
Accepted Manuscript

How block-based, text-based, and hybrid block/text modalities shape
novice programming practices

David Weintrop, Uri Wilensky

PII: S2212-8689(17)30031-4
DOI: https://doi.org/10.1016/j.ijcci.2018.04.005
Reference: IJCCI 103

To appear in: International Journal of Child-Computer
Interaction

Received date : 10 February 2017
Revised date : 9 April 2018
Accepted date : 30 April 2018

Please cite this article as: D. Weintrop, U. Wilensky, How block-based, text-based, and hybrid
block/text modalities shape novice programming practices, International Journal of
Child-Computer Interaction (2018), https://doi.org/10.1016/j.ijcci.2018.04.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ijcci.2018.04.005

How Block-based, Text-based, and Hybrid Block/Text Modalities
Shape Novice Programming Practices

David Weintropa and Uri Wilenskyb

a Teaching & Learning, Policy & Leadership
College of Education
College of Information Studies
University of Maryland
3942 Campus Dr. Suite 2226D
College Park, MD 207421427
weintrop@umd.edu

b Center for Connected Learning and Computer-Based Modeling
Learning Sciences and Computer Science
Northwestern University
2120 Campus Dr.
Evanston, IL, USA, 60208
uri@northwestern.edu

Abstract
There is growing diversity in the design of introductory programming environments. Where once
all novices learned to program in conventional text-based languages, today, there exists a
growing ecosystem of approaches to programming including graphical, tangible, and scaffolded
text environments. To date, relatively little work has explored the relationship between the
design of novice programming environments and the programming practices they engender in
their users. This paper seeks to shed light on this dimension of learning to program through the
careful analysis of novice programmers’ experiences learning with a hybrid blocks/text
programming environment. Specifically, this paper is concerned with how novices leverage the
various affordances designed into programming environments and programming languages to
support their early efforts to author programs. We explore this relationship through the construct
of modality using data from a study conducted in a high school computer science classroom in
which students spent five weeks working in blocks-based, text-based, and hybrid blocks/text
programming environments. This paper uses a detailed vignette of a novice writing a program in
the hybrid environment as a way to characterize emerging programming practices, then presents
analyses of programming trends from the full study population to speak to the generality of the
practices identified in the vignette. The analyses focus not only on characterizing authoring
strategies but also on identifying patterns in novices’ help-seeking behaviors. By focusing on
how modality influences novices’ emerging programming practices, this paper contributes to our
understanding of the relationship between programming environment and learning, illuminating
the role of design in shaping introductory programming experiences.

Keywords
Design; Modality; Programming Environments; Computer Science Education; Block-based
Programming

1. Introduction
The last decade has seen a rapid growth in the number of ways young learners can engage

in the act of programming. This includes new programming environments, toys that feature
programming and other computing ideas, and online campaigns designed to introduce computer
science to large numbers of learners around the world. Across these contexts, graphical block-
based programming has a growing presence, spanning both formal (classroom) and informal
settings [1]. Recently, a wave of blended and dual-modality programming environments has
emerged that integrate affordances of the block-based programming approach into conventional
text-based programming interfaces, further diversifying the introductory computing landscape.
Despite this growth in the variety of introductory programming environments, relatively little is
known about the relationship between modality, programming interface design, and the impact
they have on learners’ emerging programming practices. We use the term modality to capture
both the representational infrastructure used as well as the set of interactions the interface
supports. Understanding the effects of emerging programming modalities for novices is critical
to the larger goal of making computing education effective and accessible to all learners. This
paper seeks to address this gap in the literature by answering the following research question:

How does modality affect learners’ emerging programming practices?

To answer this question, we use data from a 5-week quasi-experimental study conducted
in a public high school in a Midwestern American city. Our analysis includes an illustrative
vignette of one novice programming in a hybrid blocks/text environment with special attention
being paid to practices that were uniquely afforded by the hybrid modality. The paper then looks
at programming practices across the full set of participants (n = 90) who learned to program in
either a block-based, text-based, or hybrid environment, using log data collected from the
programming environments to identify macro trends and how they differ by modality. The paper
concludes with a discussion of the implications of this work with respect to modality and the
design of introductory programming environments.

2. Related Work
This section focuses on work, both theoretical and empirical, upon which our evaluation

of novice programming environments relies. The goal of this section is to present the
foundational ideas that underpin our approach as well as to highlight the need for the proposed
work on programming practices as a complement to existing scholarship.

2.1 On Modality
Given a semantics, we use the term modality to capture how one interacts with and

composes within that semantics. Such interactions are defined and supported by the presentation
and capabilities of the semantics itself, be they visual, expressive, or tangible. In looking at the
interactions enabled by the presentation of a semantics, modality is not a characteristic of a
representational system alone but also captures the relationship between the representation, its
interface, and how one uses it. This conceptualization of modality is similar to the notion of
affordance [2,3] in that it captures a characteristic of the interaction between an actor and the
thing being acted upon, in this case, a representational system. Our choice for the word modality
is intended to link the interactional characteristics and capabilities with the way in which the
semantics exists, i.e. its modal qualities. In the literature, the term “modality” is often used to
capture human sensor modes (visual, auditory, etc.), as can be seen with the modality effect,
which describes the different outcomes of presenting information visually versus through an

auditory mode [4]. We view our use of the term modality as consistent with this usages in that
the modality label captures the relationship between the form in which something is presented
and how it shapes the way one interacts with it. Our use of the term modality differs from this
usage in that the modes we are concerned with are not defined by human sensory-motor
capabilities but instead the modes in which an idea is expressed or interacted with.

Our conceptualization of modality is similar to other terms used to describe the design of
learning environments and representational systems but captures a distinct dimension of the
learning interaction. In this work, we use the term representation to describe the set of symbols
used to present concepts to the user akin to how Palmer [5] and later Kaput [6] use of the term.
In this work, the programming language serves as the representation of interest. The term
interface is intended to capture the presentation of the representation, specifically how
programming commands are presented (e.g. as blocks with colors and notches intended to
convey additional meaning). The data presented in this work are drawn from a block-based
interface, text-based interface, and hybrid block-text interface, all of which use the same
programming language. The interface, and thus the representation, are a part of the larger
environment, which includes the canvas upon which block-based programs are constructed, the
block palette where the set of available commands are collected, as well as the stage where
programs are visually executed. This nomenclature for describing the components of the
environment is drawn from the Scratch community [7]. These three terms (representation,
interface, and environment) all describe this system as it is, independent of the user. The
introduction of the term modality is intended to give us a label for the set of action enabled by
these aspects of the system which is useful given our ultimate focus on how features of the
system affect the user. Saying block-based modality thus captures the interface and
representation as well as the suite of actions enabled by it (e.g. browsing the block palette or
dragging-and-dropping commands). Our motivation in making this shift is to explicitly include
the set of possible interaction and their influence on the user as part of our analytic focus. In
doing so, the term recognizes the foundational role the user plays in bringing an interface to life
and categorizing its impact. This shift from interface to interface-plus-actor also motivates the
specific analysis presented in this work, where the block-based environment is analyzed through
user actions as opposed to independent of them.

Our conceptualization of modality is akin to an interface metaphor [8]. However, given
the larger focus of this line of work on cognitive and perceptual outcomes of design on the
learner, we have adopted the term modality to shift focus to the space between the user and the
system, rather than prioritizing the system and secondarily the user (as a term like interface
metaphor might connote). Further, the construct of modality gives us a language for comparing
interaction patterns enabled by different interfaces in a consistent way, thus avoiding needing to
compare across labels (e.g. comparing the block-based interface metaphor with a text-based
language). Throughout this paper, we use the term interface when describing the environment
independent of how it will be used and modality when discussing the environment and user in
conjunction.

2.2 Block-based Programming
Block-based programming interfaces leverage a programming-primitive-as-puzzle-piece

metaphor that provide visual cues to the user about how and where commands can be used as
their means of constraining program composition [9]. Programming in these environments takes
the form of dragging blocks onto a canvas and snapping them together to form scripts. If two
blocks cannot be joined to form a valid syntactic statement, the interface prevents them from

snappin
program
LogoBlo
has sinc
impleme
four blo

Figure
LogoBlo

I
number
barrier t
MIT Ap
to game
libraries
block-ba

T
explore
modality
move ba
found to
Greenfo
block-ba
novices
program
critical r

2.3 Eva
T

Alice, a
educatio
environm

ng together, t
ms instructio
ocks [10] an

ce grown to
entations th

ocks based p

(a)

1. Four exam
ocks, (c) Al

In addition t
of environm

to programm
pp Inventor
e-based learn
s are being d
ased langua
The last few
and utilize
y environm
ack and fort
o be utilized
oot’s frame-
ased compo
to author an

mming envir
research aro

aluating Blo
To date, mo

as these two
on. Scratch
ments [13] a

thus preven
on-by-instru
nd BridgeTa
be used in d

hat have ach
programmin

mple block-
lice, and (d)

to being use
ments have
ming across
[14] to mod
ning environ
developed th
ages [18,19]
w years have
modality as
ents like Pe
th between b
d by novices
-based edito
osition along
nd edit prog
ronments in
ound the aff

ock-based P
ost evaluatio

environmen
from its inc
and has bee

nting syntax
uction. Early
alk [11] whi
dozens of ap
ieved wides

ng environm

(b)

-based prog
) Scratch.

ed in more c
adopted the
a variety of

deling and s
nments like
hat make it
.
e also seen t
s a design m
encil Code [2
block-based
s while learn
r [24], prese
g with featu
grams. The g

introductor
fordances an

Programmi
ons of block
nts have the

ception, was
en successfu

errors but r
y versions of
ich helped f
pplications.
spread use. F

ments.

gramming en

conventiona
e block-base
f domains ra
imulation to

e RoboBuild
easy to dev

the emergen
mechanism fo

20] and Tile
d and text-ba
ning to prog
ent hybrid b

ures of conve
growing rol
ry computin
nd drawback

ing Environ
k-based prog
e widest use
s focused on
ul at generat

retaining the
f this interlo
formulate th
Alice [12] a
Figure 1 sho

(c)

nvironments

al computer
ed programm
anging from
ools like De
der [17]. Fur
elop applica

nce of new t
for supportin
ed Grace [2
ased version
gram [22,23
blocks/text i
entional tex
le of block-b
ng contexts s
ks of these a

nments
gramming h
 in contemp

n younger le
ting excitem

e practice of
ocking appr
he programm
and Scratch
ows program

s: (a) Bridge

science con
ming approa

m mobile app
eltaTick [15]
rther, a grow
ation-specif

types of edit
ng novice pr
1] give learn
ns of their p
]. Other app

interfaces th
xt editors to
based, hybri
speaks to th
approaches

have focused
porary K-12
earners and i

ment and eng

f assembling
oach includ

ming approa
h [13] are mo
ms written i

(d)

eTalk, (b)

ntexts, a gro
ach to lower
p developm
] and NetTa

wing numbe
fic or task-sp

tors that fur
rogrammers
ners the abi

programs, a
proaches, no
hat blend fea
create new
id, and dual

he need for m
[25,26].

d on Scratch
 computer s
informal
gagement w

g
de
ach which
ore recent
in these

owing
r the

ment with
ango [16]
er of
pecific

rther
s. Dual-
lity to
strategy
otably
atures of
ways for

l-modality
more

h and
science

ith

programming among novice programmers [27–30]. Ben-Ari and colleagues conducted a number
of studies on the use of Scratch for teaching computer science and concluded that Scratch could
successfully be used to introduce learners to central computer science concepts [31] but that it
could also lead to potentially undesirable practices like totally bottom-up programming and a
tendency towards extremely fine-grained programming [32]. There is also work showing that
block-based programming, in conjunction with effective pedagogy can serve as an effective way
to develop important computational thinking skills and prepare learners for future computer
science instruction [33]. Other work has found the block-based programming is a
developmentally appropriate way to introduce younger learners at different ages to the practice
of programming [34].

Compared to Scratch, the Alice programming environment has a longer history of serving
as the focal programming environment in introductory programming courses. Much of the
motivation for using Alice in courses is based on findings that Alice is more inviting and
engaging than text-based alternatives and improves student retention in CS departments [35–37],
however, other educators have been less successful in replicating these results and have struggled
in transitioning learners from Alice to conventional text-based environments [38,39]. This
challenge was addressed with the release of Alice 3 and its inclusion of supports to transition
learners to the Java programming language [40].

A growing body of research is conducting systematic comparisons of block-based and
text-based environments. A study comparing students answering multiple choice programming
questions found that students perform better on questions asked with a block-based
representation compared to the text-based equivalent [41]. Other studies investigating learning
outcomes in blocks versus text environments found little difference in learning outcomes but did
report that students completed activities in block-based environments at a faster rate [42].

2.4 Blending Block-based and Text-based Programming
As block-based programming matures and more is known about the affordances and

drawbacks of the interface, a growing number of environments are blending features of block-
based and text-based programming in a single environment. Two main strategies have been taken
to accomplish this: dual-modality environments and hybrid block/text environments. Dual-
modality programming environments support both block-based and text-based programming,
allowing the user to move back-and-forth between the two modalities as they work. Examples of
such environments include Pencil Code [20], Tiled Grace [43], and BlockEditor [22]. Empirical
evaluations of dual-modality environments show how such an approach can support learners
with differing level of prior experience and support just-in-time scaffolds when the user needs it
[22,23].

Unlike dual-modality environments which support both modalities, hybrid block/text
environments blend features of block-based interfaces with conventional text-based interfaces to
create a new modality distinct from both blocks and text but sharing characteristics of both [44].
We classify these as new modalities as they enable new interaction patterns and potentially
provide additional cognitive or perceptual supports for the user distinct from other modalities.
There are a growing number of environments that live in this space, each of which offer unique
interactions and visual displays. One recent example of this type of environment is Greenfoot’s
Frame-based Editor [45]. As its creators explain, frame-based editing “maintains some of the
graphical representation advantages, discoverability and error avoidance of blocks while
providing the flexibility, keyboard-entry capabilities, and readability of text” [24]. A central
design goal of the Frame-based editing approach is to keep the atomic unit of operation a valid

node in the program’s abstract syntax tree (i.e. you add/edit/delete full commands, akin to
working in blocks), but that manipulation of these nodes can be completed with the keyboard and
the program presentation retains the visual characteristics of a text-based program. Early analysis
of frame-based editing shows the promise of this specific hybrid approach [46]. A second
example of Hybrid block/text programming environment can be seen with GP, which is inspired
by Scratch and seeks to address the drawbacks of block-based interfaces as programs become
larger and more complicated by incorporating text layouts and keyboard-driven compositional
mechanisms [47]. Other hybrid environments include DrawBridge [48] which supports a gradual
transition and Pencil.cc, which is the focus of this paper and described in detail below.

2.5 Theoretical Framing
Before continuing with the design of the study and findings, we now present the

theoretical framing that informs both why we are pursuing the stated research question as well as
the methods and analytic techniques employed to answer it. In conducting this work, we draw on
a number of theoretical lenses which inform how we think about the role design plays in how
learners interact with different tools and representations. Central to our theoretical approach is
the view that the tools and representations serve as resources that learners draw upon and, in
turn, shape both the practices that develop as well as the conceptual understandings that emerge.
This perspective draws on Norman and Hutchins’ theory of distributed cognition [49,50] as well
as Noss and Hoyles’ construct of Webbing [51]. Distributed cognition “extends the reach of what
is considered cognitive beyond the individual to encompass interactions between people and with
resources and materials in the environment” [52]. Through this lens, the tools and representations
are included within the bounds of the cognitive activity, meaning they do not influence
cognition, but instead are a fundamental component of it. In bringing this perspective to a
learning task, the design of the tools and representational infrastructure used become
foundational to how one learns, what one learns, and the practices the learner develops [53].
When we use the term learning in this context, we refer to both conceptual learning as well as the
practices associated with the content.

The representational infrastructure used within a domain is not fixed, but instead, it is a
designed system that can change over time, with new, more powerful and accessible systems
supplanting traditional expressive approaches [54]. This is particularly true with respect to
computing due to the rapidly changing fields of programming language design and human-
computer interaction. This malleability is important to recognize given the emergence of new
representations and the design challenges and opportunities that accompany them. To investigate
the shifting of representational systems, we draw on Noss and Hoyles’ construct of Webbing.
Webbing characterizes the relationship between representation and learning by capturing the
“structures that learners draw upon and reconstruct for support – in ways that they choose as
appropriate for their struggle to construct meaning” [51]. In this work, we use Webbing as a way
to map features of the modality to specific practices observed in learners. Through this theoretic
lens, the features of the learning environment serve as a suite of resources the learner can draw
on throughout their meaning-making process and the development of practices they find useful.
As such, the design of components of the cognitive system both define and shape the practices
that emerge and learning that can occur. Recognizing the integral and interrelated ways that
representation, interface, environment, and modality shape the conceptual and mechanical
dimensions of learning to program both motivates this work and informs our approach to
analyzing it.

3. Methods

3.1 Mee
P

created
the bloc
users se
both the
(Figure
and-dro
cues on
palette a
highligh
matches
typing in

T
comman
block fr
inserted
drag-and
This hyb
includin
based pr
library,
same tim
identifie
with aut
features
power o
achieved

Figure
hybrid b
the text

3.2 Stud
T

program

et Pencil.cc
Pencil.cc is
for this stud

ck-based and
ee a single in
e block-base
2a) features
p programm
how and w

and canvas w
hting, autom
s convention
n one chara
The hybrid
nds into a pr
rom the pale
d into the pro
d-drop and
brid approac

ng features t
rogramming
supports dr

me, the text-
ed by learne
thoring spee
s of the three
of the enviro
d in the othe

(

2. Pencil.cc
blocks/text i
editor; the r

dy Design a
This study h

mming class

a customize

dy. In the or
d text-based
nterface: blo
ed and text-b
s many of th

ming mechan
where blocks

with a basic
matic format
nal text-base
acter at a tim
interface of
rogram but
ette onto the
ogram in a s
keyboard-d
ch was info
that learners
g approach
rag-and-drop
-based edito
ers with bloc
ed and expre
e modes of P
onments are
er two.

(a)

c’s interface
interface. Th
right image

and Data C
has a quasi-
es for the fi

ed version o
riginal Penc
d interfaces.
ock-based, t
based versio
he defining
nism, a pale

s can be used
c text editor
tting, and sy
ed programm

me.
f Pencil.cc r
replaces the

e text canvas
syntactically

driven comp
rmed by ear

s found to b
[55]. Specif
p compositi
or present in
ck-based en
essive powe
Pencil.cc ar
 equivalent;

s: (a) shows
he left imag
shows the r

Collection St
experimenta
irst 5 weeks

of the Pencil
il Code, use
With Penci

text-based, o
ons of the in
features of b
ette of block
d. The text v
that include

yntax checki
ming editor

etains the bl
e blocks can
s, the block
y valid way
osition. Fig
rlier finding
e useful as w
fically, the h
on, and prov

n the hybrid
nvironments
er [55]. Asid
re the same,
; anything th

s the blocks
ge in (b) sho
results of th

trategy
al design, fo
of a year-lo

l Code prog
ers are free t
il.cc, this ab
or a hybrid i
nterface. Th
block-based
ks for the us
version of P
es basic pro
ing. Program
rs where aut

lock-palette
nvas with a t
turns into th
. Thus, the h
ure 2b show

gs on the des
well as perc
hybrid desig
vides pre-fa
interface ad
, such as pe
de from the
meaning th

hat can be d

 interface w
ows how lea
his action.

ollowing thr
ong Introduc

gramming en
to move bac
bility has be
interface tha

he blocks int
d interfaces,
ser to choose
Pencil.cc rep
ogramming s
mming in th
thoring a pro

e and the abi
text editor. W
he textual e
hybrid inter

ws Pencil.cc
sign of bloc

ceived drawb
gn retains th
abricated co
ddresses som
erceived inau
programmi

he capabiliti
done in one

(b)

while (b) sho
arners can dr

ree high sch
ction to Pro

nvironment
ck-and-forth
en removed
at blends fea
terface of Pe
, including t
e from, and
places the bl
supports lik

he text interf
ogram is do

ility to drag
When a use
quivalent an

rface suppor
c’s hybrid in
ck-based inte
backs of the

he browsable
mmands. A
me of the dr
uthenticity a
ng interface
ies and expr
interface ca

ows Pencil.c
rag-drop blo

hool introduc
ogramming c

[20]
h between
d, instead,
atures of
encil.cc
the drag-
visual

locks
ke
face

one by

g-and-drop
er drags a
nd is
rts both
nterface.
erfaces,
e block-
e blocks

At the
rawbacks
and issues
e, all other
ressive
an also be

cc’s
ocks into

ctory
course.

Each of the classes used a different variant of Pencil.cc. One class used a block-based version,
the second used a text-based version, and the third used the hybrid blocks/text interface
described above. The study began on the first day of school and collected a variety of
quantitative and qualitative data. This paper relies on two primary data sources: semi-structured
clinical interviews conducted in the final week of the study and computational logs generated
throughout the study. For the one-on-one student interviews, the researcher sat alongside
students, first asking them questions about their experiences in the class and having them
describe projects they completed. In the second half of the interview, students were asked to
think-aloud as they worked through activities designed to elicit specific types of thinking around
computer science concepts. The computational log data was gathered by Pencil.cc which
recorded information about a student’s program every time a student clicked the run button. A
total of 134,444 Pencil.cc events were collected from the students across the three conditions.
Further details about the study design and data collection strategy can be found in [56].

3.3 Setting and Participants
This study was conducted at a large, urban, public high school in an American

Midwestern city, serving almost 4,000 students. The school is a selective enrollment institution,
meaning students have to meet academic standards to attend, although steps are taken by the
district to ensure a diverse student population comprised of learners from across the city. The
student body is racially diverse and a majority of the students in the school (58.6%) come from
economically disadvantaged households.

The experiment was conducted in an existing Introduction to Programming elective
course. A total of 90 students participated in the study. The self-reported racial breakdown of the
participants was: 41% White, 27% Hispanic, 11% Asian, 11% Multiracial, and 10% Black.
Relative to the larger student body, White students were overrepresented and Hispanic students
were slightly underrepresented, with the other racial groups roughly matching the larger school
demographics. The classes comprised of students across all four years of high school, with a
reported mean age of 17.1 (SD = 1.1 years). The three classes in the study were comprised of 15
female students and 75 male students. This gender disparity is problematic, but recruitment for
the courses was beyond the control of the researchers. Of the students participating in the study,
almost half (47%) speak a language other than English in their households. The same teacher
taught all three sections of the course, allowing us to control for teacher effects.

4. Novice Programming Practices
Our analysis of novice programming practices is divided into two sections. First, we

present a detailed vignette from an interview with one student from the Hybrid condition. In the
next section, we use the computational data collected to link practices and trends found in the
vignette to the full set of Hybrid participants and to learners who worked in the other modalities.
Note, this analysis is focused specifically on programming practices; an analysis of learning and
attitudinal outcomes from this study can be found in [44,56,57].

4.1 A Vignette of a Novice Programming in a Hybrid Blocks/Text Environment
This vignette is intended to serve as a representative case study to understand how

novices navigate and utilize features present in an introductory programming environment,
focusing on unique interaction patterns and distinct practices supported by the blocks-text
modality. This interview was characteristic of all of the Hybrid interviews and selected because
it serves as a nice example of the breadth of supports and challenges learners encountered. Not
every moment of the session is present, but instead, an effort was made to provide enough detail

to prese
moment

T

Can
mult
num
it wo

T
fact that
variable
While th
one take

Figure 3

T
the cour
in the bl
then fin
the pale
replaces
cursor to
through
onto the
Figure 2
for loo
an error
hovers h
second,
loop, wh
'hello
line of t
write i
typing th
using th
modific

ent a clear pi
ts and intere
The vignette

n you write a
tiple of that

mber 11, it w
ould print o

This specifi
t it is a man
es and iterati
here are man
en in the vig

3. A block-b

This vignett
rse. After he
locks palette
ally operat

ette and into
s it with 15.
o a blank lin

h a few more
e canvas. Th
2b). After ad
op, causing t
r in the code
his mouse o
then clicks

hich causes
o.', which t
the program
increase*
he line if r

he block pale
ations to his

icture of how
esting intera
e follows a

a program t
number tha

would print o
out 2, 4, 6, 8

ic programm
ageable size
ion), suppor
ny ways to
gnette below

(a)

based (a) an

te is of a stu
earing the pr
e: move, co
tors, wher
his program
 After askin
ne, and type
e categories
he for block
dding the bl
the editor to
e, in this cas
over the erro

on the Text
the red x to
the student

m (random 1
*random 15
random 15*
ette or other
s program u

w the sessio
actions.
student as h

that picks a
at is less tha
out 11, 22, 3

8, 10, 12, 14

ming challen
e, asks stude
rts numerou
achieve the

w follows th

nd text-base

udent had no
rompt, the s
ontrol (wh
re he scrolls
m. He then p
ng a clarifyi
es: increas
before open

k provides a
lock to his p
o display a r
se, because t
or, sees the m
t category o
o disappear.
deletes and
15), copies i
5. The stude
*increase
r environme

using the key

on progresse

he writes a p

random num
an 100? So, f
33, 44, 55, 6
and so on,

nge was sele
ents to use a
us solutions,
 desired beh

he logic show

ed (b) solutio

ot reported a
student start
here he scrol
 up, before
puts the curs
ng question
se=0. He th
ning the con
a template f
program, the
ed x next to
there is noth
message 'Un
of the palette

The write
replaces wi

it and then p
ent next add
e < 100. He
ental suppor
yboard, incl

ed, with an e

program in r

mber less th
for example

66, 77, 88, a
up until 100

ected for a n
a number of
, and includ
havior, the m
wn in Figure

on to the int

any prior pr
ts by clickin
lls up and d
finally drag
sor next to t

n, he then hit
hen returns t
ntrol grou

for the loopi
e student de
o the loop’s
hing inside t
nexpected
e and drags
e block has t
ith increas
pastes it afte
ds a conditio
e types this c
rts for help.
luding chan

emphasis pl

response to

han 15 and t
e, if your pr
and 99. If it p
0.

number of re
f programmi
des a number
most commo
e 3.

(b)

terview prom

rogramming
ng through th
down throug
gging the ra
the default v
ts the return
to the block
up and dragg
ing structure
letes the pla
definition. T
the for loop
d Termina
a write bl
the default a
se* and the
er the *, giv
onal stateme
command fr
He then ma

nging the cod

laced on key

this prompt

then prints o
rogram pick
picked the n

easons, inclu
ing concept
r of natural
on approach

mpt

g experience
he various c

gh the block
andom block
value of 6 a
n button, mo
ks palette, cl
ging a for b
e (as can be
aceholder in
This denote
p. The stude
ator,' pause
ock into the
argument of
en highlight
ving him the
ent to his pro
rom memory
akes a few m
de that cont

y

t:

out every
ked the
number 2,

uding the
ts (e.g.
pitfalls.

h, and the

e before
categories
s), text,
k out of
nd

oving his
icks
block
seen in

nside the
s there is
ent
es for a
e for
f
ts the first
 line:
ogram by
y, not

more
trols the

loop and
minutes

Figure
(b), and

A
next. Af
if this ra
random
characte
display
hovers o
message
reads ra
the red x

U
thinks fo
random
characte
changes
then 2 o
to see w
“that is
added c
comman
now wit
strange.
then run
expressi
has a rev
He then
then cop
Figure 4

1 In Pen
whereas
one is sy

d adding a l
s and 48 sec

(a)

4. The Hybr
d his final pr

At this poin
fter a pause,
andom 15 (

m 15 (hovers
ers =x to the
a red x next
over the x, r
e, pauses for
andom 15==
x disappears
Upon runnin

for a minute,
m 15 comma
er 0 and then
s the +1 in li
on the secon
what x is” an

it, right?” a
ommand wi
nd he just dr
th a debug s
. Oh” and ch
ns the progra
ion, was wh
velation. “O

n highlights t
pies and pas
4c. “Yeah, th

ncil.cc, the d
s a single eq
yntactically

ine to increm
onds and ha

rid student’
rogram (c).

nt, the studen
, the student
(clicks and d
s his mouse
e end of line
t to the first
revealing th
r a second, t
=x1. This ad
s.
ng the progr
, then delete
and. This fix
n stops. To
ine 4 to +2

nd line, whic
nd then puts
and drags a w
ith the comm
rag-and-dro
statement, th
hanges the r
am again, w

hat he was e
Oh, I know, I
the for loo
stes the cond
his ought to

double equal
quals sign (=
y valid but n

ment his va
as written th

s first run p

nt pauses an
t responds “
drags to high
of line 1). I

e one, so the
t line. The st
e errors mes
then adds a

ddition to th

ram, he gets
es the ==x a
xes the error
try and figu
and reruns t
ch gives him
s the cursor a
write bloc
mand he jus

opped into h
he output is
random 15

which produ
xpecting to
I know wha

op definition
dition out of

o work better

ls sign (==)
=) is used fo
ot what the

ariable. At th
he program s

(b)

program (a),

nd the interv
“I'm going to
hlight the r
I'm just goin
e line reads:
tudent sees
ssage shown
second = to

he program r

s an error sa
at the end of
r, and he hit
ure out what
the program

m some insig
at the end o

ck into the p
st typed and
his program.
: 2 0 10, wh
command t
ces: 6 0 6, w
see. A mom
t to do, I thi

n in line 6, d
f the if stat
r.” The stud

can be used
or assignmen

student inte

his point, he
shown in Fi

an error me

viewer asks
o set this to
andom 15 i

ng to set it to
 random 15
this and say
n in Figure 4
o the line so
resolves the

aying 'x is
f the line an
ts run again
t is happenin

m. It now pri
ght into the

of line 1 and
program, com
d says “yeah

 The studen
hich causes
that is still in
which, base
ment after ru
ink a while
deletes it all
tement, prod
dent then run

d to compar
nt. The use
ended.

e has been p
igure 4a.

essage displ

him what h
a variable

in line 5) is
o x.” He the
5=x, which
ys: “wait, wh
4b. The stud

o the first lin
e compile-tim

s not def
d then adds
. His progra
ng in his pro
ints out 0 on
behavior. H

d types in wr
mpares the s
” before del

nt then rerun
the student
n line 6 to u

ed on the stu
unning this p
e loop would
at once, typ

ducing the p
ns the progr

re the equali
of the doub

programming

(c)

layed by the

he would lik
because I'm
the same as
en adds the
causes the e

hat's this?”
dent reads th
ne of the pro
me syntax e

fined'. He
 x= in front

am then prin
ogram, the s
n the first lin
He says “I'd
rite x. He
syntax of th
leting the wr
ns the progra
to say “that

use the varia
udent’s facia
program the
d be much b
pes in whil
program sho
ram, which

ity of two ob
le equals sig

g for two

e editor

ke to do
m not sure
s this

editor to
and
his

ogram
error and

e pauses,
t of the
nts out the
student
ne and
also like
then asks

he newly
rite
am again,
t's
able x. He
al
e student
better.”
e, and

owing in

bjects
gn in line

demonstrates the correct behavior. In authoring this program, the student spent a total of 9
minutes and 8 seconds, ran his program 9 times, and encountered two syntax errors.

4.1.1 Hybrid Vignette Discussion
In this vignette, we see the student leverage affordances common to block-based

programming environments but also demonstrates conventional text-based author practices. The
first interesting thing to note from this vignette is how the student moved back and forth between
dragging in commands from the palette and typing them directly into his program. This could be
seen right from the beginning in that the first command (random 6) in the program was added
via dragging the block onto the editor and the second command (increase=0) was typed. For
the third command (a for block) he goes back to the palette to again drag-and-drop a command
into his program, which he then modifies with the keyboard (deleting the placeholder for the
nested statement). This shows the hybrid interface supports two modes of composition and that
this novice fluidly moved between them while composing his program. In the vignette, we also
see the learner clicking through categories in search of commands, showing that the browsability
of the block-based interface has been retained.

Another noteworthy feature in this vignette is the presence of in-editor feedback for
syntax errors and the student responses. Twice during this activity, the student introduced an
error; in both cases, it was while he was typing in commands with the keyboard. One of these
errors happened when the student typed in the line: random 15=x. What is interesting about this
is that the student’s next move was to add a second =, producing the line random 15==x, which
is still incorrect, but is no longer a compile-time error, which gives the impression that the error
has been corrected. This interaction is noteworthy as this type of error would be very difficult to
make in a block-based interface where more constraints are placed on how commands can be
assembled. Further, the approach of tinkering with commands by adding and removing
characters in hopes of resolving compile-time errors is largely absent from our block-based
interview data.

The introduction of syntax errors was frequently observed in both the Text and Hybrid
modalities, but in the Hybrid case, there are additional supports provided by the interface that
can help address this. One clear example occurred when the student wanted to add a debugging
statement to his program, he typed in the line write x and then dragged out a write block and
placed it below the line he just typed to check the syntax. Upon seeing that what he had typed
matched what appeared when he dropped the write block, he deleted the second command and
continued working. This pattern of using the blocks as a way to check syntax keyed in was
observed in all four of the hybrid interviews conducted and reported as a frequent strategy used
by students throughout the 5-week study. In this capacity, the blocks were not serving as a means
for remembering what is possible, or a way to author new portions of a program, but instead
serving as a way for students to double-check to make sure they were doing things correctly.
This pattern was unexpected and reveals one type of support novice programmers need: in-editor
scaffolds to quickly verify syntax.

A final thing to note from this vignette is that the student utilized a number of common
text-editing techniques: notably, copy-and-pasting lines of code to move them around and
highlighting blocks of text either to denote something to the interviewer or to delete portions of
the program. Seeing the student make these types of moves is not particularly surprising as high
school students are usually comfortable with text manipulation. This is noteworthy in that the
Blocks modality does not give the student the ability to do this type of character-by-character

highlighting or easily support copy-and-pasting sets of commands and thus was not observed in
the interviews with students from the Blocks condition of the study.

4.2 Programming Practices Across All Participants
Having provided a qualitative description of what it looks like for a novice to program in

the Hybrid modality and how he blended conventional block-based and text-based programming
practices, we now investigate emerging programming patterns and practices across the full set of
participants using the computational log data collected during the study.

4.2.1 Running Programs
The run event is captured every time a student runs their program in Pencil.cc A total of

76,110 run events were captured by the logging system during the 5-week study. We focus on
run events in this section as it serves as a proxy for one dimension of emerging learner
programming practices; that of the speed of completion of programs, reliance on program output
for evaluation and reflection, and a measure of the iterative program development process.
Calculating the average number of runs per student by condition shows the Blocks students
running a program an average of 733 times, Hybrid students running their programs an average
of 1,073 times, and Text students running their programs 742.9 times on average. An ANOVA
calculation of the average number of runs per student in each condition shows there to be a
statistically significant difference between the condition F(2,89) = 8.71, p < .001. A Tukey HSD
post hoc analysis shows that students in the Hybrid condition ran their programs significantly
more often than the other conditions (compared to Blocks p < .001, compared to Text p = .003),
while there was no difference in the number of runs between Blocks and Text students (p = .86).
This pattern of students in the Hybrid condition running their programs more frequently than the
other two conditions is relatively consistent across the 5-week curriculum, as can be seen in
Figure 5, which shows the average number of runs by students per assignment, ordered
chronologically from the first assignment (Quilt) to the summative Final Project. Figure 5 also
shows the concept covered in each assignment, to help situate the activities within the larger
curriculum2. The full curriculum can be found in [56].

2 We report independent ANOVA calculations in Figure 5 rather than a single model due to the
shifting nature of assignments across the curriculum. Assignments varied by concept, form of
output (textual vs. graphical), and constraints (narrow vs. open). These difference led us to favor
independent tests, providing more clearer insight into where difference emerged.

Figure
by cond

O

that it is
text mod
checkin
to corre
after hav
one time
this dist
based pr
data.

T
a syntax
Text con
small ch
for runs
5 second
reruns o
quickly
Hybrid
significa
pattern s

A
comman

5. The avera
dition.

Our explana
s linked to h
dalities. In t

ng to see if h
ct a syntax e
ving added
e without m
tribution of
ractices in l

Two of the n
x error, a situ
ndition. The
hanges (usua
s, we can see
ds of the pre

of an unalter
reran their p
students and
ant (F(2, 89
similar to le
At the same
nds to their

age number

ation for thi
how students
the vignette
his program
error, two m
a write com

making any c
runs shows
earners and

nine runs in
uation that r
ese runs hap
ally only a f
e how often
evious run)
red program
programs an
d 14.1 times

9) = 4.94, p <
earners in th
e time, the B
program be

r of runs by

s pattern, an
s in the Hyb
 above, four
is achieving

more were h
mmand for d
changes to s
how the hy

d explains th

n the Hybrid
rarely occur
ppened in qu
few charact

n students ra
after makin

m). Students
n average o
s for learner
< .01). So h

he Text cond
Blocks moda
ecause dragg

students for

nd the reaso
brid conditio
r of the nine
g the desired

him running
debugging pu
see if behavi
ybrid modali
he high avera

d condition w
rred in the B
uick success
ers in their p

an their prog
ng a small ch

in the Bloc
f 6.8 times p
rs in the Tex

here we see t
dition.
ality makes
ging-and-dro

r each proje

on we are fo
on used prac
e runs that o
d behavior,
his program
urposes, and
ior changed
ity supporte
age run freq

were driven
Blocks cond
sion as they
program). U

grams in qui
hange to the
ks condition
per assignm
xt condition
the Hybrid c

it easy for s
opping is fa

ect chronolo

cusing on it
ctices tied to
occurred sho

two of the r
m to try and
d finally, he

d. As will be
ed both bloc
quency show

n by the stud
dition but wa
y involved th
Using the tim
ick successi
eir program
n made sma

ment, compa
n, a differenc
condition de

students to q
aster than typ

ogically, bro

t in this anal
o both the b
ow the stude
runs were h
debug his s

e reran his p
e explained b
k-based and

wn in the ag

dent trying t
as common
he student m
mestamps re
ion (defined
(thus exclu

all changes a
ared to 12.2
ce that is sta
emonstratin

quickly add
ping in com

oken down

lysis is
blocks and
ent

him trying
solution
program
below,
d text-
ggregate

to resolve
in the

making
ecorded
d as within
uding
and
times for
atistically
ng a

mmands

one character at a time. As a result, on average, students in the Blocks condition produced
programs that were longer in length than their Text and Hybrid peers. On 10 of the 13
assignments in the 5-week curriculum the Blocks students produced the longest programs on
average, with students in the Hybrid condition producing the longest programs in the other three
assignments. Running an ANOVA calculation for each of the assignments, four were found to
have statistically significant differences across conditions at the p < .05 level: Tip Calculator
(F(2, 82) = 4.78, p = .01) , Grade Ranger (F(2, 71) = 5.26, p = .01), Radial Art (F = (2, 83) =
3.51, p = .03) and Connect 4 (F(2, 87) = 2.90, p = .05). In all but the Connect 4 assignment, the
Blocks condition students produced the longest programs and the Text students had the shortest
programs. The assignments with the greatest stratification of program length focused on
conditional logic (Paint by Quad, Movie Recommendation Engine, and Grand Ranger) and the
last two assignments from the functions portion of the course (Connect 4 and Brick Wall). The
variance in the conditional logic assignments is similar to what was seen in the runs-by-
assignment analysis (Figure 5), but that pattern does not continue with the iterative logic
assignments or the functions assignments. This variation in the Connect 4 and Brick Wall
assignments may come from the fact that those two assignments were by far the most difficult in
that they asked students to incorporate logic from previous parts of the course and required the
most amount of code to accomplish relative to the other assignments3. The fact that we see a
difference in conditional logic is another piece of evidence towards the larger trend of modality
affecting students’ learning and use of those constructs [41,58]. In this case, we are using
program length as a rough proxy for ease of composition given that all conditions had the same
time on task. The fact that programs can be assembled more easily contributes to students
running their programs more often to check the correctness of their program, which, again, leads
to students in the hybrid condition, on average, running their programs more frequently than their
text-based or block-based peers.

Collectively, these data show how the Hybrid interface has the ease-of-composition of
the block-based modality, which makes it easy to quickly add commands to the program to see if
they work. At the same time, it also allows for syntax errors, due to the lack of constraints on
how and where commands can be added. In this case, the blended Hybrid interface results in a
summative behavior (i.e. students do both) as opposed to reductive outcome (i.e. the Hybrid
interface relieves the user from having to do certain things).

5. Discussion
This paper investigates how programming practices are shaped by modality, specifically

looking at practices novices developed while working in a hybrid blocks/text modality. Using a
variety of methods and data sources, this paper reveals characteristics of programming in a
hybrid modality and how practices adopted draw from both of the source modalities. Here we
discuss implications of the finding that interface shapes modality and modality shapes emerging
programming practices.

5.1 Modality Matters
In the vignette, we see how one student used various compositional strategies and

techniques to write a functioning program. The student used the blocks palette for syntactic help
and to browse the set of available blocks for sources of inspiration. While at the same time, he
typed in commands from memory and used copy-and-paste text editing moves characteristic of

3 The Grade Ranger and Movie Recommendation Engine assignments’ numbers are inflated due
to the amount of text included in the assignment.

programming in a conventional text-based programming interface. Further, the student employed
practices unique to the hybrid blocks/text modality when he used the drag-and-drop feature of
the blocks as a way to check the syntax of commands he had typed in. Given our
conceptualization of modality as affordances of the representation and the interactions they
support, this diverse set of uses highlights the way modality shapes programming practices.
Drawing on our theoretical framework and taking a distributed condition lens to this
environment, we can see the modality and features of the interface influence the act of
programming. The existence of the Blocks palette means students do not need to recall specifics
about what is possible in the language from memory nor memorize syntactic detail, as the
environment itself knows this information. In other words, the knowledge of what is possible and
how and where commands can be used are encompassed by the modality and thus need not be
committed to a learner’s memory. Likewise, the set of supports the hybrid interface provided was
used in a variety of ways, showing it is not a single use that the design pushes learners towards,
but instead, a suite of resources, or Webbing using Noss & Hoyles (1996) terminology, that the
interface presents and learners use. The conclusion to be drawn from this analysis is a
recognition that the resources provided by a specific interface shape modality and that modality
impacts novices emerging programming practices.

5.2 Modality and the Design of Learning Environments
A second contribution of this work is a demonstration of how modality is malleable and

how interface design, along with characteristics of the environment and representation, can
change both what users are able to do and how they are able to do it. This perspective opens the
door to the larger enterprise of creating new modalities through the revision of existing forms as
well as the creation of entirely new ways of expressing ideas and interacting with
representational systems. This is akin to Wilensky and Papert’s notion of restructuration [54,59],
the term they use to describe shifts in representational infrastructure where one set of
representational forms is replaced with another. The hybrid interface presented in this study is
one example of designing a new modality. In creating this specific blended interface, we sought
to retain block-based features identified as useful while also incorporating strengths (real or
perceived) of conventional text-based programming. The result was a modality distinct from the
two that it drew from and producing unique programming practices in the learner. While the data
in this paper do not allow us to claim the hybrid modality is superior, they do represent a
successful demonstration of the creation of a new modality and the effects it can have on novice
programming practices. This can be seen in how new, unique practices emerged, such as the
dragging of blocks into the text area to verify syntax. Likewise, the fact that students in the
Hybrid condition utilized productive block-based strategies (such as browsing the categories) as
well as incorporated useful text-based moves (like copy-and-pasting chunks of text) show how
modality can facilitate and promote productive programming practices in novices. This work,
alongside complementary studies looking into learning and attitudinal outcomes of students
working in the Hybrid modality [43] show the promise of this line of design work.

A final thing to note about modality and design is the recognition that through design we
can give agency to learners and scaffold novices at various points along the learning trajectory.
In designing an environment with a rich webbing of various supports, the learner can be in
control of their own learning, deciding for him or herself how to proceed. For example, in the
vignette, we saw how the student was able to type out an if statement from memory, but used
the drag-and-drop feature to add a for loop, suggesting he had knowledge of the syntax of one
of these concepts but not the other. This shows the learning environment meeting the learner at

their current developmental level, providing supports when and where they were needed. The
larger take away from this work is not just that modality shapes learners’ experiences with
content, but that the design and evaluation of modalities can and should be an active area of
research, with computer science and programming environments leading the way.

6. Conclusion
This paper contributes to our understanding of the relationship between the design of

introductory programming environments and the programming practices they engender. Using a
detailed vignette and data from a five-week study, we show how modality affects novice
programmers’ emerging programming practices. In doing so, we develop the notion of modality
as a means for describing the relationship between an interface and learner and highlight
modality as one possible design dimension that can be used to support novices in having early
programming successes. This work is intended to complement other work focused on conceptual
learning and attitudinal and engagement outcomes and help us think through the relationship
between design and learning, specifically as it related to programming. Given the increased role
of computer science and the growing number of introductory environments being developed and
used in classrooms, having a complete picture of how these design choices impact novices is
essential. The ultimate goal of this line of inquiry is that it will help shape the next generation of
introductory computer science learning environments, and in doing so, shape the next generation
of computationally literate students.

7. References
[1] C. Duncan, T. Bell, S. Tanimoto, Should Your 8-year-old Learn Coding?, in: Proc. 9th

Workshop Prim. Second. Comput. Educ., ACM, New York, NY, USA, 2014: pp. 60–69.
[2] J.J. Gibson, The ecological approach to visual perception, Psychology Press, 1986.
[3] D.A. Norman, The design of everyday things, Doubleday, New York, 1990.
[4] P. Ginns, Meta-analysis of the modality effect, Learn. Instr. 15 (2005) 313–331.

doi:10.1016/j.learninstruc.2005.07.001.
[5] S.E. Palmer, Fundamental aspects of cognitive representation, in: E. Rosch, B.B. Lloyd

(Eds.), Cogn. Categ., Lawrence Erlbaum Associates, Hillsdale, N.J., 1978: pp. 259–303.
[6] J.J. Kaput, Towards a Theory of Symbol, in: C. Janvier (Ed.), Probl. Represent. Teach.

Learn. Math., Lawrence Erlbaum Associates, Hillsdale, NJ, 1987: p. 159.
[7] J.H. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The Scratch programming

language and environment, ACM Trans. Comput. Educ. TOCE. 10 (2010) 16.
[8] T.D. Erickson, Working with interface metaphors, in: Read. Human–Computer Interact.,

Elsevier, 1995: pp. 147–151.
[9] D. Bau, J. Gray, C. Kelleher, J. Sheldon, F. Turbak, Learnable programming: blocks and

beyond, Commun. ACM. 60 (2017) 72–80.
[10] A. Begel, LogoBlocks: A graphical programming language for interacting with the world.,

Electrical Engineering and Computer Science Department. MIT, 1996.
[11] J. Bonar, B.W. Liffick, A visual programming language for novices, in: S.K. Chang (Ed.),

Princ. Vis. Program. Syst., Prentice-Hall, Inc., 1987.
[12] S. Cooper, W. Dann, R. Pausch, Alice: a 3-D tool for introductory programming concepts,

J. Comput. Sci. Coll. 15 (2000) 107–116.
[13] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-Hernández, N. Rusk, E.

Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, Scratch: Programming for all,
Commun. ACM. 52 (2009) 60.

[14] D. Wolber, H. Abelson, E. Spertus, L. Looney, App Inventor: Create Your Own Android
Apps, O’Reilly Media, Sebastopol, Calif, 2011.

[15] M.H. Wilkerson-Jerde, U. Wilensky, Restructuring Change, Interpreting Changes: The
DeltaTick Modeling and Analysis Toolkit, in: J. Clayson, I. Kalas (Eds.), Proc. Constr.
2010 Conf., Paris, France, 2010.

[16] M.S. Horn, U. Wilensky, NetTango: A mash-up of NetLogo and Tern, in: Moher T Chair
Pinkard N Discussant Syst. Collide Chall. Oppor. Learn. Technol. Mashups, Vancouver,
British Columbia, 2012.

[17] D. Weintrop, U. Wilensky, RoboBuilder: A program-to-play constructionist video game, in:
C. Kynigos, J. Clayson, N. Yiannoutsou (Eds.), Proc. Constr. 2012 Conf., Athens, Greece,
2012.

[18] N. Fraser, Blockly, Google, https://developers.google.com/blockly/, 2013.
[19] R.V. Roque, OpenBlocks: An extendable framework for graphical block programming

systems, Master’s Thesis, Massachusetts Institute of Technology, 2007.
[20] D. Bau, D.A. Bau, M. Dawson, C.S. Pickens, Pencil Code: Block Code for a Text World,

in: Proc. 14th Int. Conf. Interact. Des. Child., ACM, New York, NY, USA, 2015: pp. 445–
448.

[21] M. Homer, J. Noble, Combining Tiled and Textual Views of Code, in: IEEE Work. Conf.
Softw. Vis. VISSOFT, IEEE, Victoria, BC, 2014: pp. 1–10.

[22] Y. Matsuzawa, T. Ohata, M. Sugiura, S. Sakai, Language Migration in non-CS Introductory
Programming through Mutual Language Translation Environment, in: Proc. 46th ACM
Tech. Symp. Comput. Sci. Educ., ACM Press, 2015: pp. 185–190.

[23] D. Weintrop, N. Holbert, From blocks to text and back: Programming patterns in a dual-
modality environment, in: Proc. 48th ACM Tech. Symp. Comput. Sci. Educ., ACM, New
York, NY, USA, 2017.

[24] M. Kölling, N.C.C. Brown, A. Altadmri, Frame-Based Editing: Easing the Transition from
Blocks to Text-Based Programming, in: Proc. Workshop Prim. Second. Comput. Educ.,
ACM, New York, NY, USA, 2015: pp. 29–38.

[25] R.B. Shapiro, M. Ahrens, Beyond Blocks: Syntax and Semantics, Commun ACM. 59
(2016) 39–41.

[26] D. Weintrop, U. Wilensky, The challenges of studying blocks-based programming
environments, in: 2015 IEEE Blocks Workshop Blocks Beyond, 2015: pp. 5–7.

[27] D.J. Malan, H.H. Leitner, Scratch for budding computer scientists, in: ACM SIGCSE Bull.,
ACM, 2007: pp. 223–227.

[28] J.H. Maloney, K. Peppler, Y. Kafai, M. Resnick, N. Rusk, Programming by choice: Urban
youth learning programming with Scratch, ACM SIGCSE Bull. 40 (2008) 367–371.

[29] B. Tangney, E. Oldham, C. Conneely, S. Barrett, J. Lawlor, Pedagogy and processes for a
computer programming outreach workshop—The bridge to college model, Educ. IEEE
Trans. On. 53 (2010) 53–60.

[30] A. Wilson, D.C. Moffat, Evaluating Scratch to introduce younger schoolchildren to
programming, Proc. 22nd Annu. Psychol. Program. Interest Group Univ. Carlos III Madr.
Leganés Spain. (2010).

[31] O. Meerbaum-Salant, M. Armoni, M.M. Ben-Ari, Learning computer science concepts with
Scratch, in: Proc. Sixth Int. Workshop Comput. Educ. Res., 2010: pp. 69–76.

[32] O. Meerbaum-Salant, M. Armoni, M. Ben-Ari, Habits of programming in Scratch, in: Proc.
16th Annu. Jt. Conf. Innov. Technol. Comput. Sci. Educ., ACM, Darmstadt, Germany,
2011: pp. 168–172.

[33] S. Grover, R. Pea, S. Cooper, Designing for deeper learning in a blended computer science
course for middle school students, Comput. Sci. Educ. 25 (2015) 199–237.

[34] D. Franklin, G. Skifstad, R. Rolock, I. Mehrotra, V. Ding, A. Hansen, D. Weintrop, D.
Harlow, Using Upper-Elementary Student Performance to Understand Conceptual
Sequencing in a Blocks-based Curriculum, in: Proc. 2017 ACM SIGCSE Tech. Symp.
Comput. Sci. Educ., ACM, New York, NY, USA, 2017: pp. 231–236.

[35] K. Johnsgard, J. McDonald, Using Alice in Overview Courses to Improve Success Rates in
Programming I, in: IEEE 21st Conf. Softw. Eng. Educ. Train. 2008 CSEET 08, 2008: pp.
129–136.

[36] B. Moskal, D. Lurie, S. Cooper, Evaluating the effectiveness of a new instructional
approach, in: Proc. 35th SIGCSE Tech. Symp. Comput. Sci. Educ., 2004: pp. 75–79.

[37] P. Mullins, D. Whitfield, M. Conlon, Using Alice 2.0 as a first language, J. Comput. Sci.
Coll. 24 (2009) 136–143.

[38] D.C. Cliburn, Student opinions of Alice in CS1, in: Front. Educ. Conf. 2008 FIE 2008 38th
Annu., IEEE, 2008: p. T3B–1.

[39] K. Powers, S. Ecott, L.M. Hirshfield, Through the looking glass: teaching CS0 with Alice,
ACM SIGCSE Bull. 39 (2007) 213–217.

[40] W. Dann, S. Cooper, R. Pausch, Learning to Program with Alice, Prentice Hall Press, 2011.
[41] D. Weintrop, U. Wilensky, Using Commutative Assessments to Compare Conceptual

Understanding in Blocks-based and Text-based Programs, in: Proc. Elev. Annu. Int. Conf.
Int. Comput. Educ. Res., ACM, New York, NY, USA, 2015: pp. 101–110.

[42] T.W. Price, T. Barnes, Comparing Textual and Block Interfaces in a Novice Programming
Environment, in: ACM Press, 2015: pp. 91–99.

[43] M. Homer, J. Noble, Lessons in Combining Block-based and Textual Programming, J. Vis.
Lang. Sentient Syst. 3 (2017) 22–39. doi:10.18293/VLSS2017.

[44] D. Weintrop, U. Wilensky, Between a Block and a Typeface: Designing and Evaluating
Hybrid Programming Environments, in: Proc. 2017 Conf. Interact. Des. Child., ACM, New
York, NY, USA, 2017: pp. 183–192.

[45] M. Kölling, N.C.C. Brown, A. Altadmri, Frame-Based Editing, J. Vis. Lang. Sentient Syst.
3 (2017) 40–67.

[46] T.W. Price, N.C. Brown, D. Lipovac, T. Barnes, M. Kölling, Evaluation of a Frame-based
Programming Editor, in: Proc. 2016 ACM Conf. Int. Comput. Educ. Res., ACM, 2016: pp.
33–42.

[47] J. Mönig, Y. Ohshima, J. Maloney, Blocks at your fingertips: Blurring the line between
blocks and text in GP, in: 2015 IEEE Blocks Workshop Blocks Beyond, 2015: pp. 51–53.

[48] A. Stead, A.F. Blackwell, Learning Syntax as Notational Expertise when using
DrawBridge, in: Proc. Psychol. Program. Interest Group Annu. Conf. PPIG 2014,
University of Sussex, 2014: pp. 41–52.

[49] E. Hutchins, How a cockpit remembers its speeds, Cogn. Sci. 19 (1995) 265–288.
[50] D.A. Norman, Things that make us smart: Defending human attributes in the age of the

machine, Basic Books, 1993.
[51] R. Noss, C. Hoyles, Windows on mathematical meanings: Learning cultures and computers,

Kluwer, Dordrecht, 1996.

[52] J. Hollan, E. Hutchins, D. Kirsh, Distributed cognition: toward a new foundation for
human-computer interaction research, ACM Trans. Comput.-Hum. Interact. TOCHI. 7
(2000) 174–196.

[53] J. Kaput, R. Noss, C. Hoyles, Developing new notations for a learnable mathematics in the
computational era, Handb. Int. Res. Math. Educ. (2002) 51–75.

[54] U. Wilensky, S. Papert, Restructurations: Reformulating knowledge disciplines through
new representational forms, in: J. Clayson, I. Kallas (Eds.), Proc. Constr. 2010 Conf., Paris,
France, 2010.

[55] D. Weintrop, U. Wilensky, To Block or Not to Block, That is the Question: Students’
Perceptions of Blocks-based Programming, in: Proc. 14th Int. Conf. Interact. Des. Child.,
ACM, New York, NY, USA, 2015: pp. 199–208.

[56] D. Weintrop, Modality Matters: Understanding the Effects of Programming Language
Representation in High School Computer Science Classrooms, Ph.D. Dissertation,
Northwestern University, 2016.

[57] D. Weintrop, U. Wilensky, Comparing Blocks-based and Text-based Programming in High
School Computer Science Classrooms, ACM Trans. Comput. Educ. TOCE. (In Press).

[58] C.M. Lewis, How programming environment shapes perception, learning and goals: Logo
vs. Scratch, in: Proc. 41st ACM Tech. Symp. Comput. Sci. Educ., New York, NY, 2010:
pp. 346–350.

[59] U. Wilensky, A. Papert, B. Sherin, A.A. DiSessa, A. Kay, S. Turkle, Center for Learning
and Computation-Based Knowledge (CLiCK), Proposal to the National Science Foundation
- Science of Learning Center., 2005.

	How block-based, text-based, and hybrid block/text modalities shape novice programming practices

