several
student recommendations for
extensions, implemented some on last
day of activity. (Case P2)√
One group spontaneously proposed
introducing additional spatial
constraint types.

• Two groups (one at each site)
spontaneously proposed adding
sex/gender dynamics.

• Four groups (one at first site, three at
second site) spontaneously proposed
adding infection behavior.

• One group proposed a
measurement of death.

• One group proposed a new
“chase” behavior block.

Responsivity:
lower level

√
One student group worked with a
facilitator to edit NetLogo code and
introduce infection behavior.√
One group worked with a facilitator to
edit NetLogo code to modify the initial
conditions of the model (Case P3).

• One group independently edited
NetLogo code to introduce infection
behavior.

• Two groups questioned the underlying
behavior of construction blocks
(“wander” and
“only-if-this-much-space”) in ways that
could be explored by accessing
NetLogo code.

None

with. Rather than trying to eliminate this need for constant refinement, we found ourselves
frequently using DeltaTick to respond to that need in situation-specific ways. When we
returned to our data to systematically document these patterns of adaptation and response,
we found that opportunities to leverage DeltaTick features to refine activities in response
to student needs and interest emerged persistently across enactments (Table 3).

Specifically, we found instances where we, as facilitators, adapted blocks in response to
what we noticed in the classroom, and where students volunteered new behaviors or ways
of measuring their models that were, or could have been, added to the existing behavior
libraries with which they were working. In the high school population dynamics study, we
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also found instances where facilitators or learners accessed and modified underlying Net-
Logo code to support specific explorations. Here, we present three vignettes that illustrate
how the flexibility built into DeltaTick allowed us to (1) respond to unexpected patterns in
student behavior, (2) provide extensions to allow students to pursue their own projects and
questions, and (3) enable students to identify and modify the basic assumptions of a given
library.

Example P1: Responding to Unexpected Patterns in Student Behavior
Through Adaptation

In DeltaTick, it is relatively easy to remove or rename blocks in a behavior library
quickly by editing the text library file. Although these types of quick modifications might
seem trivial at first, we have found them to be essential for focusing student attention and
recasting behaviors available in the library in ways that better connect to students’ ways of
describing the phenomena they are exploring. Here, we share a vignette that illustrates how
seemingly minor and straightforward changes to a curricular behavior library file helped
circumvent unanticipated issues and better connect to student knowledge.

On Day 1 of the natural selection study, Aditi was scheduled to coteach consecutive
sections of a science class on the same day. The first activity had been designed to introduce
students to DeltaTick and to have them build a simple model to investigate how the
distribution of speed (a trait labeled as “step-size” in the library) in a prey species would
change over time due to selection pressures (much like the investigation described in C1).
Though this activity required students to use only one trait in their simulation, “step-size,”
the accompanying behavior library featured three additional traits: vision, hearing range,
and body size. These were included as examples of traits students could explore later, and
the behaviors available in the library were not constructed to work with them.

When students in the first class started working on their model, Aditi noticed two
unanticipated issues. First, many students tried to use all available traits in their simulation,
and found it confusing that the behaviors in the library did not include explicit parameters
for them. For instance, after adding the trait “vision” to their predator species, some students
tried to use the vision block in the “chase” behavior so that a predator could chase a prey
when they spot it. When they could not find a parameter for vision in the behavior, they
assumed that the construction environment would automatically specify the trait for them.
Because this was the first time that students were using DeltaTick, this obfuscated some
students’ understanding of the construction environment and subsequently, the goal of the
activity. Second, Aditi noticed that several students wanted to add prey species that could
swim or fly, and so were dissatisfied with the name of the trait “step-size.”

Recognizing both these issues as relevant to how students were making sense of the
construction environment and activity, Aditi modified the corresponding EvoBuild behavior
library in the 10 minutes before the next section. She changed the trait name of “step-size”
to “speed” (Figure 5) and removed the additional traits by deleting their code segments. In
subsequent sections that day, students focused on one trait to more quickly learn how the
environment worked and observe patterns in the changing distribution.

Example P2: Supporting Student Investigation Through Extensions

DeltaTick’s design also allows new blocks to be added to an existing library. During the
first population dynamics enactment using DeltaTick, Michelle noticed students discussing
other types of phenomena such as disease spread that could be modeled using the mathe-
matical patterns and behavior blocks they were already exploring. She noticed that many of
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Figure 5. “Step-size” block was modified to display “speed” in a few minutes by replacing the trait name in XML
code (changed version, top; original code, bottom).

these recommendations could be accommodated relatively easily with only a few additions
or modifications to the existing population dynamics library.

In a subsequent enactment of population dynamic activities, Michelle asked students
to make recommendations about what sorts of extensions they would like to explore—
this time with the goal of providing them enhanced libraries based on their interests.
Suggestions included explorations of the spread of disease (29% of students), predator/prey
dynamics (16%), the effects of birth control and sex/gender dynamics on population growth
patterns (10%), employment dynamics (10%), and the influence of environmental factors
on population and reproduction (8%). Some recommendations were especially relevant to
students’ lives and current events, such as a suggested “Oil Spill Library” to explore the
effects of the infamous Deepwater Horizon oil rig accident in the U. S. Gulf Coast, which
had happened only a few months before. Figure 6 shows the spread of disease library, one
of the libraries we were able to provide based on their suggestions. Those blocks that were
added to the original population dynamic library students had worked with are highlighted
in the figure.

Given the time constraints of the activity, students were only able to explore these
extended libraries during their last day of the DeltaTick enactment. However, since the
libraries were simply extensions of those students had already used, students were com-
fortable beginning these new, interest-driven investigations. At the very least, extending
their investigations had students thinking about how the ideas they were exploring might
be relevant to a larger collection of topics than what they had time to explore in class.

Example P3: Uncovering and Modifying a Library’s Lower Level
Assumptions

While examples 1 and 2 illustrate DeltaTick’s flexibility through the modification of
behavior libraries, there were also times when students’ questions were best addressed by
allowing them to “look inside” and directly edit the NetLogo code generated by DeltaTick
blocks. One example of this occurred during Michelle’s population dynamics work, when
one student group noticed an interesting pattern in their simulation which they believed
was related to the age of population members.
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Figure 6. Modified population dynamics library created to enable students to model the effects of disease spread.
Arrows point to blocks that were added to the existing library.

Vince and Joey had constructed a simulation in which agents between the ages of 15
and 55 had a probability of reproducing, and agents over the age of 65 had a probability
of dying. However, when the simulation was run, agents reproduced immediately, and the
population level stabilized after 15 time units had passed. Vince and Joey were surprised
because they expected that no agents would reproduce until at least 15 time units had
passed, and no agents would die until at least 65 time units had passed. As he inspected the
blocks, Vince began to question how individual agents’ age (which should be controlling
when they reproduce or die) was initialized and used in the simulation:

1
2
3

Vince: What? But like when they reproduce, I don’t think this program takes into
account like when they reproduce, there’s a new, like it starts at 0, you know?
Like there’s a new life.

4 Joey: So you think they reproduce and stay at 15?
5 Vince: Yea
6 Joey: So like if a 15 year old has a baby the baby comes out at 15?
7 Vince: 15. I don’t know. But that’s what it seems like.

What Vince and Joey were struggling with was an artifact of one of the major design
tradeoffs made in constructing the population dynamics library. We included “behind the
scenes” code so that at the beginning of each simulation, individual agents would start with a
random age between 0 and 50. This was because we wanted students to consider population
as a system that involved multiple, stochastic, distributed events that accumulated to create
a pattern of interest, rather than what might result if the population acted as one. We also
expected that starting a population with heterogeneous ages would be more aligned with
students’ expectations for how a population should behave.

The unexpected patterns Vince and Joey were observing were a byproduct of the speci-
ficities of our initial random distribution of ages. When the simulation started all population
members were between the ages of 0 and 50, and therefore many of them were immediately
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Figure 7. Facilitator helps a student group directly modify NetLogo code (changing the initial age of people from
“random 50” to “0,” highlighted here) to test a theory about the influence of age on population patterns they are
observing in their model.

old enough to reproduce. Starting 15 time units into the simulation execution, the oldest
of the population members finally became “eligible” for probabilistic death at age 65, as
Vince and Joey had assigned. The students were confused by this pattern and its apparent
disconnection from the rules used to construct the simulation, and they wondered whether
the age of newly born agents might have something to do with the confusing pattern. The
students decided to run the model again, stepping through each time unit slowly to confirm
that they were observing birth and death at unexpected times:

8 Vince: I just don’t get why they’re reproducing right away.
9
10
11

Joey: Just do steps for 15 years, and see if they’re reproducing. [Clicks the
“step” button in the simulation interface.] See they’re already reproducing,
and they should only be two years old.

12 Vince: Wait, are they?
13 Joey: Yea, because that’s [indicating graph] a change, so it went up two.

Vince and Joey consulted with Michelle and Josh, another research assistant. Michelle
told them that the simulation begins with a random distribution of ages 0–50. Josh stayed
with them and opened the simulation code to show where this distribution was defined, and
how they could edit it so that all agents started at age 0 (Figure 7).

This modification would have been impossible to make from the block-based interface.
It also would not have made sense to edit the entire library for future classes, as Aditi had
done in example 1. It was a response that made sense only given the particular simulation
Vince and Joey had decided to build and explore, and helped them maintain ownership of
and investment in their exploration. After simplifying some of the simulation’s underlying
code, Vince and Joey could refocus on disentangling aspects of the simulation’s behavior
that they found confusing and unexplained (the earlier immediate increase in population

Science Education, Vol. 99, No. 3, pp. 465–499 (2015)



BALANCING CURRICULUM AND PEDAGOGY IN COMP MODELING 487

TABLE 4
Summary of Vignettes, Lessons Learned, and Mapping to Design Principle

Case Description Summary of Lessons Learned Design Principle

C1 Exploring
variation and
natural
selection (Andy
and Nikhil)

“Building up”—Students
incrementally build and explore
curricular phenomena.

Curricular example space

C2 Exploring
interacting
causes for
population
growth (Mayra
and Jessica)

“Breaking down”—Students identify
and explore factors contributing to
a complex simulated curricular
phenomenon.

Curricular example space

P1 Changing blocks Facilitator refines the collection of
available blocks to streamline
student investigations.

Curricular example space

Facilitator modifies a trait label to
more closely reflect to student
interpretations.

Responsivity: adaptation

P2 Library
extensions

Facilitator adds new blocks to
existing library to expand space of
investigation.

Curricular example space

Blocks added in direct response to
student proposals for topics.

Responsivity: extension

P3 Editing text code
(Vince and
Joey)

Text code refined to accommodate
specific student questions during
an investigation.

Responsivity: lower level

at time 0; the dramatic shift in population dynamics at year 14) from dynamics that they
expected to be tightly connected to the blocks they used to construct the model.

DISCUSSION

This study is based on our own use and refinement of DeltaTick and its particular design
features. Here, we explore how the lessons we have learned can inform the design of K–12
modeling toolkits more broadly, and shed light on the role they can play within the broader
classroom learning ecology.

Design Principles for K–12 Computational Modeling Toolkits

Based on our analysis of the ways in which DeltaTick supported curricular and ped-
agogical goals, we posit two general principles, curricular example spaces and levels of
responsivity, for the design of computational construction environments intended specifi-
cally for classroom use. Table 4 illustrates how the vignettes presented above link to and
inform the design principles we are introducing. Below, we describe each in further detail.

Curricular Example Spaces. As we reviewed in the Background and Motivation section,
a major decision in the design of computational modeling toolkits involves the “granularity”
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of building blocks. Based on the ways we found students were using DeltaTick, we propose
the notion of a curricular example space to help guide this decision. We use this term to
refer to a space of primitive elements and possible target simulations that together allow
learners to explore the core dynamics of a curricular domain. To build a curricular example
space, designers should envision a set of target simulations that are sufficiently complex
that they produce surprising or unexpected dynamics. Designers should decompose those
examples into component behavior elements that, when used in isolation, can generate
working simulations whose behaviors are relatively straightforward. This accommodates
both approaches we have identified in students: “building up” simulations by incrementally
adding one or two construction units at a time and making sure they make sense (as in
example C1), and “breaking down” complex simulations to investigate why they generate
surprising or unknown behavior (as in example C2).

For example, in designing the population dynamics behavior library (example C2), we
identified several target mathematical population dynamic models including exponential-
like growth and decay, logistic-like growth, and relative stability. Our intention was to allow
learners to explore interdependent relationships between behaviors such as probabilistic
birth, death, spatial and time-dependent constraints, and competition in ways that connect
to these dynamics. This collection of mathematical models of population dynamics, along
with the component agent behaviors that could generate those models, constituted our
curricular example space. For example, exponential growth can be generated with only
reproduction. However, it can also be generated with a combination of reproduction, death,
and age constraints on reproduction, as long as the probability to reproduce for eligible
agents is larger than the probability for all agents to die divided by the proportion of agents
available to reproduce (to ensure that deaths among the entire population are still exceeded
by births among a restricted set). Figure 8 shows how different combinations of primitive
elements can be assembled to generate different target dynamics.

To determine what primitive elements were needed to reconstruct this curricular example
space in a way that was accessible to learners, we identified the smallest unit of behavior
that could be directly linked to a given mathematical effect. For example, birth (reproduce-
with-probability) and death (die-with-probability) are the smallest units of behavior that
increase or decrease the population. Age (if-older-than?) and (if-between-ages?) and space
constraints can limit population growth or decay by restricting them to particular subpop-
ulations or global conditions, or promote growth or decay by offering additional ways
for populations to change under particular circumstances. Age and space constraints are
different from one another, however, in that space constraints produce an immediate effect
while age constraints introduce time delays (e.g., if the distribution of ages in a population
is such that an increase in new births does not affect increases in eligible agents within
certain ages until later in the model’s execution). With this set of primitives, only one block
is needed to construct a simple model. Each block that is added is likely to directly connect
to a change in the simulation’s dynamics over time.

Adaptations to this curricular example space can support or shift students’ attention to
different aspects of population dynamic systems. For example, without spatial constraints,
users would be unable to construct any models that exhibit logistic-like patterns of growth.
Limiting or removing parameters on the blocks would allow learners (like those in the
second population dynamics study) to focus on how behaviors influence the shape of
population dynamics patterns: that is, what factors lead to exponential growth or decay,
logistic-like growth, stability, or other patterns, and how those factors interact. Adding
specificity to blocks, such as allowing users to control the speed at which agents wander
would highlight agent level and interagent dynamics that eventually lead to overall patterns.
Adding blocks, as illustrated in Figure 6, can expand the curricular example space to
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Figure 8. Simplest combinations of behavior blocks to create exponential growth (black), exponential decay
(green), lagged exponential growth (red), and logistic-like growth (blue).

allow learners to explore patterns within and across populations, such as disease spread
or predator–prey interactions, rather than maintaining focus on those that manifest at the
single population level.

Levels of Responsivity

Research in science and mathematics education has shown that effective classroom
practice requires teachers to attend to and respond to their students’ thinking (Carpenter,
Fennema, Peterson, Chiang, & Loef, 1989; Duncan et al., 2009; Levin et al., 2009; Sherin
& van Es, 2005). This work has focused primarily on patterns of discourse—that is, how
teachers orchestrate student discussions and establish disciplinary norms in the classroom.
However, there is growing interest in exploring responsive curricula or how pedagogical
materials can be developed to support teachers’ attention to student knowledge, questions,
and interests, and encourage refinement or changes to materials based on their findings
(Berland & Hammer, 2012; Gallas, 1995). DeltaTick is an example of how computational
tools might serve such a responsive role. We use the term responsivity to refer to the
potential for educators to modify aspects of a computational learning environment—in this
case, a behavior library, specific blocks, or even code itself—in direct response to student
thinking and interests. We distinguish responsivity as enacted by educators themselves from
responsiveness of a technology, where computational environments adjust based on user
input (such as in intelligent tutoring systems or adaptive testing applications).
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The case of DeltaTick extends the notion of responsive teaching to the design of com-
putational modeling toolkits as meditators of curriculum and discourse in the classroom
environment. We are finding that such toolkits need not, and should not, be a static fixture
of classroom curricula or pedagogy. They can be modified in response to student needs in
the same way as teachers’ responses to students and use of curricular materials. Further-
more, our experiences with DeltaTick suggest that the potential connections and conflicts
between students’ own understandings and the tools they use to express and share those
understandings might unfold across particular levels of analysis. This is why we add to the
notion of responsivity the idea of levels—specific units of analysis that might link to differ-
ent ways of noticing and responding to students. For example, we found that we responded
to student questions about underlying model assumptions and mathematical detail by ac-
cessing and modifying code directly, responded to interests by extending existing behavior
libraries, and worked to more directly connect to learners’ existing ways of thinking about
the phenomena by editing exiting blocks to use new or different language.

Reconceptualizing the Role of Modeling Toolkits Within the K–12
Classroom Ecology

Reconceptualizing modeling toolkits as flexible rather than static components of the
broader classroom learning ecology can help address a number of persistent issues in the
literature on K–12 computational modeling for STEM education.

Issue 1: Usability and Accessibility of Modeling Toolkits. While there is general con-
sensus that computational modeling activities hold promise for K–12 STEM education,
some researchers question whether the modeling paradigms available today are best suited
for K–12 learners. Some have cited the grain size of primitives as a problem: for example,
some argue that learners might struggle to connect the abstract representations used in sys-
tem dynamics or concept mapping tools to particular domains (Doerr, 1996) while others
contend that tools that foreground low-level interactions such as agent-based environments
may require too much coordination to construct complex models (Hmelo-Silver & Azevedo,
2006). Others have noted that the representational type and level of specificity available
for a given modeling paradigm might constrain or preclude student exploration (Louca &
Zacharia, 2008; Louca, Zacharia, Michael, & Constantiou, 2011). Visual paradigms often
do not enable a high degree of specificity: they allow learners to explore a problem space
and model the entities and interactions that define a system, but limit their ability to specify
and test relations and variable parameters. Conversely, text-based tools often require preci-
sion from the outset, which may preclude learners’ ability to get started in a modeling task
(Löhner, Van Joolingen, & Savelsbergh, 2003). To address these issues, some have advo-
cated for the design of modeling toolkits that include one or more “meso-levels” (Schwartz,
2007, p. 169) of primitives, or sets of linked models (Fredericksen & White, 2002), that
would allow learners to explore the same phenomenon at multiple levels of analysis. Others
have suggested that different paradigms may be more appropriate at different times during
the modeling process (Löhner et al., 2003).

Grain size and specificity, which are often predefined and fixed by the notational system
and primitives in computational toolkits and contribute to their accessibility and utility in
the classroom, become fluid within environments such as DeltaTick. We were able to make
adaptations such as adding or removing adjustable quantitative parameters (like the ones
text or formula-based tools require) from a behavior block to allow more or less specificity
when needed by students, and consolidating or decomposing behaviors into more or less
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granular primitives to give students access to different levels of analysis. When working
with flexible toolkits, the issues raised above become ways to focus one’s attention on
student knowledge and respond accordingly over time, rather than issues that constrain or
preclude successful exploration.

Issue 2: Supporting Meaningful Curricular Investigations. Concerns have also been
raised about the degree to which modeling toolkits adequately connect to or support mean-
ingful exploration of curricular goals. Some studies have found that when working with
modeling toolkits, learners may not focus on a system’s underlying structure and instead
focus on reproducing target patterns (Löhner et al., 2005). Or, they may add components
to their model arbitrarily in an effort to generate the desired effect without considering
the actual phenomenon being modeled (Hogan & Thomas, 2001; Löhner et al., 2003;
Metcalf et al., 2000). In an effort to strengthen curricular connections, some tools com-
pare learners’ models to expert solutions (Bravo, van Joolingen, & de Jong, 2006), and/or
use domain-specific toolkits (Sengupta et al., 2013). But while these approaches better
align with curriculum, they may further limit students’ ability to pursue their own ques-
tions or extensions. For example, Hansen and colleagues (2004a) used a three-dimensional
astronomy-specific toolkit and successfully increased student performance on spatially re-
lated astronomical concepts. However, they found that limitations of the tool prevented
learners from exploring further questions, and may have interfered with their learning of
concepts not directly related to the modeling environment (Hansen et al., 2004b).

When we designed DeltaTick, our original intention was to connect to curricula by
designing block libraries that featured natural language representations of particular do-
mains. Despite this attempt to make curricular connections accessible and explicit through
careful a priori design, we still found ourselves making modifications in situ to clarify
those connections or to permit learners to pursue new questions and extensions. Flexi-
ble modeling toolkits yield opportunities to make modifications in ways that align with
already-established techniques for helping learners clarify connections between a language
and a domain, such as negotiating what a given notation in their model should represent or
creating their own names for primitives (VanLehn, 2013). They allow such modifications
to be enacted and evolved within the toolkit itself.

Issue 3: Teacher Attention and Support. Finally, research has problematized the critical
role of teachers and facilitators in supporting classroom computational modeling activities.
To enact computational modeling activities, teachers must help learners become adept with
the software, make progress in constructing models, and make connections between the
model and their existing knowledge (Doerr, 2007). Furthermore, they must help students
understand the broader goals of modeling as a scientific practice in itself. Louca, Zacharia,
and Constantinou (2011) explored how teachers and toolkits influence what modeling
frames learners adopt—that is, whether they focus on (1) describing a phenomenological
system, (2) operationalizing its underlying processes, or (3) constructing algorithms to
define the relationships between objects and processes in the system. They found that the
modeling toolkit they used, StageCast, helped foreground certain modeling frames and
shifts among frames, while others required additional teacher support. They argued that
these complementary roles of the teacher and toolkit were critical, since learners needed to
maintain balance across these different frames to iterate and make progress in the modeling
activity.

Flexible and adaptable modeling toolkits reconceptualize the complementary roles of
the teacher and toolkit as interconnected. As classroom facilitators, we found ourselves

Science Education, Vol. 99, No. 3, pp. 465–499 (2015)



492 WILKERSON-JERDE ET AL.

addressing many of the roles identified in the literature: helping learners use DeltaTick
effectively, identifying ways they could shift modeling frames to improve, test, or re-
vise their models, and encouraging them to focus on new or different relationships in the
systems they were modeling. However, we did this not only through direct interaction
with students, but also through direct modifications to the DeltaTick toolkit. In environ-
ments where curricular alignment and responsivity are explicitly considered, teachers’
roles are directly supported by, and can be directly enacted through, the modeling toolkit
itself.

Future Work

Our findings and discussion point to a number of areas for future work and have provided
useful frameworks to guide that work. First, we must better understand how to support ed-
ucators in learning how to adapt flexible construction toolkits such as DeltaTick and to
recognize when it is appropriate to do so. One aspect of this involves helping teachers de-
velop the computational and technological competency required to edit library files, modify
program code, and recognize those student interests and requests that can be reasonably
pursued within the infrastructure of a given library. Another involves helping teachers rec-
ognize what productive student practices look like within these construction environments
and how to respond to and foster those practices—both outside of the computational tool
as well as through direct edits and customizations to the tool itself.

While these technological and pedagogical competencies are not yet typical expectations
for teachers, knowledge of the relationship between technological tools, pedagogy, and
the content and practices of a discipline is an increasingly important and unique aspect
of teacher practice (Mishra & Koehler, 2006). A review of professional development
programs suggests that allowing teachers to make their own customizations to tools and
curricula can support effective long-term adoption of technology-mediated inquiry tools
into classroom practice (Gerard et al., 2011). Environments such as NetLogo and others
have made significant progress in reducing the barrier to programming entry for both
students and teachers (Rodger et al., 2009; Tisue & Wilensky, 2004). And growing support
for the development of technological and pedagogical competencies is buttressed by an
increasing recognition by the educational community that computational modeling plays
an important role not only pedagogically, but also as a fundamental component of scientific
practice (NGSS Lead States, 2013; NRC, 2010).

Second, the themes that have emerged from this work can set the stage for a deeper
exploration of how technological tools can build on and support student knowledge, cur-
ricular materials, and teacher attention in situ and in interconnected ways, rather than only
a priori and in complementary ways. We found ourselves revising the DeltaTick environ-
ment in distinct ways based on what we noticed in students. We responded to students’
ways of describing phenomena in the system they are exploring by modifying existing
computational components (as in example P1, where the name of a block was revised),
encouraged proposed extension investigations by adding more construction blocks or cre-
ating new libraries (as in example P2, where new libraries were developed), and helped
them interrogate underlying assumptions of a given computational model (as in example
P3, where students worked with facilitators to edit specific age-related parameters in the
text code of the simulation). It would be interesting to study the extent to which these types
of modifications are needed for different domains or model frames. Similarly, it would be
interesting to explore the extent to which classroom teachers attend and respond to these
different types of needs.
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CONCLUSIONS

We have argued that when designing computational modeling toolkits for K–12 mathe-
matics and science classrooms, it is critical to reflect on, and to find ways to help educators
navigate the tension between curricular goals that emphasize particular topics and con-
tent areas within mathematics and science and pedagogical goals such as building upon
and responding to students’ own knowledge, needs, and intellectual pursuits. While many
computational modeling toolkits have focused on one or the other of these needs, our ex-
periences with DeltaTick suggest that it is possible to do both by designing libraries that
represent curricular domains as example spaces that students could reconstruct and explore
and by offering layers of responsivity that allow educators to ensure that libraries connect
to students’ own knowledge, interests, and needs. In classroom enactments, students used
DeltaTick to successfully construct and explore computational models in multiple complex
domains of study; we as facilitators were able to adapt the toolkit in response to students’
immediate and longer term needs. These findings and principles point to a reconceptualiza-
tion of modeling toolkits as components of a classroom ecosystem that, such as curricula
or teacher attention, can be adapted over time to accommodate given curricular and ped-
agogical needs. This reconceptualization highlights new ways that modeling toolkits can
be used to better align with, build on, and support student knowledge, curricular materials,
and teacher attention during classroom computational modeling activities.
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APPENDIX

Here, we describe our coding procedures and present examples of border cases we
encountered while analyzing students’ use of DeltaTick. Our goal is to help make our
reasoning explicit so that the implications of the numbers we report are clear, in the spirit
of Hammer and Berland (2013).

Definitions of “target model” for each curricular focus. For each study, we coded
the number of participant groups who constructed the “target model” intended in each
curriculum. In the natural selection study, a model was coded as a target model when
multigenerational population change resulting from natural selection was evident in the
model. This required having certain behaviors in the model (like reproduce, die, or eat) as
well as including a graph to represent change in the population over time. If a model did not
include a graph, but the video of the student group showed evidence that they had noticed
patterns of population change resulting from the behaviors they had coded in, we coded
this successfully producing the target model.

In the population dynamics study, a model was coded as a target model if it exhibited one
of a number of behaviors included in the task prompt. These prompts required participants
to construct models using birth, death, and constraint elements (more than one behavior had
to be included in the simulation) that generated exponential-like growth or exponential-like
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TABLE A1
Examples and Nonexamples of “Causal Reasoning”

Population Dynamics Study Natural Selection Study

Target model and
causal
reasoning

Group adds and/or adjusts
behaviors and parameters to
reflect actions and values that
would be reasonable for human
populations.

Group discusses changes to model
behaviors or parameters in terms
of their influence on individual
agent behavior within the
simulation.

Group notices and describes
how an individual’s trait is
influencing its chances of
survival and reproduction,
and consequently a change
in its population.

Target model, no
causal
reasoning

Group achieves target by comparing
and adjusting the difference
between numerical parameters
only, without connecting
parameters to the behaviors they
influence.

Group builds a model that
depicts natural selection
patterns, but does not
explain the pattern.

No target model
or causal
reasoning

Group achieves target, but
continues to adjust parameters
because each data point is not
exactly the same as in the target
example. This indicates a failure
to consider the probabilistic
element of the simulation (and
reproduction more generally).

Group does not achieve target
model.

Group does not notice or
describe how the speed
trait distribution or average
speed of a species
changed/stayed constant
over time.

decay at a 5% rate, relative stability in the population for at least 100 ticks, logistic-like
growth, or rapid decay followed by relative stability. All models constructed by students in
the population dynamics activities included graphs.

Examples of “causal reasoning,” “building up,” and “breaking down” during model
construction. For each study, we coded the number of participant groups who engaged in
reasoning about the underlying causal relationships exhibited by (or missing from) their
models as they constructed them. We did this to address concerns about the degree to which
students constructed models by “jigsaw puzzling” (Löhner et al., 2003), or adding and
removing model components only to reproduce desired effects, rather than substantively
considering what those components mean in terms of the actual system being modeled.
Within each specific curricular focus, examples of causal reasoning are given in Table A1.

We identified students’ model construction approach as “building up” when they started
with a simple or easily understood model, and incrementally added or refined their model
in an effort to complicate it, adjust it toward the intended target, or understand how the
new behavior or parameter would influence the system. In general, when participants
are “building up,” they have a clear expectation for how their modification will affect
the model. Within each specific curricular focus, examples of “building up” are given in
Table A2.

We identified students’ model construction approach as “breaking down” when they
started with a complex or not well-understood model, and removed or simplified elements
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TABLE A2
Examples, Borderline Cases, and Nonexamples of “Building Up”

Population Dynamics Study Natural Selection Study

Clear example Group increases the birth rate in
their model because population
growth is lower than intended
target.

Group decides to add a
reproduce behavior
because a species died out.

Border example Group adds “get older” block
because they are using age as a
constraint, but the block’s
influence on model behavior is
not evaluated or discussed.

Group decides to add a graph
block to their model after
noticing instructions on the
worksheet about how to
add a graph block.

Nonexample Group adds a “wander” block
without explicit motivation,
movement and spatial constraints
are not a component of the
model.

Group adds a “move”
behavior without describing
or discussing why they are
adding the block.

TABLE A3
Examples, Borderline Cases, and Nonexamples of “Breaking Down”

Population Dynamics Study Natural Selection Study

Clear example Group notices that their model
includes two possible causes for
an unexpectedly high death rate.
They remove one possible cause
to focus on adjusting the second
appropriately.

Group increases the initial
number of a species in the
model to see whether this
will help the population
survive.

Border example Group lowers the age in an age
constraint to “0,” rendering the
constraint inconsequential,
without explicit justification.

Group changes the chance of
reproduction for individuals
in a species without
explicitly describing why
they were trying that out.

Nonexample Group removes blocks from a prior
model to begin a new task, but
keeps one or two blocks for the
new task.

Group removes a block by
mistake.

of the model in an effort to isolate and understand the model’s inner workings, or identify
the most important relationships of interest for solving the curricular task. In general, when
participants are “breaking down,” they do not have a clear expectation for how their changes
will influence the model, only that it is likely to change it in some way. Within each specific
curricular focus, examples of “breaking down” are given in Table A3.
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Löhner, S., van Joolingen, W. R., Savelsvergh, E. R., & van Hout-Wolters, B. (2005). Students’ reasoning during
modeling in an inquiry learning environment. Computers in Human Behavior, 21(3), 441 – 461.

Louca, L. T., & Zacharia, Z. C. (2008). The use of computer-based programming environments as computer
modelling tools in early science education: The cases of textual and graphical program languages. International
Journal of Science Education, 30(3), 287 – 323.

Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: Cognitive, metacognitive,
social, material and epistemological contributions. Educational Review, 64(4), 471 – 492.

Louca, L. T., Zacharia, Z. C., & Constantinou, C. P. (2011). In quest of productive modeling-based learning
discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919 – 951.

Louca, L. T., Zacharia, Z. C., Michael, M., & Constantinou, C. P. (2011). Objects, entities, behaviors, and
interactions: A typology of student-constructed computer-based models of physical phenomena. Journal of
Educational Computing Research, 44(2), 173 – 201.

Metz, K. E. (1997). On the complex relation between cognitive developmental research and children’s science
curricula. Review of Educational Research, 67(1), 151 – 163.

Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher
knowledge. The Teachers College Record, 108(6), 1017 – 1054.

National Research Council (NRC). (2010). Report of a workshop on the scope and nature of computational
thinking. Washington, DC: The National Academies Press.

National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. Washington, DC: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National
Academies Press.

Noss, R., Healy, L., & Hoyles, C. (1997). The construction of mathematical meanings: Connecting the visual with
the symbolic. Educational Studies in Mathematics, 33(2), 203 – 233.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New York: Basic Books.
Parnafes, O., & Disessa, A. (2004). Relations between types of reasoning and computational representations.

International Journal of Computers for Mathematical Learning, 9(3), 251 – 280.
Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press.
Pinkney, J. (2000). Aesop’s fables. New York: Seastar Books.
Pratt, D. (1998). The co-ordination of meanings for randomness. For the Learning of Mathematics, 18(3), 2 – 11.
Repenning, A., & Sumner, T. (1995). Agentsheets: A medium for creating domain-oriented visual languages.

Computer, 28(3), 17 – 25.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch:

Programming for all. Communications of the ACM, 52(11), 60 – 67.
Rodger, S. H., Hayes, J., Lezin, G., Qin, H., Nelson, D., Tucker, R., et al. (2009). Engaging middle school teachers

and students with alice in a diverse set of subjects. ACM SIGCSE Bulletin, 41(1), 271 – 275.
Roschelle, J. M., Pea, R. D., Hoadley, C. M., Gordin, D. N., & Means, B. M. (2000). Changing how and what

children learn in school with computer-based technologies. The Future of Children, 10(2), 76 – 101.
Sabelli, N. H. (2006). Complexity, technology, science, and education. Journal of the Learning Sciences, 15(1), 5.
Schwartz, J. L. (2007). Models, simulations, and exploratory environments: A tentative taxonomy. In R. A.

Lesh, E. Hamilton, & J. J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 161 – 172).
Mahwah, NJ: Lawrence Erlbaum.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with
K-12 science education using agent-based computation: A theoretical framework. Education and Information
Technologies, 18(2), 351 – 380.

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as expressive languages
for physics. International Journal of Computers for Mathematical Learning, 6(1), 1 – 61.

Sherin, B., diSessa, A., & Hammer, D. (1993). Dynaturtle revisited: Learning physics through collaborative design
of a computer model. Interactive Learning Environments, 3(2), 91 – 118.

Science Education, Vol. 99, No. 3, pp. 465–499 (2015)



BALANCING CURRICULUM AND PEDAGOGY IN COMP MODELING 499

Sherin, M., & van Es, E. (2005). Using video to support teachers’ ability to notice classroom interactions. Journal
of Technology and Teacher Education, 13(3), 475 – 491.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Re-
search in Mathematics Education, 26(2), 114 – 145.

Smith, D. C., Cypher, A., & Tesler, L. (2000). Programming by example: Novice programming comes of age.
Communications of the ACM, 43(3), 75 – 81.

Stonedahl, F., Wilkerson-Jerde, M., & Wilensky, U. (2011). MAgICS: Toward a multi-agent introduction to
computer science. In M. Beer, M. Fasli, and D. Richards (Eds.), Multi-agent systems for education and
interactive entertainment: Design, use and experience (pp.1 – 25). Hershey, NY: IGI Global.

TechSmith Corporation. (2010). Camtasia [Computer Software].
Tisue, S., & Wilensky, U. (2004). NetLogo: Design and implementation of a multi-agent modeling environment.

In D. Sallach and C. Macal (Eds.), Proceedings of the Agent 2004 conference on social dynamics: interac-
tion, reflexivity and emergence (pp. 161 – 184). Chicago, IL: Argonne National Laboratory and University of
Chicago.

VanLehn, K. (2013). Model construction as a learning activity: A design space and review. Interactive Learning
Environments, 21(4), 371 – 413.

Wagh, A., & Wilensky, U. (2012). Evolution in blocks: Building models of evolution using blocks. In C. Kygnios,
J. Clayson, & N. Yiannoutsou (Eds.), Proceedings of the Constructionism 2012 Conference (pp. 549 – 554),
Athens, Greece.

Weintrop, D., & Wilensky, U. (2013). RoboBuilder: A Computational Thinking Game. In T. Camp, P. Tymann, J.
D. Dougherty, & K. Nagel (Eds.), Proceedings of the 44th ACM Technical Symposium on Computer Science
Education (SIGCSE 2013) (pp. 736 – 736). Denver, CO: ACM.

White, B., & Frederiksen, J. (2005). A theoretical framework and approach for fostering metacognitive develop-
ment. Educational Psychologist, 40(4), 211 – 223.

Wilensky, U. (1995). Paradox, programming and learning probability. Journal of Mathematical Behavior, 14(2),
253 – 280.

Wilensky, U. (1999). NetLogo Models Library [Computer Software]. Center for connected learn-
ing and computer-based modeling. Evanston, IL: Northwestern University. Available from
http://ccl.northwestern.edu/netlogo/models/.

Wilensky, U. (2003). Statistical mechanics for secondary school: The GasLab modeling toolkit. International
Journal of Computers for Mathematical Learning, 8(1), 1 – 41.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through
constructing and testing computational theories—An embodied modeling approach. Cognition & Instruction,
24(2), 171 – 209.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems perspective to making sense of the
world. Journal of Science Education and Technology, 8(1), 3 – 19.

Wilkerson-Jerde, M., Gravel, B., & Macrander, C. (2013). SiMSAM: An integrated toolkit to bridge student,
scientific, and mathematical ideas using computational media. Proceedings of the International Conference of
Computer Supported Collaborative Learning (CSCL 2013) (Vol. 2, pp. 379 – 381), International Society of the
Learning Sciences.

Wilkerson-Jerde, M., & Wilensky, U. (2010). Restructuring change, interpreting changes: The DeltaTick modeling
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