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ABSTRACT 

As more elementary schools commit to integrating computer 

science instruction into their curricula, they seek guidance on 

what concepts are appropriate for students at different grade 

levels. Currently, little is known about how best to sequence 

computer science learning across elementary grades. In this paper, 

we present an analysis of 123 students’ (age 9-12, grades 4-6) 

activities in a curriculum implemented in a visual block-based 

programming language. The goal of this work is to better 

understand the developmental appropriateness of foundational 

computer science ideas. All 4th, 5th, and 6th grade students in a 

single school completed the first module of a curriculum during 

the same school year with the same instructor. We analyzed each 

task students attempted and found that for simple concepts, there 

was little difference in performance between grade levels. 

However, differences were found for more complex topics, such 

as whether they completed initialization tasks and the way in 

which they solved 2-d navigation tasks. A closer look revealed 

that students understood the basic concepts, but were challenged 

by deeper applications of the basic concepts and influenced by 

non-computer science skills. This work serves as an empirically 

grounded investigation of elementary computer science learning 

and contributes to our understanding of computer science learning 

trajectories and concept sequencing in the late elementary grades. 

1. INTRODUCTION 
As more elementary school teachers begin to integrate computing 

into their curricula, they must design activities for students with 

disparate academic backgrounds and varying levels of prior 

computing experience. While standards are being released to 

articulate what concepts should be covered at what grade band, in 

order for teachers to effectively bring computing into their 

classrooms, further support is needed in two ways. First, goals 

need to be articulated by grade level rather than grade band. 

Second, we need to recognize that students often do not learn a 

concept completely in one year. Just as students learn to add 

numbers over three years in elementary school, students will 

revisit computing topics with more complex and in-depth 

exposure each year. Therefore, we need to understand how 

foundational computing concepts develop over several grades. 

This paper presents a study of students across upper elementary 

grades (4-6) working through the same curriculum. By having 

students of different ages learn the same concept and work 

through the same set of activities, we can begin to understand 

grade-appropriateness of different concepts and the effectiveness 

of different types of instruction, as well as identify specific 

challenges they face. In doing so, we lay the foundation for a 

validated, grade-appropriate K-6 computer science curriculum 

that can start the next generation of learners on a path towards 

computing success. 

In this work, we seek to answer the following two research 

questions.  

 What computing concepts were challenging for students in 

different grades? 

 Which non-computing concepts became stumbling blocks in 

projects intended to develop computing expertise? 

We begin with a background on work investigating similar 

questions. We then describe our methods in Section 3. Section 4 

presents our results, followed by a discussion in Section 5 and 

ending with a conclusion. 

2. BACKGROUND 
Computer science instruction in elementary school is an emerging 

field with many unanswered questions regarding designing age-

appropriate curricula. Pertinent questions include what concepts 

should be covered at what ages? How deeply should each concept 

be covered? And, how do concepts align with or rely on non-

computer science skills. In this paper, we attend to questions 

about content and relationship to non-computing skills.  

Papert’s work with the Logo language showed that programming 

was well within the cognitive abilities of elementary-aged learners 

[5]. Through working with late elementary aged students, Papert 

and colleagues found students were able to learn and use concepts 

such as sequence, loops, and conditionals. One of the more 

successful descendants of Logo is Scratch [8], a block-based, 

exploratory programming environment that gives students an 

intuitive interface as well as the ability to “remix” (copy and 
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modify) existing projects. The Scratch environment is widely used 

and has been found to be effective at engaging diverse and 

historically underrepresented learners in programming [7]. 

Despite widespread use, work towards understanding the 

cognitive affordances of the Scratch environment with this age 

group is only beginning to emerge. Seiter and Foreman [11] 

analyzed Scratch projects created by elementary-aged students to 

identify what blocks students used at which grades. Others’ 

research of younger learners working with blocks-based tools 

discovered the need to teach learners about initialization [3] and to 

consider the user when authoring programs [4], two ideas taken 

for granted by educators working with older students. 

Beyond computer science knowledge, programming projects are 

often dependent on non-computer science prerequisite skills such 

as mathematics knowledge, reading ability, and the ability to 

handle general cognitive load. Flannery et al. [2], in their 

description of designing Scratch Jr, identified that early 

elementary school students struggle with several mathematics 

concepts, as well as the overabundance of choices. Further, Hill et 

al. [6] found that the mathematics concepts were above grade 

level even for the advertised grades, and the students struggled as 

a result in both high-achieving and low-achieving schools. Seiter 

[10] similarly found evidence that overall academic performance 

profoundly affects success in computing. Fourth-grade students in 

a high-achieving school were able to complete projects with 

synchronization and actions in isolation, only faltering when the 

concepts were combined. Students in a low-achieving classroom, 

however, were unable to advance past the first project, showing a 

possible dependence between computing performance and 

performance in other subject areas.  

3. METHODS 
To answer our stated research questions, we took an iterative, 

design-based research approach to develop an age-appropriate 

blocks-based programming environment and accompanying 

curriculum. Design-based research is a systematic and flexible 

methodology that allows for collaboration between researchers 

and practitioners in real-world settings with the aim of improving 

educational practice [12]. This work involved a collaboration 

between educational researchers, computer scientists, and teachers 

who were using our curriculum and programming environment in 

schools. This collaboration often resulted in observations about 

what was and was not working in classrooms with students.  
 Materials 3.1

Students completed Module 1 of a curriculum using LaPlaya [6], 

a Scratch-like programming language and environment designed 

for 4th grade students. Module 1 is a project-based curriculum in 

which concepts taught are chosen to support the creation of a 

culminating digital storytelling project. Within each concept, there 

is a series of 3-4 tasks that students complete, each task slightly 

more complex than the last. It is intended that these tasks be 

completed in a single 45-minute work session. The lessons of 

Module 1, along with the number of tasks are shown in Table 1. 

LaPlaya is a visual block-based language and environment 

inspired by Scratch but modified to be simpler for the younger 

end of the age range (Figure 1). Some blocks were modified to 

simplify the mathematics requirements (e.g. removing 

percentages, decimals, and negative numbers). In addition, the 

interface is configurable on a per-project basis, giving the 

curriculum designer control over aspects of the interface, such as 

which blocks, categories, sprites, scripts, and tabs are visible to 

 

Table 1: Lessons and tasks in Module 1 

Concept Number of Tasks 
Sequence, Interface 3 
Breaking down actions 4 
Event 1: On sprite clicked 3 
Event 2: Other sprite clicked 4 
Event 3: On key pressed 3 
Initialization 3 
X/Y Coordinates (optional) 5 
Costume Changes 3 

Scene Changes 3 
 

the students for each task. Finally, each task has an automated 

analysis capability that a student can run to find out whether they 

have completed the task and, if not, get a hint as to what aspect is 

incomplete. 

 

 

Figure 1: LaPlaya learning environment with a 2-dimension 

navigation puzzle directing the bear to the honey pot. 

 

 Data Collection 3.2
In the 2014-2015 school year, we tested our digital storytelling 

module and programming environment with over 1,500 students 

(ages 9-12) at 10 schools. For this paper, we analyze student work 

from one elementary school where all 4th, 5th, and 6th grade 

students completed the Module 1 curriculum (Table 1), totaling 

123 students. The classes were required for students, and all 

sections were taught by the same technology teacher, thus 

controlling for teacher effects. Graduate student researchers 

(GSRs) attended most classroom meetings and recorded detailed 

field notes about student learning. In addition, GSRs collected 

video recordings of each class meeting, audio recordings of 

students asking questions, and interviews with teachers and 

students. Finally, digital artifacts including all tasks and final 

student projects were collected. After each class period, GSRs 

wrote analytical memos [9] that were shared with the research 

group. For this paper, we analyzed the digital artifacts collected. 

 Data Analysis 3.3
Our goal in data analysis was to identify what percentage of 

students demonstrated understanding and to identify particular 

challenges for students. For each task within an activity in Module 

1, we wrote an analysis script to determine whether the artifact 

displayed understanding of the concept as well as identify the 

particular milestone of completion students reached. Each task’s 

analysis code was tailored to that task. 
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To calibrate the analysis script, we first determined the minimum 

requirements necessary to “demonstrate understanding” of the 

concept. This is a lower bar than full completion of the task since 

these were learning tasks with repetition built into them, both of 

previously presented concepts and the current concept. 

Demonstrated understanding was determined as completing all 

scripts necessary for a single instance of applying that concept. 

Second, we identified specific struggles. We split progress into 

milestones and analyzed the code for reaching those milestones. 

Finally, a one-way analysis of variance (ANOVA) was conducted 

to compare the completion rates for each activity across grade 

levels, as well other variables related to specific tasks, to 

determine if the observed differences were statistically significant. 

4. RESULTS 
We present several findings from our analysis of the student tasks. 

We begin with the overall findings showing demonstrated 

understanding of several concepts. We then present more detailed 

results of several activities that show interesting behavior and/or 

differences between grade levels. Our results are broken down 

into three categories. We first present results that are gleaned from 

looking at how students did at a concept level. We then look more 

closely at how students completed tasks within a single concept. 

Finally, we analyze their final projects to see what concepts they 

used. 

 

Figure 2: Percentage of students in each grade who 

demonstrated understanding for each task in the curriculum. 

Note: Y-axis begins at 50%. 

 

 Findings Between Concepts 4.1
We begin by presenting overall results for 4th, 5th, and 6th grade 

students. Figure 2 shows the percentage of students who 

demonstrated understanding (as defined by completion of one 

instance of the concept) for each task within each activity (note: 

the list of tasks can be found in Table 1). 

While there were notable qualitative differences observed across 

grade levels for completion rates (see Figure 2), no differences at 

a statistically significant level were found.  This is in part due to 

the small size of groups, and this analysis should be repeated on a 

larger sample to confirm or disconfirm the trends observed in 

Figure 2. Despite not resulting in statistical significance, the 

findings presented here are still useful for curriculum and 

interface developers working to engage children 

in learning computer science 

 

 

Finding 1: Placing simple instructions in sequence and using 

simple events in a block-based language is accessible to 4th-6th 

grade students. 

These results show that block-based programming environments, 

with projects using only a few blocks, are accessible to students in 

upper elementary school. Over 90% of 4th, 5th, and 6th grade 

students completed the first set of tasks, which involved ordering 

glide to sprite
1 blocks to draw simple pictures. Over 85% of 

all students completed the second set of tasks, which involved 

separately setting direction and moving a distance to navigate a 

simple 2-d grid. 

In addition, tasks involving multiple events with just one action 

block per event were very accessible to all three grade levels. 

Fourth and fifth grade students struggled slightly on some tasks, 

but they attained over 80% completion on almost all tasks. The 

Other Sprite Clicked2 activity had more tasks, so many students 

did not reach the last task, resulting in an anomalous dip. This 

shows that sequence and simple scripts using events are accessible 

to learners at the 4th grade level (and possibly even younger). 

Finding 2: Initialization is challenging for 4th and 5th grade 

students. 

The one concept in this curriculum that challenged students was 

Initialization. To initialize, students set the starting values for one 

or two attributes of a sprite. Differences between grade levels 

emerged, but, as stated earlier, the differences were not 

statistically significant. In general, 6th grade students still did well 

on these tasks, but 4th and 5th grade students struggled. There are 

several possible explanations including LaPlaya not providing 

enough scaffolding of computer science skills, not situating the 

challenge in a compelling context, or being too complex overall.  

 Findings Within Concepts 4.2
After artifacts were analyzed for completion rates, they were 

analyzed for the ways in which students solved the tasks. More 

nuanced differences between students of different grade levels 

emerged from this analysis.  

Finding 3: 6th grade students are more precise at 2-dimension 

navigation than 4th and 5th grade students.   

Breaking Down Actions comprised of tasks navigating a bear to a 

honey pot (Figure 1) while avoiding bushes in the path. The honey 

pot has a script that detects when it is touching the bear. Once the 

bear touches the honey pot, an animation of the bear with its nose 

in the honey pot occurs.  

This project was simplified and scaffolded in response to results 

from the previous pilot year. As Figure 1 shows, a grid is drawn 

on the background. Each grid line is defined as 50 steps, and all 

sprites are aligned to the grid, simplifying distance calculation 

students must make to successfully navigate the terrain (all 

movements are multiples of 50).  

One interesting attribute of this set of tasks revealed differences 

across the grades related to the precision of movement commands. 

Students could either program the bear to go to the honey pot 

precisely or overshoot it–the in-project detection would trigger an 

animation once the bear “touched” the honey pot. Therefore, a 

                                                                 
1The glide to sprite block was added to LaPlaya specifically 

to create a very simple entry-level activity. 
2The on other sprite clicked event was added to LaPlaya 

to remove the need for broadcast/receive messages to program 

an action in one sprite caused by a mouse click on another. 
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student could have programmed the bear to travel an inaccurately 

large distance and still receive positive feedback. 

 

 

Figure 3: Percentage of students, by grade, who reached 

milestones for the last 2-dimensional navigation task. 

 

Figure 3 shows the progress of 4th, 5th, and 6th grade students in 

completing the last task of the activity. Each point on the line 

represents the percentage of students who reached that level of 

completion. Milestone 3 corresponds to touching the honey pot, 

whereas milestone 4 corresponds to touching the honey pot with a 

relatively accurate measurement (stopping on the honey pot), and 

milestone 5 corresponds to touching the honey pot with an 

accurate and efficient solution (a single glide block calculated 

accurately). Most students reach milestone 3: 98%, 96%, and 90% 

of 6th, 5th, and 4th graders, respectively. Therefore, students easily 

solved the tasks to the level of reaching the honey pot, which 

satisfies the learning goals of this task.  

Differences emerge, however, in inspecting the level of accuracy 

and efficiency of their solutions. Only 81%, 63%, and 73% of 6th, 

5th, and 4th graders, respectively, measured the distance accurately 

(milestone 4). It seems counterintuitive that 4th grade students 

performed better than 5th grade students until we look more 

closely at their approach. 

In order to better understand this trend, we performed a more 

detailed analysis on all students’ solutions for tasks 2, 3, and 4 of 

Breaking Down Actions. We analyzed the artifacts for two 

factors. First, we categorized responses by the distance the bear 

was moved (accurate, approximate, or incorrect). Second, we 

analyzed whether the students used one or multiple glide blocks 

to complete a single leg of the trip. In our system, a single glide 

block’s default distance was 50 steps, corresponding to one grid 

block. To move three grid blocks, one could place three glide 

blocks in succession, removing the need to perform mathematical 

calculations. The results from this analysis are presented in Table 

2. In Table 2, the green and orange indicate contrasting 

performance for accurate calculations using one block. Yellow 

boxes indicate the two alternate approaches: accurate calculations 

using multiple blocks and approximate calculations using a single 

block. 

Looking at the results for accurate calculations using 1 block for 

each task, we can see that 6th graders were consistently more 

accurate and efficient than 4th and 5th graders (73% vs 56%, 86% 

vs 67% and 68%, and 70% vs 46% and 56%). These differences 

are highlighted in green (6th graders) and orange (4th and 5th 

graders). An interesting phenomenon occurs between 4th and 5th 

grade students. In Task 2, 30% of 4th grade students solved it by 

placing the correct number of consecutive glide blocks, whereas 

very few 5th grade students solved it this way. Instead, 5th graders 

appear to have attempted to calculate the accurate distance and 

this became became a barrier to completion. By Task 4, 4th grade 

students performed similarly to 5th grade students. In fact, 

comparing Task 4 to Task 2, more 5th grade students used 

consecutive blocks, and fewer 4th grade students did. 

 

Table 2: Analysis of three tasks of Breaking Down Actions.  

 

 

Statistically significant differences were found only for Task 1. 

Fourth and fifth graders were significantly different for accurate 

completion using multiple blocks, F(2, 142) = .262, p= .02. In 

addition, 4th graders significantly differed from 5th graders for 

incorrect responses using 1 block, F(2, 142) = -.08, p = .04. 

Finally, 5th graders also significantly differed from 6th graders for 

incorrect completion using 1 block, F(2, 142) = .08, p = .03. 

With this data we cannot say definitively what caused this 

discrepancy, but we speculate that this indicates that both 4th and 

5th grade students struggled with the mathematical calculation for 

distance. They solved the problem in two ways–4th grade students 

were more likely to use the simpler method of using multiple 

glide blocks, whereas 5th grade students attempted the 

calculations and were incorrect more often.  

These results indicate that 2-d navigation in increments of 50 are 

accessible to 4th, 5th, and 6th grade students, but the solution 

strategy may be different for 6th grade students vs. 4th and 5th 

grade students. For 4th and 5th grade students, it may be beneficial 

to first practice with 2-d navigation with grid blocks of 1 step 

before moving to 50-step grid blocks. 

Finding 4: 4th grade students struggle to initialize multiple 

characteristics of a sprite. 

In one particular Initialization task, students were asked to 

initialize two attributes of a cat: size and position. LaPlaya 

includes a separate initialization event (denoted with a blue square 

displayed alongside the traditional green flag) that the runtime 

environment enforces use of by disabling the green flag button 

until it is pressed. Students had already seen examples of 

initialization scripts as well as been asked to initialize position in 

previous tasks. This task introduced the need to initialize size. We 

can see in Figure 4 that most students initialized position properly 

(milestone 2). However, the number of students that properly 

initialized size (milestone 3) was lower, with 4th grade students 

showing the most significant drop. This means that more than 

20% of 4th graders did not make any progress towards initializing 

a second characteristic of the sprite after correctly initializing a 

first feature, indicating they did not to apply their knowledge of 

initializing position and rotation to correctly define a starting 

state. This finding suggests that while initialization is appropriate 

for students as early as fourth grade, more complex initialization 

sequences that require coordination of multiple attributes or states 

might be more suitable for older students. 
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Figure 4: Percentage of students in each grade who reached 

milestones for the third Initialization task.  

 Culminating Projects 4.3
All students were given several programming sessions to 

complete a summative project. We analyzed 135 projects in terms 

of the total number of blocks, number of unique blocks used, 

median script length, and number of unique block categories used. 

The purpose of this analysis was to understand the scale of the 

projects (total blocks and script length) and diversity (unique 

blocks and unique categories) of computer science concepts 

incorporated by the learners across the three grades.  

 
Figure 5: Number of block categories used in final projects. 

Finding 5: There was little difference between grades in terms of 

total blocks used, median script length, and total unique blocks 

used. 

In general, the projects were relatively simple. At least 20% of 

students in all three grades used no more than 9 blocks total and 4 

unique blocks, while half of the students had median script 

lengths of less than 3. All three grades showed similar behavior, 

with only small differences, with the exception of diversity of 

categories, which we discuss below. 

Finding 6: 6th grade students tended to use more categories (3), 

and the variance in the number of categories shrank as students 

aged. 

Figure 5 shows the average number of categories used by 

students. This graph illustrates that while the average numbers are 

close, the variance decreases as students’ grade increases. Further 

analysis revealed that 6th grade students used blocks from 3 

unique categories more often than younger students: 84% of 6th 

graders versus 75% and 73% of 5th and 4th graders, respectively. 

This indicates that even if students, on average, perform similarly, 

perhaps the minimum standards for students at younger ages 

should be lower 

 

Figure 6: Percentage of students in each grade who used 

blocks from each category. 

 

Finding 7: Students were most likely to use blocks from the 

“Events” category, followed by “Looks”, “Motion” and then 

“Control.” 

We further analyzed final projects to find out which categories of 

blocks students used. Figure 6 shows the most commonly used 

category contained the Event blocks. This is not surprising given 

that an Event block is required in order for a script to be run. The 

most common Event block was the blue square block used for 

initialization. Thus, our requirement that an initialization event be 

pressed before the green flag, and the corresponding curriculum, 

likely succeeded in encouraging students to use this event. Other 

Event blocks were used fairly evenly. The second most common 

category was Looks, with say blocks (93 of the 123 final 

projects) dominating the block use, followed by show/hide 

(78/76) and switch costume (59). The third most common 

category was motion, where blocks that define movement in the 

X/Y coordinates were most common (83), followed by glide in 

direction (51) and glide to coordinates (30). Finally, 

among projects that used control blocks, the wait block was most 

popular (78), with only a few using loops (which were not taught 

explicitly in Module 1). In fact, more students used wait than 

switch costume (the only use taught in our curriculum) 

indicating that students transferred their knowledge of wait to 

other blocks.  

Overall, this suggests that specific blocks in the Looks category 

are simpler for students than Motion blocks. Only for 6th grade 

students was the use of Motion blocks similar to that of Looks. 

This could be related to familiarity with the coordinate plane and 

better performance on the 2-d navigation puzzles, though it is 

unknown whether or not the relationship is causal. In addition, the 

idea of initialization is accessible, but, as we saw in Section 4.2.2, 

the details are challenging to get correct. 

5. DISCUSSION 
This work provides several insights that can be applied to activity 

development in upper elementary school grades. First, sequence 

and simple events are very accessible to young students. This 

finding reinforces design decisions made by other environments 

designed for younger learners, such as Logo and Scratch Jr. and 
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adds empirical evidence towards the design of curricula for 

elementary students focusing on movement-based activities (or 

“turtle graphics” activities in Logo parlance). 

Second, activities involving precise mathematical calculations can 

result in undesirable difficulty and potentially be a barrier for 

some students toward engaging with the underlying computer 

science concepts. In this work, we found that while all students 

were able to give navigational commands to their sprite, when 

students needed to use precise mathematical calculations, younger 

learners performed worse than older learners. Our analysis 

showed the difference was attributed to mathematical aspects of 

the task rather than difficulty with the concept. The important take 

away from this finding for curriculum designers is to try to 

minimize the external mathematics required for activities as it 

may introduce an unintended barrier to the desirable computer 

science content of the lesson. 

A third discussion point from this study is related to our 

investigation of initialization. This work reveals a developmental 

difference in terms of initializing a single attribute of an object 

and initializing multiple attributes. One might assume that 

initialization is an atomic idea that a student does or does not 

understand. However, this work shows there to be more to the 

concept of initialization of sprites for younger learners. The 

implications of this are twofold. First, when teaching initialization 

or designing initialization activities, it is important to design in a 

trajectory from simple to more complex tasks so students better 

understand the concept of initialization. Second, and more 

importantly, this shows the need to carefully analyze all aspects of 

introductory computer science instruction and not take for granted 

any part of the act of programming. It is easy for an expert 

programmer, or even just a casual programmer, to think of 

initialization as an atomic unit that students either do or do not 

understand. We suspect that there are other aspects of 

programming that share this characteristic and plan on further 

investigating them as future work. 

Finally, this work is further evidence of the existence of 

developmentally appropriate computer science instruction and 

shows that there are concepts more and less suitable for students 

across grades 4, 5, and 6. In conducting this work, we can begin to 

tease apart differences in these early stages of computational 

learning and use them to inform age-appropriate instruction. At 

the same time, these findings provide clues for the development of 

a larger K-6 computer science trajectory, another avenue of future 

investigation we intend on pursue to more fully map out what 

effective computer science instruction might look like in upper 

elementary school. 

6. CONCLUSION 
This paper presented detailed analysis on how students progressed 

through an upper-elementary computing curriculum. We 

identified several insights, applied both within and across 

concepts that can guide development of effective K-6 computer 

science instruction. It is through studies such as these that we can 

gain knowledge necessary to create curricula aimed at a broad set 

of students’ developmental and academic levels, as well as the 

ability to provide differentiation and accommodation for 

individual students. 
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