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Abstract 
There is growing diversity in the design of introductory programming environments. Where once 
all novices learned to program in conventional text-based languages, today, there exists a 
growing ecosystem of approaches to programming including graphical, tangible, and scaffolded 
text environments. To date, relatively little work has explored the relationship between the 
design of novice programming environments and the programming practices they engender in 
their users. This paper seeks to shed light on this dimension of learning to program through the 
careful analysis of novice programmers’ experiences learning with a hybrid blocks/text 
programming environment. Specifically, this paper is concerned with how novices leverage the 
various affordances designed into programming environments and programming languages to 
support their early efforts to author programs. We explore this relationship through the construct 
of modality using data from a study conducted in a high school computer science classroom in 
which students spent five weeks working in blocks-based, text-based, and hybrid blocks/text 
programming environments. This paper uses a detailed vignette of a novice writing a program in 
the hybrid environment as a way to characterize emerging programming practices, then presents 
analyses of programming trends from the full study population to speak to the generality of the 
practices identified in the vignette. The analyses focus not only on characterizing authoring 
strategies but also on identifying patterns in novices’ help-seeking behaviors. By focusing on 
how modality influences novices’ emerging programming practices, this paper contributes to our 
understanding of the relationship between programming environment and learning, illuminating 
the role of design in shaping introductory programming experiences. 
 
Keywords 
Design; Modality; Programming Environments; Computer Science Education; Block-based 
Programming 
  



1. Introduction 
The last decade has seen a rapid growth in the number of ways young learners can engage 

in the act of programming. This includes new programming environments, toys that feature 
programming and other computing ideas, and online campaigns designed to introduce computer 
science to large numbers of learners around the world. Across these contexts, graphical block-
based programming has a growing presence, spanning both formal (classroom) and informal 
settings [1]. Recently, a wave of blended and dual-modality programming environments has 
emerged that integrate affordances of the block-based programming approach into conventional 
text-based programming interfaces, further diversifying the introductory computing landscape. 
Despite this growth in the variety of introductory programming environments, relatively little is 
known about the relationship between modality, programming interface design, and the impact 
they have on learners’ emerging programming practices. We use the term modality to capture 
both the representational infrastructure used as well as the set of interactions the interface 
supports. Understanding the effects of emerging programming modalities for novices is critical 
to the larger goal of making computing education effective and accessible to all learners. This 
paper seeks to address this gap in the literature by answering the following research question: 

How does modality affect learners’ emerging programming practices? 
 

To answer this question, we use data from a 5-week quasi-experimental study conducted 
in a public high school in a Midwestern American city. Our analysis includes an illustrative 
vignette of one novice programming in a hybrid blocks/text environment with special attention 
being paid to practices that were uniquely afforded by the hybrid modality. The paper then looks 
at programming practices across the full set of participants (n = 90) who learned to program in 
either a block-based, text-based, or hybrid environment, using log data collected from the 
programming environments to identify macro trends and how they differ by modality. The paper 
concludes with a discussion of the implications of this work with respect to modality and the 
design of introductory programming environments.  

2. Related Work 
This section focuses on work, both theoretical and empirical, upon which our evaluation 

of novice programming environments relies. The goal of this section is to present the 
foundational ideas that underpin our approach as well as to highlight the need for the proposed 
work on programming practices as a complement to existing scholarship.  

2.1 On Modality 
Given a semantics, we use the term modality to capture how one interacts with and 

composes within that semantics. Such interactions are defined and supported by the presentation 
and capabilities of the semantics itself, be they visual, expressive, or tangible. In looking at the 
interactions enabled by the presentation of a semantics, modality is not a characteristic of a 
representational system alone but also captures the relationship between the representation, its 
interface, and how one uses it. This conceptualization of modality is similar to the notion of 
affordance [2,3] in that it captures a characteristic of the interaction between an actor and the 
thing being acted upon, in this case, a representational system. Our choice for the word modality 
is intended to link the interactional characteristics and capabilities with the way in which the 
semantics exists, i.e. its modal qualities. In the literature, the term “modality” is often used to 
capture human sensor modes (visual, auditory, etc.), as can be seen with the modality effect, 
which describes the different outcomes of presenting information visually versus through an 



auditory mode [4]. We view our use of the term modality as consistent with this usages in that 
the modality label captures the relationship between the form in which something is presented 
and how it shapes the way one interacts with it. Our use of the term modality differs from this 
usage in that the modes we are concerned with are not defined by human sensory-motor 
capabilities but instead the modes in which an idea is expressed or interacted with.  

Our conceptualization of modality is similar to other terms used to describe the design of 
learning environments and representational systems but captures a distinct dimension of the 
learning interaction. In this work, we use the term representation to describe the set of symbols 
used to present concepts to the user akin to how Palmer [5] and later Kaput [6] use of the term. 
In this work, the programming language serves as the representation of interest. The term 
interface is intended to capture the presentation of the representation, specifically how 
programming commands are presented (e.g. as blocks with colors and notches intended to 
convey additional meaning). The data presented in this work are drawn from a block-based 
interface, text-based interface, and hybrid block-text interface, all of which use the same 
programming language. The interface, and thus the representation, are a part of the larger 
environment, which includes the canvas upon which block-based programs are constructed, the 
block palette where the set of available commands are collected, as well as the stage where 
programs are visually executed. This nomenclature for describing the components of the 
environment is drawn from the Scratch community [7]. These three terms (representation, 
interface, and environment) all describe this system as it is, independent of the user. The 
introduction of the term modality is intended to give us a label for the set of action enabled by 
these aspects of the system which is useful given our ultimate focus on how features of the 
system affect the user. Saying block-based modality thus captures the interface and 
representation as well as the suite of actions enabled by it (e.g. browsing the block palette or 
dragging-and-dropping commands). Our motivation in making this shift is to explicitly include 
the set of possible interaction and their influence on the user as part of our analytic focus. In 
doing so, the term recognizes the foundational role the user plays in bringing an interface to life 
and categorizing its impact. This shift from interface to interface-plus-actor also motivates the 
specific analysis presented in this work, where the block-based environment is analyzed through 
user actions as opposed to independent of them. 

Our conceptualization of modality is akin to an interface metaphor [8]. However, given 
the larger focus of this line of work on cognitive and perceptual outcomes of design on the 
learner, we have adopted the term modality to shift focus to the space between the user and the 
system, rather than prioritizing the system and secondarily the user (as a term like interface 
metaphor might connote). Further, the construct of modality gives us a language for comparing 
interaction patterns enabled by different interfaces in a consistent way, thus avoiding needing to 
compare across labels (e.g. comparing the block-based interface metaphor with a text-based 
language). Throughout this paper, we use the term interface when describing the environment 
independent of how it will be used and modality when discussing the environment and user in 
conjunction.  

2.2 Block-based Programming 
Block-based programming interfaces leverage a programming-primitive-as-puzzle-piece 

metaphor that provide visual cues to the user about how and where commands can be used as 
their means of constraining program composition [9]. Programming in these environments takes 
the form of dragging blocks onto a canvas and snapping them together to form scripts. If two 
blocks cannot be joined to form a valid syntactic statement, the interface prevents them from 
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programming among novice programmers [27–30]. Ben-Ari and colleagues conducted a number 
of studies on the use of Scratch for teaching computer science and concluded that Scratch could 
successfully be used to introduce learners to central computer science concepts [31] but that it 
could also lead to potentially undesirable practices like totally bottom-up programming and a 
tendency towards extremely fine-grained programming [32]. There is also work showing that 
block-based programming, in conjunction with effective pedagogy can serve as an effective way 
to develop important computational thinking skills and prepare learners for future computer 
science instruction [33]. Other work has found the block-based programming is a 
developmentally appropriate way to introduce younger learners at different ages to the practice 
of programming [34].  

Compared to Scratch, the Alice programming environment has a longer history of serving 
as the focal programming environment in introductory programming courses. Much of the 
motivation for using Alice in courses is based on findings that Alice is more inviting and 
engaging than text-based alternatives and improves student retention in CS departments [35–37], 
however, other educators have been less successful in replicating these results and have struggled 
in transitioning learners from Alice to conventional text-based environments [38,39]. This 
challenge was addressed with the release of Alice 3 and its inclusion of supports to transition 
learners to the Java programming language [40]. 

A growing body of research is conducting systematic comparisons of block-based and 
text-based environments. A study comparing students answering multiple choice programming 
questions found that students perform better on questions asked with a block-based 
representation compared to the text-based equivalent [41]. Other studies investigating learning 
outcomes in blocks versus text environments found little difference in learning outcomes but did 
report that students completed activities in block-based environments at a faster rate [42].  

2.4 Blending Block-based and Text-based Programming  
As block-based programming matures and more is known about the affordances and 

drawbacks of the interface, a growing number of environments are blending features of block-
based and text-based programming in a single environment. Two main strategies have been taken 
to accomplish this: dual-modality environments and hybrid block/text environments. Dual-
modality programming environments support both block-based and text-based programming, 
allowing the user to move back-and-forth between the two modalities as they work. Examples of 
such environments include Pencil Code [20], Tiled Grace [43], and BlockEditor [22]. Empirical 
evaluations of dual-modality environments show how such an approach can support learners 
with differing level of prior experience and support just-in-time scaffolds when the user needs it 
[22,23]. 

Unlike dual-modality environments which support both modalities, hybrid block/text 
environments blend features of block-based interfaces with conventional text-based interfaces to 
create a new modality distinct from both blocks and text but sharing characteristics of both [44]. 
We classify these as new modalities as they enable new interaction patterns and potentially 
provide additional cognitive or perceptual supports for the user distinct from other modalities. 
There are a growing number of environments that live in this space, each of which offer unique 
interactions and visual displays. One recent example of this type of environment is Greenfoot’s 
Frame-based Editor [45]. As its creators explain, frame-based editing “maintains some of the 
graphical representation advantages, discoverability and error avoidance of blocks while 
providing the flexibility, keyboard-entry capabilities, and readability of text” [24]. A central 
design goal of the Frame-based editing approach is to keep the atomic unit of operation a valid 



node in the program’s abstract syntax tree (i.e. you add/edit/delete full commands, akin to 
working in blocks), but that manipulation of these nodes can be completed with the keyboard and 
the program presentation retains the visual characteristics of a text-based program. Early analysis 
of frame-based editing shows the promise of this specific hybrid approach [46]. A second 
example of Hybrid block/text programming environment can be seen with GP, which is inspired 
by Scratch and seeks to address the drawbacks of block-based interfaces as programs become 
larger and more complicated by incorporating text layouts and keyboard-driven compositional 
mechanisms [47]. Other hybrid environments include DrawBridge [48] which supports a gradual 
transition and Pencil.cc, which is the focus of this paper and described in detail below. 

2.5 Theoretical Framing 
Before continuing with the design of the study and findings, we now present the 

theoretical framing that informs both why we are pursuing the stated research question as well as 
the methods and analytic techniques employed to answer it. In conducting this work, we draw on 
a number of theoretical lenses which inform how we think about the role design plays in how 
learners interact with different tools and representations. Central to our theoretical approach is 
the view that the tools and representations serve as resources that learners draw upon and, in 
turn, shape both the practices that develop as well as the conceptual understandings that emerge. 
This perspective draws on Norman and Hutchins’ theory of distributed cognition [49,50] as well 
as Noss and Hoyles’ construct of Webbing [51]. Distributed cognition “extends the reach of what 
is considered cognitive beyond the individual to encompass interactions between people and with 
resources and materials in the environment” [52]. Through this lens, the tools and representations 
are included within the bounds of the cognitive activity, meaning they do not influence 
cognition, but instead are a fundamental component of it. In bringing this perspective to a 
learning task, the design of the tools and representational infrastructure used become 
foundational to how one learns, what one learns, and the practices the learner develops [53]. 
When we use the term learning in this context, we refer to both conceptual learning as well as the 
practices associated with the content.  

The representational infrastructure used within a domain is not fixed, but instead, it is a 
designed system that can change over time, with new, more powerful and accessible systems 
supplanting traditional expressive approaches [54]. This is particularly true with respect to 
computing due to the rapidly changing fields of programming language design and human-
computer interaction. This malleability is important to recognize given the emergence of new 
representations and the design challenges and opportunities that accompany them. To investigate 
the shifting of representational systems, we draw on Noss and Hoyles’ construct of Webbing. 
Webbing characterizes the relationship between representation and learning by capturing the 
“structures that learners draw upon and reconstruct for support – in ways that they choose as 
appropriate for their struggle to construct meaning” [51]. In this work, we use Webbing as a way 
to map features of the modality to specific practices observed in learners. Through this theoretic 
lens, the features of the learning environment serve as a suite of resources the learner can draw 
on throughout their meaning-making process and the development of practices they find useful. 
As such, the design of components of the cognitive system both define and shape the practices 
that emerge and learning that can occur. Recognizing the integral and interrelated ways that 
representation, interface, environment, and modality shape the conceptual and mechanical 
dimensions of learning to program both motivates this work and informs our approach to 
analyzing it.  

3. Methods 
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Each of the classes used a different variant of Pencil.cc. One class used a block-based version, 
the second used a text-based version, and the third used the hybrid blocks/text interface 
described above. The study began on the first day of school and collected a variety of 
quantitative and qualitative data. This paper relies on two primary data sources: semi-structured 
clinical interviews conducted in the final week of the study and computational logs generated 
throughout the study. For the one-on-one student interviews, the researcher sat alongside 
students, first asking them questions about their experiences in the class and having them 
describe projects they completed. In the second half of the interview, students were asked to 
think-aloud as they worked through activities designed to elicit specific types of thinking around 
computer science concepts. The computational log data was gathered by Pencil.cc which 
recorded information about a student’s program every time a student clicked the run button. A 
total of 134,444 Pencil.cc events were collected from the students across the three conditions. 
Further details about the study design and data collection strategy can be found in [56]. 

3.3 Setting and Participants 
This study was conducted at a large, urban, public high school in an American 

Midwestern city, serving almost 4,000 students. The school is a selective enrollment institution, 
meaning students have to meet academic standards to attend, although steps are taken by the 
district to ensure a diverse student population comprised of learners from across the city. The 
student body is racially diverse and a majority of the students in the school (58.6%) come from 
economically disadvantaged households.  

The experiment was conducted in an existing Introduction to Programming elective 
course. A total of 90 students participated in the study. The self-reported racial breakdown of the 
participants was: 41% White, 27% Hispanic, 11% Asian, 11% Multiracial, and 10% Black. 
Relative to the larger student body, White students were overrepresented and Hispanic students 
were slightly underrepresented, with the other racial groups roughly matching the larger school 
demographics. The classes comprised of students across all four years of high school, with a 
reported mean age of 17.1 (SD = 1.1 years). The three classes in the study were comprised of 15 
female students and 75 male students. This gender disparity is problematic, but recruitment for 
the courses was beyond the control of the researchers. Of the students participating in the study, 
almost half (47%) speak a language other than English in their households. The same teacher 
taught all three sections of the course, allowing us to control for teacher effects.  

4. Novice Programming Practices 
Our analysis of novice programming practices is divided into two sections. First, we 

present a detailed vignette from an interview with one student from the Hybrid condition. In the 
next section, we use the computational data collected to link practices and trends found in the 
vignette to the full set of Hybrid participants and to learners who worked in the other modalities. 
Note, this analysis is focused specifically on programming practices; an analysis of learning and 
attitudinal outcomes from this study can be found in [44,56,57]. 

4.1 A Vignette of a Novice Programming in a Hybrid Blocks/Text Environment 
This vignette is intended to serve as a representative case study to understand how 

novices navigate and utilize features present in an introductory programming environment, 
focusing on unique interaction patterns and distinct practices supported by the blocks-text 
modality. This interview was characteristic of all of the Hybrid interviews and selected because 
it serves as a nice example of the breadth of supports and challenges learners encountered. Not 
every moment of the session is present, but instead, an effort was made to provide enough detail 
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demonstrates the correct behavior. In authoring this program, the student spent a total of 9 
minutes and 8 seconds, ran his program 9 times, and encountered two syntax errors. 

4.1.1 Hybrid Vignette Discussion 
In this vignette, we see the student leverage affordances common to block-based 

programming environments but also demonstrates conventional text-based author practices. The 
first interesting thing to note from this vignette is how the student moved back and forth between 
dragging in commands from the palette and typing them directly into his program. This could be 
seen right from the beginning in that the first command (random 6) in the program was added 
via dragging the block onto the editor and the second command (increase=0) was typed. For 
the third command (a for block) he goes back to the palette to again drag-and-drop a command 
into his program, which he then modifies with the keyboard (deleting the placeholder for the 
nested statement). This shows the hybrid interface supports two modes of composition and that 
this novice fluidly moved between them while composing his program. In the vignette, we also 
see the learner clicking through categories in search of commands, showing that the browsability 
of the block-based interface has been retained.  

Another noteworthy feature in this vignette is the presence of in-editor feedback for 
syntax errors and the student responses. Twice during this activity, the student introduced an 
error; in both cases, it was while he was typing in commands with the keyboard. One of these 
errors happened when the student typed in the line: random 15=x. What is interesting about this 
is that the student’s next move was to add a second =, producing the line random 15==x, which 
is still incorrect, but is no longer a compile-time error, which gives the impression that the error 
has been corrected. This interaction is noteworthy as this type of error would be very difficult to 
make in a block-based interface where more constraints are placed on how commands can be 
assembled. Further, the approach of tinkering with commands by adding and removing 
characters in hopes of resolving compile-time errors is largely absent from our block-based 
interview data. 

The introduction of syntax errors was frequently observed in both the Text and Hybrid 
modalities, but in the Hybrid case, there are additional supports provided by the interface that 
can help address this. One clear example occurred when the student wanted to add a debugging 
statement to his program, he typed in the line write x and then dragged out a write block and 
placed it below the line he just typed to check the syntax. Upon seeing that what he had typed 
matched what appeared when he dropped the write block, he deleted the second command and 
continued working. This pattern of using the blocks as a way to check syntax keyed in was 
observed in all four of the hybrid interviews conducted and reported as a frequent strategy used 
by students throughout the 5-week study. In this capacity, the blocks were not serving as a means 
for remembering what is possible, or a way to author new portions of a program, but instead 
serving as a way for students to double-check to make sure they were doing things correctly. 
This pattern was unexpected and reveals one type of support novice programmers need: in-editor 
scaffolds to quickly verify syntax.  

A final thing to note from this vignette is that the student utilized a number of common 
text-editing techniques: notably, copy-and-pasting lines of code to move them around and 
highlighting blocks of text either to denote something to the interviewer or to delete portions of 
the program. Seeing the student make these types of moves is not particularly surprising as high 
school students are usually comfortable with text manipulation. This is noteworthy in that the 
Blocks modality does not give the student the ability to do this type of character-by-character 



highlighting or easily support copy-and-pasting sets of commands and thus was not observed in 
the interviews with students from the Blocks condition of the study.  

4.2 Programming Practices Across All Participants 
Having provided a qualitative description of what it looks like for a novice to program in 

the Hybrid modality and how he blended conventional block-based and text-based programming 
practices, we now investigate emerging programming patterns and practices across the full set of 
participants using the computational log data collected during the study.  

4.2.1 Running Programs 
The run event is captured every time a student runs their program in Pencil.cc A total of 

76,110 run events were captured by the logging system during the 5-week study. We focus on 
run events in this section as it serves as a proxy for one dimension of emerging learner 
programming practices; that of the speed of completion of programs, reliance on program output 
for evaluation and reflection, and a measure of the iterative program development process. 
Calculating the average number of runs per student by condition shows the Blocks students 
running a program an average of 733 times, Hybrid students running their programs an average 
of 1,073 times, and Text students running their programs 742.9 times on average. An ANOVA 
calculation of the average number of runs per student in each condition shows there to be a 
statistically significant difference between the condition F(2,89) = 8.71, p < .001. A Tukey HSD 
post hoc analysis shows that students in the Hybrid condition ran their programs significantly 
more often than the other conditions (compared to Blocks p < .001, compared to Text p = .003), 
while there was no difference in the number of runs between Blocks and Text students (p = .86). 
This pattern of students in the Hybrid condition running their programs more frequently than the 
other two conditions is relatively consistent across the 5-week curriculum, as can be seen in 
Figure 5, which shows the average number of runs by students per assignment, ordered 
chronologically from the first assignment (Quilt) to the summative Final Project. Figure 5 also 
shows the concept covered in each assignment, to help situate the activities within the larger 
curriculum2. The full curriculum can be found in [56]. 

 

                                                 
2 We report independent ANOVA calculations in Figure 5 rather than a single model due to the 
shifting nature of assignments across the curriculum. Assignments varied by concept, form of 
output (textual vs. graphical), and constraints (narrow vs. open). These difference led us to favor 
independent tests, providing more clearer insight into where difference emerged. 
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one character at a time. As a result, on average, students in the Blocks condition produced 
programs that were longer in length than their Text and Hybrid peers. On 10 of the 13 
assignments in the 5-week curriculum the Blocks students produced the longest programs on 
average, with students in the Hybrid condition producing the longest programs in the other three 
assignments. Running an ANOVA calculation for each of the assignments, four were found to 
have statistically significant differences across conditions at the p < .05 level: Tip Calculator 
(F(2, 82) = 4.78, p = .01) , Grade Ranger (F(2, 71) = 5.26, p = .01), Radial Art (F = (2, 83) = 
3.51, p = .03) and Connect 4 (F(2, 87) = 2.90, p = .05). In all but the Connect 4 assignment, the 
Blocks condition students produced the longest programs and the Text students had the shortest 
programs. The assignments with the greatest stratification of program length focused on 
conditional logic (Paint by Quad, Movie Recommendation Engine, and Grand Ranger) and the 
last two assignments from the functions portion of the course (Connect 4 and Brick Wall). The 
variance in the conditional logic assignments is similar to what was seen in the runs-by-
assignment analysis (Figure 5), but that pattern does not continue with the iterative logic 
assignments or the functions assignments. This variation in the Connect 4 and Brick Wall 
assignments may come from the fact that those two assignments were by far the most difficult in 
that they asked students to incorporate logic from previous parts of the course and required the 
most amount of code to accomplish relative to the other assignments3. The fact that we see a 
difference in conditional logic is another piece of evidence towards the larger trend of modality 
affecting students’ learning and use of those constructs [41,58]. In this case, we are using 
program length as a rough proxy for ease of composition given that all conditions had the same 
time on task. The fact that programs can be assembled more easily contributes to students 
running their programs more often to check the correctness of their program, which, again, leads 
to students in the hybrid condition, on average, running their programs more frequently than their 
text-based or block-based peers.  

Collectively, these data show how the Hybrid interface has the ease-of-composition of 
the block-based modality, which makes it easy to quickly add commands to the program to see if 
they work. At the same time, it also allows for syntax errors, due to the lack of constraints on 
how and where commands can be added. In this case, the blended Hybrid interface results in a 
summative behavior (i.e. students do both) as opposed to reductive outcome (i.e. the Hybrid 
interface relieves the user from having to do certain things).  

5. Discussion 
This paper investigates how programming practices are shaped by modality, specifically 

looking at practices novices developed while working in a hybrid blocks/text modality. Using a 
variety of methods and data sources, this paper reveals characteristics of programming in a 
hybrid modality and how practices adopted draw from both of the source modalities. Here we 
discuss implications of the finding that interface shapes modality and modality shapes emerging 
programming practices. 

5.1 Modality Matters 
In the vignette, we see how one student used various compositional strategies and 

techniques to write a functioning program. The student used the blocks palette for syntactic help 
and to browse the set of available blocks for sources of inspiration. While at the same time, he 
typed in commands from memory and used copy-and-paste text editing moves characteristic of 

                                                 
3 The Grade Ranger and Movie Recommendation Engine assignments’ numbers are inflated due 
to the amount of text included in the assignment. 



programming in a conventional text-based programming interface. Further, the student employed 
practices unique to the hybrid blocks/text modality when he used the drag-and-drop feature of 
the blocks as a way to check the syntax of commands he had typed in. Given our 
conceptualization of modality as affordances of the representation and the interactions they 
support, this diverse set of uses highlights the way modality shapes programming practices. 
Drawing on our theoretical framework and taking a distributed condition lens to this 
environment, we can see the modality and features of the interface influence the act of 
programming. The existence of the Blocks palette means students do not need to recall specifics 
about what is possible in the language from memory nor memorize syntactic detail, as the 
environment itself knows this information. In other words, the knowledge of what is possible and 
how and where commands can be used are encompassed by the modality and thus need not be 
committed to a learner’s memory. Likewise, the set of supports the hybrid interface provided was 
used in a variety of ways, showing it is not a single use that the design pushes learners towards, 
but instead, a suite of resources, or Webbing using Noss & Hoyles (1996) terminology, that the 
interface presents and learners use. The conclusion to be drawn from this analysis is a 
recognition that the resources provided by a specific interface shape modality and that modality 
impacts novices emerging programming practices.  

5.2 Modality and the Design of Learning Environments 
A second contribution of this work is a demonstration of how modality is malleable and 

how interface design, along with characteristics of the environment and representation, can 
change both what users are able to do and how they are able to do it. This perspective opens the 
door to the larger enterprise of creating new modalities through the revision of existing forms as 
well as the creation of entirely new ways of expressing ideas and interacting with 
representational systems. This is akin to Wilensky and Papert’s notion of restructuration [54,59], 
the term they use to describe shifts in representational infrastructure where one set of 
representational forms is replaced with another. The hybrid interface presented in this study is 
one example of designing a new modality. In creating this specific blended interface, we sought 
to retain block-based features identified as useful while also incorporating strengths (real or 
perceived) of conventional text-based programming. The result was a modality distinct from the 
two that it drew from and producing unique programming practices in the learner. While the data 
in this paper do not allow us to claim the hybrid modality is superior, they do represent a 
successful demonstration of the creation of a new modality and the effects it can have on novice 
programming practices. This can be seen in how new, unique practices emerged, such as the 
dragging of blocks into the text area to verify syntax. Likewise, the fact that students in the 
Hybrid condition utilized productive block-based strategies (such as browsing the categories) as 
well as incorporated useful text-based moves (like copy-and-pasting chunks of text) show how 
modality can facilitate and promote productive programming practices in novices. This work, 
alongside complementary studies looking into learning and attitudinal outcomes of students 
working in the Hybrid modality [43] show the promise of this line of design work. 

A final thing to note about modality and design is the recognition that through design we 
can give agency to learners and scaffold novices at various points along the learning trajectory. 
In designing an environment with a rich webbing of various supports, the learner can be in 
control of their own learning, deciding for him or herself how to proceed. For example, in the 
vignette, we saw how the student was able to type out an if statement from memory, but used 
the drag-and-drop feature to add a for loop, suggesting he had knowledge of the syntax of one 
of these concepts but not the other. This shows the learning environment meeting the learner at 



their current developmental level, providing supports when and where they were needed. The 
larger take away from this work is not just that modality shapes learners’ experiences with 
content, but that the design and evaluation of modalities can and should be an active area of 
research, with computer science and programming environments leading the way. 

6. Conclusion 
This paper contributes to our understanding of the relationship between the design of 

introductory programming environments and the programming practices they engender. Using a 
detailed vignette and data from a five-week study, we show how modality affects novice 
programmers’ emerging programming practices. In doing so, we develop the notion of modality 
as a means for describing the relationship between an interface and learner and highlight 
modality as one possible design dimension that can be used to support novices in having early 
programming successes. This work is intended to complement other work focused on conceptual 
learning and attitudinal and engagement outcomes and help us think through the relationship 
between design and learning, specifically as it related to programming. Given the increased role 
of computer science and the growing number of introductory environments being developed and 
used in classrooms, having a complete picture of how these design choices impact novices is 
essential. The ultimate goal of this line of inquiry is that it will help shape the next generation of 
introductory computer science learning environments, and in doing so, shape the next generation 
of computationally literate students.  
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