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If only geometry lessons enabled students to first encounter the content through their senses, it
has been claimed, we would be better positioned to countervail enduring problems of poor
engagement and low performance in the discipline (Freudenthal 1971; Thompson, 2013). To
make this happen, however, we still need tighter grasps—both theoretical and actionable—on
how informal situated doing becomes formal content knowing. Focusing on collaboration as
catalyzing the doing-to-knowing learning process, here we envision and explore the process by
analyzing how dyads negotiate contested situated perceptions into articulated content definitions.

Figure 1. The project’s 3 learning environments viewed as perceptual complementarities.
From left: (1) allocentric vs. egocentric views of a planetarium star constellation;
(2) external vs. internal views of a geometric solid; and (3) hand-modelled vs.
VR-immersed views of an adventure landscape.

Looking across three geometry subject matter areas (see Figure 1), we present pilot-study
results drawn from a multi-site design-based research project investigating socio-cognitive
micro-processes of situated geometry learning as collaborative problem solving. The design
architecture aims to distribute over each social unit two different, yet conceptually
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complementary, cognitive orientations toward a single sensory manifold. The design rationale is
to stage, motivate, and encourage dialogic reconciliation of these differing perspectives by way
of assigning the dyad a shared collaborative task. In coming to recognize and tune toward each
other’s perspectival orientation, each participant is to engage in forms of reasoning and
expression that solicit reflection on their own tacit perceptual mechanisms mediating their
situated inferences and actions. In a sense, thus, this project is a phenomenological endeavor.

Our project’s three learning environments exemplify what we propose to call
conceptually generative perspectival complementarities (CGPC)—orientation pairings believed
to induce conceptual synergy via reconciliation (qv. Abrahamson & Wilensky, 2007). Informed
by the construct of CGPC, we conjecture, educational designers could create collaborative
activities that foster and resolve tension between differing views on shared environments.

The CGPC addressed in our research project have been selected so as to occasion
opportunities to examine how mathematics learning is impacted by, yet could avail of, a variety
of perceptual differences. The CGPC we target are cultural (Barton, 2008), figural (Dimmel &
Milewski, 2019), scalar (Herbst et al., 2017), and ontological (Bamberger & diSessa, 2003). We
do not, and could not, argue for typological coverage of the CGPC construct—our project cannot
exhaust all theoretical let alone empirical facets of the CGPC multi-dimensional ontological
landscape. These would need to include intergenerational, intersensorial, interlinguistic,
inter-situative, inter-conceptual, inter-media, and other CGPC all potentially relevant to our
investigation.1 Rather, we argue, our three designs offer a thematically coherent and topically
non-redundant set of proof-of-concept pioneering studies that peg some landmarks and chart
some prospective trails in the larger conceptual landscape of CGPC and their relevance to
mathematics studies in geometry and perhaps beyond.

Perspectival Complementarities
We assume that formal mathematical notions can be grounded in informal, pre-symbolic, situated
activity (Pirie & Kieren 1989). As such, features of the environment of relevance to
technoscientific disciplines, including geometrical properties of objects such as an angle or a pair
of parallel lines, may remain tacit to our immersed engagement until they emerge as necessary
discursive means of coordinating collective goal-oriented practice; in turn, appropriating these
cultural forms of speaking and reasoning transforms perception (Bautista & Roth, 2012).
Building on the literature, we assume that: outside of school, learning can be understood as the
enculturation of perception through joint enactment of situated activities; inside of school, too,
perhaps, coordinating perspectives could serve as a powerful activity architecture for content
learning; in so doing, particular care must be taken to avoid supplanting ancient perspectival
practices with hegemonic perspectival practices.

Learning via Social Enculturation of Perception
Philosophers and theorists of perception, cognition, and action from diverse intellectual

strains agree that how we experience the environment, that is, what meanings we glean from our
sensory input, is related to who we are, what we are trying to do, and what we know. What we
know, in turn, is constituted also by the cultural–historical forms we have appropriated through
participating in the social enactment of cultural practice, so that perception can be said to be
culturally constituted (Howes, 2019).
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Within the cognitive and learning sciences we find strong resonance with this
anthropological thesis of cultural visuality (e.g., “the domesticated eye,” Radford, 2010).
Curiously, the perceptual skills one develops as one engages in the enactment of cultural
practices may, by and large, remain inaccessible to one’s own reflection (Horsey, 2002). Indeed,
heritage skills may be fostered without direct instruction but, rather, through apprenticing
novices in authentic task-oriented activity settings and offering them feedback on their
interactions with the environment (Ingold, 2000).

Macro-cultural evolutions of perception can be staged and simulated in micro-cultural
settings of educational activities. In particular, contested perceptions of sensory displays could
mobilize conceptual change. Productive contestation ideally takes the form of collaborative
argumentation, whereby interlocutors: articulate their thoughts; attend empathetically to each
other’s points of view; experience conceptual growth; deepen their topical understanding via the
discursive effort necessary for coordinating the enactment of their respective roles; and develop
collaboration skills, socio-mathematical norms, metacognitive control skills, and mathematical
epistemology—both as individuals and as groups.1

Learning Through Reconciling Perceptual Differences
Dialoguing individuals may enter a conversation with different senses of a shared referent

(see Wegerif, 2011, on a Bakhtinian ‘epistemic gap’). When they interact with students, teachers
may deliberately use ambiguous sensory displays designed to evoke either naive or scientific
construals, depending on which features are highlighted (Abrahamson, 2012; Newman et al.,
1989). Teachers can change students’ perception of objects, for example, shifting a student’s
attention from a triangle’s three sides to its three vertices (Sfard, 2007). Objectively, it is the
same shape on paper, but subjectively it is now construed anew so as to constitute a perceptual
resource for engaging productively in the classroom’s mathematical activity (Foster, 2011). Still,
we submit, perhaps students need not mute and relinquish their own perspectival understandings.

Building on this line of research, we propose to create activities where participants come
to perceive geometrical ontologies through conferring not just with teachers but with fellow
participants, who are orienting differently onto the same sensory display. Coordinating
collaborative activity across two different perspectives on some would-be objective reality
compels one to confront one’s own perceptual bias and reason from another person’s perspective,
which can contribute to learning content as well as to cognitive and even moral development
(Schwarz & Baker, 2017).

Situated Knowings as Heritage Embodiments of Alternative Epistemologies
A program to promote geometry learning through interpersonal coordination of

perceptual perspectives is ipso facto a program to promote the negotiation of mathematical
identity (Heyd-Metzuyanim & Sfard, 2012). Becoming mathematically fluent demands
grounding formal propositions in everyday language. And yet, by entering academic discourse,
one necessarily resigns oneself to a discipline’s hegemonic routines of reifying situated practice
in culturally specific technoscientific forms; one subjects oneself to perceive within everyday
situations a variety of specialized forms exogenous to one’s traditional unreflective ways of
being in the world (Gutiérrez et al., 2010). These foregign forms stand to destabilize Indigenous
cultural–historical ontologies and, with them, heritage practices (Urton, 1997).



FLM | 4

Mathematics as a formalized domain is grounded in Western perceptual–linguistic
orientation to the sensory manifold, which has historically strived to recast egocentric
subjectivity as allocentric objectivity (Jay, 1988). As such, a geometrical form apprehended in a
natural environment is stripped of its perspectival idiosyncracy to offer, instead, a standard,
generalized, and definitive shape plotted on an infinite plane. Western epistemology thus
imposes a disembodied allocentric relation to the environment by promoting a view of points
and lines represented on the Cartesian plane. As such, a schooling in Western geometry is
predicated on subjugating perception to Western ontology and epistemology; and with the
subjugation of perception, one subjugates ecological relationships of inclusive orientation and
identity (Cajete, 1997). A culturally-sensitive geometry education would re-embrace ecological
dimensions of immersed phenomenology, while steering individuals to reflect on the situated
contingencies of their perceptual knowings. The construct of CGPC could frame a design for
reconciling differing views empathetic to embodied, social, and cultural–historical experiences.

Three Vignettes
Our project is, thus, grounded in an interdisciplinary pedagogical conviction that geometry
learning should begin from tacit spatial phenomenology situated in goal-oriented collaborative
activity. The project is distributed across three design contexts, with populations of
multi-dimensional diversity, and so far includes preliminary empirical data: (1) Indigeometry
Planetarium (Tohatchi, New Mexico, USA): 1 Navajo student; (2) Inside Geometry… and Out!
(Jerusalem, Israel): 9 university students in the course “New Ways to Think, Learn, and Move”
and 60 highschool students in an enrichment activity; and (3) Sandbox Goes Virtual (Oakland,
California, USA): 16 middle school students from a multicultural urban secondary school and an
afterschool program. All contexts were designed to bear epistemic, affective, and social CGPC.
The vignettes, below, present episodes of interest to the project’s line of inquiry on CGPC.

Vignette 1
In the Indigeometry Planetarium (IP) learning environment (Figure 2), constructed as a
canvas-covered dome, students enact essential perspectival qualities of Navajo
archaeoastronomical practice in negotiation with Euclidean geometry. Navajo phenomenology of
Euclidean angle is not an absolute allocentric feature of the environment ontologically
independent from the viewer. Rather, Navajo angle intrinsically encompasses the viewer as the
apex of an egocentric perspectival triangle, whose projected base subtends the extent of the
percept.

Amaya, an 8 years-old 3rd-grade female Navajo student, participated in a 30-minute
semi-structured task-based interview conducted by Jessica (the first author). Sitting on a swivel
chair in the center of IP, Amaya was asked, “Can you point at the start of the shooting star?” She
raised her left hand and pointed to the left-side end of a shooting star ahead and above her.
Further instructed to “use the other hand to point at the end of the shooting star,” Amaya, still
holding her left hand up, raised her right hand and pointed to the right-side end of the same star.
Her two arm–rays now project from her body–origin to these stars to embrace their span (see
Figure 2).
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Figure 2. Embodied measuring in the Indigeometry Planetarium. The left shows a sketch of
the right inside the IP. (left) The icosahedron shaped dome is constructed from
dowles and plastic tube joinings with black tent-like material covering the
structure. The inside ceiling features appliqué stars and shooting stars. (right)
Gazing toward a shooting star, Amaya’s left- and right-hand index fingers
pointing respectively to the left- and right sides of a shooting star.

Jessica then encourages Amaya to apply her “little hand measurement” to the rest of the
stars. Rotating around the center, Amaya becomes increasingly independent in initiating the task
performance and then self-adjusting her armspan to subtend her sight of each star with her hands.

At the conclusion of the activity, the following conversation took place.

Jessica As you were doing that, did you feel a difference between, like, the
different stars?

Amaya [nods in confirmation]
Jessica What was the difference you felt?
Amaya [quietly] It was longer and shorter.
Jessica [nods] How did it make your arms feel, when you were doing it?
Amaya [looks off to the left] Hm, like it was, like, shorter, like, my arms, like, and

it, like, made my arms, like move.
Jessica A little bit, what?
Amaya Well, [clears throat] more, it’s, like, when I measure, it’s, like, like, um,

[looks down, lifts hands to shoulders, arms bent at the elbows (see Figure
3)] it, like, makes my arms [taps her hands on her shoulders] like, sure,
[lowers hands, looks at Jessica] spread out…

Jessica [smiles excitedly] Ooh okay
Amaya …longer and closer

[on “closer” brings hands together briefly]
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Figure 3. Amaya  lifts her hands to her shoulders, elbows bent out to the sides.

The retinal image of a sighted object corresponds to the aperture of the viewer’s stretched
arms toward the object’s extremities. This embodied egocentric apprehension of spatial
magnitude, while endemic to authentic Indigenous cultural–historical practices and
psycho-linguistic constructions, is conscientiously elided from formal Western geometrical
allocentric discourse. That young Amaya could embrace a measure of optical spatial interval by
enacting an embodied angularity suggests that geometry can be grounded in first-person
multimodal phenomenology. We thus witness the conceptually generative potential of a staged
synergy between two conceptually complementary perspectives on a situation. Future iterations
of the IP activity design will encompass student–student collaboration.

Vignette 2
The empirical context Inside Geometry… and Out! explores collaborative learning for geometric
solids. A distinctive feature of this environment is that students construct the same geometric
objects at different scales using wooden rods and silicone joints. In one of the tasks (see Figure
4) students explore an icosahedron—a polyhedron whose exterior is composed of twenty
equilateral triangular faces. In this activity, students are given a 2D-diagram and are to construct
a relatively small icosahedron as well as a human-scale icosahedron. Once both models are built,
students are asked questions concerning the icosahedron’s geometric and topological properties,
for example, “How many vertices does an icosahedron have?”, “How many parallel edges?”, “If
the icosahedron were standing on its triangular base and filled half-way up with water, what
would be the water’s surface shape?” We analyze students’ choices of small vs. large icosahedra
to investigate each question.
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Your team has to construct two
three-dimensional models (one large,
one small) of the following geometrical
solid, a polyhedron.

The polyhedron has the following
properties:

● All the faces are congruent
equilateral triangles.

● The same number of edges
converge at each vertex.

Figure 4. The icosahedron construction task and materials. Left: Worksheet for student teams;
Right: The construction kit, with long dowels for the large form, small dowels for the small
form. For each form, 12 sets each of three latched silicon pipes serve as vertices where 5 dowels
are inserted.

The following account is from a pilot outdoor implementation of the activity with a group
of high-school students. It describes how they worked with their constructed models to solve the
questions (see Figure 5).

Figure 5. The geometry activity Inside Geometry… and Out! combines construction,
problem-solving, and justification tasks, where each task provides different
CGPC-related coordination challenges. From left: (1) Students discuss a
small-scale model; (2) Students’ problem-solving inside and outside a
human-scale model (standing on a triangular face); (3) Having tilted the structure
onto a vertex, the students soon arrive at a critical breakthrough.

Having constructed both the small and large models, the students used the small model to
answer correctly that an icosahedron has 12 vertices. Next, they tackle the question of how many
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edges an icosahedron has. They will soon find it difficult to solve this problem using the small
model. (Participants are referred to by the color of their t-shirts; transcription translated from
Hebrew by AP)

Yellow How many edges are there?
Black Okay, that’s tricky because they’re shared. [ie. each edge is shared by two

triangles].
Blue I'll put a finger [on the first edge that Yellow counts, to help her monitor

the count].
Orange You just count the sticks.
Yellow I’ll go to the big one [ie. the large-scale model].
Black The big one is just nicer.

Three of the six students rose and walked over to the nearby large-scale model. This larger model
is advantageous for counting, because its edges are more perceptually distinct. But a model’s
greater size, while availing perceptual acuity, may come with a price that its figural elements in
question (the to-be-counted edges) are never all in one’s arm’s reach—you cannot directly touch
or clearly gesture to each edge as you tally it. Immediately, Yellow entered inside the model,
from whence all edges are within her peri-personal reach. Still, when one is inside an object, part
of it is always behind you..., and so you might lose track of your count! Indeed, Yellow’s initial
attempts to count failed. As the excerpt below demonstrates, she then attempted to use some of
the icosahedron properties that the team discovered during construction, yet again she failed to
develop a systematic approach.

Yellow There are five from each vertex. One should be subtracted, then there are
four. Two should be subtracted here, it’s three. It doesn’t work that way.
…3, 4, 5. I can’t count this. How many sticks did we use [during the
construction stage]? Three and another three, and another three, and
another three, and another three, it’s 12, another three, 15, another
three…[referring to triangular faces]

Black We need a formula for this…

From a mathematical point of view, it does not matter how the icosahedron is positioned in
space—the polyhedron’s mathematical properties remain the same. In a material gravitational
world, however, the model usually lies on one of its triangular faces, making it difficult to
perceive certain structural symmetries. The next excerpt shows how by tilting the model onto a
vertex (see Figure 5, on the right) suddenly these inherent symmetries became apparent as
tripartite: two opposing “bases,” each comprising 10 edges, and a connecting “belt,” also with 10
edges.

Gray It will be easier to count like that [tilts the model so it stands on a vertex
[holds the model in place]. 1, 2, 3, 4, 5 [counts the edges diverging from
the base vertex]; 1, 2, 3, 4, 5 [counts the edges of the pentagonal base];

Yellow 1, 2, 3, 4... 1, 2, 3, 4… [addressing Grey] Put your hand here. 1, 2, 3, 4, 5
[continues to count silently]... ten, ten, ten, ...thirty!
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This vignette demonstrated that some of the students preferred to answer geometry questions
using the small model and some—the large model; at least some questions were answered
utilizing material, non-mathematical affordances of the model: entering it (large), holding it
(small), and changing its physical orientation in a shared space (large). The fluidity with which
students moved (both physically and in their reasoning) from one model to another suggests that
a multitude of perspectives helped them to generate the concept of the polyhedron.

In sum, the different physical sizes of the two models of a single geometric structure
afforded students different modes of interaction, which in turn generated shifts in their perceptual
perspectives on the models, revealing their invariant geometrical properties. Thus, the activity’s
designed perspectival complementarities were conceptually generative in constituting solutions
to a set of mathematical questions.

Vignette 3
Sandbox Goes Virtual is a hybrid Spatial Augmented Reality (SAR) sandbox and Virtual Reality
(VR) system that we developed to support children’s collaborative design processes involving
geometrical solids and topographic projections. Using a depth-sensing camera installed above the
physical sandbox, the system scans the surface of the sand in real time and generates a
correlating 3D, VR rendering of the sandbox topology that is constantly changing as one child
physically sculpts the “sandscape” (see Figure 6). In the corresponding VR world, a second child
wearing a head-mounted display (HMD) can virtually walk through the mountains, valleys, etc.
that were physically crafted in the sandbox, with a first-person point of view. We intentionally
employ only one HMD as we want children to take turns being the physical landscape
manipulator at the sandbox and the immersed explorer in the VR world. Thus, one child could
see the terrain from an “outside” and broader perspective while another child experiences the
same terrain in VR in real-time from an “inside” perspective (where scale is 1:1). For example, a
child in VR might suddenly see a gaping canyon appear in front of her because her partner in the
physical world just scooped up a handful of sand. The sandbox is augmented with color
projections from above to visually emphasize topography such as lakes, peaks, etc. The virtual
model is using the same colors as the projection.

In our preliminary study, we have asked middle school children to work in pairs to design
a maze that has three mountains to climb anywhere along the path, where Mountain A must be
two times taller than Mountain C, Mountain B has to be three times taller than Mountain C, and
Mountain C can be any height.

In the following example, Sam wears an HMD and explores the model in VR while Ruth
physically sandscapes the maze model. A nearby LCD shows the VR user’s view.

Sam [talking to Ruth] However we are trying, just make sure that, it’s, um, big enough
to be considered a mountain. And small enough to... make sure it could be three
times as large as... for the mountain B.

Ruth Uh huh. I’m also making a path while I’m making this mountain.
[...]
Sam Where do you think we should put the other mountains? [looking around in VR]
Sam Do you see where I am looking?
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Ruth Yeah. [Ruth goes back and forth between Sam’s perspective provided by a nearby
LCD and her own perspective of the physical sandbox]

Ruth I think we should put them fair distance apart. So that they are not clumped up in
one location.

Sam Do you see where I am looking? Somewhere over there? [speaking from her VR
perspective]

Ruth Here. [points to a location in the sandbox. Now Ruth’s hand is represented as a
part of landscape Sam can see in VR]

Sam Right there? OK. [Sam sees what Ruth is pointing at as a part of landscape in her
VR view]

Sam Um, maybe Mountain B there.
Ruth Mountain B goes here. [Ruth is looking at the sandbox and LCD, and starts

sculpting Mountain B]
Sam Yeah. So the one that’s three times as big as this one. [speaking from the VR view]

Both Ruth and Sam communicate their effort to fulfill the task requirements as well as aesthetic
concerns for their maze design. Practically, it would be simpler to have the mountains close to
each other so that the heights could be compared easily, yet Ruth wishes the mountains to be
“fair distance apart” for aesthetic reasons. Likewise, making Mountain C small enough would
keep Mountain B’s height manageable. Sam communicates this point to Ruth while also assuring
that it should be “big enough to be considered a mountain” from the perspective of an actual
maze user. Through accessing such multiple views available to them (i.e., view of physical
sandbox, VR view, view of each other), Ruth and Sam negotiate their perspectives and set up
their own goals in achieving a design that meets the task specifications.

[Ruth is at the sandbox measuring their small mountain with a physical ruler (see
Figure 6, on the left)]

Ruth Two and a half inches. [Ruth reads the ruler] So then, like... around seven inches.
[Ruth looks at the ruler, and now measures the taller mountain] OK. Cool. [Ruth
recognizes that the taller mountain is not tall enough. She then puts the ruler
away and makes the tall mountain even taller.]

Sam I just saw the mountain. [laughs] [Sam is seeing the mountain being created by
Ruth in the VR perspective]

Ruth This mountain is really steep. [Ruth finishes the tall mountain in the sandbox]
Ruth There we go. [takes a physical ruler and measures the height of the tall mountain

she just created in the sandbox]
Ruth Yup. Still not tall enough. Alright. [Ruth puts the ruler away and sculpts the

mountain to be even taller]
Sam Remember, you can make the other one shorter. [laughs] [Sam in VR view]
Ruth Duh! [laughs]
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Figure 6. Ruth is measuring the height of the tall mountain using a physical ruler, while her
partner Sam looks at the model from the VR perspective.

In sculpting sand mountains physically, Ruth struggles to make Mountain B three times
taller than Mountain C. Sam, with her VR HMD, has an “inside” 1:1 scale perspective on the
sculpted mountains, which enabled her to notice and communicate with her partner that
Mountain C could be made smaller to facilitate the construction of Mountain B. As such, two
children take turns being the creator of the physical model and the evaluator of the same model
from the VR perspective, collaborating simultaneously at two different scales. It is this
turn-taking between the two roles, creating and evaluating a sensory manifold from multiple
perspectives, which provides an opportunity for dialogic reconciliation of these different views.
This, in turn, could surface conceptually productive differences relevant to the study of
geometrical solids and topographic projections.

Discussion: Substitution, Mutuality, and Synergy
The three studies surveyed above exemplify our collective efforts to develop an explanatory
process model of geometry learning as dyadic collaborative negotiation across different
perceptual perspectives on shared situations. The vignettes suggest the validity and robustness of
our thematic construct, conceptually generative perspectival complementarity (CGPC), by
demonstrating similar interaction patterns across variable phenomenal dimensions.

Across the vignettes, the discursive negotiation of perspectives played a crucial role in
mobilizing the participants’ actions and insights. Bearing different perspectives on the activity’s
focal objects, the collaborating children were compelled to articulate what they see as a condition
for engaging in pragmatic discourse. Not only did they surface and reify the objects’ geometric
properties from their subjective perspective—they also identified and “conserved” universal,
pan-perspective, scale-free, and, thus, mutually intelligible features, per the design’s objectives.

Comparative analysis of the vignettes suggests a new elaboration of CPGC by negotiation
type: substitution, mutuality, and synergy. In substitution, one of the perspectives replaces the
other, because it is tacitly evaluated as contextually advantageous for attaining information
relevant to the task at hand (e.g., when Amaya utilized arm aperture as a qualitative measuring
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tool). In mutuality, the viewing perspectives are both sustained, with participants retaining their
initial perspective while sanctioning the alternative view (e.g., when Sam and Ruth each kept
experiencing the landscape from their respective scale). In synergy, a new perspective emerges
that is greater than the sum of its parts (e.g., counting together the edges of an icosahedron from
within and without it).

Conclusion
When geometry activities deliberately summon from students different perspectival orientations
on a shared task space, this difference can be leveraged as a means of transitioning from intuitive
to disciplinary practices and understandings. As they figure out together how best to collaborate
across their perspectival gap, students may either substitute, maintain, or combine their views,
with varying consequences for learning outcomes. We are only beginning to identify which
sociomaterial circumstances result in each form of negotiation, and how these negotiation
outcomes bear on the emergence of mathematical ontologies. As educational designers, we look
to understand the role of different media in facilitating productive negotiations, and we seek to
investigate challenges and opportunities of integrating CGPC activities into classroom settings
and mainstream curriculum.

More broadly, we aspire to delineate heuristics for creating activities that optimize for
learning across perspectival differences. Ultimately, an approach to the learning of mathematics
grounded in reconciling perspectival complementarities, we surmise, could bear on broader
ideological and socio-political issues of diversity, inclusiveness, and cultural identity.

Endnote
1For citations from the literature, please see Authors (in preparation).
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