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Abstract 

In this paper we extend our previous results in dual approach to analysis and simulation of a complex ecological 
system of preys and predators. We first define nonlinear dynamic equations Lotka-Volterra Model (LVM) with three 
preys and three predators and then simulate the equivalent situation with an Agent Based Model (ABM) which 
models a variety of species attributes and behaviors using NetLogo simulation environment for ABM model. The idea 
is that the LVM and ABM methods reinforce each other as the predator-prey models become more complex and their 
dimensionality rises. In particular LVM’s parameters, components of community matrix,  can be fine tuned using 
ABM simulations. Dual approach may be able to answer and qualify some of the long standing ecological paradoxes.  

 

 

1. INTRODUCTION 

 

In analysis and simulation of complex ecological 
systems, we often start with a nonlinear Lotka Volterra 
Model (LVM) of predator-prey dynamic system [1, 2]. 
The problem with this approach is that the LVM is very 
simplified model and apart from a detailed stability 
analysis [2], there are no real life complex ecological 
dynamic system models which are flexible and useful 
enough. Some of the reasons are (i) Lack of any general 
model build up methodology, (ii) Lack of any structural 
analysis of complex dynamical ecological models, and 
(iii) Very few results explaining some well know 
ecological paradoxes. In our earlier paper [1] very simple 
single prey and single predator system was modeled and 
analyzed by using both LVM and ABM. In this paper we 
extend the results in [1] and define two main paper goals:  

(i) Define mathematical details of a dynamic 
system with three aquatic predators and three prays (3+3 
model) using a notion of  community matrix and classic 
Lotka-Volterra predator-prey nonlinear model.  This 
serves as a mathematical background which will be used 
in later research to reconcile two models, LVM and 
ABM, with the idea that two models reinforce each 
other. In particular we plan to use ABM to fine tune 
LVM and community matrix parameters which is at its 
heart. 

(ii) Next we simulate ABM 3+3 model using 
NetLogo simulation tool where we can define ABM 
parameters, in particular related to various properties of 
preys and predators. These properties include their total 
numbers, consumption rates, how they are “born” and 

how they “die” in simulation cases, and several other 
tuning “knobs” allowed by NetLogo environment.  

 

The results of this paper can be extended to higher 
number of species as well. Our goal is also to gain 
further insight into predator-prey population dynamics, 
structural properties of the models, understanding of 
stability in multispecies communities, and improve rigor, 
usability, robustness and adaptivity of both LVM and 
ABM models. We believe that the dual approach can 
bring about very usable but complex predator-prey 
ecological models which are also mathematically 
tractable. 
 

2.  SINGLE PREY SINGLE PREDATOR MODELS 

General ecological nonlinear model is described by [2]: 
 

                        S:  dX/dt = A(t,X) X                            (1) 

where X is a species vector. The model has an 
appearance of a linear system. The vector X may be a 2-
dimensional vector, i.e. one pray, one predator [1], or it 
could consist of many more species  arranged in tropical 
levels of preys and predators. Matrix A(t,X) is a 
"community" matrix with nonlinear elements, time-
dependent functions aij=aij(t,X), where "ij" indicates 
position in the matrix. In 2-dimesional X,  matrix  A is 2 
by 2, with the elements  a11, a12, a21, and a22, which 
describe self and cross interactions among the two 
species. A special case of (1) is well known nonlinear 
Lotka-Volterra Model (LVM). For purposes of this 
paper, we review briefly what was covered in [1] for 
Single Prey Single Predator (SPSP) model.  
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2.1   LVM Basic Mathematics 
 
Let us assume X = [X1, X2]T , X1 is prey species, X2 is 
predator species. The classic LVM [2] is: 
 
   dX1/dt = X1 (A1 + A12 X2) = A1X1 + A12X2X1 

   dX2/dt = X2 (A2 + A21 X1) = A2X2 + A21X1X2
               (2) 

 
which can also be written in a compact form as: 
 
                     dXi/dt = Xi (Ai + Aij Xj)                          (3) 
 
where i,j=1,2  and  i≠j, A1 is the growth rate of the prey. 
With A12 = 0 (no predator X2) the prey population X1 
increases exponentially,. With A12 < 0, predator X2 
controls prey population from growing exponentially. 
For the predator population, growth is dependent on A2 

< 0, the rate of predator removal from the system (death 
or migration), and A21, the positive growth rate for 
predators. The solution to Equations 2 and 3 is periodic, 
with the predator population always following the prey. 
Figure 1 gives an example with constant values of 
positive coefficients A1 and A21, and negative growth 
rates A12 and A2. The other SPSP models can be 
defined, such as positive A2 and negative A21 for the 
predator, depending on the model. The interest is to 
keep the basic model stable. General LVM stability 
results are given in [2]. 
 

    
Figure 1.  SPSP LVM Population Levels  

(Prey Solid, Predator Dashed)  
 
In terms of (1) and, the community matrix A is: 
  
                          A(X) =                                               (4) 

a11(X) a12(X) 
a21(X) a22(X) 

 
with: 
 
       a11 = A1, a12 = A12 X1, a21 = A21 X2,  a22 = A2       (5) 
                                      
The LVM can be extended to incorporate crowding 
effect: 
 
               dXi/dt = Xi ( Ai + ∑Aij Xj)                           (6) 
 
where  i = 1,2  and sum  is over  j = 1,2. This would be 
equivalent to prey self multiplication without predator. 
In this case community matrix elements are: 
 
a11=A1+A11X1,  a12=A12 X1, a21=A21 X2,  a22=A2+A22X2       
                                                                                     (7)                            
 
In this model,  A12  and  A21 are negative, with positive  
A11 and A22. Next LVM feature could be time varying 
community matrix:  

 
             dXi/dt = Xi [Ai(t,X) + ∑Aij(t,X) Xj]               (8) 

 
or in compact form: 
 
                         dX/dt = A(t,X) X                                (9) 
with: 
                  A(t,X) =                                                  (10) 

a11(t,X) a12(t,X) 
a21(t,X) a22(t,X) 

 
For example: 
 
                 a11(t,X) = A1(t,X) + A11(t,X) X1                (11) 
 
and similarly for the rest of the coefficients in (10). We 
can also add environmental effects [2] into LVM by: 
  
             S:   dX/dt = A(t,X) X + B(t,X)                     (12) 
 
where  B(t,X)  models  external  environmental effects 
(food, space, temperature), and it can be considered as a 
model control vector. More details can be found in 
[1],[2]. 

 

2.2   ABM and LVM Combined 
      
The Equations 2 and 3 present a very simple ecological 
model, where unlimited food available to the prey is 
assumed, and so the prey (and predator) growth rates 
are limited by corresponding “growth” coefficients.  
The prey growth coefficient is A1 and A21 for the 
predator. On the other hand, in ABM, the growth rate 
for both populations can be determined by how 
successful they are at finding food. This can be 
modeled as a stochastic process which averages out to a 
stable rate across populations, hence corresponding 
practically to LVM model, in the limit. Various effects/ 
model attributes can be incorporated in ABM.  As an 
example, the predators disappear from the simulation at 
a constant rate by reaching the end of their programmed 
lifetime.  This parallels negative A2 in LVM.  The 
predator population increases linearly based on the prey 
consumption. This is proportional to the number of both 
populations, and thus represented by A21X1X2 in LVM. 
Within the ABM various LVM features can be 
accommodated by simply adding new features into the 
ABM. Hence LVM coefficients can be estimated using 
ABM simulations. Figure 2 gives a typical agent based 
snapshot of NetLogo simulation control window. Let us 
also note that the initial ABM is not intended to include 
all the properties of an existent ecosystem, but rather to 
indicate the most fundamental properties of the 
predator–prey relationship as a general model. For 
example, the environment is assumed homogeneous 
with no variations in sea temperature, depth, or ocean 
currents. This can be changed as more complex models 
are developed. One of the ABM parameters is the 
amount of food available to prey and predator. This 
corresponds to B(t,X) in LVM given by (12). When the 
food is increased initially, both A1 and A21, increase 
initially.  In the steady state, the prey growth rate A1 
remains constant with their population growth offset by 
increased predator population. 
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Figure 2. Typical NetLogo ABM simulation control 
 
 
The rate of predator removal A2, by death or migration, 
is determined by the predator ABM attribute age and a 
limited lifetime for each individual. The prey also has 
an attribute for age, but in practice,  very few fish die of 
old age.  This is particularly true at higher levels of 
resources, because their average age drops as a 
consequence of fish being born faster while their 
population remains stable. It is this last fact that may 
cause the system instability, at very high levels of 
resources. Analytical LVM stability results are 
discussed in details in [2]. In [1] we described one 
specific ABM SPSP in details. 
     Per Figure 2, ABM gives lots of flexibility to model 
the system, but essentially gives no analytical insight 
and the solution such as the case with LVM. That is the 
essence of our dual approach here, i.e. 
 
       (i)    Use ABM for its flexibility and intuitiveness,  
and  

(ii)   LVM for its mathematical elegance and rigor. 
 

This way we can use ABM to improve LVM, and vice 
versa as complexity of the model increases.  As we 
develop more complex predator-prey models, the 
approach  is to rely on the LVM formulas and feature 
based ABM to reiterate each other findings. This will 
require a very disciplined research work, so we will be 
able to precisely interpret every step of the two models.  
 
3. MULTIPLE PREY-PREDATOR MODEL  
  
As described in details in [1], Multiple Prey Multiple 
Predator (MPMP) model is described in LVM by: 
  
      dXi/dt = Xi [ Ai(t,X) + ∑Aij(t,X) Xj ]                  (13) 
   
where i = 1,2, ... , n,  and sum  ∑  is over j = 1,2, ... , n.  
We can model 2 preys 1 predator, 4 preys 2 predators, 
10 preys 3 predators, etc., hence building up complexity 
of the LVM’s. Some examples of (6x6) community 
matrix are repeated here from [1] as references. More 
details are given in a specific example of Section 4 

where we model 3+3 scenario, i.e. three preys and three 
predators. 
 
(i)  Four preys (species 1,2,4,5) and two predators (3,6) 
produce the following (6x6) community matrix:   
 
       A(t,X) =                                                              (14) 

a11 a12 a13 0 0 0 
a21 a22 a23 0 0 0 
a31 a32 a33 0 0 0 
0 0 0 a44 a45 a46 

0 0 0 a54 a55 a56 

0 0 0 a64 a65 a66 
 
 
which consists of two decoupled predator-prey systems. 
Any of the zero coefficients aij

  indicates lack of 
influence of j-th specie to i-th specie.  This type of 
model is advantageous due to decoupling which 
simplifies any species estimation and control 
algorithms [2].  
 
(ii)  Assuming that predators can prey on all of the 
species, but not on each other, we have: 
 
       A(t,X) =                                                              (15) 

a11 a12 a13 0 0 a16 

a21 a22 a23 0 0 a26 

a31 a32 a33 0 0 0 
0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 0 a64 a65 a66 
               
 
(iii) If predators prey on each other, then we have: 
 
       A(t,X) =                                                              (16) 

a11 a12 a13 0 0 a16 

a21 a22 a23 0 0 a26 

a31 a32 a33 0 0 a36 
0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 a63 a64 a65 a66 
  
(iv)  Two almost decoupled specie communities share 
a common four (boldfaced) elements: 
 
       A(t,X) =                                                              (17) 

a11 a12 a13 0 0 0 

a21 a22 a23 0 0 0 

a31 a32 a33 a34 0 0 

0 0 a43 a44 a45 a46 

0 0 0 a54 a55 a56 

0 0 0 a64 a65 a66 

 
Any estimation and control for this model  can  be  
handled by an  approach  in  [6], where the model is 
“expanded” into a larger species vector space to 
decouple it effectively.  Note that the shape of the 
community matrix will also depend on how the prey 
and predators are ordered in the species vector X. As 
the community matrices become larger, we note that  
there are certain structural properties in the way "0" 
elements are placed. This is calling for “structural” 
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approaches described in [3,5,6] which take advantage 
of  special structure of system matrices to (i) simplify 
calculations and (ii) expose key structural properties of 
the models. As the number of species grow, smart 
shuffling of the position of species in the vector X may 
produce hierarchical (or almost hierarchical) structure 
of community matrix A(t,X) [5], producing much 
simpler controls and stability analysis, as the overall 
community matrix is split into subsystems 
hierarchically interconnected. We will address 
estimation and control aspect of ecological system 
models in future research. 
 
4. THREE PREYS THREE PREDATORS MODEL 
 
Before we illustrate one specific 3+3 example, few 
comments are in order related to general model 
assumptions. 
 
4.1 General Assumptions 
 
The ABM is not intended to include all the properties 
of an existent ecosystem, but rather to expose the most 
fundamental properties of the predator–prey-resource 
relationship as a general model. As such, the 
environment is largely homogeneous: that is, there are 
no variations in sea temperature, depth, or ocean 
currents. Furthermore, each tropic level is represented 
by a single species. Important refinements such as 
species growth over time, variable predation strategies, 
environmental heterogeneities and dynamics, more 
complex food web networks, and different functional 
responses can be selectively added to future models in 
an iterative process to ensure that one understands the 
basic dynamics at each level before proceeding to the 
next level of complexity. 
    Other simplifying assumptions include: all species 
are of the same size, produce the same amount of 
resources when consumed, and share the same set of 
simple strategic rules. For the fish these rules are: if 
there is one or more predators on the current patch, pick 
one and move in the opposite direction; if no predators 
are present and there is food on the current patch, eat 
one unit; otherwise, move randomly. For the predators 
the rules are: if there is one or more fish on the current 
patch, eat one. After eating (or not, if no fish are 
present), move randomly. 
    The fishes and predators all have a limited lifetime. 
Also, the patches grow food (resources for the fish) 
stochastically, based on an operator controlled setting 
that defines the percentage chance of growth for each 
individual patch. Food is simulated as units per patch, 
from zero (no food) to a maximum, such that if food is 
present a fish can eat one unit per turn. Specifically, a 
0.20 food growth rate translates into a 20% chance for 
each patch to add one unit of food, during each 
simulation time step. Aggregated across the 22,801 
patches in the simulation, this rate becomes a linear, but 
still stochastic, rate of growth for food. In all 
experiments reported here the maximum number of 
food units per patch is set to ten. 

     The population of fish eggs is included to provide 
another step towards a more realistic simulation; 
however, all major results listed here exhibit LV like 
oscillations. The majority of experiments are run with a 
baseline model from which any experimental deviations 
are made. As with  classic LV oscillations of Figure 1, 
ABM models are inherently volatile where certain 
parameter settings can be adjusted to emphasize or de-
emphasize certain system behavior and produce a 
desirable system from which to experiment. This allows 
us to compare results under the following settings to 
produce desired scenarios, such as: 

(i) Stable model 
(ii) Oscillating-but stable model 
(iii) Unstable model 

as well as expose which settings produce each. 
 
 
4.2 LVM (3+3) Model Details 
 
In this paper we focus on a specific 3+3 model with: 
 
             X = [X1, X2, X3, X4, X5, X6]T                       (18) 
 
where the first three vector components are preys and 
the last three are predators. We assume that each 
predator preys on each prey but not on each other. The 
preys are not affecting each other. The community 
matrix is then: 
 
      A(t,X) =                                                               (19) 

a11 0 0 0 0 0 
0 a22 0 0 0 0 
0 0 a33 0 0 0 

a41 a42 a43 a44 0 0 
a51 a51 a53 0 a55 0 

a61 a62 a63 0 0 a66 

 
where the community matrix main diagonal coefficients 
are: 
 
     aii(t,X) = Ai(t,Xi) + Aii(t,Xi) Xi , i=1,2,3,4,5,6      (20) 
 
 
and off diagonal (lower left corner) coefficients are: 
 
              aik(t,X) = AikXi   i=4,5,6  and k=1,2,3         (21) 
 
Typically Aii are positive (crowding effect),  or it could 
be 0 for the predators X4,X5, and X6. The Aik are 
negative, and Ai could be positive or negative, 
depending on what we want to simulate. To illustrate 
the ABM model behavior, some initial values for 
various prey/predator parameters were chosen. In this 
example prey species are represented by three fish 
populations, i.e. X1, X2, and X3. The predators are fish 
eating species (dolphins, sharks).  
 
4.3  NetLogo ABM (3+3) Stable Model Simulation 
 
To set the scene, we use NetLogo modeling and have 
Figure 3 which shows initial (left) and final (right) 
prey/predator distribution in a certain area after a 
number of simulation turns. The following Figures 
show more details for this generic oscillatory model 
between preys and predators. Figure 4 shows 
cumulative count of predators and prays (fish in this 
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simulation) which exhibits general LVM type of 
equations oscillatory behavior (such as Figure 1) 
confirming LVM validity in general. Figure 5 shows 
more details on three types of predators, and similarly 
Figure 6 has the counts for three types of prays. They 
all indicate typical oscillatory behavior between 
number of preys and predators. This corresponds to 
community matrix in (19) which indicates how species 
interact in general. In Figure 7 we have an indication of 
number of fish eggs which “produce” fish in 
simulation, as well as number of fish and predators. 
Figure 8 summarizes predators elimination rate set by 
the ABM model. Finally, Figure 9 indicates preys 
consumption rate by predators. All of these parameters 
can be set in NetLogo ABM control window (Figure 2).   

   
 Figure 3. Initial and Final Prey/Predator Distribution 

  
        Figure 4. Total 3 predators and 3 preys count 

 
Figure 5. Detailed three predators count 

 
Figure 6. Detailed three preys count 

 
Figure 7.  Eggs, fish and predator numbers 

 
Figure 8.  Predators eliminating rate  

 
  Figure 9.  Preys consumption rate by predators 

 
Next two Figures, 10 and 11, indicate parameters used 
to generate Figures 5-9 using NetLogo simulation 
control window. One can set many different parameters 
and create very complex ABM model. This is an 
advantage of ABM compareed to simpler mathematical 
LVM. On the flip side, we have no essential insight into 
what is happening “inside” ABM, whereas we do with 
LVM. Their combination, our Dual Approach, may be a 
winning strategy in general. Figure 10 shows rate of 
food consumption by fish population, and Figure 11 
rate of fish consumption by predators.  

 
Figure 10. Rate of food consumption by fish population 

 
Figure 11. Rate of fish consumption by predators 

 
4.4  NetLogo ABM (3+3) Unstable Model Simulation 
 
One of the key features of predators-prey system is its 
stability properties. In the next set of Figures we have 
predator and prey numbers for an unstable system. 
 
Example 1. In Figures 12 and 13 we have a summary 
of parameters used to generate unstable system of 
Figure 14. At first it appears as if the system is stable. 
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When we look into specific prey numbers shown in 
Figure 15, we see that one of the prey species indeed 
goes into instability, i.e. its numbers are rising steadily. 
One prey species is unstable and two are stable. That is 
hidden in Figure 14 which shows total prey and 
predator numbers. 

 
     Figure 12. Unstable system predator parameters 
 

 
        Figure 13. Unstable system pray parameters 

 
          Figure 14. Unstable predator-prey system 

 
  Figure 15. Unstable system detailed count of preys 

 
Figure 16. Unstable system detailed count of predators 
 

Finally,  in  Figures  17  and  18  we   summarize  
predators elimination rate  and  preys  consumption by 
predators rate, respectively, for the unstable system. All 
figures in Example 1 indicate how various ABM 
features can be set and played With. Eventually in our 
follow up work we will use this for the benefit of LVM 
model, in particular to fine tune various Community  
Matrix  parameters. As the number of  species and 
complexity of the models grow  this  will  be important  
to  get  reliable  and   predictable  mathematically 
tractable LVM formulas. 
   

 
Figure  17. Predators elimination rate, unstable system 

 
    Figure  18. Preys consumption rate by predators 
   
Example 2. In this example number of preys and predators  
are changed, as well as other parameters, per Figure 19. All 
other  figures  grouped  together into  Figure 20 summarize 
various details similar as in Example 1. 
 

 
    Figure 19. Unstable system predator parameters 
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  Figures 20. Results for Example 2 unstable system 
 
We conclude Example 2 with Figure 21 which has 
average age of preys, predators and “eggs” which 
“produce” preys.  

 

 
Figures 21. Example 2 average age, preys, predators 

 
5.  CONCLUSION 
 
In this paper we continue research started in [1] on dual 
model approach for complex predator-prey models. We 

present Single Prey Single Predator as well as Multiple 
Prey Multiple Predator LVM models. ABM simulation 
using NetLogo environment illustrates three predator-
prey examples, one stable and oscillatory, the other two 
unstable with different count of 3+3 species involved. 
Our main goal is to show how ABM can mimic LVM 
formulas which allows to fine tune LVM. ABM can 
produce very complex simulations. On the other hand, 
LVM, which is based on mathematical equations 
models predator-prey behavior via its Community 
Matrix with certain number of elements. In this paper 
we used 6 species which results in 6x6=36 parameters. 
Typically not all the species are connected hence there 
are less than 36 parameters to consider. Once we 
establish reliable ABM, we can use it to fine tune these 
LVM parameters. With this paper we made another step 
in that direction with building complex ABM. This 
approach aims to produce results which can be used in 
practical ecological problems, and potentially assist in 
better understanding of classic multi-species issues, as 
(i) Paradox of the Plankton and of the Enrichment, (ii) 
Oksanen's description and tropic levels, and other 
general paradigms such as (iii) Adaptivity and (iv) 
Emergence.  
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