Chapter 6
An Innovative and Open Toolbox

6.1 Introduction

This chapter introduces the platform, OpenMOLE. It is a generic tool used to run the
different methods, which is presented in detail in the previous chapters. To simplify
the comprehension, we focus on a simple model, but which does not concern the city
modelling. However the principles are the same.

The modelling process can be seen as an iterative process, in which specific
knowledge is injected and series of issues has to be discussed. How does each input
participate in the production of outputs? Are all inputs necessary to generate all the
expected dynamics? What are the robustness intervals for the inputs? What are all the
possible dynamics of the model? Answering these questions helps in getting a better
understanding of the model under construction and a better idea of what my model
is? OpenMOLE has been thought to answer these questions. It exposes a workflow
formalism in which the model is the centre of attention. Numerical experiments can
be designed from simple parameter exploration to high level methods dealing with
calibration, sensitivity analysis, scenario reproduction.

This chapter presents the central concepts and the OpenMOLE formalism with the
example of a simple but stochastic complex-system model. In the first part, we explain
how to run a piece of program exposing this stochastic model with OpenMOLE, then
we show how to do replications on it, how to explore the input space of parameters
according to a Latin Hypercube Sampling (LHS). Finally, we expose three advanced
methods: The first one is an evolutionary process, which aims at finding an optimal
set of input parameters to simulate a given output (or reproducing a scenario). The
second one provides with the validity of the input ranges in the context of the previous
scenario reproduction. The third one produces a map of output diversity.

This Ant model has been chosen to serve as a didactic example. It is simple to
explain its rules, yet it belongs to the category of complex systems. It is a real-
world model getting a minimal set of inputs and outputs, so that the OpenMOLE
methodology tools can be easily understood. However, in OpenMOLE, a model can

© Springer International Publishing AG 2017 97
D. Pumain and R. Reuillon, Urban Dynamics and Simulation Models,
Lecture Notes in Morphogenesis, DOI 10.1007/978-3-319-46497-8_6

98 6 An Innovative and Open Toolbox

be viewed as a black box so that it is quite simple to transfer the following methods
to an other model.

This chapter does not explain how to instal OpenMOLE, how to launch and how
to handle the OpenMOLE application. The reason for this omission is that such
instructions are provided and updated on the OpenMOLE website. '

6.2 The Ant Model

We propose to study a Netlogo model picked up from the Netlogo Library.> However,
no skills in Netlogo programming are required. As embedded models in OpenMOLE
are encapsulated and can be viewed as a black boxes, the following OpenMOLE
scripts can be used for any other language.

The Ant model was created by (Ury Wilensky 1997 and 1999) (Fig.6.1). The
NetLogo’s website describes this model as follows: In this project, a colony of ants
forages for food. Though each ant follows a set of simple rules, the colony as a whole
acts in a sophisticated way. When an ant finds a piece of food, it carries the food
back to the nest, dropping a chemical as it moves. When other ants sniff the chemical,
they follow the chemical towards the food. As more ants carry food to the nest, they
reinforce the chemical trail.

Fig. 6.1 The Netlogo ants
model

Gdr % ticks: 176 0

Thttps://www.openmole.org/.
Zhttp://ccl.northwestern.edu/netlogo/models/Ants.

https://www.openmole.org/
http://ccl.northwestern.edu/netlogo/models/Ants

6.2 The Ant Model 99

In this experiment, three food spots are set in the ants living area. The experiment
consists in testing the impact of the three model inputs on the time required by the
ants to consume the three food spots.

The tree inputs of the model are

e the number of ants,
e the evaporation rate of the chemical,
e the diffusion rate of the chemical.

We modified the source code so that we can obtain the food extinction time for
each spot

Listing 1 final-ticks-foodl, 2, 3 represents the needed number of ticks, measured in simulation
steps or ticks (final-ticks-food) to consume the spots 1, 2, 3

to compute-fitness
if ((sum [food] of patches with [food-source-number = 1] = 0)
and (final-ticks-foodl = 0)) [
set final -ticks-foodl ticks]
if ((sum [food] of patches with [food-source-number
and (final-ticks-food2 = 0)) [
set final ~-ticks-food2 ticks]
if ((sum [food] of patches with [food-source-number = 3] = 0)
and (final-ticks-food3 = 0)) [
set final -ticks-food3 ticks]
end

Il
[\S}
1l
o

This model is stochastic. At each time step an ant, which is not sniffing the
chemical, can go in any direction randomly. As a consequence, we need to repeat a
given experiment (set with given input values) several times to ensure that any pattern
generated is robust. Therefore we need to initialize a Random Number Generator by
means of a seed value.

6.3 Embed the Model in OpenMOLE

The first operation is to run the Netlogo model on the OpenMOLE platform.

OpenMOLE can run executions on High Performance Computating environments.
It implies that we need to ensure that any code embedded by the platform can be
ported from one machine to another. This depends on the language with which the
model is coded. In the case of the Netlogo language, it is straightforward, since
Netlogo runs on the Java Virtual Machine, which has been designed to be portable.
Otherwise a packaging operation, based of the Care software® would be necessary
to ensure that all the required libraries at runtime are embedded. We chose not to
expose this packaging operation here to focus on methods. However, this operation
is simple and well supported in OpenMOLE.

3http://reproducible.io/.

http://reproducible.io/

100 6 An Innovative and Open Toolbox

An experiment is described in OpenMOLE as a workflow. A workflow is com-
posed of Tasks, which can be chained and ordered by means of another concept: the
Transitions. Let us introduce a couple of OpenMOLE concepts:

A Task is an atomic execution component, which can be run concurrently. They
tasks have been designed so that they have no interfering side effects. Therefore they
can be safely dispatched on several threads, processes or computers. A task can carry
a programm, which will be executed at runtime. It receives values (Val) as inputs
from the workflow and can produce other values (Val) as outputs.

A Val is a typed Value. It can represent a Double, an Integer, a String, a File (and
even Java defined class).

A Transition defines a precedence link between two Tasks. Itis always run locally,
unlike the Tasks, which can be run on remote environments. It makes the Vals travel
from one Task to another.

We first design a very simple workflow containing only one Task (carrying the
Netlogo model). We also map the inputs and the outputs of the Netlogo model to
some Vals set as inputs and outputs of the Task. Thus we can assign values to the
Netlogo model inputs thanks to the mapped Val. In the general case, Task inputs
are set with the values of Vals arriving from the workflow by means of a Transition
(what we do later in the chapter). But, for now, we just build a very simple workflow
composed of one single Task, so that no Transition can feed the Task with any Val.
That is why, the input values of the Task are assigned manually.

So we first define seven Vals corresponding to four inputs: the population of ants,
the evaporation rate, the diffusion rate, the seed for the RNG as well as maxsteps,
which represents the maximum of steps in the Netlogo code. We also define three
outputs: the extinction time for the resource spots 1, 2 and 3.

Listing 2 4 Vals for the inputs and 3 Vals for the outputs

val population = Val[Double]
val diffusion = Val[Double]
val evaporation = Val[Double]
val seed = Val[Int]

val maxsteps = Val[Int]

val foodl = Val[Double]
val food2 = Val[Double]
val food3 = Val[Double]

We define a NetlogoTask, containing the nlogo source, the launching instructions,
the input/output mapping, as well as some manual initialization for the inputs.

Listing 3 Set of the task carrying the model

val cmds = Seqg("random-seed ${seed}", "run-to-grid")
val ants =
NetLogoSTask (workDirectory / "ants.nlogo", cmds) set (

6.3 Embed the Model in OpenMOLE 101

name := "ants",

Map the OpenMOLE variables to NetLogo variables
netLogoInputs += (population, "gpopulation"),
netLogoInputs += (diffusion, "gdiffusion-rate"),
netLogoInputs += (evaporation, "gevaporation-rate"),
netLogoInputs += (maxsteps, "gmax-steps"),

netLogoOutputs += ("final-ticks-foodl", foodl),
netLogoOutputs += ("final-ticks-food2", food2),
netLogoOutputs += ("final-ticks-food3", food3),

The seed is used to control the initialisation of the

random number generator of NetLogo

inputs += seed,

outputs += (population, diffusion, evaporation, maxsteps),
Define default values for inputs of the model

/seed := 42,
population := 125.0,
maxsteps := 2000

Our first workflow is almost ready! We are just not able to visualize the produced
outputs. Indeed, a Task has no side effect, so that it cannot display the value it
produces. A Task can be viewed as a portable function, which maps an input value
to an output value, nothing more. That is why, we introduce the following concept:

A Hook can be plugged on a Task to perform an action upon completion of the
task it is attached to. The action is done locally, once the Task execution is back
from an eventual remote host. There exists different kinds of Hooks, among which
the AppendToCsvHook to append a Val value at the end of a given CSV file or a
ToStringHook to display a Val value.

We need the latter to display the values of foodl, food2 and food3. As these three
Vals are provided as outputs, plugging a ToStringHook on the Task that produces
them will result in their displaying when they are produced by the Task.

Listing 4 Hook plugging

//Define a workflow with one Task, hooked by the ToStringHook
ants hook ToStringHook ()

With these final two lines, the workflow can be run and produces the following
output:

Listing 5 Hook displaying th waiting times for the extinction of the 3 food spots
{food1=746.0, food2=1000.0, food3=2109.0}

102 6 An Innovative and Open Toolbox

6.4 Do Repetitions

An interesting thing is to replicate this stochastic model to get a mean value for the
outputs. To do so, we introduce a new kind of Task, a new kind of Transition and a
new concept.

A Sampling is a tool for exploring a space of parameters. The term parameter is
understood in a very broad acceptation in OpenMOLE. It may deal with numbers,
files, random streams, images, etc. There exists a lot of different ways to explore a
space of parameters. An exhaustive list of the available Samplings in openmole is
given on the https://www.openmole.org/ website.

An Exploration Task is a special Task, whose only setting is a Sampling. Its
only goal is to compute the Sampling it carries and to generate all the parameter sets
produced by the sampling. It is always followed by a special Transition:

An Exploration Transition links an ExplorationTask to another Task. It creates
one new execution stream by sample point in the Sampling of the ExplorationTask.
Exploration transitions are represented by the symbol — < (Fig. 6.2).

To carry out the replications on our model, we want to pick up n values from a
uniform distribution of integers. Let’s admit, we just need 10 repetitions. Then the
Exploration Task carrying this Sampling is defined by:

Listing 6 The definition of the Exploration Task and the new workflow statement

val replications =

ExplorationTask (

seed UniformDistribution[Int] () take 10) set (
name := "Replicate ants",

(inputs, outputs) += (diffusion, evaporation),
diffusion := 10.0,

evaporation := 10.0

)

replications -< (ants hook ToStringHook ())

Listing 7 Results for 10 repetitions

{foodl=625.0, food2=1311.0, food3=1900.0}
{food1l=546.0, food2=1109.0, food3=2574.0}
{foodl=526.0, food2=1233.0, food3=2063.0}
{fo0od1=790.0, food2=1214.0, food3=1901.0}
{foodl1=714.0, food2=1205.0, food3=2133.0}
{food1=534.0, food2=1067.0, food3=2035.0}
{foodl1=748.0, food2=1338.0, food3=2149.0}
{fo0d1=908.0, food2=1148.0, food3=1821.0}
{foodl=682.0, food2=1149.0, food3=1829.0}
{fo0d1=905.0, food2=1315.0, food3=1771.0}

https://www.openmole.org/

6.5 Automatic Workload Distribution 103

Fig. 6.2 10 different seeds
are generated and given as
input to 10 instances of the replicate [E29) 4 seed
ants Task. Each of them T
provides foodl, food2 and
food3

food1
food2
food3

seed in Uniform
take 10

6.5 Automatic Workload Distribution

In the previous section, we generated 10 computation streams. They are independent
from one another since they do not require any information from another stream. So
that we can easily take advantage of the parallelism with OpenMOLE.

OpenMOLE allows the distribution of computation on servers, on clusters (PBS,
OAR, SGE, Slurm, Condor), or on the EGI grid. After having provided with your
login/password or your ssh private key or your Grid certificate to the platform depend-
ing on what technology you use (see the application documentation for the details
on https://www.openmole.org/), delegating the workload on these environments is
straightforward. All we need to do is to create the required environment and to specify
the Task you want to delegate on it.

Listing 8 Definition of a computational environment (PBS, local multi-core, EGI Grid, ...) and
assignment to the ants Task, so that the latter will be deported on the previously defined environment
at runtime

val env = new PBSEnvironment("'myLogin", "PBSmachineName")

// val env = LocalEnvironment(10) to take advantage of the
cores of your own personal emachine

// val env = EGIEnvironment ("vo.complex-systems.eu") for
accessing the Grid VO vo.complex-systems.eu

// etc.

explore -< ants hook ToStringHook () on env

6.6 Expose the Variability of the Model

We can use the previous workflow to highlight the variability of the Ants model and
to well understand why it is so important to do repetitions on such stochastic models.
Let us set both diffusion and evaporation to 25.0. Then let us do 100,000 repetitions
to have an idea of the variability of the model response. The following graphs show

https://www.openmole.org/

104 6 An Innovative and Open Toolbox

8000 -

6000 -

4000 -

count

2000 -

250 500 750 1000
food1

Fig. 6.3 Distribution for the spot food1 for diffusion = 25.0 and evaporation = 25.0

the required time to consume each food spot for the same input parameters (Figs. 6.3,
6.4 and 6.5).

6.7 Aggregate the Results

We now want to aggregate all the streams and compute a median value on them. To
do so, we need a new kind of Transition, which is the counterpart of the Exploration
one and merges all the streams generated by the Exploration into one array: the
Aggregation Transition (represented by > —). We then plug another Task onto this
transition to perform the median value from that array. For this, we use a Task called
a ScalaTask, which can execute some Scala* code.

Listing 9 A Task for computing the median values
val medFoodl = Val[Double]
val medFood2 Val [Double]
val medFood3 = Val[Double]

“http://www.scala-lang.org/.

http://www.scala-lang.org/

6.7 Aggregate the Results 105

2500 -

2000 -

1500 -

count

1000 -

500 -

0- =i

500 1000 1500 2000
food2

Fig. 6.4 Distribution for the spot food2 for diffusion = 25.0 and evaporation = 25.0

val medians =
ScalaTask ("""
import math.abs

val medFoodl = foodl.median

val medFood2 = food2.median

val medFood3 = food3.median""") set (

name := "medians",

inputs += (foodl.array, food2.array, food3.array),

outputs += (medFoodl, medFood2, medFood3)

The workflow becomes

Listing 10 A Task for computing the median values

replications -< ants >- (medians hook ToStringHook ())

The resulting workflow can be represented by Fig. 6.6.
The output given by the Hook set on the median Task gives:

Listing 11 Median values for food1, food2 and food3 for 10 repetitions of ants
{avgFoodl1=649.5, avgFood2=1250.0, avgFood3=1979.0}

106 6 An Innovative and Open Toolbox

100000 -

75000 -

50000 -

count

25000 -

0 -

1500 1600 1700 1800 1900 2000
food3

Fig. 6.5 Distribution for the spot food3 for diffusion = 25.0 and evaporation = 25.0

. > food1 (food1)
(el [[ee] (-8 (seec) ——— seed food2 (food2)
\ food3 (food3)

seed in Uniform
take 10

Fig. 6.6 Values generated for food1, food2 and food3 by each of the 10 ants instances are merged
into 3 arrays ([food1], [food2] and [food3]) by means of an Aggregation Transition and are processed
by the median Task, which provides median values for each array (avgFood1, avgFood2 and avg-
Food3)

avg Food1
avg Food2
avg Food3

6.8 Explore the Space of Parameters

We now explore the parameter space composed by the evaporation rate and the
diffusion rate values to test their individual and combined effects on the time for
consuming the food spots. We do not study the impact of the population size since
it seems clear that the bigger the population, the faster the food spots will be eaten.
The population is thus set arbitrarily to 125.0. To perform the sampling of parameter

6.8 Explore the Space of Parameters 107

values, we use a Latin Hypercube Sampling® of size 100. It means that a sampling
of 100 couples (diffusion, evaporation) is generated. We evaluate each couple 100
times, leading to 10,000 executions of the model. It implies some modifications in
the script.

First, we need to build a new ExplorationTask to carry out the LHS sampling.
This exploration will be executed before the replication one, so that we can calculate
a median value on 100 repetitions for each sample generated by the LHS.

Listing 12 A LHS sampling is carried out by a TaskExploration and build 100 couples (evaporation,
diffusion)

val sampling =

LHS (
500,
diffusion (10.0, 100.0),
evaporation (10.0, 100.0)

)

val exploration = ExplorationTask (sampling)

As shown in the Fig. 6.7, diffusion and evaporation are propagated in the workflow
through the replicate Task and then directly to the median Task. Indeed, we need these
values to be stored at the end of the workflow with medians of food extinction times.
This way, we can pair the outputs to the inputs used to generate them.

To do so, we add these two parameters as input and as output of the replicate
Task and we add a Transition between the replicate Task and the median Task (which
takes also these two parameters as inputs). At this point, we need to introduce two
new concepts.

The Capsule: carries a Task and several Slots.

A Slot is a synchronization point for all the Transitions arriving on it. It guarantees
that all the Transition transmissions are completed before starting the Task carried by
the Capsule. When a Task is created, a Capsule is automatically generated to carry
it. Sometimes, we need to create it manually to keep a reference on it.

In our case, we need to create the Capsule of the replicate Task in order to build two
Transitions: one to the ants Task and the other to the median Task. On the other hand,
we need to create manualy the Slot of the median Task to make a synchronization
point between the Transitions arriving from the ants Task and the replicate Task. The
Fig.6.7 and the Listing 13 give an overview of this technical rearrangement.

Listing 13 The full script of the experiment
val seed = Val[Int]

val population = Val[Double]
val diffusion = Val[Double]

val evaporation = Val[Double]
val maxsteps = Val[Int]

Shttps://en.wikipedia.org/wiki/Latin_hypercube_sampling.

https://en.wikipedia.org/wiki/Latin_hypercube_sampling

108 6 An Innovative and Open Toolbox

(seed) foodl T (foodl) avg Food]

replicate IRt ir»seeu food? ———3 (food2) avgroads
evaporafion 3 food3 7 (foodd) avg Foor

diffusion
evaporation
seed in Uniform
take 10

Fig. 6.7 An Exploration Task is designed to make vary diffusion and evaporation. It generates an
array of couples (diffusion, evaporation), which combines all different possible combinations of
the two variables. These values are transmitted to the replicate Task and then to the median Task,
so that they can be stored in a file thanks to the Hook set on the median Task

(evaporation—2_ diffusion

explore Fowises qevqpolaﬂon

diffusion in [10,100, 10] x
evaporation in [10,100, 10.0]

val foodl = Val[Double]
val food2 = Val[Double]
val food3 = Val[Double]

val medFoodl Val [Double]
val medFood2 Val [Double]
val medFood3 = Val[Double]

// Define the NetlogoTask

val cmds = Seq("random-seed ${seed}", "run-to-grid")
val ants =
NetLogo5Task (workDirectory / "ants.nlogo", cmds) set (
name := "ants",

// Map the OpenMOLE variables to NetLogo variables
netLogoInputs += (population, "gpopulation"),
netLogoInputs += (diffusion, "gdiffusion-rate"),
netLogoInputs += (evaporation, "gevaporation-rate"),
netLogoInputs += (maxsteps, "gmax-steps"),

netLogoOutputs += ("final-ticks-foodl", foodl),

netLogoOutputs += ("final-ticks-food2", food2),

netLogoOutputs += ("final-ticks-food3", food3),

// The seed is used to control the initialisation of the
random

number generator of NetLogo
inputs += seed,
outputs += (population, diffusion, evaporation, maxsteps),
// Define default values for inputs of the model
//seed := 42,
population := 125.0,
maxsteps := 2000

val replications =
ExplorationTask (
seed in UniformDistribution[Int] () take 100) set (
name := "Replicate ants",
inputs += (diffusion, evaporation),
outputs += (diffusion, evaporation),
diffusion := 10.0,
evaporation := 10.0

6.8 Explore the Space of Parameters 109

val medians =
ScalaTask ("""
import math.abs

val medFoodl = foodl.median

val medFood2 = food2.median

val medFood3 = food3.median""") set (

name := "medians",

inputs += (foodl.array, food2.array, food3.array),

outputs += (medFoodl, medFood2, medFood3)
)

val sampling =

LHS (
100,
diffusion (10.0, 100.0),
evaporation (10.0, 100.0)

val exploration = ExplorationTask (sampling)

val storeHook = AppendToCSVFileHook (workDirectory /
"result.csv")

exploration -< Strain(replications -< ants >- medians) hook
storeHook

The output of this experiment, stored in the result/result.csv file gives an explo-
ration of 100 different sets of parameters, each having been repeated 100 times.
Using this method, we can find the best input couple, which leads to the scenario
we aim at simulating. For instance, we may be interested in producing the following
real-world experiment: the spots 1, 2 and 3 are emptied in respectively 250, 400
and 800 seconds. So, we are looking for the lowest distance between the simulated
output and the expected output, which can for instance be expressed as the sum
| 250 — avgFoodl | 4 | 400 — avgFood2 | + | 800 — avgFood3 |

The closest simulation to this target gives the minimal sum of 197. Of course the
best score is reached if the experiment reproduces exactly the real case (meaning a
sum of 0). The input values associated are presented in the following table:

diffusion evaporation Sum of differences
37.8 10.0 197.0

Well, we find one solution. 100 simulations (with 100 repetitions for each,
i.e. 10,000 runs) might seem like a large-scale experiment but a continuous two-
dimensional problem may produce a lot of heterogeneity in the output space. Is there

110 6 An Innovative and Open Toolbox

a better solution to this problem and to which extent is it better? What are the validity
intervals for the inputs? What does the output space of parameter look like? So many
questions we try to answer with evolutionary methods.

6.9 Optimization with Genetic Algorithms

In a genetic algorithm, an individual carries a genome, which is a set of genes
(values for each input parameters). Evaluating an individual means executing a model
simulation with the parameter values in the genome and performing the desired
measures on the model output. The set of measured values constitutes what we will
call here a pattern. Each simulation thus generates a pattern. When the model is
stochastic, we can take the mean or median pattern of several simulation replications
with the same parameter values. In the end, an individual is composed of the genome
and the associated pattern.

Back to our ants optimization problem, the objective here is to find the closest
pattern to a experimentally measured pattern (value 250, 400 and 800 for avgFood1,
avgFood?2, avgFood3 respectively). This problem is also called a calibration problem.
To do so, we use the multi-criteria optimization genetic algorithm NSGA?2 available
in OpenMOLE and used for the calibration of SimpopLocal, cf. Chap. 3. It takes the
following parameters as inputs:

e mu: the number of individuals to be randomly generated in order to initialize the
population,

e objectives: the objectives to minimise,

e genome: the sequence of model input parameters on which the optimization is
done, with the associated lower and upper bounds,

e replication: the repetition strategy

Listing 14 The NSGA2 settings in OpenMOLE

val nsga2 =

NSGA2 (
mu = 50,
genome = Sedq(
diffusion (0.0, 99.0),
evaporation (0.0, 99.0)),

objectives = Seqg(deltaFood),
replication = Replication(seed = seed, aggregation =
Seq (median))

http://dx.doi.org/10.1007/978-3-319-46497-8_3

6.9 Optimization with Genetic Algorithms 111

The variable foodTimesDifference is a new Val, representing the sum of absolute
differences between the experimental time to reproduce and the simulated times.

We also need to cope with the distributed computation. OpenMOLE offers several
approaches to tackle this problem. Among them, we are here interested in the steady-
state approach. This algorithm begins with n individuals and launches a maximal
number of evaluations as long as there are available computing units. When an
evaluation is over, it is integrated in the population and a new individual is generated
and evaluated on the computing unit that has just been freed. This method uses all
computing units continuously and is recommended in a cluster environment.

Listing 15 Distribution in OpenMOLE with the steady approach
val evolution =
SteadyStateEvolution (
algorithm = nsga2,
evaluation = ants -- objective,
parallelism = 10,
termination = 100

We feed SteadyGA with the evolution method that was described above (nsga2)
and the piece of workflow to be evaluated (evaluation). The parallelism parameter
specifies how many evaluation are concurrently submitted to the execution environ-
ment and termination is the termination criterion; here it runs for 100 generations
(note that this parameter can also be set as a duration (10h for example)). SteadyGA
launches new evaluations as long as current evaluations are below this value.

SteadyGA returns two variables called in our example puzzle and ga. The second
contains information on the current evolution and allows to define hooks that save the
current population into csv file or to print the current generation. The following code
provides 2 Hooks to (i) save the population corresponding to each generation into a
file results/population#.csv, where # is replaced by the number of the generation and
(ii) to display in console the generation number:

val savePopulationHook = SavePopulationHook (evolution,
workDirectory / "results")

When we launch this OpenMOLE workflow, the evolution will progressively
produce parameter values having the best fitness, i.e. for which the model is closest
to experimental values. We show the evolution of the distance between simulation
and experimental measures between successive evaluations in the following Fig. 6.8.

In this table is presented the best result at the end of 800 evaluations.

112 6 An Innovative and Open Toolbox

Calibration

ra
o
g8

1500

13
g

3
A
=Y

distance between expariment and simulation
8
(=]

0 200 400 600 800
evaluatons

Fig. 6.8 Evolution of the distance between the experimental values and the model. It converges in
less than 300 hundred evaluations

diffusion evaporation Sum of differences
71.17 5.61 15.5

This result is better than the one obtained with the LHS exploration method. The
sum of differences is more than 6 times lower in almost less than half the evaluation
time. It is also interesting to notice that the input value are in a completely differ-
ent regions of space: (71.17,5.61) versus (13.27, 10.18). It demonstrates how the
Genetic Algorithm is faster and more efficient in this kind of optimization problem.
The difference between the two methods would be even greater in higher dimension-
ality problems.

6.10 Sensitivity Analysis with the Profiles Method

The method we now present focuses on the impact of the different parameters in order
to better understand how they contribute to the model overall. In our Ants example, we
calibrated the model to reproduce a set of notional experimental measurements. We
would like to know whether the model can reproduce this pattern for other parameter
values. It may be that the model cannot reproduce the experimental measurements
if a crucial parameter is set to a value other than the one found by the calibration
process. On the other hand, another parameter may prove not to be essential at all;
that is, the model may be able to reproduce the experimental measurements whatever
its value. To establish the relevance of our model parameters, we will investigate the
parameters’ profiles for the model and for the targeted pattern.

6.10 Sensitivity Analysis with the Profiles Method 113

We first establish the calibration of the evaporation parameter. Specifically, we
would like to know whether the model can reproduce the targeted pattern with differ-
ent evaporation rates. We divide the parameter interval into nX intervals of the same
size, and we apply a genetic algorithm to search for values for other the parameters
(the ants model only takes two parameters, so that the dispersal parameter is the
only one to be varied), which, as done previously in the calibration, minimise the
distance between the measurements produced by the model and the ones observed
experimentally. In the calibration case, we kept the best individuals of the population
whatever their parameter values. This time, we still keep the best individuals, but we
keep at least one individual for each interval division of the profiled parameter (in
this case, the evaporation parameter). Then, we repeat the process with the dispersal
parameter.

To set a profile for a given variable in OpenMOLE, the GenomeProfile evolu-
tionary method is used:

def profile(variable: Val[Double]) = {
val profile =
GenomeProfile (
x = variable,
nX = 100,
genome = Seq(
diffusion (0.0, 99.0),
evaporation (0.0, 99.0)),
objective = deltaFood,
replication = Replication(seed = seed)

)

val evolution = SteadyStateEvolution (
algorithm = profile,
evaluation = ants -- objective,
termination = 20000

The arguments genome, termination, objective have the same role as the calibra-
tion workflow. The argument objective is in this instance not a sequence but a single
objective to minimise. The argument x specifies the index of the parameter to be
profiled, i.e. its position within the inputs sequence, indexing starting at 0. nX is the
size of the of the interval in the parameter range discretisation.

114

Delta food

Delta food

260

240

220

200

180

6 An Innovative and Open Toolbox

160 [~

140

120

100

1600

1400

1200

1000

800

600

400

200

100

40 50 60 70 80 90 100

Evaporation

When the diffusion rate is set to any value above 10, the model is able to reproduce
experimental measures rather accurately. A refined profile within the interval [0; 20]
may be useful to give a more precise picture of the change in the influence of the
parameter. Model performance is on the contrary strongly sensitive to the evaporation
parameter, as values over 10 lead to a strong increase in minimal fit. When running
the model with a diffusion rate of 21 and evaporation rate of 15, we observe that the
ants are not able to build a sufficiently stable pheromone path between the nest and
furthest food pile, which increases the time needed to exploit it in a considerable

way.

6.11 Validation, Testing Output Diversity 115

6.11 Validation, Testing Output Diversity

Knowing that a model can reproduce an observed phenomenon does not ensure its
validity. By validation, we mean that we can trust it to explain the phenomenon in
other experimental conditions and that its predictions are valid with other parameter
values. We have already established that one way to test a model is to search for
the variety of behaviours it can exhibit. The discovery of unexpected behaviours, if
they disagree with the experimental data or the direct observation of the system it
represents, provides us with the opportunity to revise the assumptions of the model
or to correct bugs in the code. This principle also holds for the absence of expected
pattern discovery, which reveals the inability of the model to produce such patterns.
As we test a model and as we revise it, we can move toward a model we can trust to
explain and predict a phenomenon.

One might wonder, for instance, if in our ant colony model the closest food
source is always exploited before the furthest. Accordingly, we decide to compare
the different patterns that the model generates, looking specifically at the amount of
time the model requires to drain the closest and the furthest food sources.

As in the previous experiment, we consider a task that runs 10 replications of
the model with the same given parameter values and that provides, as its output, the
median pattern described in two dimensions by the variables medFood1, the time in
which the closest food source was exhausted, and medFood3, the time in which the
furthest food source was exhausted.

To search for diversity, we use the PSE (Pattern Space Exploration) method
(Chérel et al. 2015). As with all evolutionary algorithms, PSE generates new indi-
viduals through a combination of genetic inheritance from parent individuals and
mutation. PSE (inspired by the novelty search method) selects the parents whose
patterns are rare compared to the rest of the population and to the previous genera-
tions. In order to evaluate the rarity of a pattern, PSE discretises the pattern space,
dividing this space into cells. Each time a simulation produces a pattern, a counter is
incremented in the corresponding cell. PSE preferentially selects the parents whose
associated cells have low counters. By selecting parents with rare patterns, we have
a better chance to produce new individuals with previously unobserved behaviours.

In order to use PSE in OpenMOLE, the calibration utilized in the previous section
isrun with a different evolution method. We used to provide the following parameters:

e genome: the model parameters with their minimum and maximum bounds,

e objectives: the objectives measured for each simulation and within which we search
for diversity,

e parallelism and termination have the same meaning as in the calibration example.

Here is the OpenMOLE code used for the PSE

val pse =
PSE (
genome = Sedq(
diffusion (0.0, 99.0),

116 6 An Innovative and Open Toolbox

evaporation (0.0, 99.0)),
objectives = Seq(
foodl (0.0 to 4000.0 by 50.0),
food3 (0.0 to 4000.0 by 50.0)),
replication = Replication(seed = seed)

)

val evolution =
SteadyStateEvolution (
algorithm = pse,s
evaluation = ants,
parallelism = 10,
termination = 1000000

As the exploration progresses, new patterns are discovered. The following figure
gives the number of known patterns (the number of cells with a counter value greater
than 0) with respect to the number of evaluations.

When this number stabilizes, PSE is no longer making new discoveries. One has
to be careful when interpreting this stabilization. The absence of new discoveries can
mean that all the patterns that the model can produce have been discovered, but it is
possible that other patterns exist but that PSE could not reach them.

The following figure shows the set of patterns discovered by PSE when we inter-
rupt the exploration after it stabilizes.

PSE
B a00f
4
__E 300
w
E
2 20¢r
g
L]
1 b
.E 00
2 o : : ; ;
0 2000 4000 6000 8000
evaluations

The first observation that can be made is that all patterns have indeed been discov-
ered: in every pattern, the closest food source has been drained before the furthest
one. Further, there seems to be minimum and maximum bounds on the time period
during which the nearest food source is consumed.

These observations give us starting points for further reflections on the collective
behaviour of the ants. For instance, is the exploration of the closest food source
systematic? Could there be ant species that explore further food sources first? If we
found such a species, we would have to wonder which mechanisms make it possible
and revise the model to take them into account. This illustrates how the discovery

6.11 Validation, Testing Output Diversity 117

of the different behaviours the model is able to produce can lead us to formulate
new hypotheses of the system under study, to test them and to revise the model, thus
enhancing our understanding of the phenomenon.

References

Chérel, G., Cottineau, C., Reuillon, R.: Beyond corroboration: Strengthening model validation by
looking for unexpected patterns. PLoS ONE 10(9), 1-28 (2015)

OpenMOLE scientific workflow, distributed computing and parameter tuning. https://www.
openmole.org/

Wilensky, U.: NetLogo Ants model. Center for connected learning and computer-based modeling,
Northwestern institute on complex systems, Northwestern University, Evanston, IL (1997). http://
ccl.northwestern.edu/netlogo/models/Ants

Wilensky, U.: NetLogo. Center for connected learning and computer-based modeling,
Northwestern institute on complex systems, Northwestern University, Evanston, IL. (1999). http://
ccl.northwestern.edu/netlogo/

https://www.openmole.org/
https://www.openmole.org/
http://ccl.northwestern.edu/netlogo/models/Ants
http://ccl.northwestern.edu/netlogo/models/Ants
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	6 An Innovative and Open Toolbox
	6.1 Introduction
	6.2 The Ant Model
	6.3 Embed the Model in OpenMOLE
	6.4 Do Repetitions
	6.5 Automatic Workload Distribution
	6.6 Expose the Variability of the Model
	6.7 Aggregate the Results
	6.8 Explore the Space of Parameters
	6.9 Optimization with Genetic Algorithms
	6.10 Sensitivity Analysis with the Profiles Method
	6.11 Validation, Testing Output Diversity
	References

