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Abstract: In response to increasing calls to include computational thinking (CT) in K-12 
education, some researchers have argued for integrating science learning and CT. In that vein, this 
paper investigates conceptual learning and computational practices through the use of a code-first 
modeling environment called Frog Pond in a middle school classroom. The environment was 
designed to enable learners to explore models of evolutionary shifts through domain-specific 
agent-based visual programming. It was implemented as a curricular unit in seventh grade science 
class. We analyzed video and log data of two contrasting student pairs. This paper presents one of 
our findings: Development of modular core functional code-units or what we call anchor code. 
Anchor code is a body of code that creates a stable base from which further explorations take 
place. We argue that anchor code is evidence for conceptual learning and computational practices.  

 
Introduction & theoretical background 
There are increasing calls to integrate computational thinking (CT) into K-12 education (e.g., diSessa, 2000; 
Weintrop et al., 2016; Wilensky et al., 2014; Wing, 2006). One thrust of this work has been to bring computational 
tools directly into science classrooms to help learners engage in authentic scientific practices and grapple with 
difficult concepts (e.g., Papert, 1980; Sengupta et al., 2013; Weintrop et al., 2016). Computation can help enrich 
science education by bringing tools, practices, and methods that more authentically align with modern science fields. 
On the other hand, the study of science can provide a context in which computational thinking is powerful. 

This paper investigates student learning of conceptual ideas and computational practices around a “code 
first” (Horn et al., 2014) programming toolkit for adaptation in a middle school biology classroom. Using Camtasia 
video and computer log data from pairs co-constructing code, we investigate learning about evolutionary change and 
computational practices. To characterize CT practices, we draw on a taxonomy consisting of computational thinking 
practices specifically relevant to science and math education developed by Northwestern’s CT-STEM project 
(Weintrop et al., 2016). The scientific phenomenon we focus on is adaptation. An extensive body of work has shown 
that programming and computational models can help learners grapple with difficult concepts like natural selection 
and genetic drift (e.g., Centola, Wilensky, & McKenzie, 2000; Horn et al., 2014; Wagh, 2016; Wagh & Wilensky, 
2013). Much of this work has used agent-based models (ABMs). Research has shown that programming agent-based 
models using graphical, domain-specific primitives (i.e. coding blocks) can help learners develop mechanistic 
understandings of evolutionary change (Wagh, 2016). This type of understanding is important for learners to move 
from thinking about evolution as a deterministic, directed process to thinking about it as a decentralized process that 
emerges from a multitude of events involving interactions between individual organisms.  
 
Frog Pond: An example of a code-first environment  
We designed a computer-based learning environment called Frog Pond to be used in conjunction with middle 
school science curriculum on evolution. Frog Pond is an example of a code-first modeling environment (Horn et al., 
2014). A code-first modeling environment is one in which the primary mode of interaction is through code, it is 
extremely easy for a learner to create a program within a few minutes or even seconds of using the environment, and 
diverse outcomes can be observed from a small set of rules. Frog Pond is an agent-based code-first environment that 
uses a blocks-based interface. It was created using a blocks-based programming environment called NetTango (Horn 
& Wilensky, 2011) that provides an alternate blocks-based interface to NetLogo (Wilensky, 1999).  
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In the Frog Pond environment, learners program instructions for a group of frogs in an ecosystem using 
domain-specific, blocks-based primitives (See Figure 1). There are eight behavioral blocks (“hop”, “chirp”, “left”, 
“right”, “spin”, “hunt”, “hatch” and “die”), two logic blocks (“if” and “if- else”), and a probability block (“chance”). 
Students can drag and drop these blocks to construct a program. On running the program, each frog repeatedly 
enacts the encoded instructions to interact with other frogs and a simulated environment that includes lily pads and 
flies. Within this environment, variations in frog size have multiple tradeoffs. More information about Frog Pond is 
available here: http://tidal.northwestern.edu/nettango/. The simulation can result in changes in the frog population: 
1) growing bigger or smaller (directional pressure), 2) staying around the same size (stabilizing pressure), or 3) 
separating into two distinct sub-populations, consisting of larger and smaller individuals (disruptive pressure).   

          Figure 1. A student-generated program 
     
Frog Pond: The Curricular Unit 
Students took part in a curricular unit driven by an overarching question: Why are there so many different kinds of 
living things on earth? To answer this question, we asked students to consider real-life examples of adaptation and to 
explore mechanisms of adaptation by programming virtual frogs in our simulated ecosystem, Frog Pond. Students 
engaged with five increasingly sophisticated challenges through the unit. Each challenge was designed to foreground 
concepts related to population dynamics and selection pressures. For example, in Challenge 2, students were asked 
to create a stable population consisting almost entirely of little frogs. The goal of this challenge was to experiment 
with directional selection pressure—one that drives organisms’ traits in one direction over successive generations.  

 
Research Question 
As they progressed through the curriculum, what forms of learning about evolutionary change and computational 
practices were visible in the student pairs’ programming approach and discourse around code?  
 
Methods 
Data collection 
We implemented the Frog Pond curriculum at a middle school in an ethnically diverse suburb of a large midwestern 
city. Nearly 130 students from six seventh-grade science classes participated in the unit over a period of 8 classes. 
About 100 students consented to participate in the study. The science teacher who usually taught these classes led 
the activities. Students worked in pairs throughout the unit. Camtasia screen capture recordings were collected from 
these focal students to capture their on-screen work and conversations. We also video recorded whole class 
interactions with two stationary video cameras.  
 
Analysis 
Video analysis of student pairs  
We selected videos from an early and advanced challenge from two focal pairs as contrasting cases for analysis. Pair 
1 had succeeded in both challenges while Pair 2 did not succeed in either. This contrast allowed us to compare 
learning interactions that resulted in different levels of success. We identified segments in which students made code 
changes (added or removed a block) or code parameter changes (changed parameter values of a block (e.g., chance 
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%)). We then identified discourse segments before and after each change. These segments provided clues about 
students’ rationale for modifying code or about what students observed when they ran the simulation, and how they 
accounted for it. These episodes were analyzed to examine themes related to conceptual ideas about evolutionary 
change, and computational practices from the NU CT-STEM framework.  
 
Computer Log Analysis of Student Pairs 
Each time a student clicked the Play button, a log entry was generated, recording what blocks were used with what 
parameters. Across the 5 days of deployment, 12,484 entries of runs were generated. We focused on the analysis of 
2585 lines generated by focal students for triangulation. We focused on extracting two key features: Code blocks 
used in each run, and changes in parameters and blocks used in each run. Below is an example of a log entry: 
entry:hop(1);left(60);hunt(10s);chance(40%);if(full?);hatch(no-‐
variation);end;end;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (1) 

This log entry shows a program composed of 6 blocks with 2 nesting blocks (“if” and “hatch”). Given this 
information about student programs, we could obtain differences in programs used in sequential runs. We chose to 
use Levenshtein Distance (LD) to measure this. LD is the minimum number of changes that are needed to make 
alphabets string identical to the next. We wrote a Python script to convert the original log to a string to obtain 
meaningful LD between runs.  
 
Findings 
Anchor code: Modularity as evidence of conceptual learning and CT practices  
Our analysis of learners’ code changes in an early and advanced challenge led to the development of a construct that 
we call anchor code. Anchor code refers to a body of code that creates a stable base from which further explorations 
take place. There were differences in the expression and grain size of anchor code in the two pairs as well as in their 
quality in stabilizing the system.  

For Pair 1, anchor code was located in a set of code blocks that would make the population stable. For 
instance, when they began Challenge 5, Cory said: “How do we do what we did the one time, the one that was really 
stable?” They proceeded to construct a set of code that was nearly identical to what they had constructed as part of 
Challenge 2. Using this code, they attained a stable population that fluctuated around a steady carrying capacity. 
They then proceeded to make minor modifications to this code in order to meet features of this new challenge. In 
contrast, for Pair 2, anchor code was of a lower level of modularity and was less stable. Though this pair made 
several code changes in early and advanced challenges, they came to consistently rely on specific chunks of code to 
produce specific outcomes. Anchor code was seen in specific strategies using smaller chunks of code to produce 
specific effects in the model. For instance, Pair 2 did not succeed in stabilizing the population, though they avidly 
avoided a population explosion and extinction. This suggested that they recognized the importance of maintaining 
stability in the population, though they did not succeed in doing so through the code alone. Pair 2 used chance	  %	  
[die]	  and repeatedly modified the chance%	  parameter to maintain stability.  

                  Figure 2: Pair 1’s programming to the left, and Pair 2’s to the right 
 
We found evidence for anchor code in the log data. Pair 1’s progress in programing (Figure 2, left) showed 

increasing stability. In early challenges, the pair made radical changes to their code as shown in the high LD peaks. 
From Challenge 3, they entered a more stable stage of coding. They made one large change and then mainly small 
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continuous tweaks to the code, as shown in the valleys after occasional high peaks. In contrast, Pair 2’s programing 
progress (Figure 2, right) did not have a clear pattern. In Challenge 1, they used almost all of the available blocks. 
From the second half of Challenge 2, these measures changed without a clear trend. 

We see anchor code as evidence of conceptual learning and computational practices. It is conceptual 
because students’ ways of using the anchor code indicated that they had parsed down the challenges into different 
sub-problems. For instance, pair 1’s work indicated that they broke down the challenge into a population stability 
problem (population dynamics), and a shifting distributions problem (adaptation). Computationally, anchor code 
aligns with computational problem solving practices related to developing modular computational solutions. 
 
Discussion 
Our goal was to explicate forms of conceptual learning and computational practices in Frog Pond, a code-first 
modeling environment. This paper presents one of our findings related to the development of anchor code. We 
argued that anchor code is evidence of conceptual learning and enactment of computational practices. Conceptually, 
the emergence of, and student discourse around this stable base of code suggested understandings related to 
mechanisms underlying maintaining stability in a population, and selection pressures leading to shifts in a 
population distribution. Though the grain size of their strategies was different, both pairs developed ways of dealing 
with these two problems in the model. Computationally, anchor code reflects the development of modularity, an 
important computational practice. This finding has implications for the design of programming environments as well 
as the design of activities for programming in science classrooms. In future work, we plan to extend these analyses 
to other student pairs and across challenges to investigate more nuanced shifts in learning of conceptual ideas and 
computational practices.  
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