Agent-Based Models of Quadratic Voting = M)

Check for
updates

Jacob Kelter, Andreas Bugler, and Uri Wilensky

1 Introduction and Research Questions

A democracy must have a voting system, and there are multiple to choose from. None
is perfect, each with strengths and limitations, depending on prevailing conditions.
In this paper, we compare a recently proposed voting system, called quadratic voting
(QV), with the more common majority rule system. There are many metrics that can
be used to evaluate a voting system. A common one is to measure the “population
welfare” resulting from a vote, defined as the sum of each individual’s welfare. An
individual who benefited from the outcome has a positive welfare and one who was
harmed has a negative welfare, with the magnitude determined by the amount of
benefit or harm.

The most common voting mechanism, familiar in democracies around the globe,
is one person one vote (1plv). In binary decisions, 1plv results in majority rule,
which is equivalent to choosing the preference of the median voter since voters can
only express the direction of their preference but not the intensity. If the majority of
the population is only weakly opposed to an outcome and a minority is strongly in
favor, 1plv will fail to maximize welfare by siding with the majority. In the extreme,
this can result in “tyranny of the majority,” in which the minority’s fundamental rights
are violated. Attempts to avoid such tyranny are as old as modern democracy itself.
John Adams, recognizing this problem would occur in a government consisting of a
single elected body, argued for a three-branch government to protect against it [1].
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Recently, an alternative voting mechanism known as quadratic voting (QV) has been
proposed, aiming to maximize the aggregate welfare of a collective binary (yes/no)
decision by allowing voters to express the intensity of their preferences, not just the
direction [2, 3].

In the original formulation of QV [10], votes are purchased for money at a cost of
v2 dollars to cast v votes. The money raised is then divided evenly among voters and
returned to them. On average, this results in the losing side of the vote gaining some
money as consolation. Voting with money has the advantage of allowing citizens to
make trade-offs between private goods and public goods. However, granting unequal
voting power based on wealth is both politically and legally infeasible, even if it were
desirable [4]. As an alternative, all voters can instead be allotted a certain number of
voting credits to purchase votes. Upon reaching voting age, a citizen would be allotted
a stock of voting credits and would subsequently receive an additional allotment at
set intervals of time [4]. Each election, the voter can “purchase” v votes for a given
referendum (or candidate) at a cost of v? voting credits. Assuming a voter, i, has a
quasi-linear utility for retaining voting credits for future referenda, then the voter’s
expected payoff is:

expected payoff = pv;u; — vi2 , (1)

where p is the probability of a single vote flipping the outcome (known as the
marginal pivotality), v; is the number of votes purchased, and u; is the voter’s utility
for the referendum (negative if in opposition). Differentiating with respect to votes
shows that the voter maximizes payoff by buying votes proportionally to her utility.
Voting rationally under QV thus requires voters to correctly determine their utility
for a given outcome and to estimate the marginal pivotality of a vote.

Under ideal conditions, QV has been shown to optimize welfare. If all voters
estimate the same marginal pivotality and vote rationally, then the sum of votes,
> v;, will have the same sign as the sum of utilities, ) _ u;, and the mechanism will
maximize aggregate welfare (assuming all voters also correctly determined their
utility). The question then becomes: how do we model the process of voters estimating
marginal pivotality? One formulation of QV adopted the price-taking assumption
[5, 6] that all voters simply agree on p and proved that QV is then the unique
optimal vote buying mechanism [2]. The price-taking assumption is equivalent to
assuming that all voters use exactly the same (or equivalent) processes for estimating
marginal pivotality, regardless of what the process was. Although this is clearly
unrealistic, it serves as a useful bound of optimality. Later work assumed that all
voters know the distribution from which the population’s utilities are drawn and use
this information to estimate marginal pivotality. Under this particular shared process
for determining marginal pivotality, although QV is not perfect, it is still superior to
1plv in both infinite and finite populations in terms of welfare loss—the probability
that a mechanism does not maximize welfare [7, 8]. These are valuable results, but
it is difficult to extend the analytic methods used to obtain them for modeling more
realistic voter knowledge and behaviors. Additionally, no results have been published
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for models of modified QV (mQV) in which voters have a fixed number of voting
credits, despite this being the most likely scenario for real-world implementations of
QV [9].

We aim to investigate the performance of QV with more realistic voting behav-
ior and variations of the QV mechanism. These can be difficult to model with the
analytical tools used in previous QV research. Therefore, we employ agent-based
methods for the modeling. Previous research on QV assumed highly idealized pro-
cesses for voters determining marginal pivotality, and no models have been published
for analyzing mQV. So, we investigate the following research questions: (1) How
does variation in perceived marginal pivotality (PMP) affect the efficiency of QV in
terms of welfare loss (WL)—the fraction of the time that the result of voting does not
maximize welfare and (2) what are the patterns of WL under mQYV in which people
vote on multiple referenda at once with a fixed number of voting credits?

2 QV with Variance in Percieved Marginal Pivotality
(PMP)

2.1 Agent-Based Model of QV

The model reported in this section builds on previous work investigating the efficiency
of unmodified QV [7, 8]. The critical assumption of QV compared to mQYV is that
voters are assumed to be able to purchase as many votes as they need to fully express
the intensity of their preferences. At the same time, voters are assumed to have a
quasi-linear value for retaining voting credits for future elections.

The purpose of this model is to investigate the performance of QV when voters
do not all estimate the same marginal pivotality. Voters are the only agents in the
agent-based model (ABM), and they are assigned utilities for the referendum under
consideration. In one condition, utilities are normally distributed around zero (nor-
mal distribution condition). Different standard deviations for the normal distribution
condition were tested and did not affect results. In the second condition (Prop 8 con-
dition), utilities are calibrated following previous work [7, 10] to model a “tyranny
of the majority” situation based California’s Proposition 8.

In a 2008 election in California, a referendum was held on Proposition 8, which
proposed to ban same sex marriage. The resulting votes were 52% in favor to 48%
opposed. Since the California election used the 1p1v system, the proposition passed.
However, there is reason to doubt that this decision maximized the welfare of the
voting population. Since lesbian, gay, bisexual or transgender (LGBT) people would
be greatly affected by the decision, it is likely that they cared about the outcome
significantly more than other voters. Thus, our intuitions might be that the outcome
of the vote failed to maximize welfare. In the calibration to represent this scenario,
the population is divided into four groups: Approximately 3.3% of the voting popu-
lation is LGBT and single, and approximately 0.7% are members of LGBT couple
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households. These two groups are assumed to have average utilities equal to $20,000
and $100,000 respectively in opposition to Proposition 8 (see [7] for justifications
of these numbers). Proposition 8 passed 52-48%, implying that an additional 44%
of population beyond the LGBT community opposed it. This 44% and the remain-
ing 52% who supported Proposition 8 are assumed to both have utilities of $5000
on average, either in favor or in opposition to the proposition. More specifically,
non-LGBT voters draw a utility from a uniform distribution between 0 and $10,000,
either in favor or against the proposition. LGBT singles draw a utility from a uni-
form distribution between $5,000 and $35,000, and members of LGBT couples draw
a utility from a uniform distribution between $20,000 and $180,000. This results in
a mean utility of $960 against Proposition 8, while the median voter is in favor.

Each voter has a perceived marginal pivotality (PMP) drawn from a beta distribu-
tion bounded O to 1 (this value can be divided by a large number, e.g. 1000, to obtain
more realistic values of p, but this is optional because it only scales vote numbers
but not their proportions). We vary the variance of the beta distribution from 0 (all
voters have the same PMP) to 0.083, at which point a beta distribution is essentially
a uniform distribution from 0 to 1, as shown in Fig. 1. This distribution does not have
deep theoretical or empirical justification. We use it because its lower bound is zero
(marginal pivotality cannot be negative, as it is a probability) and it is approximately
a normal distribution at low variances. Our model is agnostic as to how voters deter-
mine PMP, instead investigating the impact of variance in PMP on WL, regardless of
how this variance came about. Voters cast votes rationally to maximize their utility
by maximizing Eq. 1 (with p replaced by p;, the voter’s PMP). Note that we assume
voters perfectly estimate their own utility for the referendum.

We compare QV with rational voters to both 1plv and to a QV scenario in which
voters vote in the right direction according to their own utilities but with a random
magnitude between 0 and 3. We call this QV-RDRM for “right direction random
magnitude.” QV-RDRM models a scenario in which voters can correctly determine
whether or not a referendum will benefit them but have no ability to determine by how
much. This is unlikely in practice, especially because a study of real people using QV
to express opinions on a questionnaire found that votes were often approximately
normally distributed [11]. Due to its implausibility, QV-RDRM serves as a useful
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Fig. 2 Votes cast versus utility for (from left to right) 1p1lv, QV with 0 variance in PMP, QV with
variance in PMP equal to 0.05, and QV-RDRM

lower bound on possible outcomes from QV. The choice of a random magnitude
between 0 and 3 is arbitrary. Different bounds for the random magnitude will change
the results quantitatively, but not qualitatively.

We also vary population size from ten to 10,000. Each parameter combination
was run 1000 times using models written in NetLogo [12]." Welfare loss (WL)
is calculated as the fraction of runs with negative aggregate payoff, P,, which is
the sum of each voter’s utility multiplied by the sign of the vote outcome: P, =
> (sign(X2; vj)uy).

To aid in interpreting the results of the next section, Fig.2 shows voting behavior
versus utility for a population of agents. Figure 2a shows voting behavior under 1p1v:
those with positive utility vote +1 and those with negative utility —1 regardless of
the magnitude of the utility. Figure 2b shows votes versus utility for QV when all
voters have the exact same PMP; votes are linearly proportional to utility, ensuring
that welfare is optimized. Figure 2c shows votes versus utility for QV when there
is variance in voters’ PMP. The best fit line is still a linear relationship, but there is
considerable variance in votes cast for a given utility, especially for high-magnitude
utilities. Figure 2d shows votes versus utility for QV-RDRM, in which all voters vote
in the right direction given their utilities, but with a random magnitude.

2.2 Results

2.2.1 Normal Distribution Condition

In the normal distribution condition, WL does not depend on the population size for
1plv, QV, or QV-RDRM. Figure 3 plots the WL of QV versus variance of PMP for this
condition along with the WL of 1plv and QV-RDRM for reference. Unsurprisingly,
WL of QV increases with increased variance in PMP, but even when PMP is a flat
distribution between 0 and 1 (variance of 0.083), WL is significantly lower than 1plv.

I'Source code for the models can be found at https://github.com/jzkelter/qv.
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QV-RDRM performs worse than 1p1v, because it is essentially 1p1v with random
noise that sometimes flips the outcome from what it would have been under 1p1lv. If
1plv had a WL of 0.5, then the noise would not matter on average, but 1plv only has
a WL of approximately 0.2 in the normal distribution condition. So, the random noise
in QV-RDRM worsens WL about 80% of the time and improves it only about 20% of
the time. The exact amount that QV-RDRM underperforms 1p1v will depend on the
distribution that random votes are drawn from, but the logic holds that QV-RDRM
will, at best, be equivalent to 1plv in the normal distribution condition.

2.2.2 Prop 8 Condition

In the Prop 8 calibration, WL depends on both the number of voters and the variance
in PMP. Figure4 shows WL of 1plv, QV-RDRM and QV versus number of voters.
As expected, WL of 1plv in this condition approaches one as the number of voters
increases, because with a large number of voters, the median and mean utilities of
the population match those of the sampling distribution with a very high probability,
which have opposite signs for the Prop 8 calibration. With smaller numbers of voters,
there is a significant chance that the sample drawn from the Prop 8 distribution will
have a median and mean with the same sign, in which case, 1plv maximizes utility.
QV-RDRM performs similarly to 1plv. Since QV-RDRM is essentially 1plv with
noise, as long as 1plv has WL less than 0.5, QV-RDRM performs slightly worse than
1plv. When the WL of 1plv surpasses 0.5 at around 100 voters, then QV-RDRM
performs slightly better than Iplv.

In contrast, WL of QV (with rational voters) decreases with population size,
reaching essentially zero with 1000 voters regardless of the variance in PMP. All
WL for QV in this model is due to voters under/overestimating PMP. Figure 4 also
makes clear that even the worst performance of QV with rational voters is better than
the best of 1plv under these conditions.

These results confirm that QV is robust to variation of PMP (e.g., from imperfect
information) under the assumptions that voters are still rational utility maximizing
agents. This model still assumes that PMP does not depend on utility of the agents, for
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example through heterogeneous social factors across preference groups. In essence,
this model assumes all voters are homogeneous except for differences in utility. Even
the variation in PMP in this model is only heterogeneous in the sense that agents
have different values assigned randomly, but all agents still have PMP drawn from
the same distribution.

3 Modified QV with Multiple Simultaneous Issues

3.1 Agent-Based Model of mQV

There are multiple potential versions of modified QV (mQV) [4]. In the version
modeled here, each voter in the ABM is given a fixed number of voting credits to
allocate among multiple referenda on a single ballot. This contrasts with other mQV
proposals in which voters are given a fixed number of voting credits at set intervals
(e.g., every 10 years) to use across elections as they see fit. We chose to model a
version of mQV with a fixed number of voting credits for a single election for two
reasons. First, this is the easiest to implement in the real world since it doesn’t require
a system to keep track of voters’ voting credits over time, and, as it turns out, it is
the version that has been tested “in the wild” to elicit preferences [11]. Second, it
simplifies the model because voters don’t have to make predictions about how much
they will care about referenda on future ballots. Instead, voters only have to compare
referenda on the current ballot.

The fact that voting credits cannot be saved for future elections breaks one of the
assumptions of the original QV formulation: that voters have a quasi-linear value for
retaining voting credits for future elections [2]. However, when voting on any given
referendum, voters still want to retain voice credits for the remaining referenda on
the ballot. More importantly, the fixed number of voting credits limits the ability
of voters with very strong preferences to fully express them. It has already been
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Fig. 5 Votes versus utility for mQV with a two, b five and ¢ ten referenda on the ballot. d Shows
Votes versus utility for two specific voters with ten referenda on the ballot, one of whom has a very
high utility for one of the referenda

recognized that this will have some impact on the efficiency of mQV [4], but no
quantitative models of the impact have been published.

Once again, voters are the only agents in the model. They are assigned a utility
for each of the referenda under consideration. In the normal distribution condition,
all utilities are drawn from a normal distribution centered at zero. In the Prop 8
condition, utilities for one of the referenda are drawn from the Prop 8 calibration
described in Sect.2.1 while utilities for all other referenda are drawn from normal
distributions.

The voters split their votes across referenda proportionally to their utilities without
estimating marginal pivotality. This is equivalent to voters assuming they have the
same marginal pivotality for each issue. We investigate the effect of the number of
voters and the number of referenda on WL of mQV. WL is calculated as the fraction
of runs with negative aggregate payoff for each issue. Each parameter combination
was run 1000 times.

To aid in understanding the results, Fig. 5 shows plots of votes versus utilities for
mQV with various numbers of referenda using the Prop 8 calibration. If only one
referendum is on the ballot, mQV is equivalent to 1p1lv, because voters will use all
of their voting credits for that single referendum. With only two referenda (shown in
Fig.5a), mQV looks like QV with variation in PMP for small utilities, but like 1plv
for large utilities. As the number of referenda increases (Fig. 5b, c¢), the behavior of
mQYV approaches that of normal QV. However, even with 10 issues, the voters with
the highest utilities are not able to vote proportionally to their utilities because of
the limited number of voting credits as seen in Fig.5c. This is only compared to
voters with lower utilities on all issues. High-utility voters still vote linearly with
their utilities when looking at only their own votes, but since they have at least one
high utility issue, the slope of their votes versus utility graph is smaller than that of
a voter without any high utilities as shown in Fig.5d (the blue line represents the
high utility voter). When looking at the entire population in aggregate, it appears that
high-utility voters are unable to vote linearly with utilities.
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3.2 Results

3.2.1 Normal Distribution Condition

When utilities for all issues are from the normal distribution condition, the WL
once again does not depend on the population size for either 1plv or mQV. Figure 6
shows the average WL of all referenda as the number of referenda varies for mQV,
along with the WL of 1plv for reference (which does not depend on the number of
referenda). The WL of mQV decreases with the number of referenda, because as
voters spread their votes among more referenda, their vote buying behavior on any
single referendum approaches that of single-issue QV with retainable voting credits.
Even with just two referenda, the WL of mQV is significantly lower than that of
1plv. Of course, with just one referendum, mQV is equivalent to 1plv, because each
voter will just put all of their credits towards their preferred outcome on the single
issue.

3.2.2 Prop 8 Distribution Condition

When utilities for one of the referenda are drawn from the Prop 8 calibration, WL
depends on both the number of voters and the number of referenda. Figure 7 shows
WL for the Prop 8 calibrated referendum when utilities for all other referenda are
drawn from the normal distribution condition. Having only one referendum is equiv-
alent to 1plv since voting credits are limited to this election. As expected under 1plyv,
WL for the Prop 8 calibrated referendum approaches one with increasing popula-
tion, because, with very high probability, the mean and median of the population will
match those of the sampling distribution which have opposite signs. Since only 4%
of the sampling distribution has strong utilities in the Prop 8 calibration, the smaller
the population is, the more likely it is that there will not be many people with strong
utilities, resulting in the mean and median utilities being of the same sign. For this
reason, smaller populations lead to lower WL of 1plv under the Prop 8 calibration.
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The performance of mQV improves as the number of referenda increases, because
voting behavior of the population approaches the ideal of being linear with utility,
as seen earlier in Fig.5. With ten referenda and 10,000 voters, WL is only about
5%. Surprisingly, even with six or more referenda, WL increases up until around
1000 voters before starting to decrease with the number of voters. This is due to
the probability of there being enough high-utility voters to flip the sign of the mean
utility to be opposite that of the median without there being enough to flip the sign
of the total votes. If the number of voting credits were not restricted, then a voter
who flipped the mean utility would be able to cast enough votes to flip the outcome
as well, but with restricted voting credits this is not always the case. As the number
of voters increases past 1,000, the probability that there will be enough high utility
voters to flip the vote outcome increases and WL decreases. These results are of
course specific to the Prop 8 calibration used, but they should be qualitatively similar
to any situation in which the mean and median utilities have opposite signs.

4 Discussion and Future Work

Our results confirm the superiority of single-issue QV over 1plv for maximizing
aggregate welfare even with large variations in perceived marginal pivotality. Addi-
tionally, we offer the first (as far as we know) formal model of mQV and confirm
its superiority over 1plv on all multi-issue referenda under both normal distribution
and Prop 8 conditions.

We also revealed a potentially surprising relationship between WL and number
of voters in Prop 8 calibrations of mQV, in which WL increases with the number of
voters up until about 1,000 before decreasing with the number of voters. In some ways
this can be considered an artifact of the model construction. With small populations,
it is likely that not enough high utility voters are drawn from the utility distribution
to make the mean and median utilities different signs, in which case both mQV and
1plv maximize utility.
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These results further strengthen the case for some form of QV over 1p1v for collec-
tive binary decision making. Even with large amounts of noise in perceived marginal
pivotality, QV produced lower welfare loss than 1plv in our models, regardless of
the number of voters and the utility distribution used. The only case in which QV
performed worse than 1plv was under the assumption that voters cast votes in the
right direction according to their utilities, but with completely random magnitudes.
Even with this unrealistic assumption, QV only slightly underperforms 1plv. Barring
other factors, this suggests QV will perform similarly to 1plv in the worst case and
significantly better than 1plv in the best case.

However, there are other factors to consider, which we plan to investigate in
future work. First, our mQV results are based on the assumption that voters do not
estimate marginal pivotality for each referendum. A psychologically and socially
plausible mechanism for voters to estimate their marginal pivotality, for example
from information about peers and polls, could lead to significantly different outcomes.
Second, we assumed that voters have perfect information about their own utilities
(except in QV-RDRM), but it is perfectly possible for voters to think a policy will
benefit them when it will not. A model in which voters have perceived utility for
a referendum which can differ from the actual value they will experience if the
referendum is implemented is another important future research direction. Third,
we assumed in both of our models that utility and PMP are uncorrelated. In the
real world it is likely that both would be influenced by social processes of peer
influence and signaling. In essence, the models presented here (and all previous
models of QV) are models of socially isolated voters, uninfluenced by any social
milieu. Social processes leading to even a small correlation between utility and PMP
could drastically change the outcomes of QV. Finally, it has been suggested that
real world voting behavior under QV would be mostly determined by social and
psychological factors rather than pure instrumental rationality [13]. This warrants an
investigation of the results for various heuristic voting rules beyond the unrealistic
“right direction random magnitude” heuristic analyzed here.

In future work, we intend to address the above issues by modelling the effects on
QV of various psychological and social factors such as (a) having voters calculate
PMP from peers and polling information for mQV elections, (b) including a model
of voter turnout which can depend on both individual utility and social influence, (c)
giving voters perceived utilities that are affected by social factors such as advertising
and peer influence and which may not align with their true utilities, and (d) giving
voters realistic heuristic voting rules that are not based on strict utility-maximizing
calculations.
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