Vectorization of Cellular Automaton-Based
Labeling of 3-D Binary Lattices

Peter Zinterhof

Abstract Labeling connected components in binary lattices is a basic function in
image processing with applications in a range of fields, such as robotic vision,
machine learning, and even computational fluid dynamics (CFD, percolation the-
ory). While standard algorithms often employ recursive designs that seem ill-suited
for parallel execution as well as being prone to excessive memory consumption and
even stack-overflows, the described new algorithm is based on a cellular automaton
(CA) that is immune against these drawbacks. Furthermore, being an inherently
parallel system in itself, the CA also promises speedup and scalability on vector
supercomputers as well as on current accelerators, such as GPGPU and Xeon PHI.

1 Introduction

Labeling connected components in binary lattices is a basic function in image
processing with applications in a range of fields, such as robotic vision, machine
learning, and even computational fluid dynamics (CFD, percolation theory). While
standard algorithms often employ recursive designs that seem ill-suited for parallel
execution as well as being prone to excessive memory consumption and even stack-
overflows, the described new algorithm is based on a cellular automaton (CA) that is
immune against these drawbacks. Furthermore, being an inherently parallel system
in itself, the CA also promises speedup and scalability on vector supercomputers as
well as on current accelerators, such as GPGPU and Xeon PHI.

The discussed algorithm for finding connected components within 3-dimensional
lattices is based on a Cellular Automaton (CA) [1] which is a classic and well-
studied tool in computer science.

In general, Cellular Automata operate on a set of cells (e.g. pixels or data items)
which are manipulated according to a set of transition rules, which can be applied
to all cells sequentially or in parallel. The manipulation is repeated iteratively until

P. Zinterhof (<)

Department of Computer Science, University of Salzburg, Jakob-Haringer-Str. 5, 5020 Salzburg,
Austria

e-mail: peter@zinterhof.com

© Springer International Publishing AG 2017 89
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_6

mailto:peter@zinterhof.com

90 P. Zinterhof

Table 1 Execution times (ms) of dense CA of varying dimensions

CA dim GTX680 NEC ACE-SX Tesla P100 Xeon E1620 Xeon Phi 5110

128 0.25 0.57 0.26 11.37 n/a
256 1.86 3.71 0.69 68.85 n/a
384 6.53 13.37 5.8 189.88 n/a
512 15.55 31.81 5.8 399.86 n/a
704 49.55 79.03 13.98 772.18 42.44

some stopping criterion has been reached, for instance an equilibrium condition in
which no further changes do occur or some runtime constraint has been met.

Among a series of convenient characteristics of Cellular Automata we want to
emphasize their decent memory requirements which in most cases will be fixed
during runtime and proportional to the number of cells while being agnostic to cell
states. Also, updating cells in a CA is an operation that shows very high degrees
of data-locality, which by itself can be regarded as an important prerequisite in the
context of implementations for massively parallel and even distributed systems.

We consider these properties to be quite an advantage over recursive algorithms
for finding connected components, which display patterns of memory consumption
that are related both to the number and states of lattice cells. This makes CA-
based computation of connected components an attractive choice for tightly memory
restricted computer systems, in some cases probably even the only viable choice.
Additionally, two very important advantages of the proposed algorithm can be
named by the homogeneity of computational intensity within the lattice of cells, and
the high regularity of memory access patterns during the iterations of the algorithm.
Both specifics lend themselves well to high performance implementations on
parallel systems.

As the set of transition rules can be applied to all cells of the lattice in parallel,
the computational core of the algorithm is inherently parallel, too.

Our main contribution is given by the definition and discussion of vectorized and
parallel implementations of the basic CA-algorithm on a variety of recent vector-
and parallel compute architectures (Table 1).

2 Related Work

This work is based on the important paper by Stamatovic and Trobec [4] which
introduces a new method of computing connected components in binary lattices by
application of the well-known theory of cellular automata' in a new way. Compared
to [6] we concentrate on the 3-D case instead of the 2-D case of input data.

' A comprehensive introduction to CA theory can be found in [2].

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 91

Table 2 Typical memory CA dim |Matlab | Cellular automaton
requirements (GB) for Matlab

function ‘bwconncomp’ and 256 1.83 0.13
reported CA-based 512 11 1.0
implementations 768 29 3.6

The considerably = higher = RAM-
requirements for Matlab’s ‘bwconncomp’
function may also lead to swapping on
some systems and CA dimensions, which
will not occur in the CA-based counterpart

Stamatovic and Trobec [4] also covers the 3-D case but puts more emphasis on
the discussion of algorithmic details and the general proof-of-concept by display-
ing implementations in Matlab and NetLogo while this contribution is focused
on various aspects of high-performance implementations on parallel hardware.
The well-known Matlab software environment also offers some built-in function
‘bwconncomp’ which is capable of computing connected components within multi-
dimensional arrays. Despite being convenient to use, Matlab’s implementation falls
short with regards to performance, memory requirements (Table 2) and potential use
of accelerators, such as GPUs.

Other related work includes the class of stencil-based algorithms, which are not
widely regarded as siblings of CA theory but the field of numerical analysis. To
name just a few, stencil-based algorithms are applied in areas such as computational
fluid dynamics (CFD), Lattice-Boltzmann computations, Jacobi solvers, Simulation
of heat-transfer (e.g. convection) and image processing. Due to the importance
of stencils in computer science’ there have been many approaches to improve
computational performance of the core algorithm by means of vectorization and
parallelization [3]. Initially, these approaches were mostly based on optimization of
some given algorithm on some specific target system. This exhibited limitations both
to portability and usability, as forthcoming developments in parallel and distributed
systems technology or additional requirements on the algorithmic level implied deep
changes to the initially optimum code bases and implementation details.

Various forms of code generators and definition languages (for more information
also see the interesting work on the pochoir stencil compiler [5]) for stencil compu-
tations have been described, which essentially introduce some kind of abstraction
layer between actual compute hardware and the mathematical definition of stencils.
Due to ever increasing complexity in compute hardware, namely increasing number
of memory levels that operate at different speeds and latencies, and increasing
numbers of cores per system, the generation of high performance code is now a task
that seems to overwhelm not only most human software developers but also many
standard code generators. To alleviate this rather undesirable situation, special auto-
tuning frameworks have been proposed. These frameworks aim to sift through the

2The large-scale research project ‘Exastencils’ (http://www.exastencils.org/) is also to be men-
tioned in this context.

http://www.exastencils.org/

92 P. Zinterhof

enormous number parameters found in the implementation of some stencil code
and find optimal settings automatically without requiring much domain-specific
expertise by the user.

Despite this intriguing corpus of related work, we found very little support for
the kind of mathematical operations that the proposed CA-based algorithm is based
on. Also, most work on stencil-based algorithms are based on regular and dense
datasets, while our approach complements computation of dense datasets by some
sparse formulation of the CA update routines. To the best of our knowledge, we will
give the first report on the application of this CA-based algorithm in the context of
sparse lattices on parallel hardware.

3 Algorithm

The basic algorithm for computing a 3-dimensional Cellular Automaton for finding
connected components in a lattice follows [6]. The main algorithmic steps show
great similarity to a stencil computation, in which floating point data is exchanged
by integer data and the numerical summation of stencil pixels is replaced by the
computation of the maximum value within the stencil pattern.

Also, we restrict the ‘observed neighborhood’ of each cell to the Von-Neumann
neighborhood, which is defined as a center- or ‘host’-cell and two directly adjacent
neighbor-cells for each dimension. Following Trobec and Stamatovic [6] the lattice
boundary cells are fixed during cell updates. By employing this fixed boundary
condition the resulting code complexity can be reduced, which is an advantage on
most of the projected target platforms that we will consider in the following section.

On entry, the binary lattice describes a distribution of ‘background’ and ‘fore-
ground’ values only. The task of finding connected components is accomplished by
a short initialization phase, along with the actual Cellular Automaton update phase,
which by itself is an iterative process.

3.1 Initialization

During initialization the binary lattice data will be transformed into an initial
configuration or ‘coloring’ in which each foreground pixel will be given a unique
index value or ‘color’ that will enable a clear distinction of pixels inside the lattice.
For performance reasons we refrain from the initial coloring scheme described by
Trobec and Stamatovic [6], which takes into account so-called ‘corner pixels’ for
setting up the initial lattice values. Instead we choose a strictly monotonous series of
cardinal values that are attached distinctively to any binary foreground pixel. Albeit
this approach is inherently sequential (Algorithm 1), we found it of sufficient speed.
Alternatively, initial coloring can also be achieved by choosing the positional data of

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 93

each lattice point, which is given by the distinct tuple of (x, y, z)-values from which
some distinct cardinal value can readily be derived in parallel execution mode.? It
is essential to have boundary cells being initialized to ‘background’ states. This can
be accomplished either in the initial binary lattice data or in initialization step.

3.2 Cellular Automaton Update

The update rule for the lattice (CA1) is applied to each cell that has neither been
labeled as ‘background’ nor is a member of the boundary of the lattice. Each
iteration of the Cellular Automaton takes CA1, the current state of the CA, and
yields a new lattice CA2 in which the states of non-background and non-boundary
cells have been updated. The update rule is given by the maximum function, applied
to the current host cell C and its 6-neighborhood of surrounding cells. As each to
be updated host cell C might also be a neighbor cell, this newly computed cell state
must not be stored at the current lattice position but in a disjoint memory location
in state array CA2, hence the transform CA1— > CA2. Algorithm 3 gives an outline
of the update process in pseudo code.

Algorithm 1 CAinitialize
1: procedure CA_INITIALIZE(input: binary_lattice, output: CA)

2: color < 0

3: for all cells in binary_lattice do
4 if cell then

5: color <— color + 1

6 CA.cell.color < color
7 return(CA)

1: procedure MAXIMUM_NEIGHBOR(input: cell, output: color)
2: color < cell.color

3 color <— max (color, cell.up)

4. color <— max (color, cell.down)

5: color <— max (color, cell.left)

6: color <— max (color; cell.right)

7 color <— max (color, cell.before)

8 color <— max (color; cell.after)

3Let’s consider a cubic lattice of dimension N. For any lattice element at some position (x, y, z) the
unique positional information can be used to derive an initial coloring Color = (((z * N) + y) *
N + x.

94 P. Zinterhof

Algorithm 2 Termination check

1: procedure TERMINATION(input: CA1, input: CA2, output: bool)
2: for all cells in CA1 do

3: if (Cal.cell.color NOT CAZ2.cell.color) then return False
return True

Algorithm 3 Cellular automaton update
1: procedure CA_UPDATE(input: CAl, output: CA2)
2: for all cells in CA1 do
3: if cell NOT (background OR boundary) then
4: CA2.cell.color <— maximum_neighbor (CAl.cell)

3.2.1 Maximum Operator

Despite being a very basic operation, computing the maximum pixel values of the
surrounding neighborhood of each cell constitutes the main part of the Cellular
Automaton which usually will take most of the total runtime of the proposed
algorithm on any given hardware platform. Hence, we aim to support high levels
of performance not only by applying proper platform-specific code optimizations
(see Sect. 4), but also by choosing hardware-friendly operations in this most crucial
algorithmic core operation.

Obviously, the straight forward solution for computing the numeric maximum
of two pixel values involves some branch-instruction. Probably all recent high-
performance CPU-hardware offer intricate and even online performance optimiza-
tion techniques, such as instruction reordering, branch prediction, and speculative
execution. Along with hierarchical multi-level caching memory CPUs are mostly
capable of executing branching operators without suffering from significant perfor-
mance penalties. The situation is quite different on many modern accelerator-based
hardware platforms, which usually offer higher compute core counts at the cost
of reduced core complexity. Our rationale here is to avoid branching operations
to a high degree, as these operations tend to stall the stream of instructions on
GPGPU-hardware, which diminishes overall throughput. Also, on hardware that
supports true vector-processing* such as the high-performance computing platform
NEC ACE SX, a steady stream of branch-less instructions promises to be beneficial
towards our goal of high computational throughput.

4While all modern CPUs do actually support high-throughput instructions that operate on short
vectors of data elements (e.g. SSE, AVX, Altivec, etc.), we want to make the distinction against
pipelined vector processing, which is capable of processing vectors of arbitrary length while also
employing a richer set of instructions compared to standard x86-based processors.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 95

#define MAX(a,b) (((a)>(b))?(a):(b))
Fig. 1 Branch-based maximum operator
#define MAX(a,b) (a—((a—b)&(a—b)>>31))

Fig. 2 Closed-form maximum operator

3.2.2 Branch-Based Maximum Operator

The definition depicted in Fig. 1 constitutes a classic macro of the C language, which
translates into efficient code on modern CPU-hardware, such as Intel x86 or IBM
Power architectures.

3.2.3 Closed-Form Maximum Operator

Figure 2 constitutes the closed-form macro® for computing the maximum of two
signed integer values (int32 data type). It involves no branching operation, but basic
arithmetic and bit-wise operations only. Due to the absence of branch operators,
this function incurs no warp-divergence on CUDA-enabled devices and promises
benefits on any in-order execution compute platform.

Finally, a host-based driver routine (Algorithm 4) is used to orchestrate the series
of compute and termination criterion (Algorithm 2) functions that resemble the
Cellular Automaton.

Considering the GPU implementation, updates of the CA and corresponding
termination checks will exclusively be accomplished in GPU RAM.

Algorithm 4 Driver
1: procedure DRIVER(input: binary lattice, output: CA1)
2: CA1 < initial coloring (binary lattice)
3: CA2 < CAI
4: repeat
5: CA_update(CA1, CA2)
6: CA_update(CA2, CA1)
7: until termination

3 As proposed by Holger Berger of NEC Germany.

96 P. Zinterhof
4 Implementation

Our baseline implementation consists of OpenMP-enhanced x86-code (C language),
from which several code-branches for GPU (nVidia CUDA), multi-GPU, Intel Xeon
Phi, and NEC ACE code have been derived. These approaches support dense data
sets, which are stored as a standard array in C. Depending on density and distribution
of non-background pixels in a given data set, we find that an alternate, sparse
representation of Cellular Automaton data offers performance benefits, albeit at the
cost of some increase in memory usage.

For performance reasons we decided to employ a granularity of two updates per
termination check. The main advantage of this design decision is the potential for
omitting any swapping operations on input and output state arrays, such as described
in [3]. By switching input- and output parameters between two consecutive calls to
the update function, state arrays CA1 and CA2 serve both as input and output array.
The frequency of calls to the termination criterion function is also reduced as a
consequence, which is preferable for reasons of performance but in general will
also lead to one potentially superfluous update operation in the last phase of the
algorithm as it reaches the equilibrium state of the CA.

4.1 Dense Data Representation

4.2 OpenMP-Code

OpenMP is the industry-standard for task-level parallelization on multi-processor
systems. It allows for convenient development cycles, which usually start from
a sequential code base. By incrementally adding parallel constructs to the code,
the execution speed will be enhanced and the software will be enabled to utilize
all available system resources. Fortunately, NEC is offering their own high-
performance implementation of the OpenMP runtime and compiler environment
so that porting efforts starting from the x86-based code base prove to be a rather
straight-forward process. Consequently, the resulting source codes both for x86- and
NEC ACE-SX systems do look very similar and we only want to give a glimpse on
the differences.® Porting the core update function to the Xeon Phi (KNC) processor
follows Intel’s standard programming model called ‘function offloading’. In this
model the Intel C-compiler is guided by means of a few directives to generate
parallel OpenMP-based code for the Xeon Phi-accelerator as well as the necessary
staging of function data (e.g. state arrays CAl, CA2). Figure 3 displays the x86-
based update routine.

%The NEC implementation of OpenMP offers pragma based hints to the compiler which signify
independence of nested loops, such as loops ‘row’ and ‘col’ in Fig. 3. By adding ‘#pragma cdir
nodep’ to the inner loops, the compiler is set to optimize in more aggressive way.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 97

void update_CPU (int N, int xinput, int xoutput)
{

int row, col, slice;

int cell;

#pragma omp parallel for private (row, col, cell)
for (slice = 1; slice < SDIM —1; slice++)
i’or (row = 1; row < SDIM —1; row++)
ior (col = 1; col < SDIM —1; col++)
{if (input[slice * N * N + (row * N) + col] != 0)
{

cell input[slice * N * N + ((row) * N) + col];

cell = Max(cell, input[slice * N * N + ((row—1) * N) + col]);
cell = Max(cell, input[slice * N x* N + (row * N) + col —1]);
cell = Max(cell, input[slice * N *x N + (row * N) + col+1]);
cell = Max(cell, input[slice * N * N + ((row+1) * N) + col]);
cell = Max(cell, input[(slice—1) * N * N + (row *x N) + col]);
cell = Max(cell, input[(slice+1) * N * N + (row * N) + col]);
output[shce * N % N + (row *x N) + col] = cell;

}
1}

Fig. 3 OpenMP code: parallel update of CA cells

4.3 CUDA Implementation

For achieving high computational performance in the Cellular Automaton kernel
we find two very relevant design decisions. First, data decomposition has to fit the
memory subsystem of the GPU hardware. This essentially boils down to proper
memory coalescing, which is a standard technique of forcing adjacent CUDA cores
access adjacent memory locations in parallel. We aim to achieve high memory
throughput on the GPU by assigning an appropriate number of CUDA threads to the
computation of the inner-most loop (‘columns’) (4), which as a result displays the
necessary memory access patterns. In other words, the inner-most loop is squashed
altogether and being replaced by an appropriate number of CUDA threads that
operate in parallel. This limits the maximum dimension of the CA to the maximum
number of CUDA threads per CUDA block. For current generation NVIDIA-
hardware this amounts to 1024 threads, hence a maximum dimension of 10243 cell
elements’ is being supported by our current GPU-implementation.

7While this may seem to be a limiting factor in the application of the kernel for large CAs, it should
be stated that the corresponding amount of necessary GPU-memory quickly fills the available on-
chip resources of the accelerator, which might be the main limitation towards employing larger
datasets.

98 P. Zinterhof

The second design decision of the CUDA kernel involves the method of
parallelizing the two outer loops (‘rows’, ‘planes’) of the kernel. Since no memory-
coalescing issues have to be taken into account at this level, we enjoy freedom to
employ loops, a CUDA grid-based decomposition, or some mixture of both design
models. Relying on for-loops only puts high computational pressure on each CUDA
thread and—probably even more important—hampers the inherent capability of the
GPU in hiding latencies of memory accesses by employing large numbers of active
CUDA blocks and threads. Also, due to the very high core counts (e.g. 3584 cores
on recent PASCAL-cards) of modern high performance hardware some loop-only
based approach would severely limit the degree of parallelism.®

Historically, CUDA-enabled devices offered little or no L2-cache memory,
but some fast ‘shared memory’ or scratch-pad memory on-chip. By resorting to
software-controlled caching mechanisms this lack of hardware-controlled L2-cache
could in general be alleviated by clever kernel design. Recent generations of CUDA-
hardware do offer improvements both in terms of size and levels of control of
cache memory. Nevertheless, there is no easy way to decide whether to just rely
on hardware-controlled L2-caching mechanisms or to exert explicit control over
memory access by resorting to ‘old-style’ programming techniques.

In order to achieve maximum performance we apply explicit cache control by
way of memory-coalescing during column-reads (function ‘read_column’ in Fig. 4)
in conjunction with implicit, hardware-based cache control. As can also be seen in
Fig. 4, the number of column-reads can be diminished for all row iterations except
for the first one. This is accomplished by explicitly copying column data that is
already present in the shared memory segment ‘local’ following the direction of
the loop. Hence, for each new iteration in which the stencil-column is being moved
towards the last row of the current slice (z-plane of the CA), three instead of five
column-reads are sufficient, which marks a 40% reduction of memory transfers.

4.3.1 Termination Criterion

Checking the termination criterion in parallel is based on finding any discrepancy
between state arrays CA1 and CA2. Depending on the dimensions of the computed
CA, this involves transfer of data on the order of multiple GiB, which makes
repeated checks prone to becoming a major bottleneck of the algorithm. We
therefore aim for an early termination of the check routine itself, which requires fast
synchronization of collaborating GPU-threads. As outlined in code ‘termination’,
read access to both state arrays CA and CA2 is being coalesced by enabling threads
to work in lockstep on properly aligned data. Discrepancies within two given
data columns lead to immediate termination of those threads, that spotted some
discrepancy. Equally important, discrepancies will raise some global flag, which

$Employing 3584 cores to a CA-kernel of dimension 1024® would yield hardware utilization rates
below of 29%.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices

__global__ void update_GPU (const int * __restrict__ input,
int * __restrict__ output)

{

__shared__ int local[6][N]; // N = dimension of CA

int slice = blockldx.x;

int row, col = threadldx .x;

int max;

if ((slice >0) {

for (row = 1; row < (N—1); row++)

{

__syncthreads ();

if (row==1) // read full stencil
{

readcolumn (&local[0][0], &input[slice*N*N+(row—1)*N]);
readcolumn (&local[1][0], &input[slice*NxN+row*N]);
readcolumn (&local [2][0], &input[slice*NkN+(row+1)*N]);
readcolumn (&local[3][0], &input[(slice —1)*N*xN+row*N]);
readcolumn (&local[4][0], &input[(slice+1)*NxN+row*N]);
local [5][threadldx .x]=1ocal [1][threadldx .x];// output line
1

else // read partial stencil with reuse of recent data
{

readcolumn (&local [3][0], &input[(slice —1)*N*«N+row*N]);
readcolumn (&local[4][0], &input[(slice+1)*NxN+row*N]);
local [O][threadIdx .x] local [1][threadIdx .x]; // reuse
local [1][threadIdx .x] local [2][threadIdx .x]; // reuse
readcolumn (&local[2][0], &input[slice*N+N +(row+1)*N]);

99

local [5][threadIdx .x]=1ocal [1][threadldx .x];// output line

1

__syncthreads (); // wait for data to have arrived

if ((threadldx .x > 0)&&(threadldx .x < N—1)) {
if (local[1][threadldx .x] != 0)
{
max=1local [0][threadIdx .x]>1local [1][threadIdx .x] ? _

local [O][threadIdx .x] local [1][threadldx .x];

max=local [1][threadldx .x—1]>max?local [1][threadldx .x—1]:max;
max=local [1][threadldx .x+1]>max?local [1][threadldx .x+1]:max;
max=local [2][threadldx .x]>max ? local[2][threadldx .x] max ;
max=1local [3][threadIdx .x]>max ? local [3][threadldx .x] max ;
max=1local [4][threadIdx .x]>max ? local [4][threadldx .x] max ;

local [5][threadldx .x]

}

}

/]l store

resulting column in global

local [4][threadldx .x]>max ? _

local [4][threadldx .x]

output array

max ;

writecolumn (&local [5][0], &output[slice * N * N + row * NJ);

}

} /1 slice

}

Fig. 4 CUDA code: parallel evaluation of termination criterion

100 P. Zinterhof

will prevent any not-yet active CUDA block from entering the checking routines. It
has to be noted that thread termination within some active CUDA block will only
affect remaining threads of that block. This might be regarded to be sub-optimal,
but experiments with an increased level of synchronization at Warp-level exhibited
inferior overall performance.

Please also note the absence of any explicit synchronization construct in the
above implementation of non-blocking synchronization.

Interestingly enough, efficient parallelization of the termination criterion proves
to be much harder in OpenMP than in CUDA, due to the absence of premature
termination of parallel for-loops in OpenMP. As a consequence, OpenMP code
will be forced to sift through both state arrays CAl and CA2 in total, even when
differences should have been spotted during the first few comparisons. Albeit
explicit and more complex task-based implementations within OpenMP would have
been possible, we instead opt for a sequential version. Due to the simplicity of
the core operator (check for equality of two cell states) the resulting code will
operate close to the saturation level of the memory system, which can be taken
as an argument against parallelization of this code section in the first place (Fig.5).

__global__ void termination (const int N,
const int * inputA, const int * inputB,
unsigned char * __restrict__ activity)

{

__shared__ int local[2][SDIM];

int slice = blockldx .x;

int row;

int col = threadldx .x;

int max;

int p;

unsigned char flag=0;

if ((slice >0)&&(slice <SDIM—1)) {
if (activity [0]==0) {
for (row = 1; row < (N—1); row++)
{
readcolumn (&local [0][0], &inputA[slice * N * N + row * N]J);
readcolumn (&local[1][0], &inputB[slice * N * N + row * N]);

if (local[0][threadldx .x] != local[1][threadldx .x])
{
row=N; // terminate thread
activity [0]=1; // raise global termination flag

}
}
} /1 if activity==
} /1 if slice > 0
}

Fig. 5 CUDA code: parallel evaluation of termination criterion

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 101

< loop -

Fig. 6 In dual-GPU environments, state arrays are partitioned into two even portions with each
portion being stored locally on one of the participating GPUs. Both GPUs may access state arrays
of the corresponding partner GPU by means of unified virtual addressing (UVA) mode

4.4 Multi-GPU Computation

Figure 6 depicts the basic layout of CA data in dual-GPU setups. Each GPU is
enabled to access ghost-cells (cells that are read but never being written to) that
physically reside in the partner GPU’s local memory by means of unified virtual
addressing (UVA) mode. However, the CUDA kernel is repeatedly forced to decide
whether a certain column of data is available locally or whether it has to be fetched
via the UVA mechanism. This decision adds to an increase in code complexity’
and potentially also harms the overall throughput of the kernel. By introducing two
separate kernels that are specialized for operation in the areas of ghost cells that
emerge at the lower and upper borders of their data partition, we aim to alleviate
this performance bottleneck. The performance numbers reported on in the following
section are based on this improved multi-kernel model.

“While code complexity is not regarded an issue on standard CPU-based systems, it certainly can
lead to an inflation of the size of the binary executable, which in extreme cases can result in non-
executable kernels.

102 P. Zinterhof
4.5 Sparse Data Representation

For easier usage we provide a method for generating some sparse representation
of any given data set out of its initially dense, array-based representation. For the
discussed dense 3D datasets this method builds a vector V of tuples (x,y, z) with
each tuple designating the coordinates x, y, and z of a distinct pixel in the dense
data set. Hence, the size of vector V directly corresponds to the number of relevant
pixels, that is, pixels not belonging to boundaries or background. By cycling over
the z, y, and x-planes of the dense dataset in that order, we ensure the tuples of
resulting vector V to be ordered in a way that proves to be cache- and memory-page
friendly during the following cell update.

Note that vector V is merely an index of foreground-pixels, actual CA state
information will still be managed in the form of the dense systems CA1l and CA2
(Sect.4.1).

Updating the CA state arrays CA1 and CA2 can now be pinpointed to the exact
locations of foreground pixels, but comes at the cost of additional memory access
for dereferencing the corresponding tuple in V. Parallelization of cell updates is a
straight-forward process being accomplished at the level of the tuple vector V, which
is a densely packed dataset that lends itself well to OpenMP-, CUDA-, and vector
processing approaches. Nevertheless, at this point the general choice of dense versus
sparse data representation has to be grounded on heuristics.

4.5.1 OpenMP-Code

The structure of nested loops in the dense case (as shown in Fig. 3) is replaced by a
single loop (Fig. 7) that operates on the vector V of tuples.

5 Simulation Results

The simulation code for the CA has been run under benchmarking conditions on a
set of systems with the intention of giving ‘the bigger picture’ on what performance
levels are to be expected on recent high-performance compute hardware. With the
notable exception of the NEC ACE-SX system, the employed hardware belongs
to the class of so-called accelerators that—probably also due to its potential
performance and affordability—seems to be attaining more attention both in science
and engineering for quite some time now. Table 3 gives an overview of obtained
speedups of the investigated compute architectures over the baseline system
Intel Xeon 1620 (quad core). Again, we want to stress the fact that these

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 103

void update_CPU_sparse (int N, int xinput, aPixel %V,
unsigned int pixels, int *xoutput)

{

int row, col, slice;

int cell;

unsigned int nr;

#pragma omp parallel for private (slice, row, col, cell)
for (nr =0; nr < pixels; nr++)

{

slice = V[nr].z;

row = V[nr].y;

col = V[nr].x;
cell = input[slice * N * N + ((row) * N) + col];
cell = Max(cell, input[slice * N * + ((row—1) * N) + col]);
cell = Max(cell, input[slice * N + (row * N) + col —1]);
cell = Max(cell, input[slice * N + (row * N) + col+1]);
cell = Max(cell, input[slice * N + ((row+1) * N) + col]);

* N + (row * N) + col]);
* N + (row * N) + col]);
ol] = cell;

cell = Max(cell, input[(slice —1)
cell = Max(cell, input[(slice+1)
output[slice * N x* N + (row * N)

}

+ % %k ¥ X ¥
©c 2222277

}

Fig. 7 OpenMP code: evaluation of sparse state array

Table 3 Speedup overview (based on results presented in Table 1)

CA dim GTX680 NEC ACE-SX Tesla P100 Xeon E1620 Xeon Phi 5120

128 45% 19.9x 43.7x 1x n/a
256 37x 18.5% 99.7x 1x n/a
512 25.7x 12.5% 68.9x 1x n/a
704 15.5% 9.7x 55.2x 1x 18.1x

systems stem from different cycles in hardware development, so the interpretation of
reported numbers should take that into account, too. The Pascal-based Tesla P100
offers extreme levels of performance with runners-up found in the GTX680 GPU
and the Xeon Phi. In light of the high thread-counts of these three platforms which
range from several hundreds up to more than 3.500 threads the performance of the
quad core vector processor ACE-SX is quite astonishing (Fig. 8).'°

Figure 9 depicts the relation of execution times for dense and sparse codes
on two hardware platforms, one GPU and one node of the NEC ACE-SX vector

1°Even more so when we want to put this into relation with the age of the hardware concept of this
generation of the NEC processor, that apparently goes back at least 5 years from the time of this
report.

104 P. Zinterhof

__global__ void sparse_update (unsigned int number,
const aPixel* __restrict__ pixel_list,
const int * restrict input,

int *x __restrict__ output)

int max, iter, x,y,z;
unsigned int pos;

pos = (THREADS * Block_LOOPS)*blockldx .x+threadldx .x;

for (iter = 0; iter < Block_LOOPS; iter++)
{

if (pos < number)

{

z=(int) pixel_list[pos].z;
y=(int)pixel_list[pos].y;
x=(int)pixel_list[pos].x;

max=input [zxN*N+(y—1)*N+x] > input [z*xN«N+y*N+x] ? _

input [ZxNkN+(y—1)*N+x] : input [z*NkN+y*N+x];
max=input [ZxNkN+y*N+x—1]>max ? input[z*NkN+y*N+x—1]:max;
max=input [ZkN*kN+y*N+x+1]>max ? input[z*NkN+y*N+x+1]: max;
max=input [ZxN*N+(y+1)*N+x]>max ? input[z*N*N+(y+1)*N+x]: max;
max=input [(z—1)*N*N+y*N+x]>max ? input[(z—1)*NxN+y*N+x]: max;

output [zxN*xN+y*N+x] = input [(z+1)*NxN+y*N+x]>max ? _
input [(z+1)*N*N+y*N+x] : max ;

pos += (THREADS);

Y // pos < number

}
}

Fig. 8 CUDA code: evaluation of sparse state array

processor system, respectively.'! Both platforms deliver very stable execution times
for updates of the dense CA. As expected, execution times in the sparse formulation
of the CA update compare favorably to their dense counterparts for highly sparse
systems (e.g. upwards of 95% of background pixels). As can be seen, the GPU
system performs in robust way after reaching saturation at sparsity levels in the
range of 10-15%, whereas the vector processor ACE-SX seems to struggle with the
increased level of scattered memory access. It has to be noted that ACE-SX reaches
the cut-off point at which the sparse code no longer prevails over the dense code at a
later stage than the GPU platform. Hence, sparse formulation of updates is beneficial
for a wider range of densities in a given CA on ACE than it is for the GPU.

'The results that we report here have to be taken with some caution, as the ACE-SX and GTX
1080Ti belong to rather different eras of their respective development time.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 105

70 T T T T T T T T
GTX 1080 Ti, dense
i GTX 1080 Ti, sparse
£ 60 NEC ACE-SX, dense .
a NEC ACE-SX, sparse
9} L i
g 50
("2}
Q
g 40r 1
("2}
bS]
o 30F : : ; : : 4
£
S 20 + B B . B B -
5
)
g 10+ : : : : : -
()
0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

probability P (pixel density)

Fig. 9 Comparison of NVIDIA GTX1080 Ti GPU with NEC ACE-SX for dense and sparse
systems of dimension 512

25 T T T T T T T T
GTX 680, dim=512
2 x GTX 680, dim=512
E5-1620 v3 @ 3.50GHz
20 - B
0
(0]
£ 15 B
c
o
8 10 + : . . ; . -
(0]
x
(0]
5 J
0 i j j | —.——r—’x’/_/x//
0 5 10 15 20 25 30 35 40 45 50

probability P (pixel density)

Fig. 10 Relation of runtime and pixel probability (density of CA) for single-, dual-GPU and quad-
core CPU systems

As shown in Fig. 10, both GPU setups (single GTX 680, dual GTX 680) exhibit
performance levels that are robust against increased levels of pixel densities of
the simulated CA. On the contrary, the Xeon E5-1620-based system is able to
maintain relatively low turn-around times for low pixel densities, but falls short

106 P. Zinterhof

for densities beyond 20% when execution times do increase substantially. As both
the amount of memory and access patterns are fixed for all cases depicted in
Fig. 10 variations of execution times have to be attributed to differences of the
computational workload, which obviously is directly proportional to pixel densities
in the CA. In this particular case, the observed speedup of GPUs over the CPU
counterpart is not so much a result of some higher level in memory throughput on
the GPU system, but it is a consequence of the usually much lower core count on the
CPU. Unfortunately, speedup for the dual-GPU setup is limited to 1.4x due to UVA-
related PCI transactions that result from access to ghost cells on the corresponding
partner GPU. For the sake of completeness, we also want to report on the observed
performance on the above-mentioned CPU system both for Matlab and the discussed
CA-based algorithm. On average, Matlab’s bwconncomp function will take 12s
(wall time) in a 3-d lattice of dimension=512, while the CA-based algorithm shows
a cutoff at pixel density of some 40% beyond which execution times will mostly
exceed that of the corresponding Matlab function. In a CPU-only setting, the new
algorithm usually exhibits performance levels that are superior to Matlab for density
levels below 40%.

The optimized checking of the termination criterion yields stable and much
reduced turn-around times or single iterations up to some 70% of the total runtime
of the CA. Figure 11 depicts the expected increase of execution times towards the
end of the simulation of the CA, in which the CA states are beginning to settle and
remaining activity within the state array CA1 requires an increasing effort to detect.

&
o
T
I

4 - NVIDIA Pascal P102 === . .
AMD RYZEN 1700

average execution time (ms)

S >

9 Yo s Oy To S
)\9\9&\9(90\,)

6. 25 S G Yo o %> Yo Yo
O B B Y %y Y 7 %
iterations

Fig. 11 Execution timings of termination checks (based on code given in Fig. 5)

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 107
5.1 Maximum Operator

Our initial motivation for conducting experiments with an alternative, closed-
form maximum operator has been driven by the typical hardware characteristics
of modern GPUs, that on one hand do offer numerous numbers of powerful
CUDA cores, but on the other hand suffer from branching-incurred penalties
(e.g. warp-diversion). Unfortunately, the increased computational complexity of the
closed-form operator cannot be overcome by the sheer power of the GPU system.
As displayed in Fig. 12 an approach employing the branch-based maximum-
operator (Fig. 1) in conjunction with a loop-based computation of the row elements
of the CA state array performs best on the NVIDIA GTX 780 Ti hardware. Depend-
ing on the dimensions of the CA the next best option for dimension=256 is stated by
a CUDA grid-based parallelization of the row elements and for dimension=512 the
second best option is given by a combination of loops and closed-form maximum
operator. This difference can be attributed to the increased overhead that is
introduced by the large numbers of CUDA blocks in dimension=512 which amount
to 5122 = 262,144. Apparently, instantiation of such large numbers of CUDA-
blocks happens to be a rather expensive task in itself. Based on this observation a
second important finding follows, which can be stated as the occasional necessity

10 - -
F dim=512, loops, branch
loops, closed-form -------
CUDA grid, branch --------
CUDA grid, closed-form ———
dim=256, loops, branch
loops, closed-form ------ —
1t CUDA grid, branch
F CUDA grid, closed-form -—-—-—
e
(0]
£
- .
i) 01 =P
5 - s
o L=
(0] Lpim
x P
o) e
e
0.01 fo?
E /
0.001
0.05 0.1 0.15 0.2 0.25 0.3

probability P (pixel density)

Fig. 12 NVIDIA GTX 780Ti: various update kernels based on loops vs. CUDA grid and
branching vs. closed-form maximum operators

108 P. Zinterhof

Table 4 Performance and scalability on NEC ACE-SX

Max operator CPU core(s) Execution (ms) | Speedup Global speedup
branch-based 1 107.9 1.0 1.0

closed-form 1 233.11 0.46x 0.46x
branch-based 4 (OpenMP) 81.74 1.0 1.32x
closed-form 4 (OpenMP) 79.03 1.034x 1.37x

for conventional loop-structures on GPUs, even when CUDA allows for a clean and
lean formulation of an algorithm entirely devoid of loops.

On NEC ACE-SX an ambivalent situation prevails when the closed-form maxi-
mum operator is applied. This system consists of a number of distributed cluster-
nodes, that communicate via a high-speed network and message-passing style
communication primitives. Each cluster-node comprises four distinct vector pro-
cessing cores, that allow for very convenient and tightly coupled OpenMP-based
parallelization as well as vectorization within the cores. Our experimental setup
concentrates on a single such node, hence we may apply vectorization and shared-
memory parallelization, respectively. In the single core variant the update of the state
array suffers from severe performance penalties (see Table 4, rows 1 and 2) when
the standard branch-based maximum operator (Fig. 1) is replaced by its closed-form
counterpart (Fig. 2). However, in the parallel 4-core setup a modest speedup of some
32% is gained for the branch-based code, while the closed-form operator yields 37%
overall speedup against the fastest sequential code. We do not regard this speedup
in the range of a mere 3% to be essential, but it nevertheless seems noteworthy
that the closed-form operator is moving from the position of the slowest version
(sequential case) right to the fastest version (parallel case). Unfortunately, we do
not have the resources to finally explain this result here, but it can be suspected
that the sequential code already operates close to the limit that is imposed by
the memory subsystem of the ACE-SX node. As the closed-form operator sports
higher computational complexity than the branch-based operator, it benefits very
clearly from the introduction of three additional cores in the parallel run, hence the
considerable speedup in this case.

6 Conclusions

To the best of our knowledge we have reported on the first implementations of a
Cellular Automaton-based algorithm for the computation of connected components
in 3-d binary lattices on vector-processing hardware, as the NEC ACE-SX system
and various accelerator-style hardware, such as nVidia-CUDA- and Intel Xeon Phi
equipped systems. The algorithm proves to be very suitable to all of these platforms,
and high levels of performance have been gained due to the massive amounts of
parallelism that is inherent to this class of algorithms. Even the baseline code

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 109

that we benchmarked on some modest mainstream Intel Xeon CPU offers certain
performance benefits in comparison to the corresponding function that is provided
with the popular Matlab environment. The reported performance numbers clearly
indicate potential benefits from experimenting with different algorithmic solutions,
even within the same general platforms (e.g. GPU).

Acknowledgements We would like to sincerely thank Professor Michael M. Resch and the whole
team of HLRS for their valuable support, continued guidance and discussions, and provision of
systems.

References

1. Datta, K., et al.: Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (2008)

2. Hoekstra, A.G., Kroc, J., Sloot, PM.A.: Simulating Complex Systems by Cellular Automata.
Springer, Berlin (2010)

3. Holewinski, J., Pouchet, L.-N., Sadayappan, P.: High-performance Code Generation for Stencil
Computations on GPU Architectures. ACM, New York (2012). doi:10.1145/2304576.2304619

4. Stamatovic, B., Trobec, R.: Cellular automata labeling of connected components in n-
dimensional binary lattices. J. Supercomput. 72(11), 4221-4232 (2016). doi:10.1007/s11227-
016-1761-4

5. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E., The Pochoir Stencil
Compiler. ACM, New York (2011). doi:10.1145/1989493.1989508

6. Trobec, R., Stamatovic, B.: Analysis and classification of flow-carrying backbones in two-
dimensional lattices. Adv. Eng. Softw. 103, 38-45 (2015)

	Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Initialization
	3.2 Cellular Automaton Update
	3.2.1 Maximum Operator
	3.2.2 Branch-Based Maximum Operator
	3.2.3 Closed-Form Maximum Operator

	4 Implementation
	4.1 Dense Data Representation
	4.2 OpenMP-Code
	4.3 CUDA Implementation
	4.3.1 Termination Criterion

	4.4 Multi-GPU Computation
	4.5 Sparse Data Representation
	4.5.1 OpenMP-Code

	5 Simulation Results
	5.1 Maximum Operator

	6 Conclusions
	References

