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1. INTRODUCTION & MOTIVATION 
Computation is changing our world. From how we communicate 
and how we make decisions, to how we relax and how we shop - 
few aspects of our lives have been left unaffected by the long 
reach of computation and the technologies that it enables. 
Smartphones, tablets, and laptops have become the lenses through 
which we see, organize, and interpret the world. As such, for 
young learners growing up in this technological landscape, being 
able to recognize the capabilities and limitations of these 
technologies, and most critically, to be able to contribute in this 
technological culture is essential. Programming is the skill that 
enables this participation. Programming, and the critical thinking 
and problem solving skills that accompany it, constitute a new 21st 
century literacy that will need to live alongside reading, writing, 
and mathematics as essential competencies to empower today’s 
students to fully engage with our technological world. These skills 
have far reaching benefits as they underpin and enable new forms 
of creative expression, support learning in computational contexts 
across a wide range of disciplines, and provide the foundation for 
future careers in our increasingly computation-driven economy. 

Bringing programming into K-12 education is a critical step for 
introducing learners to this fundamental skill. A long-standing 
question faced by educators is deciding where to start on day one: 
What programming language to choose? In what environment? 
An increasingly popular approach to the design of introductory 
programming tools is the use of graphical, blocks-based 
programming environments that leverage a primitives-as-puzzle-
pieces metaphor and support drag-and-drop composition (Figure 
1). In such environments, learners can assemble functioning 
programs using only a mouse by snapping together instructions 
and receive visual feedback on how and where commands can be 
used and if a given construction is valid. The use of this 
programming modality has become a core feature of introductory 
computer science curricula and programming interventions 
targeted at young learners. Notably, national curricular efforts 
including Exploring Computer Science [19], the CS Principles 
project [2], and Code.org’s curricular materials  utilize blocks-
based tools to introduce students to programming. 

Despite its growing popularity and widespread use, little work to 
date has focused on the conceptual and affective benefits of using 
blocks-based tools in formal educational contexts. Open questions 
remain on the effectiveness of the approach for helping students 
learn basic programming concepts and whether or not blocks-
based tools are effective for preparing students for future 
computer science learning opportunities that utilize conventional 
text-based languages. Further, it is unclear what the strengths and 
weaknesses of block-based programming tools are compared to 
isomorphic text-based alternatives, and relatively little work has 
explored the design space blending text and blocks-based features. 
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Figure 1. Three example blocks-based programming 
languages: (a) Snap!, (b) Scratch, and (c) Alice. 

The goal of the work presented here is to better understand the 
affordances and limitations of using blocks-based environments in 
formal computer science contexts, and then apply that knowledge 
to the design a new tool for learning to program that draws on the 
strengths of both the blocks-based and text-based modalities. To 
answer these questions we conducted a study comparing three 
versions of a blocks-based programming tool in high school 
introductory programming classes. In doing so, we seek to 
provide evidence to better inform educators who are tasked with 
making consequential decisions around how learners are 
introduced to computer science and, more generally, to contribute 
to our understanding of the relationship between programming 
tools and the understandings and practices they promote. 

2. RESEARCH QUESTIONS 
This work seeks to answer a pair of interrelated research 
questions. The first pertains to how the representations used by a 
programming environment effect students’ resulting 
understandings of programming concepts and what programming 
practices they engendered in the learner. There is a growing body 
of literature on the effects, both positive and negative, of using 
blocks-based programming environments with novices in formal 
education environments [1, 11, 22, 27, 28]. This work largely 
relies on pre/post test results, providing little in the way of 
mechanistic explanations of the findings that attend to features of 
the block-based programming approach. Our approach to answer 
this question uses a mixed method design including conventional 
assessment measures along with qualitative and computational 
data sources to gain a deeper understanding of how learning 
happens with these representational tools. 

The second set of questions look at the effectiveness of 
introductory programming tools for preparing students for future 
computer science learning opportunities. While blocks-based 
programming environments have been found to be successful at 
engaging students in programming activities and providing 
learners with early successes with little or no formal instruction 



[24, 25], educators have had difficulty transitioning learners from 
these graphical environments to conventional text-based 
programming languages. Studies have found little transfer in 
knowledge between graphical environments intended to introduce 
learners to programming and the text-based environments that 
serve as the core modality for further computer science studies [9, 
10, 17, 31]. These findings are not universal as there have been 
some successful efforts bridging graphical approaches and text-
based programming [1, 12, 26]. Like with the first research 
question, much of the work done in this area has used pre/post test 
measures to identify successful transfer. In our study, we combine 
these measures with microgenetic approaches and a quasi-
experimental design to comparatively studying learning as it 
happens to advance our understanding of if and how concepts and 
practices do or do not carry over from introductory graphical tools 
to more conventional text-based programming contexts. 

Along with these two questions, with this work we are beginning 
to explore the design space the blends blocks-based and text-
based programming approaches. This is an area of active research 
as a number of introductory programming tools are attempting to 
do this, often in an effort to support the blocks-to-text transition 
[3, 12, 26]. Our goal for this design work is to develop an 
environment we can confidently advocate for classroom use and 
advance a set of design principles for creating effective hybrid 
programming tools based on the findings from this study.  

3. BACKGROUND AND RELATED WORK 
3.1 Representations and Learning 
“The tools we use have a profound (and devious!) influence on 
our thinking habits, and, therefore, on our thinking abilities.” [13] 

As stated by the Turing Award winning computer scientist Edsger 
Dijkstra in the quote above, the tools we use, in this case the 
programming languages and development environments, have a 
profound, and often unforeseen, impact on how and what we 
think. The role of representations on cognition has been studied 
across a variety of representational systems and their influence 
explored on various cognitive tasks. For example, Sherin [33] 
studied students learning basic physics concepts using either 
conventional algebraic notation or using programming languages 
to represent physics ideas and found that the two representational 
forms had different affordances with respect to students learning 
physics concepts and, as result, affected their conceptualization of 
the concepts learned. “Algebra physics trains students to seek out 
equilibria in the world. Programming encourages students to look 
for time-varying phenomena, and supports certain types of causal 
explanations, as well as the segmenting of the world into 
processes” [33]. Similar work has investigated other such 
relationships, including the effect of textual literacy on thought [8, 
23, 29], numerical representation (Roman vs. Hindu-Arabic 
numerals) on learnability and expressive power [14, 35], and 
programming notation on reader comprehension [18]. Wilensky 
and Papert [41] use the term structuration to describe the 
relationship between the representational infrastructure used 
within a domain and the understanding that infrastructure enables 
and promotes. While often assumed to be static, Wilensky and 
Papert show that the structurations that underpin a discipline can, 
and sometime should, change as new tools and ideas emerge. 
Given the rise of blocks-based programming in introductory 
learning contexts, it is critical we understand how this 
representational shift is affecting learners so we can make 
informed decisions about if and how it can most effectively be 
incorporated into used in classrooms. 

3.2 Blocks-based Programming 
The blocks-based approach of visual programming, while not a 
recent innovation, has become widespread in recent years with the 
emergence of a new generation of tools, lead by the popularity of 
Scratch [32], Snap! [20], and Blockly [16]. These programming 
tools are a subset of the larger group of editors called structured 
editors [15]  that make the atomic unit of the composition tool a 
node in the abstract syntax tree (AST), as opposed to a smaller 
component (like a character or word) or a larger element (like a 
fully formed functional unit). In making AST elements the 
compositional building blocks, then providing constraints to 
insure nodes can only be added to the program’s AST in valid 
ways, the environment can prevent syntax errors. These 
constraints are imposed in a number of ways. Blocks-based 
programming environments leverage a programming-primitive-as-
puzzle-piece metaphor that provides visual cues to the user about 
how and where commands can be used. If two blocks cannot be 
joined to form a valid syntactic statement, the environment 
prevents them from snapping together, thus preventing syntax 
errors but retaining the practice of assembling programs 
instruction-by-instruction. This features is especially relevant in 
this study, as graphical programming proponents boast that the 
lack of syntax is a key features that contributes to its 
appropriateness for young learners [32], but research is finding 
this approach does not solve the syntax problem, but only delays it 
[30, 31]. Along with using block shape to denote usage, there are 
other visual cues to help novice programmers including color 
coding blocks by conceptual use, and nesting of blocks within 
scripts to denote scope. Blocks-based programming is perceived 
as easier by learners, with a number of these visual features cited 
as reasons for its relative ease-of-use [39].  

Early versions of this interlocking blocks-based such as 
LogoBlocks [4] and BridgeTalk [6] which helped formulate the 
programming approach which has since grown to be used in 
dozens of applications. Alice [11], an influential and widely used 
environment used in introductory programming classes, uses a 
very similar interface and is widely used in undergraduate 
introductory programming courses. In addition to being used in 
more conventional computer science contexts, a growing number 
of environments have adopted the blocks-based programming 
approach to lower the barrier to programing across a variety of 
domains including mobile app development with MIT App 
Inventor and Pocket Code [34], modeling and simulation tools 
including StarLogo TNG [5], DeltaTick [42], and EvoBuild [37], 
creative and artistic tools like Turtle Art [7], and PicoBlocks, 
commercial educational programming applications like Tynker 
and Hopscotch, and game-based learning environments such as 
RoboBuilder [38], Lightbot  and the activities included in 
Code.org’s Hour of Code and Google’s Made with Code 
initiative. Collectively, all these new blocks-based tools further 
reinforce the need to better understand the cognitive and affective 
affordances of the modality. 

4. RESEARCH DESIGN 
4.1 UNIQUENESS OF APPRAOCH 
Given the increasing prominence of graphical, and in particular, 
blocks-based programming tools, our goal is to provide insight 
into the consequences (both positive and negative) of choosing a 
given programming modality for learners’ first programming 
experiences. To date, much of the work in this space has looked at 
the use of blocks-based tools in informal spaces (afterschool, 
summer camps, etc.) as opposed to classrooms, and largely 



focused on issues of engagement, recruitment and attitudes. Also, 
our focus is on high school computer science classes, an age 
group understudied relative to younger learners and undergraduate 
students, who more often serve as the participants in similar 
studies. Additionally, we have designed a mixed method, multi-
modal study, including the use of an innovative assessment tool, 
to allow us to comprehensively answer our stated research 
questions. 

4.2 Study Design 
Drawing inspiration from the learning sciences, we designed a 
mixed-methods, quasi-experimental study to answer our stated 
research questions. The study took place at an urban, public high 
school and ran for the first 10 weeks of the school year in three 
sections of an Introduction to Programming class. For the first 
five weeks of the course, each class used a slightly different 
programming environment based on Snap! [15]. Snap! is a blocks-
based programming tool that is very similar to Scratch, but adds a 
few features (notably Snap! has first-class functions), and is 
completely implemented in JavaScript. The first class served as a 
control and used an unmodified version of Snap! The second class 
used a version of Snap! that had the ability to right-click on any 
block or script and open up a window showing a JavaScript 
implementation of the selected block or script (Figure 2). This 
served as a hybrid, blocks/text read-only environment, as students 
were able to read, but not edit or write, text-based versions of the 
programs they constructed with the blocks. 

  
Figure 2. Side-by-side blocks and text in our version of Snap! 

The third class used a version of Snap! that allowed students to 
read their programs in text, like the read-only condition, and 
added the ability to define the behavior of new custom blocks in 
JavaScript. This served as a hybrid blocks/text read/write 
environment, as students could both read a text-based version of 
their own blocks, as well as write the behaviors of new blocks in 
JavaScript. The usual workflow for defining new blocks was for 
students to author the behavior with blocks, view the JavaScript 
equivalent, and then copy/paste the text into their new block. In 
this way, students in the read-write condition were usually not 
writing JavaScript from scratch, but instead doing more tinkering 
and tweaking of the textually defined behaviors. It is important to 
note in this condition, students were only writing small snippets of 
code (usually 4 lines or less) to define custom block behaviors and 
then integrating the text-defined custom blocks into larger scripts. 

All three classes worked through the same set of activities in their 
respective environments. The five-week curriculum for the 
introductory course was based on the Beauty and Joy of 
Computing course and covered fundamental programming 
concepts including variables, procedures, looping, and conditional 
logic. Starting in week six, students transitioned from the 
introductory tool to Java, the language they used for the remainder 
of the school year. We followed students for the first 5 weeks of 
learning Java. For the Java portion of the course, students 
followed the same curriculum the course had historically been 
taught with, based on the Java Concepts: Early Objects book [21].  

4.3 DATA COLLECTION 
A variety of data were collected as part of our mixed-methods 
study design. Attitudinal surveys and content assessments were 
administered three times during the study: at the outset (beginning 
of week 1), at the conclusion of the first phase of the study after 
students had completed working with the introductory 
environments but before they had started with Java (end of week 
5), and at the conclusion of the study, after students have been 
learning Java for five weeks (end of week 10). The attitudinal 
surveys were based on existing, validated surveys used in similar 
research studies [36]. The content assessments were designed 
specifically for this project and included a set of 30 “reversible” 
questions  (Figure 3) that covered the topics students encountered 
during the five-week introductory portion of the study. Each 
question presents a short program (3-6 lines) for the student to 
read. The code is presented as either a blocks-based program or 
written in a text-based language. The modality students see 
alternates both within and across assessment. 

 
Figure 3. Two “reversible” assessment questions. 

Along with our quantitative data, we also conducted semi-
structured clinical interviews throughout the study. For these 
interviews, a researcher sat alongside a student as they both face a 
computer that had a version of the introductory programming tool 
on screen (Figure 4). Students were asked to read existing 
programs written in various modalities, as well as author new 
programs in both blocks and text. Interviews were recorded using 
software that captured both what is displayed on the screen as 
well as the student (via the onboard camera). We also conducted 
teacher interviews at regular intervals through out the study and 
did observations of all three classrooms.  

 
Figure 4. A screen shot from an interview 

Finally, we recorded all of the student-authored programs over the 
course of the study. This included programs written across the 
three introductory tools as well as Java programs authored in the 
subsequent weeks. The programs will be used as a data corpus for 
analyses using educational data mining techniques.  

This fall we spent ten weeks collecting data at a selective 
enrollment, urban public high school. A total of 90 students across 
three sections of the course participated in the study, which 
included 67 male students and 23 female students. The students 
participating in the study were 43% Hispanic, 29% White, 10% 
Asian, 6% African American, and 10% Multi-racial - a 
breakdown comparable to the larger student body. The classes 
included one student in eighth grade, three high school freshman, 



43 sophomores, 18 juniors, and 25 high school seniors. Two-
thirds of the students in these classes speak a language other than 
English in their homes. Over the course of the ten-week study we 
gathered 88 sets of pre/mid/post attitudinal assessments and over 
8,500 responses to our reversible content assessments. We also 
conducted 32 interviews (9 pre, 10 mid, 8 post, 5 teacher) and 
collected over 73,000 Snap! programs and over 10,000 Java 
programs.  

5. RESULTS  
5.1 STUDENTS’ PERCEPTIONS OF 
BLOCKS-BASED PROGRAMMING TOOLS 
Our first investigation was into the question of how students 
perceive the differences between blocks-based and text-based 
programming [39]. This analysis drew on data collected in the 
mid and post attitudinal surveys and was supplemented by the 
interviews we conducted. We found that a majority of students 
(92%) viewed blocks-based programming as easier than text-
based programming. Students cited a number of features of 
blocks-based programming as contributing to this, including the 
ease of the drag-and-drop composition, the lack of needing to 
memorize commands, and the fact that in the tools we used, 
blocks were closer to natural language than text-based 
programming languages are, making them easier to read. This 
view was not universal as 4% of students thought text-based 
programming was easier, with the remaining 4% saying they 
thought the two environments were comparable with respect to 
ease-of-use. Students also identified drawbacks of the blocks-
based programming approach, including issues of authenticity and 
the difficulty of building large complex programs with block-
based tools. This finding provides evidence that reinforces our 
intuition that the blocks-based modality is easier for novices and 
gives us insight into what features are seen as the sources of this 
ease-of-use through the eyes of a learner. Finally, these findings 
provide guidance for the design of future learning environments 
as it reveals what features are critical and what features are 
problematic for high school students about blocks-based tools. 

5.2 STUDENT PERFORMANCE ON 
REVERSIBLE ASSESSMENTS 
Using responses to our reversible assessments, we can investigate 
the relationship between modality (blocks-based or text) and 
programming concepts. Students answered reversible questions 
about four basic programming concepts: variables, iterative logic, 
conditional logic, and procedures, along with program 
comprehension questions. Five questions from each category were 
asked, with the questions being presented in a blocks-based or 
text-based way. For our analysis, we grouped student responses 
by concept and modality to see how the representation affected 
students’ performance (Figure 5). We found that students 
performed significantly better on blocks-based questions when the 
questions pertained to conditional logic t(178) = 2.80, p < .01, 
iterative logic t(178) = 10.64, p < .001 and procedures t(178) = 
2.79, p < .01. Student also performed better on variables in the 
graphical condition, although not significantly. Interestingly, there 
was no difference in performance on comprehension questions 
between the two modalities. This suggests that while the graphical 
representation supports students in understanding what a construct 
does (i.e. what the output from using it is), that support does not 
better facilitate learners in understanding how to use that construct 
or how it fits into a larger algorithm. This is potentially a very 
consequential finding and we are in the process of conducting a 
deeper analysis to explain this finding. 

 
Figure 5. Student performance on reversible assessment 

questions grouped by modality and concept. 

5.3 PROGRAMMING PATTERNS IN 
BLOCKS-BASED TOOLS 
The final set of analyses we have conducted uses the log data we 
collected to investigate different patters of interaction of students 
in our three introductory tools. During the 10-week study we 
recorded all of the code written by students. With this data we can 
follow the paths learners took as they worked through a problem. 
Figure 6 shows the trajectories of three students as they 
progressed through one assignment. 

 
Figure 6. Three student trajectories in blocks-based tool. 

The x-axis of these graphs shows each successive version of the 
student’s program, while the y-axis depicts the size of the 
program in terms of number of blocks used. The size of the dot at 
each step shows how many times that specific version of the 
program was executed. These three graphs depict three distinct 
approaches to developing programs with a blocks-based tool. 
Student A started by very quickly added a lot of blocks to her 
program (shown by the steep positive slope). Upon getting all the 
pieces in place, she ran the program a large number of times (the 
large dots before the slope decreases), before proceeding with a 
large number of small changes as she worked toward the final 
version of the program (the relatively flat portion of the graph). 
Student C took the opposite approach, starting with a few blocks 
and judiciously adding them while running each early version of 
the program many times, only making large additions to her 
program at the end. Student B’s graph lives somewhere between 
these two approaches, building up his program at a relatively 
constant rate, and with one notable exception, running each 
version of the program roughly the same number of times before 
making the next set of changes. This is only an initial pass 
through our program log data and we have plans to conduct more 
sophisticated and nuanced computational analyses in the future, 
including measuring AST distance and the use of key 
computational constructs to accomplish specific tasks. 

5.4 CONTRIBUTIONS  
We expect the findings of this study will compliment existing 
work done on introductory programming environments and give 



us a broader picture of how the latest generation of block-based 
programming tools fit into more formal, structured educational 
spaces, as well as provide insight into the cognitive and 
procedural dimensions of such tools. The other contribution we 
see this work making is the introduction of a new environment or 
set of design principles, informed by research, that addresses 
some of the shortcomings of existing introductory blocks-based 
programming tools. 

We are at a critical juncture in the history of computer science 
education. The ability to program is a central skill all students 
should develop, but it is currently absent from the coursework of 
many of today’s students. To address this gap, educators, school 
administrators, and state and national legislators are all taking 
action to bring computer science into the classroom. The 
practices, tools, and curricula that are being developed today, will 
become the standards used for years to come. Therefore, it is 
critical that we are confident that the curricula and environments 
we advocate for today are effective at teaching the core concepts, 
engaging learners from diverse backgrounds, and successful in 
preparing students for the computational endeavors they will face 
in the future. The findings from this study will advance our 
understanding of how best to introduce students to these core 21st 
century skills and contribute new tools that will prepare students 
to be successful in the computational futures that await them. 
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