
How Block-based Languages Support Novices
A Framework for Categorizing Block-based Affordances

David Weintrop
UChicago STEM Education

University of Chicago
Chicago, Illinois, USA

dweintrop@uchicago.edu

Uri Wilensky
Center for Connected Learning and

Computer-based Modeling
Learning Sciences and Computer Science

Northwestern University
Evanston, Illinois, USA
uri@northwestern.edu

Abstract The ability to express ideas in a computationally
meaningful way is becoming increasingly important in our
technological world. In response to the growing importance of
computational literacy skills, new intuitive and accessible
programming environments are being designed. This paper presents
a framework for classifying the ways that block-based introductory
programming environments support novices. We identify four distinct
roles that these graphical languages play in the activity of
programming: (1) serving as a means for expressing ideas to the
computer, (2) providing a record of previously articulated intentions,
(3) acting as a source of ideas for construction, and (4) mediating the
meaning-making process. Using data from a study of novices
programming with a custom designed block-based language, we
provide examples of each role along with a discussion of the design
implications of these findings. In doing so, we contribute to our
understanding of the relationship between the design of programming
representations and their ability to support computational literacy.
The paper concludes with a discussion of the potential for this
framework beyond block-based environments to programming
languages more broadly.

Keywords Block-based Programming, Cognition, Design, Learning

1. Introduction
The skills and practices associated with computational

thinking are critically important for learners in order to be full
participants in our increasingly technological world [1–7].
Central to computational thinking is the ability to encode ideas
into representations that can be executed by a computational
device. Through mastering these skills, computational thinking
can be infrastructural to learning across diverse domains and
open pathways to new forms of expression. In this way, we
align computational thinking with diSessa’s [1] notion of
computational literacy, which envisions a citizenry that are
both consumers and producers of computational artifacts.

A key component for both comprehension and generation of
computational artifacts is the representational infrastructure
that mediates these processes. This historically has taken the
form of text-based programming languages, but can also
include visual programming languages or graphical interfaces
that support the assembly of instructions [8], or applications
designed to interpret drawings or glyphs created by the user
[9]. Block-based programming languages in particular are

becoming increasingly common in introductory programming
contexts [10].

Each of these representational systems achieves the same
ends (defining instructions for a computer to follow), but does
so through very different means that directly influence the
process. The characteristics of a representational system,
including the visual presentation, syntax, relation to other
representational systems, and expressive power, have a direct
influence on how one goes about accomplishing a task and the
resulting understanding that develops from that experience [1,
11, 12]. With the emergence of new forms of end-user
programming languages and human-centered interfaces,
providing a framework for categorizing the ways that
representational tools facilitate these ends is important as it
provides structure to understand the various roles that features
of introductory programming languages play. Further, it can be
used to improve the current generation of programming tools
and inform the design of the next generation of expressive
computational media.

In this paper, we present a framework for categorizing the
various ways novices use block-based programming languages
to express their ideas in a computational medium. Through
analyzing novices playing a program-to-play constructionist
video game, we identify four distinct usages of the
programming language: (1) serving as a means for expressing
ideas to the computer, (2) providing a record of previously
articulated intentions, (3) acting as a source of ideas for
construction, and (4) mediating the meaning-making process.
This paper situates these roles in a larger framework and
presents vignettes from a study to demonstrate what each use
looks like when enacted. The contribution of this work is the
development an empirically grounded framework that can be
used to structure the study of block-based programing
languages, advance our understanding of the learning that takes
place through their use, and inform the design of future
programming tools and expressive computational technologies.
In the conclusion of the paper, we expand our focus to include
non-block-based programming languages and discuss the
potential broader applicability of the presented framework.

DOI reference number: 10.18293/VLSS2017-006

92

2. Orienting Framework
The constitutive role of language and tools on cognition has

long been a topic of research. A central theme of Vygotsky’s
sociocultural theory of mind was the claim that mental
functioning is mediated by tools and signs. “The sign acts as an
instrument of psychological activity in a manner analogous to
the role of tool in labor” [13, p. 52]. diSessa [1] calls this
Material Intelligence, saying “we can instill some aspects of
our thinking in stable, reproducible, manipulable, and
transportable physical form” (p. 6). Work looking at the
relationship between signs (or more broadly representations)
and cognition has delineated the particularities of how
representations are bound up with knowledge, learning, tasks
and uses [1, 11, 12, 14-16]. Similar work focusing on the
design of programming languages has shown how various
features of the representation, be they visual [17, 18], semantic
[19], or syntactic [20], all influence the ease of use of the
resulting language.

In their work on the development of mathematical meaning
in computational settings, Noss & Hoyles [21] developed the
theoretical construct of webbing to capture the nature of the
learning process in rich computational settings. Webbing
describes a “structure that learners can draw upon and
reconstruct for support – in ways that they choose as
appropriate for their struggle to construct meaning” [21, p.
108]. The construct is intended to capture the full,
interconnected set of resources available to the learner as they
progress through their meaning-making endeavor and respects
the fact that each learner is unique and will leverage different
features of the language in different ways. Webbing was
proposed as a way to describe how understanding emerges that
is consistent with the situated nature of the learning task and
acknowledges the central role of the tools used in the process.
This construct is particularly valuable when analyzing the role
of block-based programming languages in introductory
learning environments as it provides a way to makes sense of
the full set of features of the language (semantics of keywords,
visual display, syntax constraints, etc.) and identify the
differing roles they play during the learning process and across
learners [22]. Likewise, it does not demand that each
component of an environment be considered in isolation, a
challenge often encountered when trying to study block-based
programming environments [23]. Bringing this analytic lens to
the study of block-based programming environments reveals
that the language primitives and their presentation play a
variety of roles in helping novices achieve their goals.

In this work, we bring a representation-as-mediational-means
lens to block-based programming languages. As such, the unit
of analysis for this work is not the individual blocks, nor the
full library of blocks provided by a block-based environment,
but instead, the unit of analysis is the block-based environment
in conjunction with the user interacting with it. This is
consistent with the theoretical construct of webbing and
recognizes the central role of the learner in the learning
experience. Thus, the framework and the examples provided,

treat user and tool as co-constituents in the ongoing learning
process. This lens brings specific features of the language
(sematic and syntactic) into focus alongside the environment in
which it is situated (programming activity and interface) and
the unique experiences and prior knowledge of the learner.

Block-based programming environments leverage a pro-
gramming-primitive-as-puzzle-piece metaphor that provides
visual cues to the user about how and where commands can be
used as their means of constraining program composition.
Programming in these environments takes the form of dragging
blocks into a composition area and snapping them together to
form scripts. If two blocks cannot be joined to form a valid
syntactic statement, the environment prevents them from
snapping together, thus helping to alleviate difficulties with
syntax while retaining the practice of assembling programs
instruction-by-instruction. Block-based languages, unlike more
conventional text-based languages make the atomic unit of
composition a node in the abstract syntax tree of the program,
as opposed to a smaller element (i.e. a character) or a larger
element (like a fully formed functional unit). In making the
abstract syntax tree node the constructible unit, the building
block of the representation shifts, giving the user a different set
of objects-to-think-with [4], and thus providing a different set
of supports and enabling different types of uses relative to text-
based alternatives. Understanding and giving structure to the
new roles and affordances of the block-based modality is the
central objective of this paper.

In formulating our framework for categorizing the ways that
novices use block-based languages, we looked to the literature
and found two distinct dimensions along which mediational
roles differ that could lead to a productive classification that fit
our emerging findings. Kaput [24], in his work on the roles of
symbols in mathematics, identifies two complementary uses for
the material form of mathematical expressions: “the support of
internal cognitive processing and communication between
persons” (p. 160). We categorize this difference as internal
(cognitive) vs. external (communicative); these categories
provide the first dimension of our framework. The second
dimension along which programming representations can differ
comes from the computer science education literature, where a
distinction is made between the act of generating a program
and that of comprehending one [25]. This difference in purpose
(generative vs. interpretive) forms the second dimension of our
framework, producing a 2x2 matrix (Table 1).

Table 1. The 2x2 matrix situating the four roles Block-based
programming language primitives play in supporting novices.

 Generative Interpretive
External

(Communicative) Means for expression Record of previously
expressed intentions

Internal
(Cognitive)

Source of Ideas Resource used in
meaning-making

The four quadrants of this framework delineate the four roles

we identify in our analysis. The External-Generative role is the
one most closely aligned with the conventional view of the

93

purpose of programming languages: that of an expressive
medium with which to encode ideas in a computationally
executable form. In this role, the user conceives of a general
idea or specific intention, and then uses the programming
language to mediate the expression of that idea into a form the
computer can carry out. The second identified use of the block-
based representation is serving in an External-Interpretive role.
In this capacity, the modality acts as an external record that
preserves previous intentions, serving as the memory in the
distributed cognitive system of the programming environment
[26]. Unlike the first role, which defines the human-to-
computer interaction, this role captures asynchronous human-
to-human communication in the form of one user reading the
instructions previous written by others. A third role that
language primitives can play is acting as a source of ideas for
constructions, which defines the Internal-Generative quadrant
of our classification. In this role, the representational system is
not mediating the expression of an idea, but instead, the
language itself acts as a resource the user can leverage to form
new ideas. Block-based languages are particularly well suited
for this role given the way they are presented, as will be shown
later in the paper. The final role of this orienting framework is
Internal-Interpretive, which manifests itself as novices using
the language as a cognitive resource to make sense of observed
behaviors. In this role, the author uses the programming
commands as a mechanism to help decipher and interpret
observed behaviors of the program, serving as objects-to-think-
with [4] in facilitating the meaning-making process.

While we see these four roles as distinct, in practice, they are
often used in conjunction or quick succession as part of a single
effort. We see this ontology as productive in that each
dimension suggests a pattern of use for novices and provides a
lens for studying the ways the representational system is being
appropriated by the learner. Further, the application of this
framework can be used to inform the evaluation and design of
programming languages. This framework is not meant to be
definitive, but instead is one possible way to categorize novice
interactions with programming environments.

Finally, the framework was derived with block-based
programming environments in mind, but may provide insights
beyond block-based contexts. This aspect of the framework
will be revisited at the conclusion of the paper.

3. Methods
To develop and validate this framework, we conducted a

study asking programming novices to play RoboBuilder [27],
a constructionist, program-to-play game [28] in which writing
programs is the main mechanism of gameplay (Fig. 1). The
central challenge of RoboBuilder is to design and implement
strategies to make an on-screen robot defeat a series of
progressively more challenging opponents. A player’s on-
screen robot takes the form of a small tank, which competes in
one-on-one battles against opponent robots equipped with the
same set of capabilities. Unlike a conventional video game
where players control their avatars in real time, in
RoboBuilder, players must program their robots before the

battle begins. To facilitate this interaction, RoboBuilder has
two distinct components: a graphical programming
environment where players define their robots’ strategy, and
an animated battleground where their robots compete (Fig. 1).
To implement their strategy, players use a domain specific,
block-based programming language. The language includes
movement blocks (ex: forward, turn gun right,
fire) to control the robot’s motion, event blocks (ex: When
I See a Robot, When I Get Hit) to control when
instructions will execute, and control blocks (ex: Repeat,
If/Then) that can be used to introduce logic into the robot’s
strategy. RoboBuilder uses an event-based programming
model where in-game events are linked to the language’s
event blocks, so that when a certain action occurs (like the
robot hitting the wall), flow of control of the program is
passed to the associated event (When I hit a wall).

Figure 1. RoboBuilder’s two screens. The battle screen (top) where
players watch their robots compete and the construction space
(bottom) where players implement their robot strategies.

The data presented in this paper are from 16 RoboBuilder
play sessions conducted with programming novices ranging
from middle school to graduate school. The university-aged
participants were students at a Midwestern American
university. Two of the younger participants were recruited
through university connections, while the remainder of the
participants were recruited through a community center in a
Midwestern city that serves a predominantly African-

94

American, low SES population. Each participant played
RoboBuilder for at least 40 minutes, resulting in a total of
roughly 18 hours of interview and gameplay footage and over
200 robot strategies created.

The data were collected through one-on-one interviews in
which a researcher sat alongside the participant as he or she
played the game. At the outset of a session, the interviewer
introduced the participant to RoboBuilder, explaining the game
objective and the components of the game environment. The
participant was then given a chance to ask questions before the
actual game play procedure began. The gameplay portion of
the session proceeded in an iterative, three-phase protocol.
First, players are asked to verbally explain their intended
strategies to the interviewer in conversation. Next, they are
given the chance to implement their proposed strategy using
the block-based language. Finally, participants click the ‘Go’
button, and then watch their robot compete, with the
interviewer asking them to describe what they observe and
whether or not it matches their expectations. At the conclusion
of the battle, the next iteration of the protocol would begin with
the interviewer asking participants what alterations they plan
on making to their strategy to progress in the game. This three-
phase cycle was repeated for the duration of the session.
Throughout the session, the researcher’s role was mainly to
move the iterations forward by using various prompts to get
participants to verbalize their thought process. The researcher
also answered clarifying and technical questions when they
arose. Each RoboBuilder session was recorded using both
screen-capture and video-capture software.

4. Four Roles of Block-based Primitives
In this section, we provide vignettes and a discussion for

each of the four roles of the framework. These vignettes are
intended to demonstrate interactions for each quadrant of the
framework and act as illuminating examples that can be drawn
on to inform our thinking about how block-based languages
support novices.

4.1. External-Generative: Primitives as an Means for
Expression

In RoboBuilder, language primitives serving as a means
for expression can be seen when a participant uses the
language to implement an idea that he or she has conceived of,
but not yet expressed in code. In other words, they are using
the language to encode their intention so that the computer can
execute them. An example of the block-based programming
language playing this role involves Morris 1 , a university
student with no prior programming experience. At the outset
of his interview, when asked what his strategy would be,
Morris responded:

So, my master plan is to, like, be continuously
moving, so it's harder to hit. If I get hit, kind of change the
path so it's different than what you might be expecting

1 All names are pseudonyms.

however the sequence is running, and then, during that
path, adjust to what the opponent is doing to hit them.

He then proceeded with the construction of his robot
strategy. After six minutes of working, he had produced his
first program; the first three events of which are displayed in
Fig. 2. Comparing the strategies Morris articulated in his initial
remarks to the program he constructed, we can see the blocks
taking on an expressive role, mediating and enabling the
computational implementation of his ideas. His “master plan”
included three distinct ideas, each of which can be seen in his
resulting program. His first strategy: “be continuously moving,
so it's harder to hit” is achieved with the Run method of his
program (left side of Fig. 2). This series of instructions will
result in his robot remaining in constant motion. Morris’
second verbalized tactic: “if I get hit, kind of change the path
so it's different”, can be found encoded in his When I get Hit
event block (top right of Fig. 2). These two instructions will
execute when his robot gets hit and will cause it to change its
heading and move forward out of the current line of fire. His
final idea: “adjust to what the opponent is doing to hit them” is
captured by his When I See a Robot command (bottom right
of Fig. 2), which makes his robot adjust its gun towards the
location of his enemy and fire at it.

Figure 2. The first three events of Morris’ initial RoboBuilder
program.

From the first five minutes of Morris’ RoboBuilder session
we can see how the language primitives can serve as a means
for expression. A second demonstration of the language
serving in this capacity occurs roughly twenty minutes into
Daniel’s RoboBuilder session. Daniel is a tenth-grade student
with no prior programming experience. After seeing his first
two robot strategies struggle against the level-one opponent,
Daniel decided he needed a new approach. He realized he was
having difficulty locating his opponent; this prompted him to
propose the following strategy: “since they change the
position of the robot every time, I won’t know where it’s at.
So, I just want to make [my robot], like, spin in a circle and
shoot.” Having verbalized this new idea, Daniel proceeded to
construct the strategy shown in Fig. 3.

Figure 3. Daniel’s implementation of his “spin in a circle and shoot”
strategy.

The result of these commands is that his robot continuously
rotates in a circle, shooting whenever the opponent comes into
view. After trying out his new strategy, the interviewer asked

95

Daniel to describe what his robot was doing, Daniel
responded: “it's spinning in a full circle, and when he sees the
robot he's shooting.” In other words, the robot is carrying out
the strategy that Daniel had just vocalized. Here again we see
the language primitives serving as a means of expression
enabling the computer to carry out the intentions of the user.

These two vignettes were chosen because they provide clear
demonstrations of the language primitives being used in the
expressive capacity and serve as examples of the first
identified role that language primitives can play in a
programming activity: that of a mediating role between an
idea generated by a user and a computationally executable
reification of that same idea. This is a demonstration of
language primitives being used in an External-Generative role,
where the end result is a computationally executable form of
the idea. It is important to mention that this idea-to-
implementation process was not always so direct or easy.
Often, over the course of our interviews, players either
struggled to encode their stated intentions, or composed
strategies that did not match their expressed intentions, at
times relying on other features of block-based programming
languages that will be discussed later in this analysis.

External-Generative: Discussion
The ability for a programming language to enable users to

express ideas in such a way as to be executable by a computer
is an essential feature of the representation, as, by definition, if
it is not possible to write a program using the representational
system, it can hardly be considered a programming language.
That being said, it is certainly not the sole feature, and,
arguably, not even the most important, as [29] famously says,
“programs must be written for people to read and only
incidentally for machines to execute”. Programs, and
programming languages, serving as a means of expression has
long been argued as a pedagogical strength of the form [29].
This role is akin to the ability for the alphabet to be used to
express ideas in the written form, the difference being in the
case of programming languages, the audience is not solely
another human, but also a computer.

In this way, programming languages serve as a bridge
across what Hutchins et al. [30] call the gulf of execution,
which describes the distance between a user’s goals and the
expression of those goals using the representations understood
(and often defined by) the system. The design of the
representational system can facilitate this bridging role “by
making the commands and mechanisms of the system match
the thoughts and goals of the user” (p. 318). In the case of
RoboBuilder, to support programming novices in expressing
their ideas with the provided representational system, the
language primitives were designed to carry semantic meaning
within the context of the game in such a way as to enable
players to understand how they could be used. This can be
seen in the close mapping between the verbal language of the
player and the labels on the blocks, for example, Morris said:
“If I get hit” and then used the When I get hit block.

In the first example, Morris relied on the natural language
label on each block to select appropriate commands, the

closeness of mapping to his intentions, and the shape of the
blocks to facilitate his assembling them into a script. Daniel,
along with these features, also used feedback from the
environment in the form of seeing his opponent reposition
itself, to inform the strategy he devised. All of these aspects
have been identified as useful features of the block-based
modality for learners [31]. These different supports designed
into the language and environment contribute to the webbing
upon which learners draw in order to support this first use of
block-based languages. The two examples shown above
highlight how not all users draw upon the resources available
in a learning environment in the same way. In this way, block-
based tools and their suite of scaffolds support an
epistemological pluralism [32].

4.2. External-Interpretive: Primitives as a Record of
Previously Expressed Intentions

The second role block-based languages can play is that of a
record of previously expressed intentions, serving in an
External-Interpretive capacity. After a user writes a program
(i.e. uses the language in the previously discussed External-
Expressive capacity), the language remains a visible, legible
artifact that can later be referred back to and read either by the
original author or other interested parties. Used in this
capacity, the language serves as a record of previously
expressed instructions, or as a resource to refer to for mapping
outcomes onto expressed instructions. An example of this
usage can be seen toward the end of Anne’s RoboBuilder
interview. Anne, a third-year undergraduate student, had just
finished implementing the seventh iteration of her robot,
during which she introduced the When I get Hit event to her
strategy in hopes of addressing a weakness she had identified:
if her robot got hit, it did not move; instead it stayed in place,
making it easy for her opponent to hit her again. To address
this issue, Anne decided to have her robot move to a new
location if it got hit. Fig. 4 shows the two events from Anne’s
program that are relevant for this episode.

Figure 4. The two events of interest from Anne’s robot strategy.

After starting a battle with this new behavior in place, her
robot was behaving as expected until it was hit a few times in
succession and backed into a wall. Her robot then remained
pinned to the wall, motionless, getting hit until the match
ended. Upon seeing this, Anne got a confused look on her face
and said aloud: “Wait, what happened?” Not being able to
make sense of what she was seeing based on what she
remembered programming, Anne, speaking to herself, asked:
“Wait, but when I run into a wall, what’d I put?” She then
brought the programming window to the forefront and read
through her instructions, quickly realizing the bug she had
introduced. When her robot backed into a wall, her When I
Run into the Wall logic would instruct her robot to back
up an additional 300 steps; in doing so it hit the wall again,

96

thus producing an endless loop. To debug her strategy, Anne
used the programming language in an External-Interpretive
capacity; she read through the instructions using them as a
record of her previously articulated strategy to identify the bug
in her program.

External-Interpretive: Discussion
This vignette provides an example of the second role that

programming language primitives can play during a
programming task — that of a preserved record of the
instructions followed by the computer that can later be
referred to and analyzed. This use falls in the external
dimension of our ontology as it relies on the communicative
aspect of the blocks, but unlike the previous vignette, where
the language was used in a generative capacity, here, Anne
used the language to accomplish an interpretive goal. With
computational representational systems, the primary audience
for a constructed artifact is usually the computer on which it is
going to be run, but there is also a secondary audience: any
human tasked with interpreting, modifying, or extended the
program. Because programs exist as sets of instructions that
produce dynamic outcomes, it is essential for the language to
support being read at a later time, either by the initial author or
by others. Here again it is appropriate to cite [29] and their
claim that “programs must be written for people to read and
only incidentally for machines to execute”. While it is being
run, the written program serves as a blueprint, containing an
explanation for the resulting behavior.

In this vignette, without referring back to her program, Anne
was unable to make sense of what her robot was doing. To
help her interpret its behavior, she re-read the program she had
authored; using the language in a mediating role to provide
guidance on what was happening. In this case, it was the
original author who was reading her own code, but it is very
common for programs written by one person to be read by
others so they can understand, and ultimately use, or extend
the program. In this way, programming languages serve as a
means to mediate the expression of ideas as well as serve as a
record of the ideas already expressed. Through the lens of
webbing, the permanence of the constructed artifact, the
previously mentioned closeness-of-mapping of the commands,
and the visual execution of the program were all designed
aspects of the environment that helped Anne debug her
program. One goal for this framework is that it be useful for
evaluating and improving programming environments.

In evaluating block-based programming’s ability to be used
in an External-Interpretive capacity, we see one potential
direction for future improvement. Prior work has found that
the block-based representation poorly supports longer
programs [31]; as program length and complexity grow, the
block-based modality can make the program more difficult to
follow. In other words, block-based languages may struggle to
support the External-Interpretative aspect of programming
languages. In response to this drawback, new block-based
tools are being designed to address this shortcoming by
blending features of block-based and text-based modalities
[33, 34] or by allowing users to move back-and-forth between
modalities [35, 36].

4.3. Internal-Generative: Primitives as a Source of
Ideas

When trying to develop an approach for accomplishing a
desired computational goal, the language itself can be used as
a resource. By internalizing the possibilities provided by the
language, the author can use the language itself to bootstrap
idea generation for potential solutions. This is one possible use
of a programming language that falls in the Internal-
Generative dimension of our framework. Block-based
languages are especially well suited for this use as the visual
arrangement and pre-defined categorization of the blocks
make browsing and finding blocks easy. Our example of this
usage comes from the start of the RoboBuilder interview
conducted with Beth, an undergraduate student studying vocal
performance. This was Beth’s response to the initial question
of how she was going to defeat her opponent:

Well, I...I don't know, it seems to make sense to have, to
determine what would happen in every case, so I think I'll
use these dark red buttons and try and figure out what I
want to have happen.

Beth then proceeded to go through each of the Game Events
blocks (the “dark red buttons” she refers to in the quote),
using them as a roadmap to develop her strategy. Fig. 5 shows
Beth’s first completed robot strategy alongside the Robot
Events drawer that lists the available Game Event blocks.

Figure 5. On the left, is the Robot Events drawer; on the right is
Beth’s first implemented Robot.

What is especially interesting about Beth’s first robot is that
not only did she implement every event, but the order of the
events in her program perfectly matches the presentation in the
Robot Events drawer. The video from her interview shows
Beth starting at the top of the events drawer and systematically
working her way through the set of available blocks. This
suggests that she did not have a clear, unified strategy when
she began to program her robot. Instead, Beth built her
program event-by-event, using the commands provided by the
language to bootstrap the generation of a valid robot strategy.
In this way, the language primitives supported Beth in
conceptualizing possible actions that her robot could carry out.

97

Internal-Generative: Discussion
In this vignette, we see RoboBuilder’s language primitives

playing a distinctly different generative role than we saw in
the vignettes in the External-Generative section. Whereas with
Morris and Anne, the emphasis was on the language serving in
an external and expressive capacity, with Beth, the primitives
facilitate an internal, cognitive outcome; serving as a source of
inspiration for generating ideas for her robot strategy. She
even states her intention to use the language commands in this
capacity, saying: “I think I’ll use these dark red buttons…and
try and figure out what I want to have happen.” Consistent
with diSessa’s [1] idea of “materially-mediated-thinking”, in
this episode we see Beth having ideas with the medium, as
opposed encoding her preconceived ideas into the language.
The language primitives are mediating her thinking about the
challenge, seeding the ideation process for how to accomplish
the in-game programming challenge. This use is further
facilitated by the ease of testing and visualizing the behaviors
of the blocks. The use of the language in this capacity also
relates to Wilensky and Papert’s [11] structuration theory
linking representation and cognition, as the representation
itself is making certain ideas more accessible. You can
imagine that if instead of the descriptive blocks the game
provides, the language was an abstract set of operations with
labels like operation1 and state2, then Beth would not
have been able to use it in the way shown above, even if the
language had the same computational capabilities. Here, the
language serves in an Internal-Generative role, facilitating the
generation of a new idea. When designing programming
languages for novices, recognizing that primitives serve this
role is important, as this use can help a novice achieve early
programming successes. To the growing list of features that
block-based languages include that support learners, we now
add the organization and visual arrangement of the full set of
blocks as another element of the webbing learners can draw
on.

4.4. Internal-Interpretive: Primitives as a Resource
Used in Meaning Making

The final quadrant of the framework describes programming
languages serving in Internal-Interpretive roles. In this
capacity, the language is used as a cognitive tool with which to
interpret and make sense of the computational task at hand.
Used in this way, the language need not be visible or even
present, but instead is employed as a cognitive resource
through which observed behavior can be understood. This
vignette, also taken from Beth’s RoboBuilder session, occurred
during her second battle against the level-one opponent. The
level-one robot’s strategy is to remain motionless until its
energy drops below 50, at which point it begins to move. At the
start of the second battle, as Beth was watching the battle, she
asked the interviewer when the opponent was going to start
moving. The interviewer responded “It happens at 50”, which
prompted Beth to say:

It happens when it reaches 50? OK, so that robot must have
something built into it when it reaches 50. OH! There we
go, so that's what the, that's what the other boxes are for, so

like if you reach a certain health level you can change the
actions, oh, ok.

This brief excerpt shows Beth using the language as a tool to
mediate her understanding of the opponent’s behavior without
ever seeing the instructions externally represented. Her
exclamation “OH! There we go,” suggests a moment of
revelation, when some piece of the puzzle of how her opponent
was behaving fell into place. She then explains that the “other
boxes” (referring specifically to the conditional and robot state
blocks, a fact that became clear later in the interview) can be
used to create the behavior her opponent is carrying out. The
key piece of this excerpt is her stating: “if you reach a certain
health level you can change the actions.” This description
maps perfectly onto the program that is controlling her
opponent (shown in Fig. 6), but, importantly, these blocks are
not visible to Beth, so she was unable to read the instructions,
like we saw Anne do in the External-Interpretive vignette.
Instead, she used the blocks as cognitive tools with which to
interpret the opponent’s behavior and devise a possible
explanation for how its stationary-then-active strategy was
achieved.

Figure 6. The hidden conditional logic inside the level-one opponent.

Internal-Interpretive: Discussion
In this fourth role, we see again how the language primitives

can be used as objects-to-think-with [4] to support the meaning
making process. This use fits with the diSessa’s [1] Material
Intelligence, where symbols serve as cognitive tools with
which to make sense of the world. Likewise, it matches
Kaput’s [24] discussion of mathematical symbols and their role
in delineating and providing structure for the mathematical
activity at hand. What makes computational representational
systems, and in particular block-based languages, especially
capable for being used in the Internal-Interpretive capacity is
their ability to offer a suite of resources, i.e. the webbing of the
environment, to facilitate meaning making. This includes the
ability to incorporate visual cues like color and shape that can
make it easier to categorize how specific primitives can be
used, and the embedding of existing, familiar symbol systems
and representational conventions into the language’s design,
including natural language labels and mathematical symbols.
This enables the set of primitives to include semantic hints in
the form of meaning-carrying labels (such as move forward
and When I hit a wall) that can bootstrap the cognitive
process of interpreting observed behavior through the language
itself.

5. The Challenge of Designing for All Four Roles
Recognizing the various roles programming primitives play

has implications for designers of novice programming

98

environments and introductory programming languages.
Attempting to design for all four quadrants of the
Internal/External, Generative/Interpretive framework presents
a challenge to the designer, as some design decisions made to
support one usage may be at the expense of another. Each role
suggests a different set of priorities and considerations for how
the language should be designed and presented. An example
from RoboBuilder’s language makes this tension more
concrete. The set of game events provided in RoboBuilder
(When I See a Robot, When I get hit, etc.) were
designed to provide conceptual hooks for players to introduce
behavioral logic and enable them to use the blocks to guide the
creation of strategies, as we saw in Beth’s first vignette.
However, by providing a fixed set of events, the language
constrains how and when logic can be introduced in the game,
limiting its expressive capabilities in the External-Generative
capacity. This type of design decision comes down to a
question of finding the right grain size for the language
primitives. This challenge was encountered in the design of
low-threshold computational modeling tools: “It is critical to
design primitives not so large-scale and inflexible that they
can only be put together in a few possible ways…On the other
hand, we must design our primitives so that they are not so
‘small’ that they are perceived by learners as far removed from
the objects they want to model” [37, p. 168]. Finding the right
size primitives is one of the central challenges for designers
when creating languages for novice programmers. Our
decision to provide a standard set of events, as opposed to a
customizable set, is an example of the design trade-offs one
encounters when designing a representational system that can
support all of the roles specified by this framework.

While the analytic framework we put forth in this paper was
introduced and discussed as a means of understanding block-
based languages, it need not be tied to that modality, as text-
based or other graphical representations share these four
distinct uses. While we expect the manifestations of the four
quadrants would differ with other representational systems, we
expect the framework would still be illuminating and fruitful.

6. Conclusion
When creating a new computational language for novices, a

diverse set of uses should be considered. By providing a
classification system for the roles block-based programming
languages take in for novices, and providing examples of each,
we seek to provide a set of aspects designers should consider
when creating new computational tools. We also see this
framework as a useful lens with which to analyze existing
computational representational systems. Understanding how
they are used is an important first step in refining existing and
designing new tools.

In our use of webbing as a theoretical construct to ground
the analysis, the findings were necessarily coupled with the
block-based language under investigation, but it is easy to
draw connections from this work to conventional text-based
languages. Text-based programming languages provide the
same fundamental capabilities as block-based tools, although
at times the specifics may differ. As such, we believe this
framework can be useful when applied to conventional text-

based programming languages, but for now, this remains
future work.

The creation of accessible, yet powerful, languages is a
critical challenge we face in laying the infrastructure for the
computationally literate society championed at the outset of
this paper. By recognizing the various roles primitives can
play in supporting novices in computationally expressing
ideas, we as designers and educators can begin to develop new
languages and environments that support these different
usages to scaffold learners. In doing so, we can make progress
toward this vision of a computationally literate 21st century.

References
[1] A. A. diSessa, Changing Minds: Computers, Learning, and Literacy.

Cambridge, MA: MIT Press, 2000.
[2] M. Guzdial and E. Soloway, “Computer science is more important than

calculus: The challenge of living up to our potential,” SIGCSE Bulletin,
vol. 35, no. 2, pp. 5–8, 2003.

[3] National Research Council, Report of a Workshop on The Scope and
Nature of Computational Thinking. Washington, D.C.: The National
Academies Press, 2010.

[4] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic books, 1980.

[5] D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, and
U. Wilensky, “Defining Computational Thinking for Mathematics and
Science Classrooms,” Journal of Science Education and Technology,
vol. 25, no. 1, pp. 127–147, 2016.

[6] U. Wilensky, “Modeling nature’s emergent patterns with multi-agent
languages,” in Proceedings of EuroLogo, Linz, Austria, 2001, pp. 1–6.

[7] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33–35, 2006.

[8] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[9] K. D. Forbus, R. W. Ferguson, and J. M. Usher, “Towards a
computational model of sketching,” in Proceedings of the 6th
International Conference on Intelligent User Interfaces, 2001, pp. 77–
83.

[10] C. Duncan, T. Bell, and S. Tanimoto, “Should Your 8-year-old Learn
Coding?,” in Proceedings of the 9th Workshop in Primary and
Secondary Computing Education, New York, NY, USA, 2014, pp. 60–
69.

[11] U. Wilensky and S. Papert, “Restructurations: Reformulating knowledge
disciplines through new representational forms,” in Proceedings of the
Constructionism 2010 conference, Paris, France, 2010.

[12] J. Kaput, R. Noss, and C. Hoyles, “Developing new notations for a
learnable mathematics in the computational era,” in Handbook of
International Research in Mathematics Education, 2002, pp. 51–75.

[13] L. Vygotsky, Mind in Society: The Development of Higher Psycho-
logical Processes. Cambridge, MA: Harvard University Press, 1978.

[14] B. L. Sherin, “A comparison of programming languages and algebraic
notation as expressive languages for physics,” International Journal of
Computers for Mathematical Learning, vol. 6, no. 1, pp. 1–61, 2001.

[15] U. Wilensky and S. Papert, “Restructurations: Reformulations of know-
ledge disciplines through new representational forms,” Manuscript in
Preparation.

[16] J. Zhang and D. A. Norman, “Representations in distributed cognitive
tasks,” Cognitive Science, vol. 18, no. 1, pp. 87–122, 1994.

[17] D. Weintrop and U. Wilensky, “Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based
Programs,” in Proceedings of the Eleventh Annual International
Conference on International Computing Education Research (ICER '15),
New York, NY, USA, 2015, pp. 101–110.

[18] C. D. Hundhausen, S. F. Farley, and J. L. Brown, “Can direct
manipulation lower the barriers to computer programming and promote

99

transfer of training?,” ACM Transactions on Computer-Human Inter-
action, vol. 16, no. 3, pp. 1–40, Sep. 2009.

[19] J. F. Pane, B. A. Myers, and L. B. Miller, “Using HCI techniques to
design a more usable programming system,” in Proceedings of IEEE
2002 Symposia on Human Centric Computing Languages and
Environments, Los Alamitos, 2002, pp. 198–206.

[20] A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” ACM Transactions on Computing Education, vol. 13,
no. 4, pp. 1–40, Nov. 2013.

[21] R. Noss and C. Hoyles, Windows on Mathematical Meanings: Learning
Cultures and Computers. Dordrecht: Kluwer, 1996.

[22] D. Weintrop and U. Wilensky, “Situating programming abstractions in a
constructionist video game,” Informatics in Education, vol. 13, no. 2, pp.
307–321, 2014.

[23] D. Weintrop and U. Wilensky, “The challenges of studying blocks-based
programming environments,” in IEEE Blocks and Beyond Workshop,
2015, pp. 5–7.

[24] J. J. Kaput, “Towards a theory of symbol,” in Problems of
Representation in the Teaching and Learning of Mathematics, C.
Janvier, Ed. Hillsdale, NJ: Lawrence Erlbaum Associates, 1987, p. 159.

[25] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137–172, 2003.

[26] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed cognition: toward a
new foundation for human-computer interaction research,” ACM
Transactions on Computer-Human Interaction, vol. 7, no. 2, pp. 174–
196, 2000.

[27] D. Weintrop and U. Wilensky, “RoboBuilder: A program-to-play
constructionist video game,” in Proceedings of the Constructionism
2012 Conference, Athens, Greece, 2012.

[28] D. Weintrop and U. Wilensky, “Program-to-play videogames:
Developing computational literacy through gameplay,” in Proceedings

of the 10th Games, Learning, & Society Conference, Madison, WI, 2014,
pp. 264–271.

[29] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs. MIT Press 2nd ed, 1996.

[30] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct manipulation
interfaces,” Human-Computer Interaction, vol. 1, no. 4, pp. 311–338,
Dec. 1985.

[31] D. Weintrop and U. Wilensky, “To block or not to block, that is the
question: Students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children (IDC '15), New York, NY, USA, 2015, pp. 199–208.

[32] S. Turkle and S. Papert, “Epistemological pluralism: Styles and voices
within the computer culture,” SIGNS: Journal of Women in Culture and
Society, vol. 16, no. 1, pp. 128–157, 1990.

[33] M. Kölling, N. C. C. Brown, and A. Altadmri, "Frame-based editing,"
Journal of Visual Languages and Sentient Systems, vol. 3, no. 1, Jul.
2017.

[34] J. Mönig, Y. Ohshima, and J. Maloney, “Blocks at your fingertips:
Blurring the line between blocks and text in GP,” in IEEE Blocks and
Beyond Workshop, 2015, pp. 51–53.

[35] D. Bau, D. A. Bau, M. Dawson, & C. S. Pickens, "Pencil Code: Block
Code for a Text World," in Proceedings of the 14th International
Conference on Interaction Design and Children (IDC '15), New York,
NY, USA, 2015, pp. 445–448.

[36] M. Homer and J. Noble, "Lessons in combining block-based and textual
Programming", Journal of Visual Languages and Sentient Systems, vol.
3, no. 1, Jul. 2017.

[37] U. Wilensky, “GasLab: An extensible modeling toolkit for connecting
micro-and macro-properties of gases,” in Modeling and Simulation in
Science and Mathematics Education, N. Roberts, W. Feurzeig, and B.
Hunter, Eds. Berlin: Springer-Verlag, 1999, pp. 151–178.

100

