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Abstract There is a growing use of bottom-up simulation models to reconstruct past
human-environment interactions. Such detailed representations pose difficult questions
not only in their design (the generality-realism trade-off) but also about the inferences
that are made from them. The historical sciences are faced with seeking to make robust
inferences from limited, potentially biased and/or incomplete samples from uncon-
trolled systems, and as a result have sometimes employed narrative explanation. By
contrast, simulation models can be used experimentally and can generate large amounts
of data. Here, using an agent-based model of hunter-gatherer foraging in a previously
unexplored ecosystem, we consider how narratives might be identified from the
trajectories produced by simulations. We show how machine learning methods can
isolate qualitatively similar types of model behaviour based on summaries of model
outcomes and time series. We stand to learn from this approach because it enables us to
answer two questions: (i) under what conditions (representations and/or
parameterisations) do we observe in the model what is recorded in the archaeological
and/or palacoenvironmental record? and (ii) does the model yield unobserved dynam-
ics? If so, are they plausible? Using models to develop narratives is a logical extension
of the bottom-up approach inherent in agent-based modelling and has the potential,
alongside conventional methods of model evaluation, to aid in learning from the rich
dynamics of such simulations.

Data and Code Availability NetLogo model code is available at https://figshare.com/s/141c63b6bedc5332
aba2 (doi: 10.17608/k6.auckland.5327944).

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10816-017-
9355-x) contains supplementary material, which is available to authorized users.

>4 George L. W. Perry
george.perry @auckland.ac.nz

School of Environment, University of Auckland, Auckland, New Zealand

Department of Geography, University of California, Berkeley, Berkeley, CA, USA

Published online: 13 November 2017 €\ Springer


http://orcid.org/0000-0001-9672-9135
http://crossmark.crossref.org/dialog/?doi=10.1007/s10816-017-9355-x&domain=pdf
https://figshare.com/s/141c63b6bedc5332aba2
https://figshare.com/s/141c63b6bedc5332aba2
http://dx.doi.org/10.17608/k6.auckland.5327944
https://doi.org/10.1007/s10816-017-9355-x
https://doi.org/10.1007/s10816-017-9355-x
mailto:george.perry@auckland.ac.nz

Perry and O’Sullivan

Keywords Agent-based models - Human-environment interactions - Machine learning -
Narrative

Introduction

“While archaeologists will continue to craft compelling narratives, we look to a
future where these narratives are based on theoretically informed, explicit, com-
putational models that form the historical framework for a science of social
dynamics.” Barton et al. 2010 (p. 383)

Making robust inferences about contingent socio-ecological systems (as discussed in
Barton et al. 2004) requires an approach that marries empirical advances with modern
methods in simulation modelling and analysis (Barton et al. 2012; Kintigh et al. 2014;
Perry et al. 2016). While in some areas of the socio-ecological sciences data-driven
modelling is fundamental (e.g. data assimilation approaches, Niu et al. 2014), there is a
need to make sure that models are not seen solely as sophisticated and useful, but
largely opaque, predictive devices (Lorscheid et al. 2012; Peck 2004). To be clear from
the outset, we are not arguing that simplicity in model formulation is inherently better
(see Evans et al. 2013 for an interesting perspective on the simplicity-generality debate)
or that simple models are inferentially privileged, but rather that there is much more to
the use and evaluation of models than prediction supported by model-data confronta-
tion. Likewise, we are not defending the ad hoc evaluation of agent-based models
(ABMs) by loose pattern matching that seems prevalent in the fields in which they are
applied. Rather, we consider how narrative approaches when coupled with modern
computational analysis provide a way to illuminate and better understand the dynamics
produced by complex bottom-up models (that is models in which macroscopic dynam-
ics develop from finer-scale processes and interactions) and hence ultimately to learn
from them.

A model’s performance is often measured by comparing its predictions against some
data from the system of interest (e.g. using the types of tools that Mayer and Butler
1993 describe). The model is then deemed acceptable if it reproduces the observed data
to some level. This model versus data confrontation has been used to assess agent-
based models in many contexts, including archaeological systems (e.g. Axtell et al.
2002; Kohler et al. 2012). However, while model-data confrontation is a necessary
component of model evaluation, there are a number of concerns with a sole reliance on
it. A constraint for any pattern-based model evaluation exercise is that a single pattern is
unlikely to be sufficient to select between competing model parameterisation and
structures (Grimm et al. 2005; O’Sullivan and Perry 2013). Different models may have
the same or similar predictive capacity; this problem is called equifinality (Beven 1993)
and is central to the difficulties in inferring dynamic process from snapshot patterns
(Mclntire and Fajardo 2009). While the evaluation of models using multiple
patterns, such as in pattern-oriented modelling (Grimm and Railsback 2012; Perry
et al. 2016), may partially reduce these concerns, they do not resolve them entirely.
Another problem with the emphasis on pattern matching in model evaluation
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is that, insofar as it judges models on their ability to reproduce some observation set, it
emphasises their role as predictive devices over the other purposes they serve. Models
can play important roles in dialogue and learning (Epstein 2008; Oreskes et al. 1994),
and it is not obvious that model-data confrontation is a suitable way to evaluate model
performance in such contexts. It is in this light that we seek to develop a framework for
seeing and using bottom-up simulation models as narrative devices.

The view that simulation models are most appropriately used heuristically is
not new (Oreskes et al. 1994). However, there are challenges in communicating
the learning derived from simulation-based (in silico) experiments and, indeed,
the simulation models themselves (Grimm et al. 2010; Lorscheid et al. 2012).
These challenges may be particularly acute when dealing with extended time
scales (Boschetti et al. 2016). One way to facilitate such communication is to
see and use models as narrative devices (McGlade 2014; Millington et al. 2012;
Morgan 2001; Topping et al. 2015). A narrative perspective is particularly
relevant for the historical natural and social sciences (Abell 2009; Biondi
2014; Carpenter 2002; Griffin 1992). For example, Griffin (1993, p. 1099)
comments that:

“Narrative explanation takes the form of an unfolding, open-ended story fraught
with conjunctures and contingency, where what happens, an action, in fact
happens because of its order and position in the story. Narrative therefore permits
a form of sequential causation that allows for twisting, varied and heterogeneous
time paths to a particular outcome. In narratives, we can see how the cumulative
consequences of past actions increasingly constrain and limit future action.”

Although Griffin (1993) is not discussing simulation, his arguments for narrative
explanation are remarkably similar to those often put forward by advocates of complex
bottom-up models. Likewise, historically focused social scientists have developed
analytical narrative techniques. Bates et al. (1998, p. 10) describe the analytic narratives
approach thus:

“Our approach is narrative; it pays close attention to stories, accounts, and
context. It is analytic in that it extracts explicit and formal lines of reasoning
which facilitate both exposition and explanation.”

Again we would argue that this perspective could fruitfully be adopted,
alongside more conventional approaches, in the evaluation of ABMs. The so-
called ‘narrative analytics project’ (Bates et al. 1998) is, at least in part, a
response to the challenges of making inferences from one-off events such as
case studies (Abell 2009)—this is a general problem for the historical sciences
(Biondi 2014; Cleland 2001, 2011) and beyond (March et al. 1991). As an
example of the quantitative analytic narrative approach, Abell (2007) describes
a Bayesian network approach to narrative, which emphasises the importance of
understanding the causal links between events in a chronology via a graph
theoretical framework. Abell’s approach is just one example of the
many approaches used to make inferences from qualitative data (Gerring
2017). This style of narrative analysis is potentially applicable to simulation
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models such as ABMs. However, unlike the one-off cases that analytic narra-
tives often consider, computational experiments may yield thousands of indi-
vidual model realisations, so isolating different and interesting classes of model
behaviour (or ‘narratives’) is a critical first step in applying narrative ap-
proaches to them. Here, we focus on finding narratives, which we define as
similar trajectories of change, among Winsberg’s (2010) ‘pile of numbers’ (or
model outputs), and then using them to better understand the past dynamics of
socio-ecological systems. Our approach is intended to complement, rather than
supplant, more conventional approaches to model evaluation, and is an effort to
develop the mixed qualitative-simulation approach argued for by Millington and
Wainwright (2016). In fact, what we present could be seen as a special case of
the recent emphasis on finding structure in large, complex datasets that has
driven developments in machine learning and allied methods, with the differ-
ence that we are concerned with identifying qualitative, rather than quantitative,
structure, and also with using the latter to identify the former.

Irrespective of their specific context, narratives are multilayered. At the
highest level, there are overarching discipline-wide narratives such as those of
environmental determinism versus environmental possibilism (the latter as
imagined by Dalby 2016)—these are broad in reach and applicable in
(m)any context(s) (i.e. they are not necessarily place-based). While models
alone cannot resolve these, probably unresolvable, high-level debates, they can
inform them. For example, the dramatic changes in ecosystems that accom-
panied late Holocene settlement of the Pacific archipelagos can be seen either
as inevitable, irrespective of human behaviour, given the fragility of island
ecosystems, or, alternatively, as the outcome of motivated and deliberate
human action, and thus, depending on perspective, either as ecodisaster or
ecotriumph (Anderson 2002, p. 375). ABMs provide a way to consider such
competing narratives: for example, do certain outcomes, such as megafaunal
extinction, occur regardless of model structure and parameterisation (i.e.
representation of environmental conditions and human agency)? A second
level of narrative is more place-bound and focuses on the collective dynamics
of specific locations or systems. For example, Barton et al. (2010) use a
socio-ecological ABM to explore how agricultural and land-use practices
affect soil and hydrological dynamics during the Neolithic in the Wad Ziqlab
catchment, Jordan. Such approaches allow an evaluation of how landscape-
level patterns in biotic and abiotic conditions emerge from finer-scale pro-
cesses and decisions. Most socio-ecological ABMs have focussed on this level
of enquiry. At a yet lower level, narratives may consider individual agents or
actors and their interactions with the environments they inhabit. Such indi-
vidual narratives are important if we want to demystify the emergent dynam-
ics so often canonised in bottom-up models such as ABMs (O’Sullivan and
Haklay 2000). However, before we can appropriately depict and interrogate
individual-level narratives, we need to isolate place- or context-bound model
dynamics. Here, using an ABM of resource foraging on a previously unex-
plored ecosystem (e.g. an isolated island or a fraction of a larger landmass) as
a test case, we address how narratives can be identified using multivariate
statistical analysis and machine learning approaches.
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Methods
The Hunter-Gatherer Foraging Agent-Based Model

We implemented an ABM representing hunter-gatherer behaviour on a newly
discovered landscape. Agents on the virtual landscape, each representing a
hunter-gatherer group, make decisions about resource acquisition, including
the effort they put into somewhat risky hunting for energetically higher-value
resources (e.g. large animals) relative to lower-value but more reliable local
foraging for subsistence food sources (e.g. plant material). The group agents
may also decide to relocate their ‘home camp’ when they have been doing
poorly at resource collection, and as they seek to explore the landscape. Over
time, if successful at resource collection, a group’s population will grow,
enabling it to do better still, and perhaps split into multiple groups that
subsequently independently exploit resources over a wider area. Eventually, a
lack of success in resource collection will lead to the complete abandonment of
the landscape or island.

While we do not consider a specific ecosystem, the context we consider is
typical of the late Holocene human settlement of the islands of the Pacific
(Kirch 2010) and the wave of faunal extinctions that followed (Steadman 1995).
However, our aim is not to reconstruct the dynamics of specific systems or
cultures to inform debates about the colonisation of the Pacific. Instead, we use
the model and our analyses to illustrate a means of analysing the types of
bottom-up model becoming more widely used by archaeologists in a way that
complements and extends traditional model-data confrontation approaches.

A schematic overview of the model is presented in Fig. la, along with a
high-level flow chart depicting the model’s operation in Fig. 1b. The model is
implemented in NetLogo 5.3.0 (Wilensky 1999). Full details of the model
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Fig. 1 The agent-based model. (a) Human-environment interactions are represented in a reciprocal way as are
the attributes and decision-making of the hunter-gatherer groups. In the landscape here the green areas are low-
value subsistence resources, whereas the dark grey shows high-value resource (shading within each shows
heterogeneity of value within each type). (b) A high-level flowchart of the overall model operation; shaded
area shows the dynamics of the model during an individual time step (month). The details of the ‘groups hunt’
step are provided in Fig. 3. Figure (b) redrawn from O’Sullivan and Perry (2013)
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implementation are provided in the supplementary materials following the ODD
protocol (Grimm et al. 2010).

Model Interrogation

Simulation models allow experimentation on aspects of system behaviour that are otherwise
impossible to manipulate (Peck 2004). We conduct two model-based analyses here:

Same Conditions, Same Place, Same Narrative?

We start by exploring whether the same environmental conditions consistently result in the
same model dynamics (trajectories and endpoints). We do this with five analyses under
baseline conditions (Table 1). These analyses consisted of a total of 10,000 model runs on 1,
10, 100, 1000 and 10,000 islands, respectively (i.e. in the first case all 10,000 runs were on
the same islands, the second comprised of 1000 runs on each of 10 islands, and so forth). We
use the term ‘trajectory’ to describe the individual time series arising from each model
realisation and the term ‘narrative’ when referring to clusters of similar trajectories.

We analyse these simulations by clustering: (i) the trajectories that emerge from the
model (i.e. the evolution of the system over time) and (ii) statistical summaries of those
trajectories (e.g. average conditions over time or endpoints). We use a series of state
variables to summarise the model’s dynamics (Table 2, SM Section 2.11). These metrics
describe the duration of settlement, size of human population and level of exploitation of
high-value resources and are reasonably non-correlated (mean Spearman’s p = 0.07; Fig.
SM 1). Clustering the trajectories into narratives is ultimately a problem of time series
classification. To achieve this, we use dynamic time warping (DTW), a method that
measures the distance between time series on the basis of how much one time series needs
to be deformed with respect to another for them to be optimally matched (Giorgino 2009).
DTW can be applied to time series that differ in length, which was important in our case.
The first step in the trajectory clustering was to generate a summary of the variables in each
time series. We did this via principal components analysis (PCA) on population size, high-
value resource take and kill, and local (low-value) resource use at each time step over all
model replicates; PCA component one explained c. 75% of the variance in all cases. We
then applied DTW to PCA axis one and so generated a distance matrix (elements being
distances between time series) to which we applied standard multivariate ordination and
clustering methods. We ordinate the trajectories and their summaries using metric multidi-
mensional scaling (MDS, also known as principal coordinates analysis) with Euclidean
distance (with data scaled) and then used A-means to assess clustering in that ordination
space, with the Calinski-Harabasz criterion used to identify the optimal number of clusters
(Calinski and Harabasz 1974). We fit vectors to the ordination space describing correlations
with summary statistics for each model run. These analyses enable us to evaluate if different
colonisation/settlement narratives can emerge under similar environmental conditions. The
entire workflow is shown in Fig. 2.

What Controls the Narrative?

In a second suite of analyses, we use machine learning approaches to identify the
parameter conditions that lead to the emergence of different endpoints and narratives.
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Table 1 Baseline and uncertainty analysis (UA) parameter values and ranges used in the model evaluation.

Component Parameter Code Baseline value UA range
Spatial structure (3)
percolation.threshold p.thresh 0.5
proportion.high.resource phr 0.15
no.singleton.patches? [C] TRUE
Human demography (5)
min.viable.humanpop min.via 5
max.group.size mx.grp 30
r.humans rhum 0.015
r.humans.sd r.hum.sd 0.1
max.birth.rate.multiple mx.birth 3
Resource demography (8)
r.high rhigh 0.05 0.04-0.06
r.high.sd rh.sd 0.1 0.08-1.2
max.high.K mx.high.K 2.5 2.0-3.0
min.sustainable.h min.sus.h 0.1 0.08-1.2
rlow r.low 0.2 0.16-0.24
rlow.sd rl.sd 0.2 0.16-0.24
max.low.K ms.lo.K 0.5 0.4-0.6
diffusion.rate diffirt 0.1 0.08-0.12
Resource exploitation (9)
resource.per.head res.ph 1 0.8-1.2
hunt.kill.per.head kill.ph 5 2-10
hunt.take.per.head take.ph 0.1 0.01-0.2
hunt.party.size h.size 6 3-12
hunt.range h.mg 16 10-20
max.hunts.per.month mx.hpm 4 1-6
hunt.memory.length h.mem 15 8-20
gather.per.head gat.ph 0.05 0.01-0.1
nearby.range nr.rg 23 1-4
Search behaviour (5)
initial.search.tortuosity init.tort 0.1
search.adjust s.adj 0.05
max.tortuosity mx.tort 0.95
min.tortuosity mn.tort 0.05
relocate.near.hunting? rmh [C] TRUE

We do this by searching for contrasting model dynamics and then assessing the model
parameterisations associated with them. We conducted three uncertainty analyses
across plausible parameter ranges for components of the model relating to: (i) human
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Table 2 State variables used to evaluate model outcomes divided into those that emerge at model
initialisation (i.e. are initial conditions arising from parametrisation rather than being pre-determined), human
population and resource exploitation

Component

Parameter

Variable code

Emergent initial conditions (1)

Human population (5)

Initial human population size

Length of occupation (y; ticks/12)
Average population size (per year)
Maximum population size reached
Tick of maximum population size

Max. number of groups during occupation

Resource exploitation (12)

Mean low-value resource used (per year)

Mean high-value resource taken (per year)
Maximum high-value resource taken (per year)

Time maximum high-value resource taken (per year)
Mean high-resource kill (per year)

Maximum high-value resource killed (per year)
Time maximum high-value resource killed (per year)
Max overkill (kill-taken)

Medium ratio of low- to high-value resource use
Maximum ratio of low- to high-value resource use
Proportion of total available high-value resource used

Time at which 50% of high-value resource exploited

initial.pop

ticks
ave.pop
max.pop
t.max.pop

max.groups

mean.local
mean.taken
max.taken
t.max.taken
mean.kill
max.kill
t.max.kill
max.overkill
med.local.ratio
max.local.ratio
prop.taken
t.prop50

exploitation of resources (n = 10,000), (ii) island resource demography and dynamics
(n =10,000), and (iii) exploitation behaviour and resource demography simultaneously
(n = 25,000). Each parameter combination was simulated just once, but the parameter
space was swept in detail using Latin hypercube samples (Stein 1987)—this follows the
protocol for the evaluation of stochastic models recommended by Prowse et al. (2016).

Fit SV vectors
vegan: :envfit

}

Endpoint narratives

/ vegan: :wemdscale Cluster narratives via
Detailed sweep of k-means clustering and find

parameter space  —» ABM
lhs::randomLHS

optimal k via cascade method —»
stats::kmeans

Trajectory narratives vegan: : cascadeKM

DTW and MDS
dtw: :dtw
vegan: :wemdscale

f

Fit SV vectors
vegan::envfit

Random forests to

relate parameter space

to endpoint / narrative
randomForest: :randomForest

Fig. 2 The analysis tool chain used to identify narratives. Text in courier font refers to R (R-
Development-Core-Team 2016) packages and commands. SV = state variable
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This analysis constitutes an uncertainty analysis on the model’s qualitative dynamics as we
evaluate which parameters are most influential in determining model outcome and over
what ranges. As above, we clustered the model’s outcomes (summaries and trajectories)
using dynamic time warping, metric multidimensional scaling and k-means clustering.

Having classified model summaries and trajectories, we identified the parameters
that influence whether a given model run yielded a given endpoint or narrative. In other
words, we are evaluating the extent to which different parameter settings (or combina-
tions thereof) give rise to the clusters. For this step, we used random forests (RF), an
ensemble-based machine learning method for statistical classification (Breiman 2001).
RFs are based on conventional decision trees in which some parameter space is
recursively divided into units that are as homogeneous as possible in terms of the
outcome being predicted. RF extends decision trees by using bagging (bootstrap
aggregating), in which the final RF model is the average of many individual decision
trees based on bootstrap samples of the data; this approach helps to reduce model
variance (James et al. 2013). RFs have high classification accuracy and overcome some
of the overfitting and instability issues that conventional decision trees can suffer from
(Cutler et al. 2007). RF models do not produce significance tests, but rather identify the
importance of predictors on the basis of how their exclusion affects model performance.
A parameter’s influence on model predictions can be visualised using partial depen-
dency plots in which predictions are made while the parameter is varied across its range
with all others held constant (the ‘marginal effect’). In all analyses presented here,
we constructed the final RF model on the basis of 5000 individual decision
trees and randomly sampled three candidate variables at each split. We assessed
the importance of each parameter in the RF classification on the basis of how
much model performance was diluted by its omission. Classification error was
assessed by confusion matrices (cross-tabulation of observations and
predictions) and the out-of-bag (OOB) error rate, which is based on the error
for each observation using the points omitted from the model training in the
bagging process (James et al. 2013).

Software

For the analyses presented here, we used R 3.3.1 and 3.4.0 (R-Development-Core-
Team 2016) and the RNetLogo 1.0.2 library (Thiele 2014) and the snowfall library
1.84-6.1 (Knaus 2013) for local multicore use. The dynamic time warping distance
analysis used the dw library 1.18-1 (Giorgino 2009), the metric multidimensional
scaling and k-means classification used the vegan 2.4-3 library (Oksanen et al. 2017)
and the random forests were constructed using the randomForest R library 4.6-12
(Liaw and Wiener 2002).

Model Experiments
Same Conditions, Same Place, Same Narrative?

Even on the same landscape, different summaries and trajectories can emerge under the
same parameter conditions (Fig. 3a). Using the statistical summaries to classify the
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simulations consistently resulted in four clusters and the classification into narratives
via DTW of the trajectories consistently five, with one exception (the 10,000 replica-
tions on one island case). The vector fits suggest that the different classes in the
summary analyses (Fig. 3, left column) lie along axes related to the proportion of
resource taken and the length of the occupation. For the classifications based on
trajectory, the classes relate to proportion of resource taken, initial population size
and mean high-value resource kill per year (Fig. 3, right column). Thus, the state
variables that explain a given simulation’s position in the ordination space differ
between the analysis of endpoints and trajectories; for example, length of occupation
is only important in the former. These differences suggest that analysis of summaries
and trajectories is not redundant and can reveal different, if complementary, model
dynamics.

The classes that emerge from the use of summary statistics and the trajectories do
not map onto each other (Fig. 4 and Fig. SM 2), with the DTW tending to split the
classes related to less successful settlement histories into two classes but not dis-
criminating between others (Figs. 4 and 5). That the two classifications do not
directly map onto each other indicates that different information is contained in the
summary statistics and in the entire trajectories. The narratives identified by the
DTW approach comprise four prolonged, more successful settlements and two short-
lived failures. The main difference between the failures (Fig. 5d, f) seems to lie in the
rate of resource procurement in the first few years of the simulation; such subtle
differences are likely very difficult to discern in archaeological or
palaeoenvironmental records. The four successful narratives are more varied. Two
of them are prolonged (multicentury; Fig. 5b, ¢) and two are shorter (multidecadal,
Fig. 5a, e). Of the two prolonged occupations, one (Fig. 5b) culminates in a peak
towards the end before abandonment and the other is more temporally consistent
before tapering away (Fig. 5¢). The two medium length occupations are more similar,
but again vary in their ending (boom-bust vs. slow decline). The classification of the
trajectories does not discriminate between the longer dynamics based on the sum-
maries (Fig. 5b, c¢) and the classification of the summaries does not discriminate
between the two short (failed) narratives (Fig. 5d, f). Neither the endpoint nor the
narrative clusters relate to individual landscape geographies (Fig. 6).

Using Machine Learning to Identify What Controls the Narrative

The analyses described above suggest that even in the same setting contrasting
dynamics can arise. The archaeological record contains a variety of trajectories and
narratives, not least because locations vary in their physical geography and were settled
by different groups of people; our preliminary analysis suggests that contingency or
‘chance’ plays an important role in the narratives that emerge under a given set of
conditions. However, it is informative to isolate the parameterisations that lead to the
emergence of different narratives because it may, via surrogative reasoning (that is,
applying learning from a model to some real system; Contessa 2007), yield some
insight into the types of human behaviours and environmental conditions more likely to
have been associated with them. Again, while our model is not intended to be a highly
realistic representation of a specific system, the analysis approach we describe here is
applicable to more targeted simulations.
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(a) Endpoint Dynamic time warp (DTW)

: 2.0 °

o 1.0 o
5 initial. y
k7l PO 0.5
[ s
g awepd )
& meankil . 0.0
propkil” ° il
tmaxkill & t 00
5 ticl
1

T T T T T T T T T T T
-5 [ 5 10 3 2 1 0 1 2 3 4

. initial.popse,
04
o
c 5 o
2 initial.poy
3 X i pop
I} ave.pop
£ 0 ¥ mean.kill
a .
N prop.kill
5 Incks
o e 15
T T T T T T T T T T T 1
8 -6 -4 -2 0 2 4 2 A [ 1 2 3 4
(c)
10 . 1.5 o

0.5 +

0.0

Dimension 2

-0.5 -

(d)

max.overkill®,

o

o~
c 0 o
S
‘% Mmean
G
£ 57
a . . 4
/&.pop’
-10 4 prop.taken . s
-1.5 o
15 T T T T T T T T T
0 5 10 2 -1 0 1 2 3

Dimension 2

prop.kill
tmaxkill

-4 -2 [ 4 6 8 4 -3 2 A [ 2 3

Dimension 1 Dimension 1
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For all three parameter space explorations, the RF classifications suggest that there
are three to five classes, which blend into each other (Figs. 7 and 8 and SM 3-6), falling
on a continuum from short, low exploitation (‘failed’) settlement to prolonged, high
exploitation (‘successful’) settlement. This is a similar classification to those shown in
Figs. 4 and 5; again, the clusters identified on the basis of the summary conditions and
the trajectories do not perfectly map onto each other (Fig. SM 7). The clustering
analysis suggests that whereas there is just one way to ‘fail’, there may be multiple
ways to ‘succeed’ in colonising an island (taking resource exploitation and settlement
duration as indices of success).

The predictive performance of the model ranges from around 50 to 70% based on
out-of-bag error estimation. While the RFs predict the classes at each end of the
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Fig. 4 MDS ordinations for the scenario where 100 islands were simulated 100 times each, showing the
clusters as identified by the statistical summaries (a) and the trajectories via DTW (¢). In (b) and (d), the plots
are coloured such that the location of each point in the ordination spaces is based on the summary and DTW,
respectively, but coloured by the other. The letters on (a) and (c) relate to the time series plotted in Fig. 6.
Vectors as per Fig. 3
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Fig. 5 Representative time series (trajectories) for each of the clusters identified by MDS ordination of
statistical summaries of the trajectory and the trajectories themselves via DTW. The position in ordination
space of each of these time series is shown in Fig. 4

spectrum of dynamics (i.e. prolonged successful settlement vs. short failed settlement)
reasonably well, the intermediate ones are less successfully predicted (Table SM 1).
Some of this error may arise from the stochastic nature of the model we evaluate—
similar parameterisations may result in quite different outcomes which violates the

@ Springer



Perry and O’Sullivan

(a) (b)
1.0
initial.pop 1+
10 * 05
N (;I 0.0
S 5 5 .0 +
5 to, g : ! % -0.5 + s ax.overkill , s
£ 0 e = il g LR
£ " ; : £ P/ .
e % max Kill PO Q107 7 prop kil
5 - £ ticks
N 15
.
T T T T T T T T T T T T T T
-8 -6 -4 -2 0 2 4 -2 -1 0 1 2 3 4
Dimension 1 Dimension 1
(c) (d)
oE - I - o0 B - =
- HE - Al - Em -
+-| - - o - -
— - = 74 =
, 7 [ w C B -
goymm - N - celE - =m - -
o mm - HEN - 8 5 - . -
Ta{mm - N - e - .-
o mm - N - - . -
o mm - M - A - .-
- - - Gl - -
I T T 1 I T T T 1
1 2 3 4 1 2 3 4 5
Cluster/Narrative Cluster/Narrative

Fig. 6 Top row (a and b) shows MDS ordination of 10,000 model runs with 1000 replicate runs were
conducted on 10 islands. The different colours denote the islands, with (a) the MDS based on summary
measures of the final condition and (b) that based on DTW of the trajectories. The bottom row (¢ and d) shows
the corresponding Hinton plots with the size and colours of the squares representing the frequency of each
cluster/narrative on each island. Although some narratives occur more frequently than others, there is no
pattern in cluster frequency by island identity

smoothness (continuity) assumption inherent in classification (that is, that points near to
each other in the parameter space will map to similar outcomes; Chapelle et al. 2006, p.
5). This issue could be explored by repeated simulation of the same parameterisations,
but this would come at a computational cost that, assuming finite digital resources,
would limit exploration of as broad a parameter space. When both island resource
demography and human exploitation behaviour are evaluated simultaneously, a slightly
different suite of predictors are identified as influential in the classifications based on
the summary statistics and the trajectories. In the summary-based classification
(Fig. 7d), the four most important parameters are the area over which hunting takes
place (hunt.range), the number of hunts per month (max.hunts.per.month), the distance
over which local foraging occurs (nearby.range) and the size of the hunting party
(hunt.party.size). In the DTW-based classification (Fig. 8d), the four most important
parameters are the area over which hunting takes place (hunt.range), the carrying
capacity for high-value resources (max.high.K), how much resource can be gathered
per head (gather.per.head) and the distance over which local foraging occurs
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Fig. 7 Summary of a model-based classification of 25,000 model runs, using statistical summaries of each,
with island resource demography and human search simultaneously evaluated using a Latin hypercube, shown
here reduced to two dimensions via MDS. a MDS ordination of the model runs with vectors as per Fig. 3, b
and ¢ boxplots showing length of occupation and mean take by cluster, respectively, d importance of predictor
variables (model parameters) in splitting the clusters and e partial dependency plot for the most important
predictor (hunting range), with dashed lines showing a smoothed fit. Colours represent clusters identified via
k-means clustering and the optimal number of clusters via the Calinski-Harabasz index; clusters here are not
the same as those in Fig. 8

(nearby.range). Thus, for the summary-based classifications, parameters related to
human behaviour are the most important, whereas for the DTW-based trajectory
classification, a combination of resource demography and human behaviour is
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Fig. 8 Summary of a model-based classification of 25,000 model runs, using DTW for each trajectory, with
island resource demography and human search simultaneously evaluated using a Latin hypercube, shown here
reduced to two dimensions via MDS. a MDS ordination of the model runs with vectors as per Fig. 5, b and ¢
boxplots showing length of occupation (months) and mean kill by cluster, respectively, d importance of
predictor variables (model parameters) in splitting the clusters and e partial dependency plot for the most
important predictor (hunting range), with dashed lines a smoothed fit. Colours represent clusters identified via
k-means clustering and the optimal number of clusters via the Calinski-Harabasz index; clusters here are not
the same as those in Fig. 8

important. However, where only resource demography is evaluated, the high-value
resource’s carrying capacity is overwhelmingly important in both classifications (Fig.
SM 3 and 4). When human search behaviour is considered alone then in the summary-
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based classification hunting range, the maximum number of hunts per month and the
nearby range are the top three predictors, whereas for the DTW-based classification,
hunting range, resource gathered per head and nearby foraging range are the most
important. Interestingly when both sets of parameters are varied, parameters related to
resource demography become relatively more important than when they are varied with
fixed exploitation parameters; this suggests interactions between parameters related to
humans and those related to the environment.

The RF analyses identify the importance of each parameter in isolation, but
partial dependence plots (Fig. 7e and 8e) show the marginal effects of a given
parameter (that is the effect of a predictor while holding all others fixed) on the
probability of an outcome being placed into a specific class. For the most part, the
partial dependence plots suggest the marginal effects are intuitive in their direc-
tion. They do not show parameter values at which the probability of belonging to
different clusters (or narratives) change abruptly suggesting a lack of clear thresh-
olds in outcomes—this reflects the way that the clusters intergrade into each other
rather than being discrete.

Discussion
The Analytic Approach

Evaluation is central to any modelling exercise, and can take the form of model versus
data confrontation or it might focus on evaluating how much we have learned or
communicated with the model of interest (Barton 2014; Bennett et al. 2013). At its
heart though, any model evaluation is concerned with closing the surrogative reasoning
loop: that is, relating the model to the theoretical and/or empirical context(s) it is
grounded in. There is little doubt that modern methods of statistical inference for
stochastic processes have a valuable role to play in parameterising and analysing
simulation models such as ABMs (Hartig et al. 2011; Perry et al. 2016; van der Vaart
et al. 2015). In some settings, however, the concern is not solely with pattern matching
but is, instead, with identifying typical model dynamics and making robust inferences
about them to inform theory development and data collection. Furthermore, the targets
that a model is evaluated against may be qualitative rather than quantitative. Our
approach draws on aspects of the narrative analytic approach but in a way that is rather
different from that articulated in the social science literature. The similarity is that we
are seeking to establish quantitative links between individual case studies and
formal theory—we are concerned with “what benefits are, or can be, secured by
formalizing verbal accounts?” (Bates et al. 2000, p. 696)—but the difference is
that our ‘verbal accounts’ are the outcomes of experiments conducted with
bottom-up simulation models.

Of course, the use of models to generate narratives requires that the model itself is
credible (or realistic), both in representation (the processes included and how they are
mimicked) and in the parameterisation of that representation. Direct model-data eval-
uation is challenging for models of archaeological and palacoenvironmental systems
(Biondi 2013; Perry et al. 2016), and, as Barton (2014) argues, it is perhaps better in
such settings to see the use of and archaeological and palacoenvironmental data for
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model or theory refinement and model-based learning, rather than direct model-data
confrontation. The use of models in complexity science has tended to turn the standard
inferential chain on its head such that models are used to generate theory rather than
vice versa (Dowling 1999; O’Sullivan 2004)—in this way we can potentially ‘coax
experiments from history’ (Deevey 1969) using simulation models. Unfortunately in
many ABM-based projects, the closure of the surrogative reasoning loop has tended to
rely on pattern matching and has run the (seductive) risk of affirming the consequent
(i.e. our model produces pattern x and the system of interest shows pattern x; therefore,
the explanatory mechanisms in the model are potentially those driving the system). It is
also the case that many evaluations of ABMs rely on emergent macroscale patterns
(e.g. population size or settlement location) rather than agent-level phenomena such as
narrative trajectories (see Millington et al. 2012). Visualisation is important in testing,
evaluating and communicating any model (Dorin and Geard 2014; Grimm 2002; Lee
et al. 2015) and can help to identify model trajectories and narratives. However,
complex bottom-up models, such as ABMs, tend to be highly dimensional and show
rich spatio-temporal dynamics. There are advantages in using developments in data
science to identify qualitative classes of model behaviour (e.g. narratives) that emerge
from the model; such classification provides a bridge to the in silico narratives
advocated by Millington et al. (2012) and McGlade (2014).

Inference from Narrative

As Griffin (1993) notes, narratives do not of themselves constitute causal under-
standing and, indeed, a narrative device need not contain causality to be successful as
such. Earlier, we argued that in some model evaluation contexts, the “concern is not
with quantitatively rigorous pattern matching but with identifying typical model
dynamics and making robust inferences from them”. Our position echoes the view
of Barton et al. (2012) that the application of models to the types of systems we
consider may be better suited to the development of generalities rather than site- or
culture-specific reconstructions (although see Evans et al. 2013 for a well-argued
case for more complicated site-specific models). While we have isolated the types of
dynamics our ABM can generate, we have not broached the types of inferences we
might make from this process. Developing these inferences will be challenging
because it requires assessing the types and dynamics of settlement at a particular
place and time. Clearly having identified a suite of candidate narratives and shown
the types of conditions under which they might occur, the necessary next step is to
ground them in relevant empirical information and, ultimately, crystallise them in
theory.

While there is a rich literature on quantitative model-data comparison, it
tends to give primacy to contemporary observational data and how (best) to
confront qualitative model outcomes with qualitative data is less clear (Bennett
et al. 2013); this is, again, an area where environmental modellers may need to
turn to the social sciences for inspiration. If by focussing on trajectories not
just endpoints or statistical summaries we consider the output of simulation
models as narratives, then some of the approaches of comparative history
become useful (Lange 2013). Mahoney (2003, p. 11) describes narrative anal-
ysis as an approach for comparative analysis of historical cases, which “is
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fundamentally concerned with explanation and the identification of causal
configurations that produce major outcomes of interest”. In a model evaluation
context, pattern-oriented modelling (POM; Grimm and Railsback 2012) is
concerned with using multiple observed patterns to act as filters on model
structure and parameterisation (i.e. the model configurations that yield interest-
ing dynamics); these patterns are typically quantitative. In a qualitative context,
the filters used in a POM exercise will be crucial and must include not just the
end of the story (i.e. the ‘final’ spatio-temporal outcome) but also the order and
position of events in time and space. Developing narrative-type approaches to
model evaluation will help to provide the link between simulation and qualita-
tive methods advocated by Millington and Wainwright (2016).

As a shallow example of how a pattern-oriented comparative narrative
analysis might proceed, we could compare the contrasting outcomes our model
produces with the dynamics recorded in the palacoenvironmental and archaeo-
logical records. Looking at the narratives in Figs. 3, 4 and 5, two broad types
of settlement history emerge: (i) prolonged settlements with high-value re-
sources exploited effectively and (ii) short-duration settlements with high-
value resources left more or less unexploited. Examples of both dynamics can
be found in the archaeological literature describing the settlement of the islands
and landscapes of remote Oceania in the late Holocene. For example, southern
New Zealand, where traditional Polynesian agriculture was not possible due to
the cool climate, typifies the rapid, if short-term, exploitation of high-value
food resources (Rawlence et al. 2015; Smith 2013), and the Pitcairns group
(south-eastern Pacific) a less successful colonisation (Weisler 1995). However,
the palacoenvironmental and archaeological records suggest that failed or im-
permanent settlements tend to be associated with very specific circumstances
such as extreme remoteness, depauperate pre-settlement ecosystems and/or
unfavourable climatic conditions (Allen and Wallace 2007; Anderson 2002;
Nunn and Britton 2001). These controls operate at spatio-temporal scales that
our model does not consider. Furthermore on such islands, humans may have
deliberately changed their behaviours and decision-making to avoid the risk of
ecosystem collapse (Rolett 2008). There are few, if any, instances of ‘suitable’
landscapes not being successfully settled or exploited. So what might explain
this discrepancy? Our model considers just a single settlement point in the
landscape (or island), albeit one with some resources available, and it seems
more likely that dispersing humans would systematically explore newly found
landscapes; or, perhaps more charitably, we might interpret the failed settle-
ments as representing advance parties, especially given that no virtual island
proved ‘immune’ to settlement. This is a case where both the model and the
data are under-determined. Certainly, however, model-based narrative analyses
will need to be more rigorous and thorough than that we present here and must
focus on the ordering and interdependency of events—both of which are central
to a narrative approach and historical explanation—rather than just their out-
come. Developing a framework for model-derived narrative analysis is chal-
lenging, not least because of the potentially large amounts of data involved, but
approaches such as those described by Abell (2007) may represent useful
starting points. If outcomes are the sole interest, then static data-driven models
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may be a more fruitful way to reconstruct the endpoints of ancient human-
environment interactions (e.g. see the approach adopted by Perry et al. 2012).

Notes on Computational Implementation

The computational workflow we adopted (Fig. 2) has multiple steps and at each of
them the analytical methods we used could be substituted by others. We have adopted
reasonably familiar methods (classical MDS, PCA, k-means clustering) to make our
approach as accessible as possible. Central to our analysis is the clustering of massive
distance matrices (up to [2.5 x 10°]* elements). Tools for clustering high-dimensional
data are developing rapidly (James et al. 2013) and are applicable to the types of
questions we consider. While methods such as random forests are becoming widely
used to support supervised and semi-supervised classification (e.g. Menze and Ur 2012
is a recent archacological example), they are more rarely used to evaluate the outcomes
of ABMs. Dynamic time warping proved an effective way to compare and classify the
temporal dynamics of the model experiments that we conducted. There are statistical
alternatives to DTW, such as functional data analysis (Ramsay and Silverman 2005),
which are worth exploring, not least because DTW is computationally demanding, for
data sets of the size we consider.

Conclusions

Narrative and related methodological approaches (e.g. narrative analytics and
comparative narrative analysis) provide a way to interpret the dynamics of
complex bottom-up simulation models. Narrative approaches are usually applied
where there are few case studies to work with (small #), but in a model-based
setting there may be massive amounts of data to sift through (large n). Machine
learning approaches provide powerful ways to identify narratives from individ-
ual trajectories and to isolate the circumstances under which they might arise.
The challenge then lies in developing causal inferences regarding those narra-
tives and their plausibility. The approach we describe is likely most appropriate
for empirically inaccessible (or difficult to access) cases in the medium- to far-
past or future.
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