
Using Upper-Elementary Student Performance

to Understand Conceptual Sequencing in a

Blocks-based Curriculum
Diana Franklin§♮, Gabriela Skifstad♮, Reiny Rolock♮, Isha Mehrotra♮, Valerie Ding♮,

Alexandria Hansen♭, David Weintrop§, Danielle Harlow♭

§
 UChicago STEM Education

University of Chicago
1100 E. 58

th
 St

Chicago, IL 60637

dmfranklin@uchicago.edu
dweintrop@uchicago.edu

♮Department of Computer Science

University of Chicago
1100 E. 58th Street

 Chicago, IL 60637

{gskifstad, rrolock, imehrotra,
valerieding}@uchicago.edu

♭Gevirtz School of Education

UC Santa Barbara
Santa Barbara, CA 93106

akillian@umail.ucsb.edu
 dharlow@education.ucsb.edu

ABSTRACT

As more elementary schools commit to integrating computer

science instruction into their curricula, they seek guidance on

what concepts are appropriate for students at different grade

levels. Currently, little is known about how best to sequence

computer science learning across elementary grades. In this paper,

we present an analysis of 123 students’ (age 9-12, grades 4-6)

activities in a curriculum implemented in a visual block-based

programming language. The goal of this work is to better

understand the developmental appropriateness of foundational

computer science ideas. All 4th, 5th, and 6th grade students in a

single school completed the first module of a curriculum during

the same school year with the same instructor. We analyzed each

task students attempted and found that for simple concepts, there

was little difference in performance between grade levels.

However, differences were found for more complex topics, such

as whether they completed initialization tasks and the way in

which they solved 2-d navigation tasks. A closer look revealed

that students understood the basic concepts, but were challenged

by deeper applications of the basic concepts and influenced by

non-computer science skills. This work serves as an empirically

grounded investigation of elementary computer science learning

and contributes to our understanding of computer science learning

trajectories and concept sequencing in the late elementary grades.

1. INTRODUCTION
As more elementary school teachers begin to integrate computing

into their curricula, they must design activities for students with

disparate academic backgrounds and varying levels of prior

computing experience. While standards are being released to

articulate what concepts should be covered at what grade band, in

order for teachers to effectively bring computing into their

classrooms, further support is needed in two ways. First, goals

need to be articulated by grade level rather than grade band.

Second, we need to recognize that students often do not learn a

concept completely in one year. Just as students learn to add

numbers over three years in elementary school, students will

revisit computing topics with more complex and in-depth

exposure each year. Therefore, we need to understand how

foundational computing concepts develop over several grades.

This paper presents a study of students across upper elementary

grades (4-6) working through the same curriculum. By having

students of different ages learn the same concept and work

through the same set of activities, we can begin to understand

grade-appropriateness of different concepts and the effectiveness

of different types of instruction, as well as identify specific

challenges they face. In doing so, we lay the foundation for a

validated, grade-appropriate K-6 computer science curriculum

that can start the next generation of learners on a path towards

computing success.

In this work, we seek to answer the following two research

questions.

 What computing concepts were challenging for students in

different grades?

 Which non-computing concepts became stumbling blocks in

projects intended to develop computing expertise?

We begin with a background on work investigating similar

questions. We then describe our methods in Section 3. Section 4

presents our results, followed by a discussion in Section 5 and

ending with a conclusion.

2. BACKGROUND
Computer science instruction in elementary school is an emerging

field with many unanswered questions regarding designing age-

appropriate curricula. Pertinent questions include what concepts

should be covered at what ages? How deeply should each concept

be covered? And, how do concepts align with or rely on non-

computer science skills. In this paper, we attend to questions

about content and relationship to non-computing skills.

Papert’s work with the Logo language showed that programming

was well within the cognitive abilities of elementary-aged learners

[5]. Through working with late elementary aged students, Papert

and colleagues found students were able to learn and use concepts

such as sequence, loops, and conditionals. One of the more

successful descendants of Logo is Scratch [8], a block-based,

exploratory programming environment that gives students an

intuitive interface as well as the ability to “remix” (copy and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SIGCSE '17, March 08-11, 2017, Seattle, WA, USA

© 2017 ACM. ISBN 978-1-4503-4698-6/17/03…$15.00

DOI: http://dx.doi.org/10.1145/3017680.3017760

231

modify) existing projects. The Scratch environment is widely used

and has been found to be effective at engaging diverse and

historically underrepresented learners in programming [7].

Despite widespread use, work towards understanding the

cognitive affordances of the Scratch environment with this age

group is only beginning to emerge. Seiter and Foreman [11]

analyzed Scratch projects created by elementary-aged students to

identify what blocks students used at which grades. Others’

research of younger learners working with blocks-based tools

discovered the need to teach learners about initialization [3] and to

consider the user when authoring programs [4], two ideas taken

for granted by educators working with older students.

Beyond computer science knowledge, programming projects are

often dependent on non-computer science prerequisite skills such

as mathematics knowledge, reading ability, and the ability to

handle general cognitive load. Flannery et al. [2], in their

description of designing Scratch Jr, identified that early

elementary school students struggle with several mathematics

concepts, as well as the overabundance of choices. Further, Hill et

al. [6] found that the mathematics concepts were above grade

level even for the advertised grades, and the students struggled as

a result in both high-achieving and low-achieving schools. Seiter

[10] similarly found evidence that overall academic performance

profoundly affects success in computing. Fourth-grade students in

a high-achieving school were able to complete projects with

synchronization and actions in isolation, only faltering when the

concepts were combined. Students in a low-achieving classroom,

however, were unable to advance past the first project, showing a

possible dependence between computing performance and

performance in other subject areas.

3. METHODS
To answer our stated research questions, we took an iterative,

design-based research approach to develop an age-appropriate

blocks-based programming environment and accompanying

curriculum. Design-based research is a systematic and flexible

methodology that allows for collaboration between researchers

and practitioners in real-world settings with the aim of improving

educational practice [12]. This work involved a collaboration

between educational researchers, computer scientists, and teachers

who were using our curriculum and programming environment in

schools. This collaboration often resulted in observations about

what was and was not working in classrooms with students.
 Materials 3.1

Students completed Module 1 of a curriculum using LaPlaya [6],

a Scratch-like programming language and environment designed

for 4th grade students. Module 1 is a project-based curriculum in

which concepts taught are chosen to support the creation of a

culminating digital storytelling project. Within each concept, there

is a series of 3-4 tasks that students complete, each task slightly

more complex than the last. It is intended that these tasks be

completed in a single 45-minute work session. The lessons of

Module 1, along with the number of tasks are shown in Table 1.

LaPlaya is a visual block-based language and environment

inspired by Scratch but modified to be simpler for the younger

end of the age range (Figure 1). Some blocks were modified to

simplify the mathematics requirements (e.g. removing

percentages, decimals, and negative numbers). In addition, the

interface is configurable on a per-project basis, giving the

curriculum designer control over aspects of the interface, such as

which blocks, categories, sprites, scripts, and tabs are visible to

Table 1: Lessons and tasks in Module 1

Concept Number of Tasks
Sequence, Interface 3
Breaking down actions 4
Event 1: On sprite clicked 3
Event 2: Other sprite clicked 4
Event 3: On key pressed 3
Initialization 3
X/Y Coordinates (optional) 5
Costume Changes 3

Scene Changes 3

the students for each task. Finally, each task has an automated

analysis capability that a student can run to find out whether they

have completed the task and, if not, get a hint as to what aspect is

incomplete.

Figure 1: LaPlaya learning environment with a 2-dimension

navigation puzzle directing the bear to the honey pot.

 Data Collection 3.2
In the 2014-2015 school year, we tested our digital storytelling

module and programming environment with over 1,500 students

(ages 9-12) at 10 schools. For this paper, we analyze student work

from one elementary school where all 4th, 5th, and 6th grade

students completed the Module 1 curriculum (Table 1), totaling

123 students. The classes were required for students, and all

sections were taught by the same technology teacher, thus

controlling for teacher effects. Graduate student researchers

(GSRs) attended most classroom meetings and recorded detailed

field notes about student learning. In addition, GSRs collected

video recordings of each class meeting, audio recordings of

students asking questions, and interviews with teachers and

students. Finally, digital artifacts including all tasks and final

student projects were collected. After each class period, GSRs

wrote analytical memos [9] that were shared with the research

group. For this paper, we analyzed the digital artifacts collected.

 Data Analysis 3.3
Our goal in data analysis was to identify what percentage of

students demonstrated understanding and to identify particular

challenges for students. For each task within an activity in Module

1, we wrote an analysis script to determine whether the artifact

displayed understanding of the concept as well as identify the

particular milestone of completion students reached. Each task’s

analysis code was tailored to that task.

232

To calibrate the analysis script, we first determined the minimum

requirements necessary to “demonstrate understanding” of the

concept. This is a lower bar than full completion of the task since

these were learning tasks with repetition built into them, both of

previously presented concepts and the current concept.

Demonstrated understanding was determined as completing all

scripts necessary for a single instance of applying that concept.

Second, we identified specific struggles. We split progress into

milestones and analyzed the code for reaching those milestones.

Finally, a one-way analysis of variance (ANOVA) was conducted

to compare the completion rates for each activity across grade

levels, as well other variables related to specific tasks, to

determine if the observed differences were statistically significant.

4. RESULTS
We present several findings from our analysis of the student tasks.

We begin with the overall findings showing demonstrated

understanding of several concepts. We then present more detailed

results of several activities that show interesting behavior and/or

differences between grade levels. Our results are broken down

into three categories. We first present results that are gleaned from

looking at how students did at a concept level. We then look more

closely at how students completed tasks within a single concept.

Finally, we analyze their final projects to see what concepts they

used.

Figure 2: Percentage of students in each grade who

demonstrated understanding for each task in the curriculum.

Note: Y-axis begins at 50%.

 Findings Between Concepts 4.1
We begin by presenting overall results for 4th, 5th, and 6th grade

students. Figure 2 shows the percentage of students who

demonstrated understanding (as defined by completion of one

instance of the concept) for each task within each activity (note:

the list of tasks can be found in Table 1).

While there were notable qualitative differences observed across

grade levels for completion rates (see Figure 2), no differences at

a statistically significant level were found. This is in part due to

the small size of groups, and this analysis should be repeated on a

larger sample to confirm or disconfirm the trends observed in

Figure 2. Despite not resulting in statistical significance, the

findings presented here are still useful for curriculum and

interface developers working to engage children

in learning computer science

Finding 1: Placing simple instructions in sequence and using

simple events in a block-based language is accessible to 4th-6th

grade students.

These results show that block-based programming environments,

with projects using only a few blocks, are accessible to students in

upper elementary school. Over 90% of 4th, 5th, and 6th grade

students completed the first set of tasks, which involved ordering

glide to sprite
1 blocks to draw simple pictures. Over 85% of

all students completed the second set of tasks, which involved

separately setting direction and moving a distance to navigate a

simple 2-d grid.

In addition, tasks involving multiple events with just one action

block per event were very accessible to all three grade levels.

Fourth and fifth grade students struggled slightly on some tasks,

but they attained over 80% completion on almost all tasks. The

Other Sprite Clicked2 activity had more tasks, so many students

did not reach the last task, resulting in an anomalous dip. This

shows that sequence and simple scripts using events are accessible

to learners at the 4th grade level (and possibly even younger).

Finding 2: Initialization is challenging for 4th and 5th grade

students.

The one concept in this curriculum that challenged students was

Initialization. To initialize, students set the starting values for one

or two attributes of a sprite. Differences between grade levels

emerged, but, as stated earlier, the differences were not

statistically significant. In general, 6th grade students still did well

on these tasks, but 4th and 5th grade students struggled. There are

several possible explanations including LaPlaya not providing

enough scaffolding of computer science skills, not situating the

challenge in a compelling context, or being too complex overall.

 Findings Within Concepts 4.2
After artifacts were analyzed for completion rates, they were

analyzed for the ways in which students solved the tasks. More

nuanced differences between students of different grade levels

emerged from this analysis.

Finding 3: 6th grade students are more precise at 2-dimension

navigation than 4th and 5th grade students.

Breaking Down Actions comprised of tasks navigating a bear to a

honey pot (Figure 1) while avoiding bushes in the path. The honey

pot has a script that detects when it is touching the bear. Once the

bear touches the honey pot, an animation of the bear with its nose

in the honey pot occurs.

This project was simplified and scaffolded in response to results

from the previous pilot year. As Figure 1 shows, a grid is drawn

on the background. Each grid line is defined as 50 steps, and all

sprites are aligned to the grid, simplifying distance calculation

students must make to successfully navigate the terrain (all

movements are multiples of 50).

One interesting attribute of this set of tasks revealed differences

across the grades related to the precision of movement commands.

Students could either program the bear to go to the honey pot

precisely or overshoot it–the in-project detection would trigger an

animation once the bear “touched” the honey pot. Therefore, a

1The glide to sprite block was added to LaPlaya specifically

to create a very simple entry-level activity.
2The on other sprite clicked event was added to LaPlaya

to remove the need for broadcast/receive messages to program

an action in one sprite caused by a mouse click on another.

233

student could have programmed the bear to travel an inaccurately

large distance and still receive positive feedback.

Figure 3: Percentage of students, by grade, who reached

milestones for the last 2-dimensional navigation task.

Figure 3 shows the progress of 4th, 5th, and 6th grade students in

completing the last task of the activity. Each point on the line

represents the percentage of students who reached that level of

completion. Milestone 3 corresponds to touching the honey pot,

whereas milestone 4 corresponds to touching the honey pot with a

relatively accurate measurement (stopping on the honey pot), and

milestone 5 corresponds to touching the honey pot with an

accurate and efficient solution (a single glide block calculated

accurately). Most students reach milestone 3: 98%, 96%, and 90%

of 6th, 5th, and 4th graders, respectively. Therefore, students easily

solved the tasks to the level of reaching the honey pot, which

satisfies the learning goals of this task.

Differences emerge, however, in inspecting the level of accuracy

and efficiency of their solutions. Only 81%, 63%, and 73% of 6th,

5th, and 4th graders, respectively, measured the distance accurately

(milestone 4). It seems counterintuitive that 4th grade students

performed better than 5th grade students until we look more

closely at their approach.

In order to better understand this trend, we performed a more

detailed analysis on all students’ solutions for tasks 2, 3, and 4 of

Breaking Down Actions. We analyzed the artifacts for two

factors. First, we categorized responses by the distance the bear

was moved (accurate, approximate, or incorrect). Second, we

analyzed whether the students used one or multiple glide blocks

to complete a single leg of the trip. In our system, a single glide

block’s default distance was 50 steps, corresponding to one grid

block. To move three grid blocks, one could place three glide

blocks in succession, removing the need to perform mathematical

calculations. The results from this analysis are presented in Table

2. In Table 2, the green and orange indicate contrasting

performance for accurate calculations using one block. Yellow

boxes indicate the two alternate approaches: accurate calculations

using multiple blocks and approximate calculations using a single

block.

Looking at the results for accurate calculations using 1 block for

each task, we can see that 6th graders were consistently more

accurate and efficient than 4th and 5th graders (73% vs 56%, 86%

vs 67% and 68%, and 70% vs 46% and 56%). These differences

are highlighted in green (6th graders) and orange (4th and 5th

graders). An interesting phenomenon occurs between 4th and 5th

grade students. In Task 2, 30% of 4th grade students solved it by

placing the correct number of consecutive glide blocks, whereas

very few 5th grade students solved it this way. Instead, 5th graders

appear to have attempted to calculate the accurate distance and

this became became a barrier to completion. By Task 4, 4th grade

students performed similarly to 5th grade students. In fact,

comparing Task 4 to Task 2, more 5th grade students used

consecutive blocks, and fewer 4th grade students did.

Table 2: Analysis of three tasks of Breaking Down Actions.

Statistically significant differences were found only for Task 1.

Fourth and fifth graders were significantly different for accurate

completion using multiple blocks, F(2, 142) = .262, p= .02. In

addition, 4th graders significantly differed from 5th graders for

incorrect responses using 1 block, F(2, 142) = -.08, p = .04.

Finally, 5th graders also significantly differed from 6th graders for

incorrect completion using 1 block, F(2, 142) = .08, p = .03.

With this data we cannot say definitively what caused this

discrepancy, but we speculate that this indicates that both 4th and

5th grade students struggled with the mathematical calculation for

distance. They solved the problem in two ways–4th grade students

were more likely to use the simpler method of using multiple

glide blocks, whereas 5th grade students attempted the

calculations and were incorrect more often.

These results indicate that 2-d navigation in increments of 50 are

accessible to 4th, 5th, and 6th grade students, but the solution

strategy may be different for 6th grade students vs. 4th and 5th

grade students. For 4th and 5th grade students, it may be beneficial

to first practice with 2-d navigation with grid blocks of 1 step

before moving to 50-step grid blocks.

Finding 4: 4th grade students struggle to initialize multiple

characteristics of a sprite.

In one particular Initialization task, students were asked to

initialize two attributes of a cat: size and position. LaPlaya

includes a separate initialization event (denoted with a blue square

displayed alongside the traditional green flag) that the runtime

environment enforces use of by disabling the green flag button

until it is pressed. Students had already seen examples of

initialization scripts as well as been asked to initialize position in

previous tasks. This task introduced the need to initialize size. We

can see in Figure 4 that most students initialized position properly

(milestone 2). However, the number of students that properly

initialized size (milestone 3) was lower, with 4th grade students

showing the most significant drop. This means that more than

20% of 4th graders did not make any progress towards initializing

a second characteristic of the sprite after correctly initializing a

first feature, indicating they did not to apply their knowledge of

initializing position and rotation to correctly define a starting

state. This finding suggests that while initialization is appropriate

for students as early as fourth grade, more complex initialization

sequences that require coordination of multiple attributes or states

might be more suitable for older students.

234

Figure 4: Percentage of students in each grade who reached

milestones for the third Initialization task.

 Culminating Projects 4.3
All students were given several programming sessions to

complete a summative project. We analyzed 135 projects in terms

of the total number of blocks, number of unique blocks used,

median script length, and number of unique block categories used.

The purpose of this analysis was to understand the scale of the

projects (total blocks and script length) and diversity (unique

blocks and unique categories) of computer science concepts

incorporated by the learners across the three grades.

Figure 5: Number of block categories used in final projects.

Finding 5: There was little difference between grades in terms of

total blocks used, median script length, and total unique blocks

used.

In general, the projects were relatively simple. At least 20% of

students in all three grades used no more than 9 blocks total and 4

unique blocks, while half of the students had median script

lengths of less than 3. All three grades showed similar behavior,

with only small differences, with the exception of diversity of

categories, which we discuss below.

Finding 6: 6th grade students tended to use more categories (3),

and the variance in the number of categories shrank as students

aged.

Figure 5 shows the average number of categories used by

students. This graph illustrates that while the average numbers are

close, the variance decreases as students’ grade increases. Further

analysis revealed that 6th grade students used blocks from 3

unique categories more often than younger students: 84% of 6th

graders versus 75% and 73% of 5th and 4th graders, respectively.

This indicates that even if students, on average, perform similarly,

perhaps the minimum standards for students at younger ages

should be lower

Figure 6: Percentage of students in each grade who used

blocks from each category.

Finding 7: Students were most likely to use blocks from the

“Events” category, followed by “Looks”, “Motion” and then

“Control.”

We further analyzed final projects to find out which categories of

blocks students used. Figure 6 shows the most commonly used

category contained the Event blocks. This is not surprising given

that an Event block is required in order for a script to be run. The

most common Event block was the blue square block used for

initialization. Thus, our requirement that an initialization event be

pressed before the green flag, and the corresponding curriculum,

likely succeeded in encouraging students to use this event. Other

Event blocks were used fairly evenly. The second most common

category was Looks, with say blocks (93 of the 123 final

projects) dominating the block use, followed by show/hide

(78/76) and switch costume (59). The third most common

category was motion, where blocks that define movement in the

X/Y coordinates were most common (83), followed by glide in

direction (51) and glide to coordinates (30). Finally,

among projects that used control blocks, the wait block was most

popular (78), with only a few using loops (which were not taught

explicitly in Module 1). In fact, more students used wait than

switch costume (the only use taught in our curriculum)

indicating that students transferred their knowledge of wait to

other blocks.

Overall, this suggests that specific blocks in the Looks category

are simpler for students than Motion blocks. Only for 6th grade

students was the use of Motion blocks similar to that of Looks.

This could be related to familiarity with the coordinate plane and

better performance on the 2-d navigation puzzles, though it is

unknown whether or not the relationship is causal. In addition, the

idea of initialization is accessible, but, as we saw in Section 4.2.2,

the details are challenging to get correct.

5. DISCUSSION
This work provides several insights that can be applied to activity

development in upper elementary school grades. First, sequence

and simple events are very accessible to young students. This

finding reinforces design decisions made by other environments

designed for younger learners, such as Logo and Scratch Jr. and

235

adds empirical evidence towards the design of curricula for

elementary students focusing on movement-based activities (or

“turtle graphics” activities in Logo parlance).

Second, activities involving precise mathematical calculations can

result in undesirable difficulty and potentially be a barrier for

some students toward engaging with the underlying computer

science concepts. In this work, we found that while all students

were able to give navigational commands to their sprite, when

students needed to use precise mathematical calculations, younger

learners performed worse than older learners. Our analysis

showed the difference was attributed to mathematical aspects of

the task rather than difficulty with the concept. The important take

away from this finding for curriculum designers is to try to

minimize the external mathematics required for activities as it

may introduce an unintended barrier to the desirable computer

science content of the lesson.

A third discussion point from this study is related to our

investigation of initialization. This work reveals a developmental

difference in terms of initializing a single attribute of an object

and initializing multiple attributes. One might assume that

initialization is an atomic idea that a student does or does not

understand. However, this work shows there to be more to the

concept of initialization of sprites for younger learners. The

implications of this are twofold. First, when teaching initialization

or designing initialization activities, it is important to design in a

trajectory from simple to more complex tasks so students better

understand the concept of initialization. Second, and more

importantly, this shows the need to carefully analyze all aspects of

introductory computer science instruction and not take for granted

any part of the act of programming. It is easy for an expert

programmer, or even just a casual programmer, to think of

initialization as an atomic unit that students either do or do not

understand. We suspect that there are other aspects of

programming that share this characteristic and plan on further

investigating them as future work.

Finally, this work is further evidence of the existence of

developmentally appropriate computer science instruction and

shows that there are concepts more and less suitable for students

across grades 4, 5, and 6. In conducting this work, we can begin to

tease apart differences in these early stages of computational

learning and use them to inform age-appropriate instruction. At

the same time, these findings provide clues for the development of

a larger K-6 computer science trajectory, another avenue of future

investigation we intend on pursue to more fully map out what

effective computer science instruction might look like in upper

elementary school.

6. CONCLUSION
This paper presented detailed analysis on how students progressed

through an upper-elementary computing curriculum. We

identified several insights, applied both within and across

concepts that can guide development of effective K-6 computer

science instruction. It is through studies such as these that we can

gain knowledge necessary to create curricula aimed at a broad set

of students’ developmental and academic levels, as well as the

ability to provide differentiation and accommodation for

individual students.

7. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation CE21

Award CNS-1240985. Any opinions, findings, and conclusions or

recommendations expressed are those of the authors and do not

necessarily reflect those of the National Science Foundation.

8. REFERENCES
[1] Clements, D.H. and Battista, M.T. 1989. Learning of

geometric concepts in a Logo environment. Journal for

Research in Mathematics Education. (1989), 450–467.

[2] Flannery, L.P. et al. 2013. Designing ScratchJr: Support for

early childhood learning through computer programming.

Proceedings of the 12th International Conference on

Interaction Design and Children (2013), 1–10.

[3] Franklin, D. et al. 2016. Initialization in Scratch: Seeking

Knowledge Transfer. Proceedings of the 47th ACM

Technical Symposium on Computing Science Education

(2016), 217–222.

[4] Hansen, A. et al. 2016. User-Centered Design in Block-

Based Programming: Developmental & Pedagogical

Considerations for Children. (2016), 147–156.

[5] Harel, I. and Papert, S. 1990. Software design as a learning

environment. Interactive Learning Environments. 1, 1

(1990), 1–32.

[6] Hill, C. et al. 2015. Floors and Flexibility: Designing a

programming environment for 4th-6th grade classrooms.

Proceedings of the 46th ACM Technical Symposium on

Computer Science Education (2015), 546–551.

[7] Maloney, J.H. et al. 2008. Programming by choice: Urban

youth learning programming with Scratch. ACM SIGCSE

Bulletin. 40, 1 (2008), 367–371.

[8] Resnick, M. et al. 2009. Scratch: Programming for all.

Communications of the ACM. 52, 11 (Nov. 2009), 60.

[9] Saldaña, J. 2015. The coding manual for qualitative

researchers. Sage.

[10] Seiter, L. 2015. Using SOLO to Classify the Programming

Responses of Primary Grade Students. Proceedings of the

46th ACM Technical Symposium on Computer Science

Education (New York, NY, USA, 2015), 540–545.

[11] Seiter, L. and Foreman, B. 2013. Modeling the Learning

Progressions of Computational Thinking of Primary Grade

Students. Proceedings of the Ninth Annual International

ACM Conference on International Computing Education

Research (New York, NY, USA, 2013), 59–66.

[12] Wang, F. and Hannafin, M.J. 2005. Design-based research

and technology-enhanced learning environments.

Educational technology research and development. 53, 4

(2005), 5–23.

236

