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Abstract The ability to express ideas in a computationally 
meaningful way is becoming increasingly important in our 
technological world. In response to the growing importance of 
computational literacy skills, new intuitive and accessible 
programming environments are being designed. This paper presents 
a framework for classifying the ways that block-based introductory 
programming environments support novices. We identify four distinct 
roles that these graphical languages play in the activity of 
programming: (1) serving as a means for expressing ideas to the 
computer, (2) providing a record of previously articulated intentions, 
(3) acting as a source of ideas for construction, and (4) mediating the 
meaning-making process. Using data from a study of novices 
programming with a custom designed block-based language, we 
provide examples of each role along with a discussion of the design 
implications of these findings. In doing so, we contribute to our 
understanding of the relationship between the design of programming 
representations and their ability to support computational literacy. 
The paper concludes with a discussion of the potential for this 
framework beyond block-based environments to programming 
languages more broadly.  
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1. Introduction 
The skills and practices associated with computational 

thinking are critically important for learners in order to be full 
participants in our increasingly technological world [1–7]. 
Central to computational thinking is the ability to encode ideas 
into representations that can be executed by a computational 
device. Through mastering these skills, computational thinking 
can be infrastructural to learning across diverse domains and 
open pathways to new forms of expression. In this way, we 
align computational thinking with diSessa’s [1] notion of 
computational literacy, which envisions a citizenry that are 
both consumers and producers of computational artifacts.  

A key component for both comprehension and generation of 
computational artifacts is the representational infrastructure 
that mediates these processes. This historically has taken the 
form of text-based programming languages, but can also 
include visual programming languages or graphical interfaces 
that support the assembly of instructions [8], or applications 
designed to interpret drawings or glyphs created by the user 
[9]. Block-based programming languages in particular are 

becoming increasingly common in introductory programming 
contexts [10]. 

Each of these representational systems achieves the same 
ends (defining instructions for a computer to follow), but does 
so through very different means that directly influence the 
process. The characteristics of a representational system, 
including the visual presentation, syntax, relation to other 
representational systems, and expressive power, have a direct 
influence on how one goes about accomplishing a task and the 
resulting understanding that develops from that experience [1, 
11, 12]. With the emergence of new forms of end-user 
programming languages and human-centered interfaces, 
providing a framework for categorizing the ways that 
representational tools facilitate these ends is important as it 
provides structure to understand the various roles that features 
of introductory programming languages play. Further, it can be 
used to improve the current generation of programming tools 
and inform the design of the next generation of expressive 
computational media. 

In this paper, we present a framework for categorizing the 
various ways novices use block-based programming languages 
to express their ideas in a computational medium. Through 
analyzing novices playing a program-to-play constructionist 
video game, we identify four distinct usages of the 
programming language: (1) serving as a means for expressing 
ideas to the computer, (2) providing a record of previously 
articulated intentions, (3) acting as a source of ideas for 
construction, and (4) mediating the meaning-making process. 
This paper situates these roles in a larger framework and 
presents vignettes from a study to demonstrate what each use 
looks like when enacted. The contribution of this work is the 
development an empirically grounded framework that can be 
used to structure the study of block-based programing 
languages, advance our understanding of the learning that takes 
place through their use, and inform the design of future 
programming tools and expressive computational technologies. 
In the conclusion of the paper, we expand our focus to include 
non-block-based programming languages and discuss the 
potential broader applicability of the presented framework. 
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2. Orienting Framework 
The constitutive role of language and tools on cognition has 

long been a topic of research. A central theme of Vygotsky’s 
sociocultural theory of mind was the claim that mental 
functioning is mediated by tools and signs. “The sign acts as an 
instrument of psychological activity in a manner analogous to 
the role of tool in labor” [13, p. 52]. diSessa [1] calls this 
Material Intelligence, saying “we can instill some aspects of 
our thinking in stable, reproducible, manipulable, and 
transportable physical form” (p. 6). Work looking at the 
relationship between signs (or more broadly representations) 
and cognition has delineated the particularities of how 
representations are bound up with knowledge, learning, tasks 
and uses [1, 11, 12, 14-16]. Similar work focusing on the 
design of programming languages has shown how various 
features of the representation, be they visual [17, 18], semantic 
[19], or syntactic [20], all influence the ease of use of the 
resulting language. 

In their work on the development of mathematical meaning 
in computational settings, Noss & Hoyles [21] developed the 
theoretical construct of webbing to capture the nature of the 
learning process in rich computational settings. Webbing 
describes a “structure that learners can draw upon and 
reconstruct for support – in ways that they choose as 
appropriate for their struggle to construct meaning” [21, p. 
108]. The construct is intended to capture the full, 
interconnected set of resources available to the learner as they 
progress through their meaning-making endeavor and respects 
the fact that each learner is unique and will leverage different 
features of the language in different ways. Webbing was 
proposed as a way to describe how understanding emerges that 
is consistent with the situated nature of the learning task and 
acknowledges the central role of the tools used in the process. 
This construct is particularly valuable when analyzing the role 
of block-based programming languages in introductory 
learning environments as it provides a way to makes sense of 
the full set of features of the language (semantics of keywords, 
visual display, syntax constraints, etc.) and identify the 
differing roles they play during the learning process and across 
learners [22]. Likewise, it does not demand that each 
component of an environment be considered in isolation, a 
challenge often encountered when trying to study block-based 
programming environments [23]. Bringing this analytic lens to 
the study of block-based programming environments reveals 
that the language primitives and their presentation play a 
variety of roles in helping novices achieve their goals.  

In this work, we bring a representation-as-mediational-means 
lens to block-based programming languages. As such, the unit 
of analysis for this work is not the individual blocks, nor the 
full library of blocks provided by a block-based environment, 
but instead, the unit of analysis is the block-based environment 
in conjunction with the user interacting with it. This is 
consistent with the theoretical construct of webbing and 
recognizes the central role of the learner in the learning 
experience. Thus, the framework and the examples provided, 

treat user and tool as co-constituents in the ongoing learning 
process. This lens brings specific features of the language 
(sematic and syntactic) into focus alongside the environment in 
which it is situated (programming activity and interface) and 
the unique experiences and prior knowledge of the learner. 

Block-based programming environments leverage a pro-
gramming-primitive-as-puzzle-piece metaphor that provides 
visual cues to the user about how and where commands can be 
used as their means of constraining program composition. 
Programming in these environments takes the form of dragging 
blocks into a composition area and snapping them together to 
form scripts. If two blocks cannot be joined to form a valid 
syntactic statement, the environment prevents them from 
snapping together, thus helping to alleviate difficulties with 
syntax while retaining the practice of assembling programs 
instruction-by-instruction. Block-based languages, unlike more 
conventional text-based languages make the atomic unit of 
composition a node in the abstract syntax tree of the program, 
as opposed to a smaller element (i.e. a character) or a larger 
element (like a fully formed functional unit). In making the 
abstract syntax tree node the constructible unit, the building 
block of the representation shifts, giving the user a different set 
of objects-to-think-with [4], and thus providing a different set 
of supports and enabling different types of uses relative to text-
based alternatives. Understanding and giving structure to the 
new roles and affordances of the block-based modality is the 
central objective of this paper.  

In formulating our framework for categorizing the ways that 
novices use block-based languages, we looked to the literature 
and found two distinct dimensions along which mediational 
roles differ that could lead to a productive classification that fit 
our emerging findings. Kaput [24], in his work on the roles of 
symbols in mathematics, identifies two complementary uses for 
the material form of mathematical expressions: “the support of 
internal cognitive processing and communication between 
persons” (p. 160). We categorize this difference as internal 
(cognitive) vs. external (communicative); these categories 
provide the first dimension of our framework. The second 
dimension along which programming representations can differ 
comes from the computer science education literature, where a 
distinction is made between the act of generating a program 
and that of comprehending one [25]. This difference in purpose 
(generative vs. interpretive) forms the second dimension of our 
framework, producing a 2x2 matrix (Table 1). 

Table 1. The 2x2 matrix situating the four roles Block-based 
programming language primitives play in supporting novices. 

 Generative Interpretive 
External 

(Communicative) Means for expression Record of previously 
expressed intentions 

Internal 
(Cognitive) 

Source of Ideas Resource used in 
meaning-making 

 
The four quadrants of this framework delineate the four roles 

we identify in our analysis. The External-Generative role is the 
one most closely aligned with the conventional view of the 
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purpose of programming languages: that of an expressive 
medium with which to encode ideas in a computationally 
executable form. In this role, the user conceives of a general 
idea or specific intention, and then uses the programming 
language to mediate the expression of that idea into a form the 
computer can carry out. The second identified use of the block-
based representation is serving in an External-Interpretive role. 
In this capacity, the modality acts as an external record that 
preserves previous intentions, serving as the memory in the 
distributed cognitive system of the programming environment 
[26]. Unlike the first role, which defines the human-to-
computer interaction, this role captures asynchronous human-
to-human communication in the form of one user reading the 
instructions previous written by others. A third role that 
language primitives can play is acting as a source of ideas for 
constructions, which defines the Internal-Generative quadrant 
of our classification. In this role, the representational system is 
not mediating the expression of an idea, but instead, the 
language itself acts as a resource the user can leverage to form 
new ideas. Block-based languages are particularly well suited 
for this role given the way they are presented, as will be shown 
later in the paper. The final role of this orienting framework is 
Internal-Interpretive, which manifests itself as novices using 
the language as a cognitive resource to make sense of observed 
behaviors. In this role, the author uses the programming 
commands as a mechanism to help decipher and interpret 
observed behaviors of the program, serving as objects-to-think-
with [4] in facilitating the meaning-making process.  

While we see these four roles as distinct, in practice, they are 
often used in conjunction or quick succession as part of a single 
effort. We see this ontology as productive in that each 
dimension suggests a pattern of use for novices and provides a 
lens for studying the ways the representational system is being 
appropriated by the learner. Further, the application of this 
framework can be used to inform the evaluation and design of 
programming languages. This framework is not meant to be 
definitive, but instead is one possible way to categorize novice 
interactions with programming environments.  

Finally, the framework was derived with block-based 
programming environments in mind, but may provide insights 
beyond block-based contexts. This aspect of the framework 
will be revisited at the conclusion of the paper. 

3. Methods 
To develop and validate this framework, we conducted a 

study asking programming novices to play RoboBuilder [27], 
a constructionist, program-to-play game [28] in which writing 
programs is the main mechanism of gameplay (Fig. 1). The 
central challenge of RoboBuilder is to design and implement 
strategies to make an on-screen robot defeat a series of 
progressively more challenging opponents. A player’s on-
screen robot takes the form of a small tank, which competes in 
one-on-one battles against opponent robots equipped with the 
same set of capabilities. Unlike a conventional video game 
where players control their avatars in real time, in 
RoboBuilder, players must program their robots before the 

battle begins. To facilitate this interaction, RoboBuilder has 
two distinct components: a graphical programming 
environment where players define their robots’ strategy, and 
an animated battleground where their robots compete (Fig. 1). 
To implement their strategy, players use a domain specific, 
block-based programming language. The language includes 
movement blocks (ex: forward, turn gun right, 
fire) to control the robot’s motion, event blocks (ex: When 
I See a Robot, When I Get Hit) to control when 
instructions will execute, and control blocks (ex: Repeat, 
If/Then) that can be used to introduce logic into the robot’s 
strategy. RoboBuilder uses an event-based programming 
model where in-game events are linked to the language’s 
event blocks, so that when a certain action occurs (like the 
robot hitting the wall), flow of control of the program is 
passed to the associated event (When I hit a wall). 

 

 
Figure 1.  RoboBuilder’s two screens. The battle screen (top) where 
players watch their robots compete and the construction space 
(bottom) where players implement their robot strategies. 

The data presented in this paper are from 16 RoboBuilder 
play sessions conducted with programming novices ranging 
from middle school to graduate school. The university-aged 
participants were students at a Midwestern American 
university. Two of the younger participants were recruited 
through university connections, while the remainder of the 
participants were recruited through a community center in a 
Midwestern city that serves a predominantly African-
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American, low SES population. Each participant played 
RoboBuilder for at least 40 minutes, resulting in a total of 
roughly 18 hours of interview and gameplay footage and over 
200 robot strategies created.  

The data were collected through one-on-one interviews in 
which a researcher sat alongside the participant as he or she 
played the game. At the outset of a session, the interviewer 
introduced the participant to RoboBuilder, explaining the game 
objective and the components of the game environment. The 
participant was then given a chance to ask questions before the 
actual game play procedure began. The gameplay portion of 
the session proceeded in an iterative, three-phase protocol. 
First, players are asked to verbally explain their intended 
strategies to the interviewer in conversation. Next, they are 
given the chance to implement their proposed strategy using 
the block-based language. Finally, participants click the ‘Go’ 
button, and then watch their robot compete, with the 
interviewer asking them to describe what they observe and 
whether or not it matches their expectations. At the conclusion 
of the battle, the next iteration of the protocol would begin with 
the interviewer asking participants what alterations they plan 
on making to their strategy to progress in the game. This three-
phase cycle was repeated for the duration of the session. 
Throughout the session, the researcher’s role was mainly to 
move the iterations forward by using various prompts to get 
participants to verbalize their thought process. The researcher 
also answered clarifying and technical questions when they 
arose. Each RoboBuilder session was recorded using both 
screen-capture and video-capture software.  

4. Four Roles of Block-based Primitives 
In this section, we provide vignettes and a discussion for 

each of the four roles of the framework. These vignettes are 
intended to demonstrate interactions for each quadrant of the 
framework and act as illuminating examples that can be drawn 
on to inform our thinking about how block-based languages 
support novices.  

4.1. External-Generative: Primitives as an Means for 
Expression 

In RoboBuilder, language primitives serving as a means 
for expression can be seen when a participant uses the 
language to implement an idea that he or she has conceived of, 
but not yet expressed in code. In other words, they are using 
the language to encode their intention so that the computer can 
execute them. An example of the block-based programming 
language playing this role involves Morris 1 , a university 
student with no prior programming experience. At the outset 
of his interview, when asked what his strategy would be, 
Morris responded:  

So, my master plan is to, like, be continuously 
moving, so it's harder to hit. If I get hit, kind of change the 
path so it's different than what you might be expecting 

                                                             
1 All names are pseudonyms. 

however the sequence is running, and then, during that 
path, adjust to what the opponent is doing to hit them.  

He then proceeded with the construction of his robot 
strategy. After six minutes of working, he had produced his 
first program; the first three events of which are displayed in 
Fig. 2. Comparing the strategies Morris articulated in his initial 
remarks to the program he constructed, we can see the blocks 
taking on an expressive role, mediating and enabling the 
computational implementation of his ideas. His “master plan” 
included three distinct ideas, each of which can be seen in his 
resulting program. His first strategy: “be continuously moving, 
so it's harder to hit” is achieved with the Run method of his 
program (left side of Fig. 2). This series of instructions will 
result in his robot remaining in constant motion. Morris’ 
second verbalized tactic: “if I get hit, kind of change the path 
so it's different”, can be found encoded in his When I get Hit 
event block (top right of Fig. 2). These two instructions will 
execute when his robot gets hit and will cause it to change its 
heading and move forward out of the current line of fire. His 
final idea: “adjust to what the opponent is doing to hit them” is 
captured by his When I See a Robot command (bottom right 
of Fig. 2), which makes his robot adjust its gun towards the 
location of his enemy and fire at it. 

 
Figure 2.  The first three events of Morris’ initial RoboBuilder 
program. 

From the first five minutes of Morris’ RoboBuilder session 
we can see how the language primitives can serve as a means 
for expression. A second demonstration of the language 
serving in this capacity occurs roughly twenty minutes into 
Daniel’s RoboBuilder session. Daniel is a tenth-grade student 
with no prior programming experience. After seeing his first 
two robot strategies struggle against the level-one opponent, 
Daniel decided he needed a new approach. He realized he was 
having difficulty locating his opponent; this prompted him to 
propose the following strategy: “since they change the 
position of the robot every time, I won’t know where it’s at. 
So, I just want to make [my robot], like, spin in a circle and 
shoot.” Having verbalized this new idea, Daniel proceeded to 
construct the strategy shown in Fig. 3. 

 
Figure 3.  Daniel’s implementation of his “spin in a circle and shoot” 
strategy. 

The result of these commands is that his robot continuously 
rotates in a circle, shooting whenever the opponent comes into 
view. After trying out his new strategy, the interviewer asked 
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Daniel to describe what his robot was doing, Daniel 
responded: “it's spinning in a full circle, and when he sees the 
robot he's shooting.” In other words, the robot is carrying out 
the strategy that Daniel had just vocalized. Here again we see 
the language primitives serving as a means of expression 
enabling the computer to carry out the intentions of the user.  

These two vignettes were chosen because they provide clear 
demonstrations of the language primitives being used in the 
expressive capacity and serve as examples of the first 
identified role that language primitives can play in a 
programming activity: that of a mediating role between an 
idea generated by a user and a computationally executable 
reification of that same idea. This is a demonstration of 
language primitives being used in an External-Generative role, 
where the end result is a computationally executable form of 
the idea. It is important to mention that this idea-to-
implementation process was not always so direct or easy. 
Often, over the course of our interviews, players either 
struggled to encode their stated intentions, or composed 
strategies that did not match their expressed intentions, at 
times relying on other features of block-based programming 
languages that will be discussed later in this analysis.  

External-Generative: Discussion 
The ability for a programming language to enable users to 

express ideas in such a way as to be executable by a computer 
is an essential feature of the representation, as, by definition, if 
it is not possible to write a program using the representational 
system, it can hardly be considered a programming language. 
That being said, it is certainly not the sole feature, and, 
arguably, not even the most important, as [29] famously says, 
“programs must be written for people to read and only 
incidentally for machines to execute”. Programs, and 
programming languages, serving as a means of expression has 
long been argued as a pedagogical strength of the form [29]. 
This role is akin to the ability for the alphabet to be used to 
express ideas in the written form, the difference being in the 
case of programming languages, the audience is not solely 
another human, but also a computer.  

In this way, programming languages serve as a bridge 
across what Hutchins et al. [30] call the gulf of execution, 
which describes the distance between a user’s goals and the 
expression of those goals using the representations understood 
(and often defined by) the system. The design of the 
representational system can facilitate this bridging role “by 
making the commands and mechanisms of the system match 
the thoughts and goals of the user” (p. 318). In the case of 
RoboBuilder, to support programming novices in expressing 
their ideas with the provided representational system, the 
language primitives were designed to carry semantic meaning 
within the context of the game in such a way as to enable 
players to understand how they could be used. This can be 
seen in the close mapping between the verbal language of the 
player and the labels on the blocks, for example, Morris said: 
“If I get hit” and then used the When I get hit block.  

In the first example, Morris relied on the natural language 
label on each block to select appropriate commands, the 

closeness of mapping to his intentions, and the shape of the 
blocks to facilitate his assembling them into a script. Daniel, 
along with these features, also used feedback from the 
environment in the form of seeing his opponent reposition 
itself, to inform the strategy he devised. All of these aspects 
have been identified as useful features of the block-based 
modality for learners [31]. These different supports designed 
into the language and environment contribute to the webbing 
upon which learners draw in order to support this first use of 
block-based languages. The two examples shown above 
highlight how not all users draw upon the resources available 
in a learning environment in the same way. In this way, block-
based tools and their suite of scaffolds support an 
epistemological pluralism [32]. 

4.2. External-Interpretive: Primitives as a Record of 
Previously Expressed Intentions 

The second role block-based languages can play is that of a 
record of previously expressed intentions, serving in an 
External-Interpretive capacity. After a user writes a program 
(i.e. uses the language in the previously discussed External-
Expressive capacity), the language remains a visible, legible 
artifact that can later be referred back to and read either by the 
original author or other interested parties. Used in this 
capacity, the language serves as a record of previously 
expressed instructions, or as a resource to refer to for mapping 
outcomes onto expressed instructions. An example of this 
usage can be seen toward the end of Anne’s RoboBuilder 
interview. Anne, a third-year undergraduate student, had just 
finished implementing the seventh iteration of her robot, 
during which she introduced the When I get Hit event to her 
strategy in hopes of addressing a weakness she had identified: 
if her robot got hit, it did not move; instead it stayed in place, 
making it easy for her opponent to hit her again. To address 
this issue, Anne decided to have her robot move to a new 
location if it got hit. Fig. 4 shows the two events from Anne’s 
program that are relevant for this episode. 

 

 
Figure 4.  The two events of interest from Anne’s robot strategy. 

After starting a battle with this new behavior in place, her 
robot was behaving as expected until it was hit a few times in 
succession and backed into a wall. Her robot then remained 
pinned to the wall, motionless, getting hit until the match 
ended. Upon seeing this, Anne got a confused look on her face 
and said aloud: “Wait, what happened?” Not being able to 
make sense of what she was seeing based on what she 
remembered programming, Anne, speaking to herself, asked: 
“Wait, but when I run into a wall, what’d I put?” She then 
brought the programming window to the forefront and read 
through her instructions, quickly realizing the bug she had 
introduced. When her robot backed into a wall, her When I 
Run into the Wall logic would instruct her robot to back 
up an additional 300 steps; in doing so it hit the wall again, 
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thus producing an endless loop. To debug her strategy, Anne 
used the programming language in an External-Interpretive 
capacity; she read through the instructions using them as a 
record of her previously articulated strategy to identify the bug 
in her program.  

External-Interpretive: Discussion 
This vignette provides an example of the second role that 

programming language primitives can play during a 
programming task — that of a preserved record of the 
instructions followed by the computer that can later be 
referred to and analyzed. This use falls in the external 
dimension of our ontology as it relies on the communicative 
aspect of the blocks, but unlike the previous vignette, where 
the language was used in a generative capacity, here, Anne 
used the language to accomplish an interpretive goal. With 
computational representational systems, the primary audience 
for a constructed artifact is usually the computer on which it is 
going to be run, but there is also a secondary audience: any 
human tasked with interpreting, modifying, or extended the 
program. Because programs exist as sets of instructions that 
produce dynamic outcomes, it is essential for the language to 
support being read at a later time, either by the initial author or 
by others. Here again it is appropriate to cite [29] and their 
claim that “programs must be written for people to read and 
only incidentally for machines to execute”. While it is being 
run, the written program serves as a blueprint, containing an 
explanation for the resulting behavior.  

In this vignette, without referring back to her program, Anne 
was unable to make sense of what her robot was doing. To 
help her interpret its behavior, she re-read the program she had 
authored; using the language in a mediating role to provide 
guidance on what was happening. In this case, it was the 
original author who was reading her own code, but it is very 
common for programs written by one person to be read by 
others so they can understand, and ultimately use, or extend 
the program. In this way, programming languages serve as a 
means to mediate the expression of ideas as well as serve as a 
record of the ideas already expressed. Through the lens of 
webbing, the permanence of the constructed artifact, the 
previously mentioned closeness-of-mapping of the commands, 
and the visual execution of the program were all designed 
aspects of the environment that helped Anne debug her 
program. One goal for this framework is that it be useful for 
evaluating and improving programming environments.  

In evaluating block-based programming’s ability to be used 
in an External-Interpretive capacity, we see one potential 
direction for future improvement. Prior work has found that 
the block-based representation poorly supports longer 
programs [31]; as program length and complexity grow, the 
block-based modality can make the program more difficult to 
follow. In other words, block-based languages may struggle to 
support the External-Interpretative aspect of programming 
languages. In response to this drawback, new block-based 
tools are being designed to address this shortcoming by 
blending features of block-based and text-based modalities 
[33, 34] or by allowing users to move back-and-forth between 
modalities [35, 36]. 

4.3. Internal-Generative: Primitives as a Source of 
Ideas  

When trying to develop an approach for accomplishing a 
desired computational goal, the language itself can be used as 
a resource. By internalizing the possibilities provided by the 
language, the author can use the language itself to bootstrap 
idea generation for potential solutions. This is one possible use 
of a programming language that falls in the Internal-
Generative dimension of our framework. Block-based 
languages are especially well suited for this use as the visual 
arrangement and pre-defined categorization of the blocks 
make browsing and finding blocks easy. Our example of this 
usage comes from the start of the RoboBuilder interview 
conducted with Beth, an undergraduate student studying vocal 
performance. This was Beth’s response to the initial question 
of how she was going to defeat her opponent: 

Well, I...I don't know, it seems to make sense to have, to 
determine what would happen in every case, so I think I'll 
use these dark red buttons and try and figure out what I 
want to have happen. 

Beth then proceeded to go through each of the Game Events 
blocks (the “dark red buttons” she refers to in the quote), 
using them as a roadmap to develop her strategy. Fig. 5 shows 
Beth’s first completed robot strategy alongside the Robot 
Events drawer that lists the available Game Event blocks.  

  
Figure 5.  On the left, is the Robot Events drawer; on the right is 
Beth’s first implemented Robot. 

What is especially interesting about Beth’s first robot is that 
not only did she implement every event, but the order of the 
events in her program perfectly matches the presentation in the 
Robot Events drawer. The video from her interview shows 
Beth starting at the top of the events drawer and systematically 
working her way through the set of available blocks. This 
suggests that she did not have a clear, unified strategy when 
she began to program her robot. Instead, Beth built her 
program event-by-event, using the commands provided by the 
language to bootstrap the generation of a valid robot strategy. 
In this way, the language primitives supported Beth in 
conceptualizing possible actions that her robot could carry out. 
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Internal-Generative: Discussion 
In this vignette, we see RoboBuilder’s language primitives 

playing a distinctly different generative role than we saw in 
the vignettes in the External-Generative section. Whereas with 
Morris and Anne, the emphasis was on the language serving in 
an external and expressive capacity, with Beth, the primitives 
facilitate an internal, cognitive outcome; serving as a source of 
inspiration for generating ideas for her robot strategy. She 
even states her intention to use the language commands in this 
capacity, saying: “I think I’ll use these dark red buttons…and 
try and figure out what I want to have happen.” Consistent 
with diSessa’s [1] idea of “materially-mediated-thinking”, in 
this episode we see Beth having ideas with the medium, as 
opposed encoding her preconceived ideas into the language. 
The language primitives are mediating her thinking about the 
challenge, seeding the ideation process for how to accomplish 
the in-game programming challenge. This use is further 
facilitated by the ease of testing and visualizing the behaviors 
of the blocks. The use of the language in this capacity also 
relates to Wilensky and Papert’s [11] structuration theory 
linking representation and cognition, as the representation 
itself is making certain ideas more accessible. You can 
imagine that if instead of the descriptive blocks the game 
provides, the language was an abstract set of operations with 
labels like operation1 and state2, then Beth would not 
have been able to use it in the way shown above, even if the 
language had the same computational capabilities. Here, the 
language serves in an Internal-Generative role, facilitating the 
generation of a new idea. When designing programming 
languages for novices, recognizing that primitives serve this 
role is important, as this use can help a novice achieve early 
programming successes. To the growing list of features that 
block-based languages include that support learners, we now 
add the organization and visual arrangement of the full set of 
blocks as another element of the webbing learners can draw 
on. 

4.4. Internal-Interpretive: Primitives as a Resource 
Used in Meaning Making  

The final quadrant of the framework describes programming 
languages serving in Internal-Interpretive roles. In this 
capacity, the language is used as a cognitive tool with which to 
interpret and make sense of the computational task at hand. 
Used in this way, the language need not be visible or even 
present, but instead is employed as a cognitive resource 
through which observed behavior can be understood. This 
vignette, also taken from Beth’s RoboBuilder session, occurred 
during her second battle against the level-one opponent. The 
level-one robot’s strategy is to remain motionless until its 
energy drops below 50, at which point it begins to move. At the 
start of the second battle, as Beth was watching the battle, she 
asked the interviewer when the opponent was going to start 
moving. The interviewer responded “It happens at 50”, which 
prompted Beth to say: 

It happens when it reaches 50? OK, so that robot must have 
something built into it when it reaches 50. OH! There we 
go, so that's what the, that's what the other boxes are for, so 

like if you reach a certain health level you can change the 
actions, oh, ok. 

This brief excerpt shows Beth using the language as a tool to 
mediate her understanding of the opponent’s behavior without 
ever seeing the instructions externally represented. Her 
exclamation “OH! There we go,” suggests a moment of 
revelation, when some piece of the puzzle of how her opponent 
was behaving fell into place. She then explains that the “other 
boxes” (referring specifically to the conditional and robot state 
blocks, a fact that became clear later in the interview) can be 
used to create the behavior her opponent is carrying out. The 
key piece of this excerpt is her stating: “if you reach a certain 
health level you can change the actions.” This description 
maps perfectly onto the program that is controlling her 
opponent (shown in Fig. 6), but, importantly, these blocks are 
not visible to Beth, so she was unable to read the instructions, 
like we saw Anne do in the External-Interpretive vignette. 
Instead, she used the blocks as cognitive tools with which to 
interpret the opponent’s behavior and devise a possible 
explanation for how its stationary-then-active strategy was 
achieved.  

 
Figure 6.  The hidden conditional logic inside the level-one opponent. 

Internal-Interpretive: Discussion 
In this fourth role, we see again how the language primitives 

can be used as objects-to-think-with [4] to support the meaning 
making process. This use fits with the diSessa’s [1] Material 
Intelligence, where symbols serve as cognitive tools with 
which to make sense of the world. Likewise, it matches 
Kaput’s [24] discussion of mathematical symbols and their role 
in delineating and providing structure for the mathematical 
activity at hand. What makes computational representational 
systems, and in particular block-based languages, especially 
capable for being used in the Internal-Interpretive capacity is 
their ability to offer a suite of resources, i.e. the webbing of the 
environment, to facilitate meaning making. This includes the 
ability to incorporate visual cues like color and shape that can 
make it easier to categorize how specific primitives can be 
used, and the embedding of existing, familiar symbol systems 
and representational conventions into the language’s design, 
including natural language labels and mathematical symbols. 
This enables the set of primitives to include semantic hints in 
the form of meaning-carrying labels (such as move forward 
and When I hit a wall) that can bootstrap the cognitive 
process of interpreting observed behavior through the language 
itself.  

5. The Challenge of Designing for All Four Roles 
Recognizing the various roles programming primitives play 

has implications for designers of novice programming 
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environments and introductory programming languages. 
Attempting to design for all four quadrants of the 
Internal/External, Generative/Interpretive framework presents 
a challenge to the designer, as some design decisions made to 
support one usage may be at the expense of another. Each role 
suggests a different set of priorities and considerations for how 
the language should be designed and presented. An example 
from RoboBuilder’s language makes this tension more 
concrete. The set of game events provided in RoboBuilder 
(When I See a Robot, When I get hit, etc.) were 
designed to provide conceptual hooks for players to introduce 
behavioral logic and enable them to use the blocks to guide the 
creation of strategies, as we saw in Beth’s first vignette. 
However, by providing a fixed set of events, the language 
constrains how and when logic can be introduced in the game, 
limiting its expressive capabilities in the External-Generative 
capacity. This type of design decision comes down to a 
question of finding the right grain size for the language 
primitives. This challenge was encountered in the design of 
low-threshold computational modeling tools: “It is critical to 
design primitives not so large-scale and inflexible that they 
can only be put together in a few possible ways…On the other 
hand, we must design our primitives so that they are not so 
‘small’ that they are perceived by learners as far removed from 
the objects they want to model” [37, p. 168]. Finding the right 
size primitives is one of the central challenges for designers 
when creating languages for novice programmers. Our 
decision to provide a standard set of events, as opposed to a 
customizable set, is an example of the design trade-offs one 
encounters when designing a representational system that can 
support all of the roles specified by this framework.  

While the analytic framework we put forth in this paper was 
introduced and discussed as a means of understanding block-
based languages, it need not be tied to that modality, as text-
based or other graphical representations share these four 
distinct uses. While we expect the manifestations of the four 
quadrants would differ with other representational systems, we 
expect the framework would still be illuminating and fruitful. 

6. Conclusion 
When creating a new computational language for novices, a 

diverse set of uses should be considered. By providing a 
classification system for the roles block-based programming 
languages take in for novices, and providing examples of each, 
we seek to provide a set of aspects designers should consider 
when creating new computational tools. We also see this 
framework as a useful lens with which to analyze existing 
computational representational systems. Understanding how 
they are used is an important first step in refining existing and 
designing new tools.  

In our use of webbing as a theoretical construct to ground 
the analysis, the findings were necessarily coupled with the 
block-based language under investigation, but it is easy to 
draw connections from this work to conventional text-based 
languages. Text-based programming languages provide the 
same fundamental capabilities as block-based tools, although 
at times the specifics may differ. As such, we believe this 
framework can be useful when applied to conventional text-

based programming languages, but for now, this remains 
future work.  

The creation of accessible, yet powerful, languages is a 
critical challenge we face in laying the infrastructure for the 
computationally literate society championed at the outset of 
this paper. By recognizing the various roles primitives can 
play in supporting novices in computationally expressing 
ideas, we as designers and educators can begin to develop new 
languages and environments that support these different 
usages to scaffold learners. In doing so, we can make progress 
toward this vision of a computationally literate 21st century. 
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