
SIGCSE : G : Minding the gap between blocks-based and text-
based programming: Evaluating introductory programming tools

David Weintrop
Northwestern University

2120 Campus Drive, Ste. 332
Evanston, IL 60208

dweintrop@u.northwestern.edu

1. INTRODUCTION & MOTIVATION
Computation is changing our world. From how we communicate
and how we make decisions, to how we relax and how we shop -
few aspects of our lives have been left unaffected by the long
reach of computation and the technologies that it enables.
Smartphones, tablets, and laptops have become the lenses through
which we see, organize, and interpret the world. As such, for
young learners growing up in this technological landscape, being
able to recognize the capabilities and limitations of these
technologies, and most critically, to be able to contribute in this
technological culture is essential. Programming is the skill that
enables this participation. Programming, and the critical thinking
and problem solving skills that accompany it, constitute a new 21st
century literacy that will need to live alongside reading, writing,
and mathematics as essential competencies to empower today’s
students to fully engage with our technological world. These skills
have far reaching benefits as they underpin and enable new forms
of creative expression, support learning in computational contexts
across a wide range of disciplines, and provide the foundation for
future careers in our increasingly computation-driven economy.

Bringing programming into K-12 education is a critical step for
introducing learners to this fundamental skill. A long-standing
question faced by educators is deciding where to start on day one:
What programming language to choose? In what environment?
An increasingly popular approach to the design of introductory
programming tools is the use of graphical, blocks-based
programming environments that leverage a primitives-as-puzzle-
pieces metaphor and support drag-and-drop composition (Figure
1). In such environments, learners can assemble functioning
programs using only a mouse by snapping together instructions
and receive visual feedback on how and where commands can be
used and if a given construction is valid. The use of this
programming modality has become a core feature of introductory
computer science curricula and programming interventions
targeted at young learners. Notably, national curricular efforts
including Exploring Computer Science [19], the CS Principles
project [2], and Code.org’s curricular materials utilize blocks-
based tools to introduce students to programming.

Despite its growing popularity and widespread use, little work to
date has focused on the conceptual and affective benefits of using
blocks-based tools in formal educational contexts. Open questions
remain on the effectiveness of the approach for helping students
learn basic programming concepts and whether or not blocks-
based tools are effective for preparing students for future
computer science learning opportunities that utilize conventional
text-based languages. Further, it is unclear what the strengths and
weaknesses of block-based programming tools are compared to
isomorphic text-based alternatives, and relatively little work has
explored the design space blending text and blocks-based features.

(a) (b) (c)

Figure 1. Three example blocks-based programming
languages: (a) Snap!, (b) Scratch, and (c) Alice.

The goal of the work presented here is to better understand the
affordances and limitations of using blocks-based environments in
formal computer science contexts, and then apply that knowledge
to the design a new tool for learning to program that draws on the
strengths of both the blocks-based and text-based modalities. To
answer these questions we conducted a study comparing three
versions of a blocks-based programming tool in high school
introductory programming classes. In doing so, we seek to
provide evidence to better inform educators who are tasked with
making consequential decisions around how learners are
introduced to computer science and, more generally, to contribute
to our understanding of the relationship between programming
tools and the understandings and practices they promote.

2. RESEARCH QUESTIONS
This work seeks to answer a pair of interrelated research
questions. The first pertains to how the representations used by a
programming environment effect students’ resulting
understandings of programming concepts and what programming
practices they engendered in the learner. There is a growing body
of literature on the effects, both positive and negative, of using
blocks-based programming environments with novices in formal
education environments [1, 11, 22, 27, 28]. This work largely
relies on pre/post test results, providing little in the way of
mechanistic explanations of the findings that attend to features of
the block-based programming approach. Our approach to answer
this question uses a mixed method design including conventional
assessment measures along with qualitative and computational
data sources to gain a deeper understanding of how learning
happens with these representational tools.

The second set of questions look at the effectiveness of
introductory programming tools for preparing students for future
computer science learning opportunities. While blocks-based
programming environments have been found to be successful at
engaging students in programming activities and providing
learners with early successes with little or no formal instruction

[24, 25], educators have had difficulty transitioning learners from
these graphical environments to conventional text-based
programming languages. Studies have found little transfer in
knowledge between graphical environments intended to introduce
learners to programming and the text-based environments that
serve as the core modality for further computer science studies [9,
10, 17, 31]. These findings are not universal as there have been
some successful efforts bridging graphical approaches and text-
based programming [1, 12, 26]. Like with the first research
question, much of the work done in this area has used pre/post test
measures to identify successful transfer. In our study, we combine
these measures with microgenetic approaches and a quasi-
experimental design to comparatively studying learning as it
happens to advance our understanding of if and how concepts and
practices do or do not carry over from introductory graphical tools
to more conventional text-based programming contexts.

Along with these two questions, with this work we are beginning
to explore the design space the blends blocks-based and text-
based programming approaches. This is an area of active research
as a number of introductory programming tools are attempting to
do this, often in an effort to support the blocks-to-text transition
[3, 12, 26]. Our goal for this design work is to develop an
environment we can confidently advocate for classroom use and
advance a set of design principles for creating effective hybrid
programming tools based on the findings from this study.

3. BACKGROUND AND RELATED WORK
3.1 Representations and Learning
“The tools we use have a profound (and devious!) influence on
our thinking habits, and, therefore, on our thinking abilities.” [13]

As stated by the Turing Award winning computer scientist Edsger
Dijkstra in the quote above, the tools we use, in this case the
programming languages and development environments, have a
profound, and often unforeseen, impact on how and what we
think. The role of representations on cognition has been studied
across a variety of representational systems and their influence
explored on various cognitive tasks. For example, Sherin [33]
studied students learning basic physics concepts using either
conventional algebraic notation or using programming languages
to represent physics ideas and found that the two representational
forms had different affordances with respect to students learning
physics concepts and, as result, affected their conceptualization of
the concepts learned. “Algebra physics trains students to seek out
equilibria in the world. Programming encourages students to look
for time-varying phenomena, and supports certain types of causal
explanations, as well as the segmenting of the world into
processes” [33]. Similar work has investigated other such
relationships, including the effect of textual literacy on thought [8,
23, 29], numerical representation (Roman vs. Hindu-Arabic
numerals) on learnability and expressive power [14, 35], and
programming notation on reader comprehension [18]. Wilensky
and Papert [41] use the term structuration to describe the
relationship between the representational infrastructure used
within a domain and the understanding that infrastructure enables
and promotes. While often assumed to be static, Wilensky and
Papert show that the structurations that underpin a discipline can,
and sometime should, change as new tools and ideas emerge.
Given the rise of blocks-based programming in introductory
learning contexts, it is critical we understand how this
representational shift is affecting learners so we can make
informed decisions about if and how it can most effectively be
incorporated into used in classrooms.

3.2 Blocks-based Programming
The blocks-based approach of visual programming, while not a
recent innovation, has become widespread in recent years with the
emergence of a new generation of tools, lead by the popularity of
Scratch [32], Snap! [20], and Blockly [16]. These programming
tools are a subset of the larger group of editors called structured
editors [15] that make the atomic unit of the composition tool a
node in the abstract syntax tree (AST), as opposed to a smaller
component (like a character or word) or a larger element (like a
fully formed functional unit). In making AST elements the
compositional building blocks, then providing constraints to
insure nodes can only be added to the program’s AST in valid
ways, the environment can prevent syntax errors. These
constraints are imposed in a number of ways. Blocks-based
programming environments leverage a programming-primitive-as-
puzzle-piece metaphor that provides visual cues to the user about
how and where commands can be used. If two blocks cannot be
joined to form a valid syntactic statement, the environment
prevents them from snapping together, thus preventing syntax
errors but retaining the practice of assembling programs
instruction-by-instruction. This features is especially relevant in
this study, as graphical programming proponents boast that the
lack of syntax is a key features that contributes to its
appropriateness for young learners [32], but research is finding
this approach does not solve the syntax problem, but only delays it
[30, 31]. Along with using block shape to denote usage, there are
other visual cues to help novice programmers including color
coding blocks by conceptual use, and nesting of blocks within
scripts to denote scope. Blocks-based programming is perceived
as easier by learners, with a number of these visual features cited
as reasons for its relative ease-of-use [39].

Early versions of this interlocking blocks-based such as
LogoBlocks [4] and BridgeTalk [6] which helped formulate the
programming approach which has since grown to be used in
dozens of applications. Alice [11], an influential and widely used
environment used in introductory programming classes, uses a
very similar interface and is widely used in undergraduate
introductory programming courses. In addition to being used in
more conventional computer science contexts, a growing number
of environments have adopted the blocks-based programming
approach to lower the barrier to programing across a variety of
domains including mobile app development with MIT App
Inventor and Pocket Code [34], modeling and simulation tools
including StarLogo TNG [5], DeltaTick [42], and EvoBuild [37],
creative and artistic tools like Turtle Art [7], and PicoBlocks,
commercial educational programming applications like Tynker
and Hopscotch, and game-based learning environments such as
RoboBuilder [38], Lightbot and the activities included in
Code.org’s Hour of Code and Google’s Made with Code
initiative. Collectively, all these new blocks-based tools further
reinforce the need to better understand the cognitive and affective
affordances of the modality.

4. RESEARCH DESIGN
4.1 UNIQUENESS OF APPRAOCH
Given the increasing prominence of graphical, and in particular,
blocks-based programming tools, our goal is to provide insight
into the consequences (both positive and negative) of choosing a
given programming modality for learners’ first programming
experiences. To date, much of the work in this space has looked at
the use of blocks-based tools in informal spaces (afterschool,
summer camps, etc.) as opposed to classrooms, and largely

focused on issues of engagement, recruitment and attitudes. Also,
our focus is on high school computer science classes, an age
group understudied relative to younger learners and undergraduate
students, who more often serve as the participants in similar
studies. Additionally, we have designed a mixed method, multi-
modal study, including the use of an innovative assessment tool,
to allow us to comprehensively answer our stated research
questions.

4.2 Study Design
Drawing inspiration from the learning sciences, we designed a
mixed-methods, quasi-experimental study to answer our stated
research questions. The study took place at an urban, public high
school and ran for the first 10 weeks of the school year in three
sections of an Introduction to Programming class. For the first
five weeks of the course, each class used a slightly different
programming environment based on Snap! [15]. Snap! is a blocks-
based programming tool that is very similar to Scratch, but adds a
few features (notably Snap! has first-class functions), and is
completely implemented in JavaScript. The first class served as a
control and used an unmodified version of Snap! The second class
used a version of Snap! that had the ability to right-click on any
block or script and open up a window showing a JavaScript
implementation of the selected block or script (Figure 2). This
served as a hybrid, blocks/text read-only environment, as students
were able to read, but not edit or write, text-based versions of the
programs they constructed with the blocks.

Figure 2. Side-by-side blocks and text in our version of Snap!

The third class used a version of Snap! that allowed students to
read their programs in text, like the read-only condition, and
added the ability to define the behavior of new custom blocks in
JavaScript. This served as a hybrid blocks/text read/write
environment, as students could both read a text-based version of
their own blocks, as well as write the behaviors of new blocks in
JavaScript. The usual workflow for defining new blocks was for
students to author the behavior with blocks, view the JavaScript
equivalent, and then copy/paste the text into their new block. In
this way, students in the read-write condition were usually not
writing JavaScript from scratch, but instead doing more tinkering
and tweaking of the textually defined behaviors. It is important to
note in this condition, students were only writing small snippets of
code (usually 4 lines or less) to define custom block behaviors and
then integrating the text-defined custom blocks into larger scripts.

All three classes worked through the same set of activities in their
respective environments. The five-week curriculum for the
introductory course was based on the Beauty and Joy of
Computing course and covered fundamental programming
concepts including variables, procedures, looping, and conditional
logic. Starting in week six, students transitioned from the
introductory tool to Java, the language they used for the remainder
of the school year. We followed students for the first 5 weeks of
learning Java. For the Java portion of the course, students
followed the same curriculum the course had historically been
taught with, based on the Java Concepts: Early Objects book [21].

4.3 DATA COLLECTION
A variety of data were collected as part of our mixed-methods
study design. Attitudinal surveys and content assessments were
administered three times during the study: at the outset (beginning
of week 1), at the conclusion of the first phase of the study after
students had completed working with the introductory
environments but before they had started with Java (end of week
5), and at the conclusion of the study, after students have been
learning Java for five weeks (end of week 10). The attitudinal
surveys were based on existing, validated surveys used in similar
research studies [36]. The content assessments were designed
specifically for this project and included a set of 30 “reversible”
questions (Figure 3) that covered the topics students encountered
during the five-week introductory portion of the study. Each
question presents a short program (3-6 lines) for the student to
read. The code is presented as either a blocks-based program or
written in a text-based language. The modality students see
alternates both within and across assessment.

Figure 3. Two “reversible” assessment questions.

Along with our quantitative data, we also conducted semi-
structured clinical interviews throughout the study. For these
interviews, a researcher sat alongside a student as they both face a
computer that had a version of the introductory programming tool
on screen (Figure 4). Students were asked to read existing
programs written in various modalities, as well as author new
programs in both blocks and text. Interviews were recorded using
software that captured both what is displayed on the screen as
well as the student (via the onboard camera). We also conducted
teacher interviews at regular intervals through out the study and
did observations of all three classrooms.

Figure 4. A screen shot from an interview

Finally, we recorded all of the student-authored programs over the
course of the study. This included programs written across the
three introductory tools as well as Java programs authored in the
subsequent weeks. The programs will be used as a data corpus for
analyses using educational data mining techniques.

This fall we spent ten weeks collecting data at a selective
enrollment, urban public high school. A total of 90 students across
three sections of the course participated in the study, which
included 67 male students and 23 female students. The students
participating in the study were 43% Hispanic, 29% White, 10%
Asian, 6% African American, and 10% Multi-racial - a
breakdown comparable to the larger student body. The classes
included one student in eighth grade, three high school freshman,

43 sophomores, 18 juniors, and 25 high school seniors. Two-
thirds of the students in these classes speak a language other than
English in their homes. Over the course of the ten-week study we
gathered 88 sets of pre/mid/post attitudinal assessments and over
8,500 responses to our reversible content assessments. We also
conducted 32 interviews (9 pre, 10 mid, 8 post, 5 teacher) and
collected over 73,000 Snap! programs and over 10,000 Java
programs.

5. RESULTS
5.1 STUDENTS’ PERCEPTIONS OF
BLOCKS-BASED PROGRAMMING TOOLS
Our first investigation was into the question of how students
perceive the differences between blocks-based and text-based
programming [39]. This analysis drew on data collected in the
mid and post attitudinal surveys and was supplemented by the
interviews we conducted. We found that a majority of students
(92%) viewed blocks-based programming as easier than text-
based programming. Students cited a number of features of
blocks-based programming as contributing to this, including the
ease of the drag-and-drop composition, the lack of needing to
memorize commands, and the fact that in the tools we used,
blocks were closer to natural language than text-based
programming languages are, making them easier to read. This
view was not universal as 4% of students thought text-based
programming was easier, with the remaining 4% saying they
thought the two environments were comparable with respect to
ease-of-use. Students also identified drawbacks of the blocks-
based programming approach, including issues of authenticity and
the difficulty of building large complex programs with block-
based tools. This finding provides evidence that reinforces our
intuition that the blocks-based modality is easier for novices and
gives us insight into what features are seen as the sources of this
ease-of-use through the eyes of a learner. Finally, these findings
provide guidance for the design of future learning environments
as it reveals what features are critical and what features are
problematic for high school students about blocks-based tools.

5.2 STUDENT PERFORMANCE ON
REVERSIBLE ASSESSMENTS
Using responses to our reversible assessments, we can investigate
the relationship between modality (blocks-based or text) and
programming concepts. Students answered reversible questions
about four basic programming concepts: variables, iterative logic,
conditional logic, and procedures, along with program
comprehension questions. Five questions from each category were
asked, with the questions being presented in a blocks-based or
text-based way. For our analysis, we grouped student responses
by concept and modality to see how the representation affected
students’ performance (Figure 5). We found that students
performed significantly better on blocks-based questions when the
questions pertained to conditional logic t(178) = 2.80, p < .01,
iterative logic t(178) = 10.64, p < .001 and procedures t(178) =
2.79, p < .01. Student also performed better on variables in the
graphical condition, although not significantly. Interestingly, there
was no difference in performance on comprehension questions
between the two modalities. This suggests that while the graphical
representation supports students in understanding what a construct
does (i.e. what the output from using it is), that support does not
better facilitate learners in understanding how to use that construct
or how it fits into a larger algorithm. This is potentially a very
consequential finding and we are in the process of conducting a
deeper analysis to explain this finding.

Figure 5. Student performance on reversible assessment

questions grouped by modality and concept.

5.3 PROGRAMMING PATTERNS IN
BLOCKS-BASED TOOLS
The final set of analyses we have conducted uses the log data we
collected to investigate different patters of interaction of students
in our three introductory tools. During the 10-week study we
recorded all of the code written by students. With this data we can
follow the paths learners took as they worked through a problem.
Figure 6 shows the trajectories of three students as they
progressed through one assignment.

Figure 6. Three student trajectories in blocks-based tool.

The x-axis of these graphs shows each successive version of the
student’s program, while the y-axis depicts the size of the
program in terms of number of blocks used. The size of the dot at
each step shows how many times that specific version of the
program was executed. These three graphs depict three distinct
approaches to developing programs with a blocks-based tool.
Student A started by very quickly added a lot of blocks to her
program (shown by the steep positive slope). Upon getting all the
pieces in place, she ran the program a large number of times (the
large dots before the slope decreases), before proceeding with a
large number of small changes as she worked toward the final
version of the program (the relatively flat portion of the graph).
Student C took the opposite approach, starting with a few blocks
and judiciously adding them while running each early version of
the program many times, only making large additions to her
program at the end. Student B’s graph lives somewhere between
these two approaches, building up his program at a relatively
constant rate, and with one notable exception, running each
version of the program roughly the same number of times before
making the next set of changes. This is only an initial pass
through our program log data and we have plans to conduct more
sophisticated and nuanced computational analyses in the future,
including measuring AST distance and the use of key
computational constructs to accomplish specific tasks.

5.4 CONTRIBUTIONS
We expect the findings of this study will compliment existing
work done on introductory programming environments and give

us a broader picture of how the latest generation of block-based
programming tools fit into more formal, structured educational
spaces, as well as provide insight into the cognitive and
procedural dimensions of such tools. The other contribution we
see this work making is the introduction of a new environment or
set of design principles, informed by research, that addresses
some of the shortcomings of existing introductory blocks-based
programming tools.

We are at a critical juncture in the history of computer science
education. The ability to program is a central skill all students
should develop, but it is currently absent from the coursework of
many of today’s students. To address this gap, educators, school
administrators, and state and national legislators are all taking
action to bring computer science into the classroom. The
practices, tools, and curricula that are being developed today, will
become the standards used for years to come. Therefore, it is
critical that we are confident that the curricula and environments
we advocate for today are effective at teaching the core concepts,
engaging learners from diverse backgrounds, and successful in
preparing students for the computational endeavors they will face
in the future. The findings from this study will advance our
understanding of how best to introduce students to these core 21st
century skills and contribute new tools that will prepare students
to be successful in the computational futures that await them.

6. REFERENCES
[1] Armoni, M. et al. 2015. From Scratch to “Real”

Programming. ACM Trans. on Computing Ed. 14, 4, 25.
[2] Astrachan, O. and Briggs, A. 2012. The CS principles

project. ACM Inroads. 3, 2 (2012), 38–42.
[3] Bau, D. and Bau, D.A. 2014. A Preview of Pencil Code: A

Tool for Developing Mastery of Programming. Proc. of the
Programming for Mobile & Touch, 21–24.

[4] Begel, A. 1996. LogoBlocks: A graphical programming
language for interacting with the world. EECS. MIT.

[5] Begel, A. and Klopfer, E. 2007. Starlogo TNG: An
introduction to game development. Journal of E-Learning.

[6] Bonar, J. and Liffick, B.W. 1987. A visual programming
language for novices. Principles of Visual Programming
Systems. S.K. Chang, ed. Prentice-Hall, Inc.

[7] Bontá, P. et al. 2010. Turtle, Art, TurtleArt. Proc. of
Constructionism 2010 (Paris, Fr.).

[8] Boroditsky, L. 2001. Does Language Shape Thought?:
Mandarin and English Speakers’ Conceptions of Time.
Cognitive Psychology. 43, 1, 1–22.

[9] Chetty, J. and Barlow-Jones, G. 2012. Bridging the Gap: the
Role of Mediated Transfer for Computer Programming.
Proc. of Comp. Sci & Inf. Tech. 43.

[10] Cliburn, D.C. 2008. Student opinions of Alice in CS1.
Frontiers in Education Conference, 2008, T3B–1.

[11] Cooper, S. et al. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of CS in Colleges 15, 5.

[12] Dann, W. et al. 2012. Mediated transfer: Alice 3 to Java.
Proc. of the 43rd SIGCSE, 141–146.

[13] Dijkstra, E.W. 1982. How do we tell truths that might hurt?
Selected Writings on Computing: A Personal Perspective.
Springer. 129–131.

[14] diSessa, A.A. 2000. Changing minds: Computers, learning,
and literacy. MIT Press.

[15] Donzeau-Gouge, V. et al. 1984. Programming environments
based on structured editors: The MENTOR experience. D.
Barstow et al., eds. McGraw Hill.

[16] Fraser, N. 2013. Blockly. Google.

[17] Garlick, R. and Cankaya, E.C. 2010. Using Alice in CS1: A
quantitative experiment. Proc of the 15th ITiCSE, 165–168.

[18] Gilmore, D.J. and Green, T.R.G. 1984. Comprehension and
recall of miniature programs. Int. Journal of Man-Machine
Studies. 21, 1, 31–48.

[19] Goode, J. et al. 2012. Beyond curriculum: the exploring
computer science program. ACM Inroads. 3, 2, 47–53.

[20] Harvey, B. and Mönig, J. 2010. Bringing “no ceiling” to
Scratch. Proc. of Constructionism 2010 (Paris, Fr.), 1–10.

[21] Horstmann, C.S. 2012. Java Concepts: Early Objects. Wiley.
[22] Lewis, C.M. 2010. How programming environment shapes

perception, learning and goals: Logo vs. Scratch. Proc. of the
41st SIGCSE (New York, NY), 346–350.

[23] Luria, A.R. 1982. Language and cognition. Winston!; Wiley,
Washington, D.C.!: New York!; Chichester!:

[24] Malan, D.J. and Leitner, H.H. 2007. Scratch for budding
computer scientists. ACM SIGCSE Bulletin, 223–227.

[25] Maloney, J.H. et al. 2008. Programming by choice: Urban
youth learning programming with Scratch. ACM SIGCSE
Bulletin. 40, 1, 367–371.

[26] Matsuzawa, Y. et al. 2015. Language Migration in non-CS
Introductory Programming through Mutual Language
Translation Environment., 185–190.

[27] Meerbaum-Salant, O. et al. 2011. Habits of programming in
Scratch. Proc. of 16th ITiCSE (Darmstadt, Ger.), 168–172.

[28] Meerbaum-Salant, O. et al. 2010. Learning computer science
concepts with scratch. Proc. of the 6th ICER, 69–76.

[29] Ong, W. 1982. Orality and Literacy: The technologizing of
the world. Routledge.

[30] Parsons, D. and Haden, P. 2007. Programming osmosis:
Knowledge transfer from imperative to visual programming
environments. Proc. of the 12th NACCQ Conference
(Hamilton, New Zealand), 209–215.

[31] Powers, K. et al. 2007. Through the looking glass: teaching
CS0 with Alice. ACM SIGCSE Bulletin. 39, 1, 213–217.

[32] Resnick, M. et al. 2009. Scratch: Programming for all.
Communications of the ACM. 52, 11, 60.

[33] Sherin, B.L. 2001. A comparison of programming languages
and algebraic notation as expressive languages for physics.
Int. Journal of Computers for Mathematical Learning. 6, 1.

[34] Slany, W. 2014. Tinkering with Pocket Code, a Scratch-like
programming app for your smartphone. Proc. of
Constructionism 2014 (Vienna, Aus).

[35] Swetz, F. 1989. Capitalism and arithmetic: The new math of
the 15th century. Open Court.

[36] Tew, A.E. et al. 2012. Toward a validated computing
attitudes survey. Pro. of the 9th ICER, 135–142.

[37] Wagh, A. and Wilensky, U. 2012. Evolution in blocks:
Building models of evolution using blocks. Proc of
Constructionism 2012 (Athens, Gr.).

[38] Weintrop, D. and Wilensky, U. 2012. RoboBuilder: A
program-to-play constructionist video game. Proc. of
Constructionism 2012 (Athens, Gr.).

[39] Weintrop, D. and Wilensky, U. 2015. To Block or not to
Block, That is the Question: Students’ Perceptions of Blocks-
based Programming. Proc. of the 14th IDC (Boston, MA.).

[40] Wilensky, U. and Papert, S. 2010. Restructurations:
Reformulating knowledge disciplines through new
representational forms. Proc of Constructionism 2010 (Paris,
Fr.).

[41] Wilkerson-Jerde, M.H. and Wilensky, U. 2010. Restructuring
Change, Interpreting Changes: The DeltaTick Modeling and
Analysis Toolkit. Proc. of Constructionism 2010 (Paris, Fr.).

