J Sci Educ Technol
https://doi.org/10.1007/s10956-017-9713-1

@ CrossMark

EvoBuild: A Quickstart Toolkit for Programming Agent-Based

Models of Evolutionary Processes

Aditi Wagh'® - Uri Wilensky>

© Springer Science+Business Media, LLC 2017

Abstract Extensive research has shown that one of the ben-
efits of programming to learn about scientific phenomena is
that it facilitates learning about mechanisms underlying the
phenomenon. However, using programming activities in
classrooms is associated with costs such as requiring addition-
al time to learn to program or students needing prior experi-
ence with programming. This paper presents a class of pro-
gramming environments that we call quickstart:
Environments with a negligible threshold for entry into pro-
gramming and a modest ceiling. We posit that such environ-
ments can provide benefits of programming for learning with-
out incurring associated costs for novice programmers. To
make this claim, we present a design-based research study
conducted to compare programming models of evolutionary
processes with a quickstart toolkit with exploring pre-built
models of the same processes. The study was conducted in
six seventh grade science classes in two schools. Students in
the programming condition used EvoBuild, a quickstart
toolkit for programming agent-based models of evolutionary
processes, to build their NetLogo models. Students in the ex-
ploration condition used pre-built NetLogo models. We

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10956-017-9713-1) contains supplementary
material, which is available to authorized users.

P4 Aditi Wagh
aditi.wagh @tufts.edu

Uri Wilensky
uri @northwestern.edu

Department of Education, Tufts University, Paige Hall,

Medford, MA 02155, USA
2 2120 Campus Drive, Evanston, IL 60208, USA

Published online: 23 October 2017

demonstrate that although students came from a range of ac-
ademic backgrounds without prior programming experience,
and all students spent the same number of class periods on the
activities including the time students took to learn program-
ming in this environment, EvoBuild students showed greater
learning about evolutionary mechanisms. We discuss the im-
plications of this work for design research on programming en-
vironments in K-12 science education.

Keywords Technology - Science education - Computer
modeling - Evolution

Computational modeling is one of the core disciplinary
practices in K-12 science education (NGSS Lead States,
2013). One form of computational modeling is having
learners engage in programming to model mechanisms
underlying a scientific phenomenon in the form of code.
Programming to model scientific phenomena involves
learners iteratively constructing and debugging a program
that instantiates mechanisms that underlie it. This has
been found to be a powerful way of coming to appreciate
and understand mechanisms underlying phenomena (e.g.,
Papert 1980; Sherin 2001; Simpson et al. 2005; Wagh
2016; Wilensky 1999a; Wilensky and Reisman 2006).

As learners engage in programming, the materials they
use to construct the program include primitives in the
environment. The form and grain size of these primitives
is an important consideration in design (e.g., Simpson
et al. 2005; Wilensky 2003). The nature of primitives
plays an important role in influencing perceptions and
learning (Weintrop 2015), activating relevant forms of in-
tuitive knowledge learners can draw on (e.g., Bamberger
2001; Papert 1980), how they plan and break down the
task (Louca and Zacharia 2007), and so on.

@ Springer

http://orcid.org/0000-0002-7807-3344
https://doi.org/10.1007/s10956-017-9713-1
mailto:aditi.wagh@tufts.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-017-9713-1&domain=pdf

J Sci Educ Technol

This manuscript presents a class of programming environ-
ments that we call quickstart environments. Primitives in these
environments combine visual programming with orientation
to curricular domains. We use the descriptor “quickstart” to
highlight how quickly and effortlessly even novice program-
mers are able to begin programming in these environments.
However, these environments are limited in the extent to
which sophisticated models can be built with them. These
features make these environments particularly felicitous for
short-term, one-off uses in classrooms with programming
novices. In this manuscript, we present an example of a
quickstart environment called EvoBuild and present a
design-based research study to demonstrate that such environ-
ments can provide benefits of programming associated with
learning about mechanisms without incurring costs related to
spending additional time to learn programming.

Range of Primitives Used in Programming
Environments for K-12 Education

Programming environments for K-12 education include vari-
ous forms of primitives. Some programming environments
provide text-based primitives that are general-purpose and
do not orient specifically to a single discipline. Some of the
earliest work on programming for K-12 education was done
using Logo—an environment that provides text-based primi-
tives for modeling mathematical and scientific phenomena
(Papert 1980). Primitives in Logo were designed to draw on
learners’ body syntonic knowledge to lower the threshold for
entry into programming. Though Logo primitives had embed-
ded structures of turtle geometry, they were not constrained to
a specific disciplinary domain and were used to program sim-
ulations of other scientific and mathematical phenomena (e.g.,
Harel & Papert, 1991). Hence, Logo can be classified as a
general-purpose text-based programming environment.
Another example of a similarly classified environment is
NetLogo (Wilensky 1999b). NetLogo inherits elements of tur-
tle geometry from Logo. It is also designed for representing
complex emergent systems and includes primitives to repre-
sent individual-level rules and interactions. Many of the prim-
itives in NetLogo also draw on learners’ knowledge about
their bodies and interactions in the world, thereby lowering
the threshold for learning to program. However, NetLogo
primitives are also not targeted towards a specific disciplinary
domain and are general-purpose.

Other environments provide primitives that are semantical-
ly general-purpose but visual in form. Many of these environ-
ments provide graphical primitives in the form of blocks as
objects to manipulate and combine in different ways to write a
program. Some examples of such environments are Scratch
(Resnick et al. 2009), StarLogo TNG (Klopfer et al. 2005),
DeltaTick (Wilkerson et al. 2015; Wilkerson and Wilensky

@ Springer

2010), VIMAP (Sengupta et al. 2013), BehaviourComposer
(Kahn 2007b; Kahn and Noble 2010), Visual AgenTalk in
Agentsheets (Repenning and Sumner 1995), and NetTango
(Horn and Wilensky 2011). Some environments such as
Stagecast Creator (Smith et al. 1996) involve graphical pro-
gramming without blocks. In general, the graphical nature of
primitives in these environments makes it possible for novice
programmers to begin programming more easily as compared
to in a text-based environment.

Finally, one class of programming environments provides
domain-specific primitives that combine graphical program-
ming with orientation to a curricular domain. These primitives
serve as “micro-behaviors,” “small, coherent, and indepen-
dent program fragments” relevant to a target curricular do-
main (Kahn 2007a, p. 931). They are designed to align with
learners’ ways of thinking to reduce the distance between
novices and the curricular domain (e.g., Bamberger 2001;
Rader et al. 1998). Like other graphical blocks-based environ-
ments, these toolkits reduce syntax issues with a visual, drag-
and-drop interface. In addition, by providing a constrained
library of primitives that can be combined in different ways
to model the core dynamics of a target curricular domain
(Wilkerson et al. 2015), they further substantially lower the
entry associated with programming for use in K-12 science
classrooms.

The forms of primitives carry costs and benefits related
to use in K-12 classrooms (e.g., Ioannidou et al. 2003).
For instance, some of the costs associated with using
general-purpose text-based environments include the time
investment required for teaching programming to novices
(Xiang and Passmore 2010) or requiring some prior expe-
rience with programming. Though these environments can
be low threshold environments (e.g., Logo), they require
some initial investment of time in learning to code. When
amortized over the many potential uses of programming
in STEM and across all subjects, these costs can be min-
imal. The general-purpose nature of these primitives of-
fers greater flexibility and potential for sophistication in
model construction. This allows for the benefit of a high
ceiling that can enable students to program increasingly
sophisticated models in the environment over several
class periods. Indeed, prior work has shown that text-
based programming can be a powerful way to learn sci-
ence (e.g., Blikstein and Wilensky 2009; Kafai et al.
1997; Louca and Zacharia 2007; Wilensky 1999a,;
Wilensky and Reisman 2006). However, when considered
for short-term use, the costs associated with time invest-
ment can be more significant.

Increasing the adoption of programming activities in sci-
ence classrooms is an important goal. There has been abun-
dant research on the affordances of engaging in programming
to articulate and debug one’s understandings of a phenome-
non. Programming has been found to facilitate learning about

J Sci Educ Technol

mechanisms and structures underlying a phenomenon (Sherin
2001; Wagh 2016; Wilensky and Reisman 2006), accommo-
dating multiple approaches (Turkle and Papert 1992), and en-
gaging in collaboration (e.g., Bruckman 1997). Interacting
with and manipulating code also supports simultaneous en-
gagement in conceptual and computational disciplinary prac-
tices (Wagh, Cook-Whitt & Wilensky, 2017).

However, these costs and benefits have implications for
ease of adoption of programming in K-12 science classrooms.
Individual teachers are often making choices about whether to
incorporate programming activities into a single class session
or a single unit. These choices weigh costs and benefits to
decide whether and how to include programming activities
in their classrooms. In the absence of more systematic adop-
tion, costs associated with time investment are likely to deter
short-term adoption of such activities or adoption with novice
programmers in K-12 science classrooms. For short-term one-
off uses in classrooms with novice programmers, environ-
ments that combine graphical programming with domain-
specific primitives can provide an alternative. Though these
environments have a much lower ceiling, they can provide an
easy entry into programming and might encourage subsequent
further investment.

We characterize these toolkits as quickstart because they
allow even novice programmers to quickly and easily assem-
ble code to construct models. By doing so, they enable
learners to attend to conceptual issues related to representing
the mechanics of the phenomenon instead of dealing with the
technical aspects of programming. The descriptor “quickstart”
is intended to capture the entry point into programming for
novices in these environments: Novice programmers can be-
gin assembling code within minutes. On the other hand, be-
cause they provide a small set of blocks-based primitives,
these environments are unlikely to support building sophisti-
cated models. This combination of an immediately accessible
programming environment that is relatively less powerful for
more sophisticated uses makes these environments particular-
ly felicitous for short-term uses in classrooms. Some of the
environments previously mentioned have been used to devel-
op quickstart toolkits. For instance, BehaviourComposer has
been used to create Epidemic Game Maker, a domain-specific
toolkit for modeling epidemic disease (Kahn et al. 2012).
NetTango has been used to construct Frog Pond for modeling
adaptation in middle school classrooms (Horn et al. 2014).
Similarly, DeltaTick has been used to design toolkits to model
population dynamics in high school classrooms (Wilkerson
and Wilensky 2010) and evolutionary processes in middle
school classrooms (Wagh and Wilensky 2014). A common
strand across these examples is their ease of accessibility for
modeling phenomena through short-term interventions with
little or no training in programming.

The potential of programming to support learning about
mechanisms makes it a particularly exciting approach for

learning about phenomena with complex mechanisms. This
manuscript examines programming in a quickstart environ-
ment for programming agent-based models of evolutionary
processes. This is a particularly promising domain for pro-
gramming because reasoning about underlying evolutionary
mechanisms is challenging for learners. Despite this, much of
the work done using an agent-based modeling infrastructure
for evolutionary processes has involved students exploring
pre-built models of these processes. In what follows, we brief-
ly review this work.

Agent-Based Modeling for Micro-Evolutionary
Processes

A substantial body of research has investigated various design
approaches to support learning about the mechanisms under-
lying evolutionary change. Given the focus on agent-based
modeling (ABM) in this study, we briefly describe work using
ABMs for learning about evolutionary change.

Much of the research on using ABM to facilitate learning
about evolutionary processes has involved students investigat-
ing pre-built models to conduct experiments by manipulating
parameters, observing and explaining resulting trends. These
model investigations have included students engaging in mod-
el investigation activities in a progressively complex sequence
of models representing natural selection, drift, coevolution,
and so on (Wagh and Wilensky 2012b; Wilensky and Novak
2010). Investigations with agent-based models have also been
combined with case studies from real world systems to draw
parallels between the modeled and the physical system (Wagh
et al. 2016). Students analyzed trends from data from real
world ecosystems and moved back and forth between making
insights in ABM and relating those findings to the data.
Investigations have also included the use of participatory
agent-based simulations in which students “enter” a model
by enacting the role of an agent in it (Wagh and Wilensky
2012a, 2013; Wilensky and Novak 2010). Pre-built models
have also been used for guided interventions with a researcher
to seed beginnings of ideas related to evolutionary change
with elementary school students (Dickes and Sengupta 2013).

Model investigations have also taken more hybrid forms in
which students examine or manipulate underlying model
code. For instance, in a researcher-led small group interven-
tion, undergraduate students participated in a trajectory begin-
ning with exploring pre-built models, modifying code of
existing models, and finally, building their own models to
make sense of social evolutionary patterns (Centola et al.
2000; Wilensky and Centola 2007). In interventions at the
high school level, viewing and examining the blocks-based
code underlying StarLogo Nova models while conducting ex-
periments was prompted and encouraged (Yoon et al. 2016).

@ Springer

J Sci Educ Technol

However, very little work has been done with students
programming their own models of evolutionary shifts in K-
12 teacher-led classes. One study that involved students pro-
gramming their own models took place in a researcher-led
after-school workshop in which middle school students wrote
text code from scratch or by modifying code from other
models in NetLogo. The authors reported that the workshop
took a considerable amount of time: Students first learned to
code in NetLogo (over 15 h in a few weeks), and then spent
another 15 h programming two models of natural selection
(Xiang and Passmore 2010). The authors concluded that
though programming was an evocative context for students
to articulate their understandings about natural selection, dis-
tractions due to syntax errors in code gave short shrift to so-
phisticated reflections mapping their constructed model to
natural selection. This observation reflects the costs associated
with using general-purpose text-based programming de-
scribed earlier.

Facilitating the adoption of programming activities in sci-
ence classrooms is an important goal. Yet, as previously de-
scribed, this can be tricky in terms of balancing time con-
straints of a classroom and training students who may be nov-
ice programmers. This results in a design tension between
leveraging the value of programming particularly for sense
making of mechanisms while also dealing with issues related
to the feasibility of adoption in classrooms such as lack of
prior programming experience, and time to learn program-
ming. This tension between costs and benefits of program-
ming is particularly evident in short-term interventions with
novice programmers. We would argue that this tension could
be mitigated by quickstart toolkits that, by providing a
constrained library of graphical domain-specific primitives,

’7@’7"’
TR NN
P
’7’7

——

make programming models immediately accessible for even
novice programmers.

As mentioned previously, this manuscript has two goals.
One goal is to present an example of a quickstart toolkit called
EvoBuild. EvoBuild allows students to program agent-level
mechanisms of evolutionary processes using domain-specific
graphical primitives (Wagh and Wilensky 2014). EvoBuild
was designed using DeltaTick (Wilkerson et al. 2015;
Wilkerson and Wilensky 2010), a blocks-based programming
interface for NetLogo (Wilensky 1999b). Our second goal is
to demonstrate that even with novice programmers who did
not spend additional time to learn programming, building their
own models in a quickstart environment helped them experi-
ence benefits of programming associated with learning about
mechanisms. To do this, we present a design-based research
study (Collins et al. 2004) conducted to compare processes
and outcomes of learning in two modalities of computational
modeling, model building, and model exploration. As part of
the study, we developed two agent-based modeling units on
evolutionary processes for middle school students. The
model-exploration unit, called EvoExplore, provided micro-
worlds (Edwards 1995) or pre-built NetLogo models for stu-
dents to manipulate relevant parameters to uncover and make
sense of encoded mechanisms. The model building unit
consisted of EvoBuild.

EvoBuild: a Quickstart Toolkit for Programming
Agent-Based Models of Evolutionary Processes

EvoBuild is a toolkit for designing accessible programming
activities for students to construct agent-based models to

vision ofbugs

M 7
vision ofbugs

Fig. 1 Code for a model representing two species, birds and bugs, and their respective rules. The model also includes two plots, a histogram tracking
vision range of bugs and a line graph tracking the average vision range of bugs

@ Springer

J Sci Educ Technol

8 00

Species Editor

Which species do you want to add?
How many individuals of this species to begin with?

What color do you want it to be?

What should it look like?
Trait Description vision Add Variation?
Vision ___ onlyveryclose 1 ~
™
leg-length very close 2 4
o close 3 i)
far 4 O
Variations
2 “r 1 4 3

[birds I+ ! vision
) 100
15 s
) 801
™ 3 (33.334) 0
— E 60
) §
P 401
9
a

20 | ﬁ ‘
0!
1 2 3 4
Variation

Fig. 2 Available traits and selected variations in the Species Inspector in EvoBuild

represent and examine evolutionary processes (Wagh and
Wilensky 2014). It draws on the infrastructure of DeltaTick
(Wilkerson et al. 2015; Wilkerson and Wilensky 2010), a
blocks-based programming interface for NetLogo. The
blocks-based infrastructure allows designers and educators
to provide students with a library of pre-defined domain-spe-
cific primitives in the form of blocks.

Each block, as a domain-specific primitive, constitutes
an autonomous but self-contained fragment of code
representing a conceptually relevant rule for agents in
the system (Kahn 2007a). The code for each block is
pre-defined in an XML file, a commonly used format
for web-based files. A collection of these micro-
behaviors forms a “conceptual library space,” which is a
set of micro-behaviors that can be assembled in different
combinations to recreate and explore the relevant concep-
tual space (see Fig. 1). In addition to the blocks-based
primitives to be made available, designers can also spec-
ify the kinds of breeds or collection of entities of a par-
ticular kind that should be made available and the maxi-
mum number of individuals in each breed, and available
properties, and variations in the XML file (see Fig. 2).

A student can begin programming by loading a specific
XML file into the environment. When an XML file has been
loaded, the species, properties, and primitives pre-defined in
the file become available to students in the programming en-
vironment. Students can use these to build a model. To begin
programming their model, students can add one or more spe-
cies to the model. To model variations within a species,
learners add one or more properties for agents of a breed.
These properties are called traits, and different values of a trait
are called variations.

Learners can add one or more traits to a breed in their
model. For each trait, they can pick variations to be included
in the initial population at setup. For instance, in Fig. 2, two
traits are seen available in the Species Inspector. The student
has added the trait, vision to the breed, bugs to determine how

far a bug can see. For this trait, three variations have been
selected. These variations will be evenly distributed in the
initial population at the start of a model run. This distribution
can be manipulated.

Programming a Model Using Agent-Based
Domain-Specific Primitives

Once species and their properties have been initialized, stu-
dents can specify rules for individuals of these species to fol-
low as the simulation runs.

The screenshot above (Fig. 1) shows a model, which con-
tains two breeds called “birds” and “bugs.” There are 25 birds
and 50 bugs at the start of the model. When the model is run, at
each tick,' every bird and bug will follow commands encoded
in their respective blocks. In this model, at each tick, each bird
and bug will wander around the world. A bird will eat a bug
when it is right next to it. Each bug will eat grass. When a bird
is older than 100 ticks, it will have a baby, and it has a 1%
chance of dying at each tick. If a bug notices a bird within its
vision range, it turns away from it. Each bug can have a baby
if it is older than 50 ticks, and it has a 2% chance of dying. The
model also includes two plots to track the population, a histo-
gram to track the vision distribution in bugs, and a line graph
to track the average vision range of the bug vision.

Running the Model

On the Run tab, students can play the model (See Fig. 3). They
can also manipulate the chance of a mutation occurring in the
specific trait. For instance, in the screenshot above, students
can manipulate the change of a mutation occurring in the
vision trait inherited by a bug offspring. At its current value,
each offspring born in a model run has a 50% chance of
having a slight variation in its vision range from its parent.

"Iha NetLogo model, a tick denotes a unit of time.

@ Springer

J Sci Educ Technol

=
=

Fig. 3 A model run from the code in Fig. 1

When the model is run, bugs with a greater vision range
have a survival advantage because they are able to get away
from the predatory birds. Hence, these bugs are more likely to
live until 50 ticks and have an offspring as compared to ones
with a shorter vision range. In addition, as the model runs, new
variations in vision range appear in the bug population.

Supports for Viewing the Changing Distribution

Finally, students can also view an “agent” distribution by a
specific trait within the model world (See Fig. 4). By clicking
on a button, students could line up agents based on their

Fig. 4 An agent distribution of
vision range of the bug population

@ Springer

vision-bugs
28

Count bugs

0 Variations of vision 7

average-vision

~

c
=
»

>

o

g
5 M‘

0

0 Time. 715

specific variations for the trait. This helps students track
change in the size of specific groups and view agents them-
selves more carefully. This feature was in the spirit of repre-
sentations in environments such as TinkerPlots (Konold and
Miller 2005) that supports students in viewing the spread of
specific variations in the population.

Over the last few years, we have engaged in iterations of
design research (Collins et al. 2004) using EvoBuild activities
in middle school science classes. In parallel, we have also
engaged in iterations of design of a model exploration unit
called EvoExplore (Wagh 2016). EvoExplore consists of
modified NetLogo models and curricular materials from

J Sci Educ Technol

existing curricula (Wilensky and Novak 2010). In each activ-
ity, students investigated a pre-built model by manipulating
parameters to observe and explain resulting changes in the
population. Like EvoBuild, these models also allowed stu-
dents to view agent distributions in a model run. The main
difference between the two modalities was that EvoBuild stu-
dents programmed the model by using a constrained library of
domain-specific graphical primitives. EvoExplore students
ran investigations in a pre-built model, and did not view or
manipulate code.

Having described EvoBuild, we now turn to the second
goal of this manuscript. We present the study we conducted
to compare processes and outcomes of learning in the two
modalities of model building and model exploration. We draw
on this study to show that benefits of programming associated
with learning about mechanisms were visible even when as-
sociated costs associated such as requiring additional time
were minimized.

The Study: Comparing EvoBuild and EvoExplore

The EvoBuild and EvoExplore curricula were implemented in
seventh grade science classes in two schools,” Highland and
Forest Park. The study also included a control condition in
which students used physical manipulables instead of compu-
tational modeling environments. This condition was only im-
plemented at Highland. The focus of this paper on computa-
tional modeling and space constraints prevent a discussion of
the control condition in this manuscript. Two classes partici-
pated in each modality at Highland—by the teacher’s account
of student grades and performance on standardized tests, one
class in each modality performed at seventh grade level, and
the other class was performed below grade level. At Forest
Park, one class participated in each modality.

Activities and Teacher Support

In each modality, the curriculum consisted of four activities
(see Table 1). The first activity was an introductory activity
consisting of a whole class discussion about variations of traits
within a species. This activity was the same for both condi-
tions. The discussion was intended to elicit ideas about the
spread of variations and was used to frame the central question
of the unit: Does the spread of variations for a trait change
over time?

The following three activities were anchored in this central
question. In the EvoBuild condition, students were provided
with a scenario consisting of information about one or more
species in an ecosystem, their life cycle, and relevant traits.
They worked in pairs to build a model to represent this

2 The names of schools are pseudonyms.

Table 1 Four activities in the unit

Activity Content

Activity 1 Introduction to traits and variations

Activity 2 How selection pressures change populations
(natural selection)

Activity 3 How populations can change simply due to
chance (drift)

Activity 4 How populations adapt to their environments
(adaptation)

scenario. Students debugged and ran the model to investigate
resulting trends in the distribution of the property. In the
EvoExplore condition, students were provided with pre-built
NetLogo models that, when run, simulated specific evolution-
ary process. Students worked in pairs to manipulate parame-
ters, and run the model to observe and explain resulting chang-
es in the population.

Both EvoBuild and EvoExplore curricula were presented
to teachers as instances of computer modeling curricula that
were designed by the research team. The first author of the
paper facilitated workshops for both teachers during after-
school hours and provided supporting materials for both
curricula.

Data Collection

The study was designed to investigate how the modalities
compare in terms of processes and outcomes of learning.
To investigate processes of learning, we recorded
Camtasia videos of focal student pairs as they worked
on their models, and collected worksheets from all stu-
dents. In each class, two researchers were present to take
field notes and assist with data collection. The first author
was present in each class at both schools. The second
researcher varied on each day. A short debriefing was
done with the second researcher after each class to capture
his/her observations. These notes were incorporated in the
field notes. In addition, the first author conducted teacher
interviews to capture teacher observations of students’
work in the two modalities. Interview questions did not
ask teachers to specify which modality was better or to
directly compare the modalities in any way. Instead, they
focused on capturing teacher observations about how stu-
dents’ engagement and thinking in each modality.

To assess learning outcomes, we administered pre- and
posttests to all students and conducted pre and post inter-
views with focal students. The written assessment
consisted of scenarios of micro-evolutionary change.
Questions were designed to elicit reasoning about how
distributions of variations of a trait might change over

@ Springer

J Sci Educ Technol

Table 2 Student demographics and teacher experience in the two schools (Illinois State Board of Education, 2014 and field notes)

Highland Middle School

Forest Park School

Number of students

Programming experience

Seventh grade students’ performance on
ISAT standardized tests
(Illinois State Board of Education, 2014)

Socioeconomic status and racial/ethnic
composition of students

Teacher background

101 (62 students in EvoBuild; 59 students
in EvoExplore)
None reported

Science

70.1% met and 13.2% exceeded standards
Math

43.1% met and 1.1% exceeded standards
Reading

42% met and 10.9% exceeded standards

81.7% from low-income households

Primarily Hispanic (79.5%), 10.2% white
and others

No experience with programming

No experience using computer-modeling

48 (22 in EvoBuild; 26 in EvoExplore)

Several students had some experience with
programming

Science

44.9% met and 46.9% exceeded standards

Math

65.3% met and 20.4% exceeded standards

Reading

49% met and 38.8% exceeded standards

17.4% from low-income households

58% white, 21% Hispanic, 8% Asian, and
4% African American

Some experience with HTML programming

Experience using PheT simulations in class

activities in class

First year teaching middle school science

Eighth year of teaching at the school
(Certified to teach social science and science)

time due to natural and sexual selection, drift, and/or ad-
aptation. Two forms of assessments were developed. Each
question in the two forms was conceptually mapped (e.g.,
included selection pressures or not) but presented differ-
ent scenarios with different organisms. Half the students
in each modality were administered one form at pre and
the other at post. Questions about distribution shifts in the
assessment have been provided in Appendix A from one
of the forms as a sample.

In this manuscript, we demonstrate that even with novice
programmers who did not spend additional time to learn pro-
gramming, building their own models in a quickstart environ-
ment helped them experience benefits of programming asso-
ciated with learning about mechanisms. Specifically, we draw
on field notes, teacher interviews, and pre and posttests to
show that (1) the student sample included students from a
range of academic backgrounds, many of who had no experi-
ence with programming; (2) EvoBuild students took the same
amount of time as EvoExplore students including time taken
to learn to program in this environment; and (3) EvoBuild
students more frequently provided causal evolutionary mech-
anisms in their posttest responses.

Student Sample from the Two Schools

As seen in Table 2, of the 101 students who participated
in the two modalities at Highland, none of the students in
either modality reported having programmed before, and
many of them reported never even having heard of pro-
gramming. As mentioned previously, one class in each
modality performed below grade level. This class also
included students from a special education program.

@ Springer

Highland primarily consisted of a Hispanic student popu-
lation (80%). About 81% of students came from low-
income households. Of the 48 students from Forest Park,
a sizeable group of students in both modalities had some
experience with programming in school. The student pop-
ulation at Forest Park was largely white (58.7%) or
Hispanic (21.6%). About 17% of students at this school
were from low-income households.

Neither of the science teachers were experienced program-
mers. The Highland teacher had never programmed before
and reported never having used computer-based modeling ac-
tivities in her classes. This was her eighth year teaching in the
school. The Forest Park teacher had experience with HTML
programming several years before the study and had occasion-
ally used PheT simulations in his class. This was his first year
teaching science in middle school. Both teachers participated
in teacher workshops and had access to teacher guides for the
two curricular units.

EvoBuild Students Spent as Many Class Periods
on the Activities as EvoExplore Students

In both schools, EvoBuild students spent the same number of
class periods for the entire curricular unit as the EvoExplore
students. This included time spent on learning to use the soft-
ware. Ensuring that the units took an equivalent amount of
time was a decision made at the start of the study. Hence,
when students in either condition fell behind in relation to
the other, the teacher decided when to wrap up the activity,
and proceed to the next one. Here, we draw on field observa-
tions and video data to present a detailed breakdown of how
time was spent in the EvoBuild and EvoExplore conditions.

J Sci Educ Technol

Period 1 | Period 2 | Period 3 | Period4 | Period 5 | Period 6
Period 1 | Period2 | Period3 | Period4 | Period 5 |Period 6

Fig. 5 a EvoBuild (top) and model explorers (below) in the at-grade-
level performing classes at Highland. Students had about an hour in each
period. This depicts a total of 5.5 h (made to scale). b EvoBuild (top) and

Figures 5 and 6 show the breakdown of activities by class
period in the EvoBuild and model-exploration conditions at
the two schools. Each gray solid colored cell depicts an activ-
ity. The striped cell marks time spent in the EvoBuild condi-
tion on learning to program. The spotted cell marks time spent
due to technical issues with program files. An asterisk in a cell
depicts that the teacher wrapped up the activity before most
students finished working on it due to lack of time.

The study took place over 5 and a half periods (5.5 h) at
Highland (Fig. 5a). As seen in the figure, overall, EvoExplore
students spent more time working on the conceptual content as
compared to EvoBuild students. This was because EvoBuild
students spent some time experimenting with the software and
building initial models on their own before starting with Activity
2 (striped cell). This time was not spent teaching EvoBuild stu-
dents to program. It was spent showing them the location of
XML library files were stored on the school computers so they
could load them into the software. Once they loaded the XML
file, students also experimented with available primitives to try
out building models. In addition, EvoExplore students got nearly
twice as much time on Activity 3. This was because of a techni-
cal disruption due to which EvoBuild students were unable to
work on the activities (dotted cells). This disruption was not
related to the programming task—software files were mistakenly
deleted from the school computers because of an auto-
maintenance weekly check run on them. The files had to be
restored before students could proceed with the activity. As a

Period 1 | Period 2 | Period 3

| Period 4 |

model explorers (below) in the low performing classes at Highland.
Students had about an hour in each period. (Made to scale)

result, EvoExplore students engaged in an additional exploration
in Activity 3 that EvoBuild students did not participate in.
Finally, to ensure that both conditions spent the same amount
of time on activities, Activities 2 and 3 were ended early for
EvoBuild students (cell with the asterisk). Similarly, in the low
performing classes, EvoBuild students overall spent less time on
the conceptual part of the activities as compared to EvoExplore
students (Fig. 5).

As seen in Fig. 6, the study at Forest Park lasted for a total of
six class periods. Students had approximately 45 min in each
period to work on the activity. EvoBuild students were behind
EvoExplore students through Activity 2 and caught up with them
by Activity 3.

At both schools, students in the two modalities spent an
equivalent amount of time on the activities. In some ways,
EvoBuild students were disadvantaged and rushed along par-
ticularly in the beginning so the study could be completed
within the same amount of time. This raised the question of
whether programming their own model would still confer
some of the expected advantages associated with learning
about mechanisms on the builders. We turn to this issue next.

Building Their Own Models Better Supported Learning
About Mechanisms

Student responses to pre- and posttests from the two con-
ditions were analyzed to investigate how students used

Period 5 | Period 6

Fig. 6 EvoBuild students and model explorers at Forest Park. Students had about 45 min in each period. (Drawn to scale)

@ Springer

J Sci Educ Technol

ideas related to survival, death, reproduction, and inheri-
tance to explain shifts in populations. The pre- and post-
tests consisted of a set of micro-evolutionary scenarios
with open-ended questions asking students to predict
and explain the occurrence of described shifts in popula-
tion distributions.

Student responses were coded to investigate whether and
how students used causal evolutionary mechanisms to account
for population change. Three categories of codes were devel-
oped: evolutionary mechanisms, non-evolutionary mecha-
nisms, and no mechanisms. Each of these categories had
sub-codes to characterize the specific kind of explanation pro-
vided by students (see Table 3). Responses coded as evolu-
tionary mechanisms used at least some individual-level be-
haviors of survival/ death, reproduction/ inheritance to pro-
vide a causal account of a shift in trait distributions.
Responses coded as non-evolutionary responses used at least
some of these individual-level behaviors without casually
connecting them to explain a shift in trait distributions.
Finally, responses that did not include any individual-level
behaviors were coded as no mechanism.

Table 4 presents results from pre and posttest analysis.
Several students in both modalities did not complete the pre-
test, and some students were absent. Because the unit of anal-
ysis was student responses to questions, incomplete tests re-
duced the number of responses available for analysis. This
explains the difference in the difference in the total N between
pre and post. Because students who did not complete the test
were present through and participated in the intervention, we
did not want to exclude their data. Hence, we compared the
two conditions to one another at pre and post to examine
whether students’ responses were statistically comparable be-
fore and after the intervention. A chi-squared test was used to
statistically compare the two conditions. Because a chi-
squared test requires independent observations, combining
student responses across questions in the test to conduct a
single statistical comparison was not possible. Instead, we
performed the test separately on three questions in the assess-
ment. In the pretest, differences in the frequency of student
responses identified into one of the three categories were not
statistically significant between the two conditions. In con-
trast, in the posttest, a greater percentage of EvoBuild students
provided evolutionary explanations as compared to
EvoExplore students. This difference was statistically signifi-
cant for two of the three questions analyzed. This finding
demonstrated that programming their own model facilitated
greater learning of mechanisms.

For example, one of the scenarios in the assessment de-
scribed a scientist placing a group of guppies/bugs in a habitat
with no predators (Grassland B). This group was described as
consisting of three variations of body colors in equal propor-
tions. Students were told that these guppies lived for 34 years.
The scenario stated that when a scientist visited this habitat

@ Springer

after several years, s/he found that the brightly colored indi-
viduals were the highest proportion in the population.
Students were asked to:

1. Explain what led to the results.

2. Asked what the results might be if an identical experiment
was conducted again.

3. Asked to explain the predicted results of a re-run of this
experiment.

This question had been designed to elicit explanations re-
lated to sexual selection or drift. That is, it was expected that
students would account for the population shift as occurring
due to selection pressures acting on brightly colored guppies
that were more visible to potential mates or as being driven by
chance. Both these explanations were more common among
the EvoBuild students than EvoExplore students. Given be-
low is an example® of an EvoBuild student’s response to the
three questions in this scenario:

1. The red male bugs were mostly the only bugs after
70 years because females can easily find red male bugs
and they could of had babies.

2. Yes, most of the bugs will be red because the females can
spot them easily and maybe have babies.

3. Yes, 88% of the bugs will be red.

(EvoBuild Group 2 Post No. 19)

The student explained that there were more red bugs be-
cause females could spot them easily and have babies. In
addition, the student predicted that in the re-run of the exper-
iment, an identical percentage of guppies would be red.
Though the latter part of the student’s response (no. 3) was
deterministic, the response provided an account for why a
specific color thrived instead of the others: because guppies
of that color were spotted easily by females and could have
babies.

In contrast, a higher percentage of EvoExplore students
provided responses that were non-causal. In other words,
these responses mentioned some individuals reproducing, dy-
ing, or surviving without providing a causal explanatory ac-
count for the specific outcome. Given below is an example:

1. Predators are attracted to red male bugs and their
[there] were no predators put into Grassland B.

2. Yes, red is easy to be noticed by predators and since they
are no predators they will be more and they are going to
keep reproducing.

? Student responses have been transcribed as is from their writing, retaining
grammatical or spelling errors.

J Sci Educ Technol

(0€ 'ON 180 1 dnoin
g4) 23ueyo), uom Ajqeqoid Aoy sojoue UMOIq Y} YNM IQJIdUI I, Uop S}0ds Ay 2oUIS aSNLdIq SIYY JUIy) |
-93ueyd j upnom Ajqeqoid Aoy snoudisAul,, 0s a1e sjods o) dUIS ASNBIAQ SOA
(ST "ON 1504 | dnoiny g5) ‘Tewue I9YI0 OU PuB W) SUILIU0d A[UO JejIqey Iy} 9SNeddq SOX

“wov) 182 0 s1ojepaid
ou are 2101 asnedaq sarddnS oFueIo Jo 107 © o M JI3Y JBY) SSONS UEO | JNq AINS IO MOUY J,UOP AN
"PIAI] A3y 0S SaU0 a3UeIO AU} J8d 0} S10jepald ou dJoM I

(2 "ON 1504 | dnoiny FH) "sojoue NI & 2q p[nom J1dy ysnoy) | Aym jer os

SO[OUR 9]} JO JSOW [U0}D] USJE DABY P[NOM STBI AU} JeU]) STedA ()() | Joye Ul [9snedaq uonorpaid siyy opew |
(zz "oN 1504 7 dnoin) g7) “Suronpoidar dooy 0y Surod

aIe A9y pue 210w 3q [[IM Ay s103epard ou are A3y douls pue siojepaid Aq paonou 9q 03 ASed SI pal ‘Sox

(8 "oN 350 ¢ dno1ny gH) “[serqeq] s&qeq oaey
pue oonpoidar oo} 9snessq s1edk ()7 Joye sSnq oew udI3 AJSow Pey Y PUB[SSeID) Ul JSHUDIS AU} UL |

(ST 'ON
1504 T dnoin g7) "sjods 10700 otwes oY YIIM N0 Uiy JYSIU Loy PUe SOIqeq QAT [[IM SPIEZI] Y} 9SNBIA]
uonorpaid siyy opew os[e | ‘Aem [BAIAINS & Aeme 9AIS), U0p AJ[ear sjods oy asneooq uonorpaid siyy opew |
"0A1AINS 03 d[oy Jo Jeary) ou osod Aot} asneosaq are sjods oy 1009 JeyM It A[[eoI) US0P 1 9SNBIIq ‘SOX
(£ "ON 1504 T dnoiny g5) "woy Jo SS9 S,0107) 9SNEdaq SAIqeq AUBW SE JABY J,UOM PULY
SJ1 JO SSO] (1M SO[OUR JOUJO0 Y, "d1owr Suronpoidor Wwoy) JO 9dULYD 210U 9q OS[e P[NOM 1Y) "UO IdJe]
WO JO OIOW 9 P[NOM IO} U} JO[OD UTELISD B UI SO[OUE QIOUI SeM 910U JT 9s1eoaq uonorpaid siy) opew |
"SSO] SEAL QIOY) ASNBIAq
JOUIIX SUI009q JYSIW YA PUE UMOIq oY], “SuruurSoq oy Ur SOJOUE) JO SIOW SeM IS} 9SNBII] SA[OuL
PAIOJ0O MO[[OA QIO 9q P[NOM I} JUIY) | INq 91} q [[e pinom Koy Jery Ajiqissod & aq pinod a1ay L
(¢ "oN 1504 [dnoiny gq) IomI] oq PNOM SIdqUINU JIOY) 9SNEIA] JNO PIIP JABY P[NOJ SI[OUL
JO SI0[09 IO AT} OS SIO[0D IO) VBT WA} JO IOUL 9q P[NOM IS dIUIS S}OUNXI SI[OUE JO IO[0J ey}
oyew 0} JopIey 31 SUDJeW SO[ouE OIYM 9IOW SULYEW Pojetll A9U) PUE SO[EUId) 0} QAOBINE OIOUT AIOM SOUO
MM A} 9QARIA] [POYRUTIINQ] papudLiil]jl 2q PINOM A0]0D 2UO JDY] UDY] UL YY) O []D UDIDD 2ADY PINOI
SIDA Y] 22UIPIIUIOD 40 JUDPIID Aq ADUs ISNBOIQ SUOTBLIEA AUBW JBY) 3q [[IS I, UP[NOM 1Y) Iy SUIy) |
(€1 "oN 1s0g T dno1n HH)
s3nq pa1 aJow
9q [JI0) pue W) jods ued sSnq ofetof asneosaq par q [[IA UOWIIOD JSOW Y} 9q pjnom ey Snq oy,
's3nq a1ow [oonpoid]
donpiad pue wayy jods ued s3nq oL AsNLIAq SIBIA () 1018 PAI q [[IM SSNQ ISOW Jey) NuIy | ‘SO
's3nq ojewdy
10} 10ds 03 ASe9 210M A1) 9SNEOIQ SINQ PaI dIOW AIoMm 1Y) ey Sulkes Aq siyy urejdxo pynom ISHULIOS Y,
(LT ON
1504 7 dnoiny gq) pare[ndodar pue dAI[e a1 W) 189 J,U.D Jey) SOUO], "Peap 9q 0} A[ONI| UL} dIOW I8
WOy} Jed ULD oYM SOUO d) PUB PISEI[oI Sem peo) snouosiod oy s31oef oy s 31 9sneodq uondrpaid siy) opew |

3,UBD SISO Y} A[IYM punoIdyoeq ay ur ofeynoures 10 apiy ued sarddnd
K13 o) osneoaq s1edk ()G 1oye sarddn3 Aei3 Apsowr pey v weang Aym urejdxo pjnom jSpualos oy yury |

jou
10 ow 10A0 d3ueyd JySiw suonendod MOy SqLIDSIP 0 SWSIUBYIIW [SAJ[-[ENPIAIPUL OU PIPIA0Id I UYA
(HOAIN ON) WSIUBYOaW ON

dTdd Se Papod Sem J1 Jou PIp SIAYIO J[IYM PIALIY) uoneLreA Jenonted jey) Aym 10j uosear [euonippe
ue Surpraoid noyyim a3ueyo e 10J asned se s10yepaid Jo 9oudsqe 10 ooudsaid oy paje)s asuodsar B USYA
(Aadd) sioyepaid Jo 95udsqe J0 d0UISAJ
WISTURTOIW ON|
MAHLO Se papod os[e a1om pue Juidueyo se uonendod [[eI9A0 oY) paqLIDSIP SAsU0dSAI JuOpMIs WoS
azis uone[ndod ur a3uey)

(MHH1O) suoneue[dxy YO

(9ALIY) 10U PIP SUONELIBA JOIO AYM
10 U)X QUIOS 0} ‘JUNOIJE OS[E Jeyy) SaINssard uorda[as 10 0uLYd 0) NP *3'2) PIALIY) S/UOTJBLIEA J1j10ads
& AYM I0J JUNOdOE [esned € Ioym SulAp/SurAIaIns Jo Suronpoidal S[enprAIpul pouonudW asuodsal & UdyA\

(AMNS/dTY) ea1amg/2onpoiday
suoneue[dxo ATBUONN[OAS-UON

Suronpoidai 10 Surarains jo doueyo [enba
Ue Pey| [ENPIAIPUI (OB 9SNe29q [enba s3] 10 210U FUTUIBWAI SE J1B) B JO UONNQLISIP Ay} PAQLIDSIP I USYAN
(OF) 2oueyd enby

Quore aoueyd 03 anp Suiueyd uonendod e ur suoneLea jo suontodoid
PaquIosap Ay J1 [AT St POPOO OS] 219M SUONBLIBA JO SSO[AQLIOSIP JOU PIp Jey) sasuodsar awos
"paonpoidal 10 POAIAINS SUONELIBA UOTYM [JIM S[ENPIAIPUI YOIYM JO
Anpiqesorpaidun oy Jo asnesaq uonendod oy WOIJ SUONELIBA SWIOS JO SSO] POOYI[II] Y} PIGLIOSIP JT USYAN
(LANIQ@ M-yua

sonpoidar 0y AJox1| a10W JO

d1qissod 31 opew uonoRIIE SIY) Jey) PAUOHUSW OS[€ JUIPMIS © J1 A[UO SS S PAPOd sem asuodsal 7 “so[ewud)
0} 9ATIORI)IE QI JeU]) S)ien) Oij10ads JO 9snedaq Sunell S[enpIAIpUl UIE)od POqLIOSIP asuodsar oy) Uy
(SS) uond3as [eNXag

SUONBIAUT JAISSIOINS 0 S)EN) UTEld Jo umop Suissed Jo eapr oyy
PopNIoul Se [[oM S S[ENPIAIPUI 0) 93eJUBAPESIP 0 93eJUBAPE U SB PIAIOS Jel) 0j100ds o) MOy paqLIdSd
(SN) uonodas [eIeN

uononpoidal Jo [EAIAINS Se Yons s[nI Suisn JOypIny Juneroqeld
JNOYIIM JUSWIUOIIAUD U Ul [BNPIAIPUL Y} JOJ 3FeJUBAPESIP 10 9BJUBAPE U SB PIAIIS JIBI) B MOY PAQLIdSIJ
(dS) 2mssaxd uonod[as
suoneue[dxd Areuonnjoaq

sjuaprys Aq popraoid uoneuedxoe Jo puny ogroads oy Jo sopoo-qng € Qe

pringer

Qs

J Sci Educ Technol

3. Probably not, it will come close maybe but not exact be-
cause they will not reproduce the exact number of times
like in the previous experiment.

(EvoExplore Group 2 Post No. 21)

The student explained that because there were no pred-
ators, the red male bugs would keep reproducing. In ad-
dition, s/he predicted that in a re-run of this experiment,
there would again be mostly red male bugs because in the
absence of predators, they would keep reproducing.
However, the exact number of times they would repro-
duce might be different from the first run of the experi-
ment. Note that the explanation does not account for why
none of the other variations thrived instead of the red
ones. It simply mentioned that the red variation survived
and kept on reproducing because there were no predators.

Finally, more EvoExplore students provided responses
that did not include any mechanism. For instance, some
students attributed the absence of predators as the sole
reason for a certain variation thriving without elaborating
on additional individual-level rules. Given below is an
example:

1. Those red ones are maybe the ones that are just normal
ones and since Grassland A and B are diffrent they have
diffrent [different] amount of colored ones.

2. Yes they would because it seems that the ones without
predators are the ones that are red and the ones with pred-
ators have green.

3. It would be the same color because it’s the same thing that
happened with grassland C* it’s just this time it’s a diffrent
color since this Grassland has no predators and other
grassland has them

(EvoExplore Group 2 Post No. 14)

Teacher interviews provided some insight into how stu-
dents’ work might have led to these results. The science teach-
er at Forest Park pointed out that because students were pro-
gramming their own model, they had control over a wider
spectrum of the model. In particular, students were able to
use the code to explain population trends observed from run-
ning the model:

T2: They, I think the first group [EvoBuild] really got
the sense of they’re the ones in control. And they’re the
ones manipulating things and um, the second group
[EvoExplore] only got that in the sense of they could
control the mutation slide, ‘cause I could ask them
who’s controlling mutation in that model. So the first
group, I felt, understood a lot more what was actually

This was the name of the grassland for the re-run of Experiment 1, which was
a camouflage experiment.

@ Springer

happening. And I think that that’s a lot deeper learning
when you’re not guessing about that man behind the
curtain and what's going on. Because they can see and
if they ask me about, “Well is this happening in the
model? Is this happening here?” Then I can say, “Did
you program it to happen in the model?” Um, ‘cause
like, in the second period [EvoExplore], A asked me
today, she’s like, “Well maybe the, maybe the bugs are
getting smarter and they—" And she’s not able to see that
no—R/: Mm. There is no intelligence—72: Nothing’s
changing. There’s no—‘Cause that’s a perfectly valid
assumption for her to think. Maybe just, it’s like, you
don’t know what’s going on.

The teacher described that the EvoBuild students felt
like they were in control and could manipulate a wider
bandwidth of the model, which helped them understand
what was actually going on. He added that this control
facilitated deeper learning when contrasted with the expe-
rience of the model explorers who often tried to guess’
the underlying rules (“about that man behind the curtain
and what’s going on”). Moreover, students’ familiarity
with and access to the code allowed him to leverage it
as a resource when helping students. In contrast, infer-
ences EvoExplore students made about the workings of
the model were harder for him to challenge because they
could not access the code.

On a related note, the science teacher at Highland empha-
sized that assembling the code themselves gave EvoBuild
students greater familiarity with how the model worked:

T1: But the build kids knew what they were doing be-
cause they told them [agents in the model] what they
were doing. Um, whereas some of the kids had to just
kind of explore the model, um, you know, the other kids
put it, the build kids put it together. So there wasn’t all
that time having to figure out— I mean, there was the
initial showing them how to build it. But it wasn’t, you
know, having to like, look at someone else’s work.
Essentially.

Moreover, she pointed out where students in each mo-
dality spent extra time in relation to the other modality:
While EvoBuild students spent additional time in the be-
ginning on learning how to build a model, EvoExplore
students spent extra time trying to figure out how the
model worked because they were looking at someone
else’s work.

> Model rules were presented to EvoExplore students through a teacher dem-
onstration at the start of the activity. They were also accessible on student
worksheets.

J Sci Educ Technol

Table 4 Frequency of responses (percentage in brackets) to three questions in the pre- and posttests

Pretest Posttest
Builders Explorers Builders Explorers
Question 1
Evolutionary mechanism 12 7 31 19
(22.22) (13.21) (60.78) (33.93)
Non-causal 11 10 7 13
(20.37) (18.87) (13.73) (23.21)
No mechanism 31 36 13 24
(57.41) (67.92) (25.49) (42.86)
Total Q1 54 53 51 56
Chi-square = 1.727 Chi-square = 7.734
P>0.05 P<0.05
Question 2
Evolutionary mechanism 6 3 30 16
(16.67) (6.52) (46.88) (22.86)
Non-causal 7 7 8 22
(19.44) (15.22) (12.5) (31.43)
No mechanism 23 36 26 32
(63.89) (78.26) (40.63) (45.71)
Total Q2 36 46 64 70
Chi-square = 2.685 Chi-square = 11.169
P>0.05 P <0.05
Question 3
Evolutionary mechanism 3 2 29 26
(7.5) 4.17) (46.03) (40)
Non-causal 10 10 2 3
(25) (20.83) (3.17) (4.62)
No mechanism 27 36 32 36
(67.5) (75) (50.79) (55.38)
Total 40 48 63 65
Chi-square = 0.765 Chi-square = 0.568
P>0.05 P>0.05

Yates’ chi-square = 0.158
Yates-P > 0.05

Yates’ chi-square® = 0.205
Yates-P > 0.05

* A Yates chi- squared test was also performed because the frequency of some cells was lower than 5.

To summarize, findings revealed that EvoBuild stu-
dents manifested greater learning about evolutionary
mechanisms as compared to EvoExplore students who
investigated a pre-built model. This trend was also
reflected in students’ in-class activity as noted by the
teachers in their interviews.

Discussion

Since the time of Logo in the 1970s, there has been ex-
tensive research documenting that programming is a pow-
erful way to learn about mechanisms underlying phenom-
ena (e.g., Papert 1980; Sherin 2001; Simpson et al. 2005;
Wilensky and Reisman 2006; Wilkerson et al. 2014). In

the introduction, we briefly outlined a classification of
programming environments based on the kinds of primi-
tives available such as text-based, graphical, domain-spe-
cific, or more general-purpose primitives. When students
engage in programming using general-purpose text-based
programming environments, benefits are cumulative over
a long period of time and are reflected in content learning
as well as learning about programming (e.g., Harel &
Papert, 1991; Wilensky 2003). Costs associated with pro-
gramming in such environments such as requiring some
time investment to learn to program might not be felt over
a long time span. However, teachers might want to adopt
programming activities for one-off uses for single activi-
ties or units. When working with first-time programmers
in such scenarios, the costs of using general-purpose text-

@ Springer

J Sci Educ Technol

based programming environments might be more salient
than its benefits of a high ceiling. This, in turn, would
deter the adoption of programming activities for one-off
uses by teachers who are forced to deal with the con-
straints of an over-loaded curriculum and inadequate time.
This deterrence would be particularly salient in class-
rooms where students and teachers are novice or even
first-time programmers. This leads to a design tension
between leveraging the benefits of students engaging in
programming while dealing with constraints of a
classroom.

Our argument in this paper lies at the heart of this
tension, and seeks to address it. We claimed that
quickstart programming toolkits such as EvoBuild can
provide benefits of programming for learning without
costs typically associated with programming activities
such as requiring extended time or prior programming
experience. These toolkits combine programming using
graphical primitives with domain-specific primitives to
make programming easily accessible to even first-time
programmers. To make this claim, we presented a
design-based research study that compared programming
in a quickstart environment with model-exploration activ-
ities for learning about evolutionary mechanisms. The
combined sample from two schools included students
from a range of academic backgrounds, many of who
had never programmed before. Moreover, the study took
as a constraint the time spent on the programming and
model-exploration activities, and both modalities spent
the same number of class periods on the activities.
Under such conditions and over such a short period of
time, one might expect that the value of programming
on learning about mechanisms might not be visible. If
students were programming for the first time to learn
about challenging content, this would reflect in their per-
formance on posttests that were designed to assess content
learning about evolutionary mechanisms. However, our
findings indicate the opposite trend: The programming
students performed quite well by manifesting greater
learning about evolutionary mechanisms as compared to
model explorers.

This work highlights the importance of investing in
research on programming to learn science in two ways.
First, it calls for continued attention on design research on
developing programming environments for learning about
scientific phenomena for K-12 education. In particular, it
brings attention to quickstart environments such as
EvoBuild as well as environments that support their de-
velopment such as DeltaTick. By providing an infrastruc-
ture to parse and present NetLogo procedures as pre-
defined blocks, DeltaTick provided an environment to en-
gage in graphical blocks-based programming in NetLogo.
This infrastructure allowed for designing a quickstart

@ Springer

toolkit that integrated graphical primitives with orienta-
tion to a domain to make programming to represent do-
main structures immediately accessible even to first-time
programmers. It is important to point out that the acces-
sibility of primitives in EvoBuild also comes from close
attention to the alignment between the specific content
and the domain-oriented nature of primitives.
Specifically, students have rich prior knowledge about
individual-level behaviors relevant to evolutionary change
such as survival, death and reproduction (Metz 2010;
Wagh, 2016). Because of their domain-specific and graph-
ical nature, the available primitives in the library reflected
these individual-level behaviors in the form of blocks.
Hence, even students who were first-time programmers
had initial ideas about the kinds of rules to add to their
model to represent individual-level interactions between
organisms in an ecosystem. In addition, the existing infra-
structure of DeltaTick (Wilkerson and Wilensky 2010)
was extended for an alignment with the specific content,
evolutionary processes. In particular, to design EvoBuild,
DeltaTick was extended by adding the ability to define
properties for breeds to allow learners to view and modify
distributions of properties of a population. We need both
kinds of learning environments, quickstart toolkits and
environments that provide infrastructure for such toolkits,
to enable teachers and students to leverage the benefits of
programming for one-off short-term uses in science
classrooms.

Quickstart toolkits provide environments to initiate the
adoption of programming activities in science classrooms.
However, because of their relatively modest ceiling, they
offer limited potential for continued expansion. For this
reason, another implication of this work lies in examining
pathways that encourage and support shifts from using
quickstart environments with a fairly modest ceiling to
environments that offer a higher ceiling. Such shifts will
facilitate meaningful long-term integration of program-
ming activities in science classrooms.

Acknowledgements This research is made possible by support from
the National Science Foundation under NSF grant DRL-1109834.
However, any opinions, findings, conclusions, and/or recommendations
are those of the investigators and do not necessarily reflect the views of
the Foundation. The authors thank Jessica Watkins, Sharona Levy, and
David Hammer for feedback on previous versions of this manuscript.

References

Bamberger, J. (2001). Turning Music Theory on its Ear: Do we hear what
we see; do we see what we say? In Multidisciplinary Perspectives on
Musicality: The Seashore Symposium. lowa City: University of
Iowa Press.

Blikstein, P., & Wilensky, U. (2009). An atom is known by the company
it keeps: A constructionist learning environment for materials

J Sci Educ Technol

science using multi-agent simulation. Int J Comput Math Learn,
14(1), 81-119.

Bruckman, A. (1997). Moose Crossing: Construction, Community, and
Learning in a Networked Virtual World for Kids. Cambridge:
Massachusetts Institute of Technology.

Centola, D., Wilensky, U., & McKenzie, E. (2000). A Hands-on
Mondeling Approach to Evolution: Learning about the Evolution
of Cooperation and Altruism through Multi-Agent Modeling- The
EACH Project. In Fourth Annual International Conference of the
Learning Sciences. Ann Arbor.

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design Research:
Theoretical and Methodological Issues. J Learn Sci, 13(1), 15-42.
https://doi.org/10.1207/s15327809i1s1301.

Dickes, A. C., & Sengupta, P. (2013). Learning Natural Selection in 4th
Grade with Multi-Agent-Based Computational Models. Res Sci
Educ, 43(3), 921-953. https://doi.org/10.1007/s11165-012-9293-2.

Edwards, L. D. (1995). Microworlds as Representations. In A. A. diSessa,
C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and
Exploratory Learning (pp. 127-154). Heidelberg: Springer Berlin
Retrieved from http://link.springer.com/chapter/10.1007/978-3-
642-57799-4 8.

Harel, L., & Papert, S. (1991). Constructionism : research reports and
essays, 1985-1990. Norwood: Ablex Pub. Corp.

Horn, M., & Wilensky, U. (2011). NetTango 1.0. Evanston, IL: Center for
Connected Learning and Computer-based Modeling, Northwestern
University.

Hom, M. S., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014).
Frog Pond: A Codefirst Learning Environment on Evolution and
Natural Selection. In Proceedings of the 2014 Conference on
Interaction Design and Children (pp. 357-360). New York: ACM.
https://doi.org/10.1145/2593968.2610491.

loannidou, A., Repenning, A., Lewis, C., Cherry, G., & Rader, C. (2003).
Making Constructionism Work in the Classroom. Int J Comput
Math Learn, 8, 63—108.

Kafai, Y. B., Carter Ching, C., & Marshall, S. (1997). Children as de-
signers of educational multimedia software. Comput Educ, 29(2-3),
117-126. https://doi.org/10.1016/S0360-1315(97)00036-5.

Kahn, K. (2007a). Building computer models from small pieces. In G.
Wainer (Ed.), SCSC Proceedings of the 2007 Summer Computer
Simulation Conference (pp. 931-936). San Diego.

Kahn, K. (2007b). The BehaviourComposer 2.0: a web-based tool for
composing NetLogo code fragments. Retrieved July 5, 2013, from
http://academia.edu/329330/The BehaviourComposer 2.0 a web-
based tool for composing NetLogo code fragments

Kahn, K., & Noble, H. (2010). The BehaviourComposer 2.0: a web-
based tool for composing NetLogo code fragments. In J. Clayson
& 1. Kalas (Eds.), Constructionist approaches to create learning,
thinking and education: Lessons for the 21st century: Proceedings
for Constructionism 2010. Paris.

Kahn, K., Noble, H., & Hjorth, A. (2012). Three-minute Constructionist
Experiences. In C. Kynigos, J. Clayson, & Y. Nikoleta (Eds.),
Proceedings of Constructionism 2012, Theory Practice and Impact
(pp- 349-358). Athens.

Klopfer, E., Yoon, S., & Um, T. (2005). Teaching Complex Dynamic
Systems to Young Students with StarLogo. J Comput Math Sci
Teach, 24(2), 157-178.

Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic data explora-
tion. Computer Software. Emeryville: Key Curriculum Press
Retrieved from http://scholar.google.com/scholar?cluster=
5929212600541009408&hl=en&oi=scholarr.

Louca, L. T., & Zacharia, Z. C. (2007). The Use of Computer-based
Programming Environments as Computer Modelling Tools in
Early Science Education: The cases of textual and graphical pro-
gram languages. Int J Sci Educ, 30(3), 287-323. https://doi.org/10.
1080/09500690601188620.

Metz, K. E. (2010). Scaffolding children’s understanding of the fit be-
tween organisms and their environment in the context of the prac-
tices of science. In Proceedings of the 9th International Conference
of the Learning Sciences - Volume 1 (pp. 396-403). International
Society of the Learning Sciences. Retrieved from http://dl.acm.org/
citation.cfm?id=1854360.1854411.

NGSS Lead States (2013). Next Generation Science Standards: For
States, By States. Washington, DC: The National Academies Press.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas.
New York: Basic Books, Inc..

Rader, C., Cherry, G., Brand, A., Repenning, A., & Lewis, C. (1998).
Principles to Scaffold Mixed Textual and Iconic End-User
Programming Languages. In Proceedings of the 1998 LE.
Symposium of Visual Languages (pp. 187-194). Nova Scotia.

Repenning, A., & Sumner, T. (1995). Agentsheets: a medium for creating
domain-oriented visual languages. Computer; 28(3), 17-25. https:/
doi.org/10.1109/2.366152.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond,
E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman,
B. & Kafai, Y. (2009). Scratch: Programming for All. In
Communications of the ACM (Vol. 52, pp. 60-67).

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013).
Integrating computational thinking with K-12 science education
using agent-based computation: A theoretical framework.
Education and Information Technologies, 18(2), 351-380. https://
doi.org/10.1007/510639-012-9240-x.

Sherin, B. (2001). A Comparison of Programming Languages and
Algebraic Notation as Expressive Languages for Physics. Int J
Comput Math Learn, 6(1), 1-61. https://doi.org/10.1023/A:
1011434026437.

Simpson, G., Hoyles, C., & Noss, R. (2005). Designing a programming-
based approach for modelling scientific phenomena. J Comput
Assist Learn, 21(2), 143-158. https://doi.org/10.1111/j.1365-2729.
2005.00121.x.

Smith, D. C., Cypher, A., & Schmucker, K. (1996). Making
Programming Easier for Children. Interactions, 3(5), 58-67.
https://doi.org/10.1145/234757.234764.

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the
Revaluation of the Concrete. Journal of Mathematical Behavior,
11(1), 3-33.

Wagh, A. (2016). Building v/s Exploring Models: Comparing Learning of
Evolutionary Processes through Agent-based Modeling (A disserta-
tion). Northwestern University, Evanston.

Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-
based science and constructionism: Exploring the alignment be-
tween students tinkering with code of computational models and
goals of inquiry. Journal of Research in Science Teaching. https:/
doi.org/10.1002/tea.21379

Wagh, A., & Wilensky, U. (2012a). Breeding birds to learn about artificial
selection: Two birds with one stone? In: J. van Aalst, K. Thompson,
M. Jacobson, & P. Reimann (Eds.), 1 0th International Conference of
the Learning Sciences: The Future of Learning (Vol. 2: Short papers,
pp- 426-430). Sydney, Australia, July 2-6.

Wagh, A., & Wilensky, U. (2012b). Mechanistic Explanations of
Evolutionary Change Facilitated by Agent-based Models. Paper pre-
sented at the American Educational Research Association,
Vancouver, April 13-17.

Wagh, A., & Wilensky, U. (2013). Leveling the Playing Field: Making
Multi-level Evolutionary Processes Accessible through
Participatory Simulations. In N. Rummel, M. Kapur, M. Nathan,
& S. Puntambekar (Eds.), To See the World and a Grain of Sand:
Learning across Levels of Space, Time and Scale (Vol. 2, pp. 181—
184). Madison, Wisconsin, June 15-19: Proceedings of CSCL.

Wagh, A., & Wilensky, U. (2014). Seeing patterns of change: Supporting
student noticing in building models of natural selection. In G.
Futschek & C. Kynigos (Eds.), Constructionism and Creativity,

@ Springer

http://doi.org/10.1207/s15327809jls1301
http://doi.org/10.1007/s11165-012-9293-2
http://link.springer.com/chapter/10.1007/978-3-642-57799-4_8
http://link.springer.com/chapter/10.1007/978-3-642-57799-4_8
http://doi.org/10.1145/2593968.2610491
http://doi.org/10.1016/S0360-1315(97)00036-5
http://academia.edu/329330/The_BehaviourComposer_2.0_a_web-based_tool_for_composing_NetLogo_code_fragments
http://academia.edu/329330/The_BehaviourComposer_2.0_a_web-based_tool_for_composing_NetLogo_code_fragments
http://scholar.google.com/scholar?cluster=5929212600541009408&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=5929212600541009408&hl=en&oi=scholarr
http://doi.org/10.1080/09500690601188620
http://doi.org/10.1080/09500690601188620
http://dl.acm.org/citation.cfm?id=1854360.1854411
http://dl.acm.org/citation.cfm?id=1854360.1854411
http://doi.org/10.1109/2.366152
http://doi.org/10.1109/2.366152
http://doi.org/10.1007/s10639-012-9240-x
http://doi.org/10.1007/s10639-012-9240-x
http://doi.org/10.1023/A:1011434026437
http://doi.org/10.1023/A:1011434026437
http://doi.org/10.1111/j.1365-2729.2005.00121.x
http://doi.org/10.1111/j.1365-2729.2005.00121.x
http://doi.org/10.1145/234757.234764
http://doi.org/10.1002/tea.21379
http://doi.org/10.1002/tea.21379

J Sci Educ Technol

Proceedings of the 3rd International Constructionism Conference.
Vienna: OCG (Osterreichische Computer Gesellschaft).

Wagh, A., Novak, M., Soylu, F., & Wilensky, U. (2016). Integrating
agent-based modeling & case Study to learn about population dy-
namics: A design framework. Paper presented at NARST,
Baltimore, April 14-17.

Weintrop, D. (2015). Minding the Gap Between Blocks-Based and Text-
Based Programming (Abstract Only). In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education (pp.
720-720). New York: ACM. https://doi.org/10.1145/2676723.
2693622.

Wilensky, U. (1999a). GasLab—An extensible modeling toolkit for
connecting micro- and macro- properties of gases. In N. Roberts,
W. Feurzeig, & B. Hunter (Eds.), Computer Modeling in Science
and Mathematics Education. Berlin: Springer-Verlag.

Wilensky, U. (1999b). NetLogo. http://ccl.northwestern.edu/netlogo/.
Evanston: Center for Connected Learning and Computer-based
Modeling, Northwestern University.

Wilensky, U. (2003). Statistical mechanics for secondary school: The
GasLab modeling toolkit. International Journal of Computers for
Mathematical Learning[Special Issue on Agent-Based Modeling],
8(1), 1-41.

Wilensky, U., & Centola, D. (2007). Simulated Evolution: Facilitating
Students’ Understanding of the Multiple Levels of Fitness through
Multi-Agent Modeling. In Proceedings of the Fourth International
Conference on Complex Systems. Nashua.

Wilensky, U., & Novak, M. (2010). Understanding evolution as an emer-
gent process: Learning with agent-based models of evolutionary
dynamcis. In R. Taylor & M. Ferrari (Eds.), Epistemology and

@ Springer

Science Education: Understanding the Evolution vs. Intelligent
Design Controversy. New York, Routledge.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a
firefly: Learning biology through constructing and testing computa-
tional theories—An embodied modeling approach. Cogn Instr,
24(2), 171-209.

Wilkerson, M., & Wilensky, U. (2010). Restructuring Change,
Interpreting Changes: The DeltaTick Modeling and Analysis
Toolkit. In J. Clayson & 1. Kalas (Eds.), Proceedings of the
Constructionism 2010 Conference. Paris, France. https://doi.org/
Aug 10-14 .

Wilkerson, M. H., Gravel, B. E., & Macrander, C. A. (2014). Exploring
Shifts in Middle School Learners’ Modeling Activity While
Generating Drawings, Animations, and Computational
Simulations of Molecular Diffusion. J Sci Educ Technol, 24(2-3),
396-415. https://doi.org/10.1007/s10956-014-9497-5.

Wilkerson, M., Wagh, A., & Wilensky, U. (2015). Balancing Curricular
and Pedagogical Needs in Computational Construction Kits:
Lessons From the DeltaTick Project. Sci Educ, 99(3), 465-499.
https://doi.org/10.1002/sce.21157.

Xiang, L., & Passmore, C. (2010). The Use of an Agent-Based
Programmable Modeling Tool in 8th Grade Students’ Model-
Based Inquiry. Journal of the Research Center for Educational
Technology, 6(2), 130-147.

Yoon, S., Anderson, E., Klopfer, E., Koehler-Yom, J., Sheldon, J.,
Schoenfeld, 1., Wendel, D., Scheintaub, H., Oztok, M., Evans, C.,
& Goh, S.-E. (2016). Designing Computer-supported Complex
Systems Curricula for the Next Generation Science Standards in
High School Science Classrooms. Systems, 4(4).

http://doi.org/10.1145/2676723.2693622
http://doi.org/10.1145/2676723.2693622
http://ccl.northwestern.edu/netlogo
https://doi.org/Aug%2010-14
https://doi.org/Aug%2010-14
http://doi.org/10.1007/s10956-014-9497-5
http://doi.org/10.1002/sce.21157

	EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes
	Abstract
	Range of Primitives Used in Programming Environments for K-12 Education
	Agent-Based Modeling for Micro-Evolutionary Processes
	EvoBuild: a Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes
	Programming a Model Using Agent-Based Domain-Specific Primitives
	Running the Model
	Supports for Viewing the Changing Distribution

	The Study: Comparing EvoBuild and EvoExplore
	Activities and Teacher Support
	Data Collection
	Student Sample from the Two Schools
	EvoBuild Students Spent as Many Class Periods on the Activities as EvoExplore Students
	Building Their Own Models Better Supported Learning About Mechanisms

	Discussion
	References

