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ABSTRACT
When teachers, researchers, and students describe productively responding to moments of failure
in the learning process, what might this mean? Blending prior theoretical and empirical research
on the relationship between failure and learning, and empirical results from four data sets that are
part of a larger design-based research project, we investigate the heterogeneous processes teach-
ers and students value and pursue following moments in which computer bugs thwart their imme-
diate progress on an activity. These include: (1) resolving moments of failure; (2) avoiding recurring
failures; (3) preparing for novel failures; (4) engaging with authority; and (5) calibrating confidence/
efficacy. We investigate these processes taking into account the personal, social, and material con-
text in which students and teachers collaborate when encountering broken computer programs, in
addition to teachers’ planning efforts and the community’s reflections on past debugging experien-
ces. We argue that moments of failure are not simply occasions for seeking resolutions. They are
points of departure for decisions about how and what to foreground and interleave among a
range of valued processes. Overall, this study aims to support research on the heterogeneous proc-
esses that shape how students new to a discipline such as computer programming respond to get-
ting stuck.

Learning trajectories are commonly punctuated by stretches of difficulty. In the research litera-
ture, they are variably described as impasses (VanLehn, 1988), breakdowns (Koschmann et al.,
1998), snags (Lave et al., 1984), and/or failures (Kapur, 2008), and they can drive long-term learn-
ing (Kapur, 2016; Sinha & Kapur, 2021). Acknowledging this potential, in this paper, we investi-
gate the heterogeneous processes teachers and students value and pursue following moments in
which their immediate progress on an activity is thwarted by friction, problems, obstacles, etc. To
lead with a student’s perspective on these processes, we highlight sixth grade Zoa’s1 reflections on
debugging during a two-week Summer computer science (CS) workshop. Zoa’s reflections during
and following coding sessions, including in the art piece featured below (see Figure 1), cover sub-
stantial ground. Across the two weeks, instead of attending to a single process following moments
of failure, Zoa comments on self-efficacy (“I’m slowly dying. I got this,” “doubted myself”), strat-
egies for debugging (“compared my work,” “experiment with my code”), collaboration (“my
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friend helped”), failure recurrence (“cuz then I’ll forget”), and naturally, whether a resolution
emerges (“kill da bugs,” “going to work”).

In the vein of recognizing these varied experiences with failure, and drawing inspiration from
learning sciences research that embraces heterogeneity (e.g., Rosebery et al., 2010), we ask: When
teachers, researchers, and students describe productively responding to moments of failure in the
learning process, what might this mean? Zoa’s reflections allude to the complexity of this issue.
Toward the end of our first of three years of data collection on a design-based research project
(DeLiema et al., 2020), as we investigated the multi-dimensionality of failure, we reflected on its
characteristics and noted five processes following moments of failure that teachers and students
persistently valued and pursued. In reviewing prior literature addressing the relationship between
failure and learning, we found each of these represented by a rich empirical and theoret-
ical literature:

1. Resolving moments of failure: Arriving at a point at which an impasse is considered resolved
(Roschelle, 1992; Russ & Berland, 2019).

2. Avoiding recurring failures: Taking action to limit the chance the “same” impasse returns
and/or being better prepared to find a resolution should it recur (Barnett & Ceci, 2002;
Kapur, 2016; Reason, 1990).

3. Preparing for novel failures: Learning general processes for fixing new (not-yet-recurring)
impasses (Katz & Anderson, 1987; Pea et al., 1987).

4. Engaging with authority: Contributing with voice and action to the process of handling the
impasse (Engle & Conant, 2002; Foster, 2014; Langer-Osuna, 2016).

5. Calibrating confidence/efficacy: Gauging individual and collective expectations about capacity
to resolve the impasse (Bandura, 1982; Kallia & Sentance, 2018).

In preparing for our second year of data collection, our design-based research team formulated
the above framework to give ourselves a comprehensive target to consider when designing, docu-
menting, and evaluating our approach to supporting students following their encounters with
programming bugs. In this paper, we extend our inquiry into four empirical analyses of multi-
week 5th–10th grade coding workshops. The framework surfaces and labels “underlying

Figure 1. Zoa’s abstract artwork about the emotional experience of debugging.
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regularities” (Engle & Conant, 2002, p. 401) within students’ and instructors’ day-to-day efforts to
debug code. By abstracting these underlying regularities into a framework, we hope it is general
enough to inform educational researchers’ collective efforts to understand how and when students
and instructors pursue and balance these distinct facets of debugging following learning impasses,
with implications for how to support newcomers to a practice. Central to this framing of failure
is an awareness that computer programming teaching and learning occur in large part in spaces
outside of the code artifacts themselves. These spaces have often been overlooked in the CS edu-
cation research literature. In their charge to the field to move past this technocentrism, Sengupta
et al. (2021) note that “the complexity of teaching in classroom contexts that include coding has
barely been investigated” (p. 4), largely because studies of coding have inferred what is valuable
to students “primarily—in many cases, exclusively—from the code created by the students rather
than from observations of their experiences” (p. 6). In the present study, we join a growing com-
munity of scholars who are centering the conversational process of talk, gesture, artifact use, and
movement between teachers and students during debugging (Flood et al., 2018; Hennessy Elliott,
2020; Heikkil€a & Mannila, 2018; Jayathirtha et al., 2018; Sengupta et al., 2021; Silvis et al., 2022;
Steinberg & Gresalfi, 2021; Wang et al., 2021).

The paper begins with a literature review of each of these five processes to argue for their cen-
trality to failure and to capture diverse considerations around each. We then apply the multi-
dimensional framework in multiple empirical contexts to investigate how instructors design with
these facets of failure in mind; how a student, and their classroom instructors and peers, fore-
ground each during coding; what patterns/regularities occur in one student’s coding practice; and
how instructors and students reflect post-hoc on each process. Altogether, the framework gives us
some purchase in understanding students’ heterogeneous experiences with failure in the early
stages of learning a new practice. Finally, we comment on directions for future research building
on this framework.

Literature review and theoretical framework

We use the term failure to refer to an event in the learning process that participants consider to
be a breakdown or impasse en route to a goal (Koschmann et al., 1998), however fleeting or last-
ing the impasse becomes. More specifically, in our research context, we consider both brief and
prolonged situations in which students notice an adverse outcome when running their code and
then either attempt to change their code to alter that outcome or abandon/shift their goal. We
interchangeably use failure, impasse, and bug to refer to these moments of breakdown.

A core area of exploration around failure is educational researchers’ appeal to the productive
potential of failure to spur learning, what Gomoll et al. (2018) described as “positioning failure as
a constructive activity” (p. 91). For example, Manalo and Kapur (2018), in their introduction to a
special issue on failure and creativity, noted that “experiences of failure can and should be uti-
lized in more positive and productive ways” (p. 1) and that students should “persist in the face of
failure (and hence make it possible to benefit from such experiences)” (p. 2). In a stark echo of
this perspective, an educator quoted in Maltese et al. (2018) described student success and failure
in the following way: “Failure is when they give up. Success is when they persist” (p. 2018).
Indeed, researchers have substantively examined student persistence following failure (e.g.,
Duckworth et al., 2007), though not without powerful critiques that this research neglects context,
values persistence only in some areas, and eschews unequal access to resources (McGee & Stovall,
2015; Rose, 2015). An even more recent line of research adopted a meta perspective on this topic
by considering beliefs about whether failure is productive to learning, classified as either a
“failure-is-enhancing” or “failure-is-debilitating” mindset (Haimovitz & Dweck, 2016).

In response to this research, we reflected on what might make failure “constructive,”
“productive,” or “enhancing,” specifically in terms of the learning processes that take place
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following computer bugs. In the research literature, we found heterogeneous perspectives on this
topic. Though not exhaustive, the framework we propose includes five processes that are rou-
tinely studied as central parts of post-impasse learning. In our review of each below, we address
prior research on failure and learning across domains, paying particular attention to computer
science, our focal domain, and we explicitly document a range of perspectives on each process.

Resolving moments of failure

Teachers and students often work to arrive at resolutions to impasses. For example, early com-
puter programming educational research set a precedent for valuing revisions to programming
learning environments that allow students to get more bugs fixed, or “reduce the volume of these
errors” (Freeman, 1964, p. 15). A common outcome measure in debugging research is whether
students become more efficient at fixing bugs (e.g., Ko & Myers, 2004). Students themselves
might strongly orient to this goal. For example, in an after-school program focused on science,
engineering, and the arts, students preferred to have researchers video record their “finalized
projects (or moments they identified as successful)” (Vossoughi & Escud�e, 2016, p. 54). Similarly,
in the context of video game play, some players viewed impasses in games as failure only when
the impasse persistently prevented them from arriving at a resolution: “These players, after
numerous attempts at the same stage of a level, felt as if they hit a wall that they couldn’t get
past” (C. G. Anderson, 2020, p. 4). In many ways, arriving at a resolution following a moment of
failure is a deeply held value. In a recent study drawing on feminist epistemologies, ethics of care,
and awareness of environmental sustainability, Silvis et al. (2022) generatively asked: “What
responsibilities do children assume for ensuring that coding robots are in working order?” (p. 1).
Studying the conversations between children and their teachers following failures and risks for a
robot toy, Silvis et al. saw how children viewed technologies as “worthy of care” (p. 7) and thus
deserving of repair and maintenance. Moreover, this resolution process is valued outside of child-
focused learning settings. Actions by corporations that downplay or deny foundational problems
are understandably problematic (Reason, 1990). Even more fundamentally, the value of fixing
problems extends into the social fabric of conversation, where speakers and listeners work to
swiftly “repair” problems with speech production and comprehension (see Kitzinger, 2012 for a
review). In learning settings, we know a great deal about processes that tend to lead to resolu-
tions. Two recent studies are worth highlighting. In a science gaming context, early and numer-
ous failures led to ultimate success because moments of friction spurred “collaborative discourse
and resulted in a focus on mechanics” relevant to the target science (C. G. Anderson et al., 2018).
In this way, latent success does not derive simply from amassing failures but from incrementally
improving from one impasse to the next (Yin et al., 2019).

In contrast, learning communities can de-emphasize normatively correct resolutions. In some
kindergarten classrooms, for example, teachers explicitly respond to students in a way that signals
that “all answers are accepted” (Donaldson, 2019, p. 7). And yet even when swift accuracy is not
expected, researchers and educators may still value “latent productivity” or “quality” (Kapur,
2008). For example, in a study of how two high school students work toward conceptual change,
Roschelle (1992) attended to accuracy as an eventual achievement of collaborative work: “the stu-
dents’ conception changed in ways that made it more compatible with a scientific interpretation
of velocity and acceleration” (Roschelle 1992, p. 264). Relatedly, positive responses to failure may
hinge “on whether ‘success’ was eventually attained by meeting an internal or external goal”
(Maltese et al., 2018, p. 120, our emphasis).

These observations draw attention to a fundamental tension between the (longer-term) value
of overcoming an impasse and the (shorter term) value of giving students space to formulate their
approach to an impasse. Russ and Berland (2019) squarely examined this tension by noting the
difficulties of framing inaccurate resolutions to problems as nonetheless valuable, presenting “a
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framework for describing the activity of science learning that reduces this slippage by giving
knowledge construction true priority over the canon” (p. 279). With more slack in the collective
expectation that students precipitously arrive at a fix to a problem, educational researchers are
increasingly recognizing how students “positioning themselves as not-understanding” contributes
productively to classroom discourse (Watkins et al., 2018, p. 576). This line of research on uncer-
tainty raises questions about what counts as a resolution to an impasse. In the history of mathem-
atics, “success and failure were not predetermined, but up for debate,” a form of “negotiable
failure” (Trninic et al., 2018, p. 77). Points of view within modern feminist theory (Halberstam,
2011) and within the Japanese ethos of wabi-sabi (Maheux, 2016) embrace this fuzzy space, and
even relish the presence of flaws, an orientation to failure familiar to some maker space commun-
ities (Martin, 2015). A related orientation to failure occurs during play, a stance toward activity
defined by the paradox that we typically avoid failure and yet within play, often prefer it even as
we work to overcome it (Juul, 2013).

In summary, an extensive literature documents a range of considerations around how students
respond to impasses with efforts to find a resolution. How often students fix problems and how
much time elapses during the fixing process are central considerations. In addition, there is per-
haps growing tolerance for honoring the moment of breakdown itself prior to finding a fix, and
recognizing the subjectivity (and productivity) of determining whether a resolution has
been found.

Avoiding recurring failure

The second process we consider is avoiding recurring impasses. Students and instructors often
invest time not only in resolving a here-and-now impasse, but also responding in a way that
staves off the likelihood of recurrence. Jordan and Henderson (1995) succinctly capture this value
in their reflection on conversational repair: “People learn by experience which kinds of troubles
tend to recur and what range of resources can be assembled and held available for their solution”
(p. 71, our emphasis). Efforts to guard against recurring failure arise in many contexts. When
responding to trauma, such as a fight with cancer, people invest time pushing back “not only
against present threats but also against possible future setbacks” (Taylor, 1983, p. 1161), specific-
ally aiming to “forestall a recurrence” (p. 1168). These dynamics can also be studied as a collect-
ive accomplishment, in which learners “are exposed to others’ errors and are thus prevented from
making errors of their own” (Wong & Lim, 2019, p. 2). This issue is relevant to educational
research because of persistent, “relatively permanent bugs” (VanLehn, 1988, p. 10). In computer
science, Spohrer et al. (1985) describe these as bug dependencies: “the situation in which a single
underlying misconception gives rise to several bugs in a single program” (p. 184). Impasses may
signal underlying conceptions that will re-generate impasses unless addressed, and indeed, CS
education researchers explicitly study bug recurrence and persistence (Smith & Rixner, 2019).

Guarding against recurrence requires learning about the impasse. Jeffries (1982) described how
responding to programming impasses can catalyze a process of understanding “the nature of the
misconception” (p. 2). More directly, Endres (1975) raised questions about the connection
between understanding causes of impasses and preventing impasses: “Why was the particular
error made? What caused the error? Closely related to this (as we will show later) is the question:
What could have been done to prevent this particular error?” (p. 329). Pea et al. (1987) similarly
considered pedagogical implications around the “prevalence and systematicity of student bugs”
(p. 24). What makes guarding against failure recurrence challenging for educators and students is
the reality that a vast number of causes accumulate to cause breakdowns (Hesslow, 1988; Ko &
Myers, 2005). Multiple activities and systems, whether internal or external to the student, and
each containing their own affordances and constraints, layer together to make possible a
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“trajectory of accident opportunity” (Reason, 1990, p. 208) that would need to be understood to
prevent recurring problems.

Perhaps because of these factors, there is a persistent tension between taking quick routes to
fixing a problem and slower routes to developing enough understanding to avoid failure recur-
rence. One of the enduring statements on this balancing act comes from Cazden (1981). Cazden’s
account of “performance before competence” captures how expert support that helps a newcomer
solve a problem in the short term does not necessarily prepare the learner for the next, similar
problem that arises. As Manalo and Kapur (2018) note: “While some of our failed efforts may
clearly lead to useful lessons and more successful subsequent attempts, there are also many other
failure experiences from which we apparently learn nothing” (p. 1). In a reversal of this tradeoff,
the preparation for future learning framework (Bransford & Schwartz, 1999) and productive fail-
ure approach to design (Kapur, 2008) concede to short-term failure in service of generating deep
learning relevant to related, upcoming problems. Either way, awareness of “recurring” problems
raises questions about learning transfer. How similar to a previous impasse does a current
impasse need to be to count as a recurring issue? Barnett and Ceci’s (2002) transfer taxonomy
provides a number of dimensions to guide this inquiry, such as recognizing the same physical
and functional context across several days, different social contexts, and different task constraints.

In summary, following impasses, members of learning communities often work to prevent
these impasses from recurring, or at least to be in a better position to handle them should they
re-arise. A middle school student from our computer science workshops described this dynamic
in her debugging practice: “Writing down notes helps me and also creating like little summaries
of what I did to fix codes so that in the future if I run into the same problem I can just look back
into my notes and say oh that’s what I did” (our emphasis). Toward this end, researchers and
educators have considered the permanence of bugs, how the diagnosis of causes of impasses
informs actions to prevent impasses, and how short-term failure can nonetheless prepare students
for similar problems.

Preparing for novel failures

A third process frequently enters the picture following an impasse: learning general skills to
resolve upcoming, novel impasses. These skills are often described as debugging, troubleshooting,
or problem-solving processes. An early example comes from Polya’s (1945) description of prob-
lem-solving questions and practices that students can use to “solve future problems” (our
emphasis, p. 4) for which the students do not have ready-at-hand strategies. These practices have
been studied across a number of academic domains. In the context of reading, Palinscar and
Brown (1984) described and taught specific practices for when readers “are attempting to over-
come a comprehension failure (debugging state)” (p. 119). In the clarification process of their
reading framework, readers monitor their comprehension failures and follow up by re-reading a
previous section or clarifying the difficulty. Similarly, the science modeling literature recognizes
the value of teaching the practice of iterating on models that initially fail to predict the target
phenomenon. This practice involves developing overarching skills of evaluating models, testing
models against other ideas, and revising models (Schwarz et al., 2009). Similarly, in the cognitive
apprenticeship framework, Collins et al. (1988) introduced control strategies for monitoring
whether a problem exists and then learning “how to select among the various possible problem-
solving strategies, how to decide when to change strategies, and so on,” especially “if one is stuck”
(Collins et al., 1988, p. 14–15). In the context of outdoor play, Baker et al. (2022) examined how
a parent—supporting a child to reach a high rope—asked the child to assess the efficacy of a pro-
posed fix, thus interleaving a broadly valuable debugging skill into the conversation. In each case
above, learners develop skills capable of helping them get unstuck when novel impasses arise.
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In computer science, debugging skills are important because impasses are common, and at
times challenging, parts of the practice (Murphy-Hill et al., 2013; Perscheid et al., 2017).
More directly, empirical work demonstrates that these skills need to be nurtured (Klahr &
Carver, 1988, p. 377). While the term “debugging” has served as a catch-all for any facet of fixing
code, there is a literature around the more narrow facet of debugging that we are highlighting.
For example, experienced programmers have written volumes that articulate effective processes
and tools for debugging unknown, especially taxing problems in code (Metzger, 2004; Zeller,
2009). There is also considerable knowledge of how modern professional programmers experience
debugging, including how often bugs arise, what tools are used, and how debugging teaching and
learning in professional communities take place (Beller et al., 2018; Murphy-Hill et al., 2013;
Perscheid et al., 2017).

In addition, we know a good deal about how novice programmers approach debugging (Katz
& Anderson, 1987; Liu et al., 2017). For example, there are specific routes students take when
writing and repairing programs, such as tinkering (Berland et al., 2013), and these routes can pre-
dict long-term learning (Blikstein et al., 2014). A significant research thread in this vein is
directed at building tools to help new programmers find and fix bugs (Hristova et al., 2003; Ko &
Myers, 2009; Lazar et al., 2018; Lee et al., 2018; Miljanovic & Bradbury, 2017). There is even a
comprehensive guide to help newcomers learn the nuts and bolts of debugging (Lysecky &
Vahid, 2018). Related research threads have focused on what distinguishes novice debugging
from expert debugging (Vessey, 1985), how teachers new to programming instruction debug code
(Kim et al., 2018), and whether students can transfer computer science programming and debug-
ging skills (Klahr & Carver, 1988; Pea & Kurland, 1984).

In summary, there are a number of specific considerations around the teaching, learning, and
practice of debugging. In contrast to fixing a here-and-now impasse and preparing for recurring
impasses, debugging involves learning skills to handle unforeseen, novel impasses. Learning to
debug means learning broadly relevant “strategies for dealing with errors” (Reason, 1990, p. 245).
Central factors include strategies for debugging, tools for debugging, processes of teaching and
learning debugging, knowledge of bug types to guide where to develop a debugging practice, and
the extent to which debugging skills transfer to new domains.

Engaging with authority

A fourth consideration around how students respond to impasses is the extent to which students
are involved actively in the repair process. Regardless of whether a learning activity foregrounds
arriving at a fix, preparing for deep learning to avoid a specific recurring impasse, or teaching
debugging strategies useful for a number of unknown future bugs, learning communities often
value that students’ voices and actions consequentially shape the repair process. This value is
powerfully captured in work on students’ rightful presences in the classroom (Calabrese Barton &
Tan, 2019). In our understanding of authority, we also build explicitly on the productive disciplin-
ary engagement framework, in which Engle and Conant (2002) referred to authority within the
context of impasses: “Part of such authority is a matter of students having an active role, or
agency, in defining, addressing, and resolving such problems” (p. 404). We further recognize
Langer-Osuna’s (2016) distinction between intellectual authority (positioning that addresses the
credibility of an information source) and social authority (capacity to shape the division of labor
and actions during collaborative work). Relatedly, Adair (2014) defined agency as the capacity “to
influence and make decisions about what and how something is learned” (p. 219), and rightly
drew attention to how “standardized childhood” classrooms (Fuller, 2007) disproportionately stifle
agentic opportunities for students from marginalized communities. Interleaving this prior work,
we view authority as students having an active role, both intellectually and socially, in determin-
ing how bugs are resolved in their code.

COGNITION AND INSTRUCTION 7



In the computer science educational research literature, a facet of authority is addressed in
research on debugging independence. Pea et al. (1987) distinguished the collaborative process of
repair during human conversation from situations in which the programmer works alone at a
computer: “Whereas the ‘debugging’ of natural language discourse is socially accomplished, and
often inexplicit, the novice programmer must go it alone in total explicitness” (p. 8, our
emphasis). In newer threads of work, learning scientists studying electronic textiles have quanti-
fied situations in which students “largely worked by themselves (55.6%) to troubleshoot chal-
lenges of crafting with conductive thread” in contrast to receiving teacher support (Searle et al.,
2018, p. 130). Debugging research on whether students can “correct their faulty code themselves”
(Lee et al., 2018, p. 1) aligns with currents outside of computer science research. For example, the
child development literature covers autonomy support (Meuwissen & Carlson, 2019; Whipple
et al., 2011) through attention to parenting practices in which children are “given the opportunity
to solve problems on their own” (Bindman et al., 2015, p. 757; see also Baker et al., 2022). A
related pedagogical framework in mathematics instruction, focused on minimal interventions,
recruits empathetic listening in service of “the student generally find[ing] some kind of resolution
of their own” (Foster, 2014, p. 152). The other end of this division of labor has been studied in
part through the construct of helicopter parenting, a dimension of which addresses how the par-
ent “solves any crisis or problem [the child] might have” (Schiffrin et al., 2019).

However, we would caution against reductions of authority exclusively to independence.
Complex divisions of labor exist in both large organizations (Cole & Engestr€om, 1993) and in
dyadic settings such as math tutoring interactions (DeLiema, 2017), and there are calls to reject
the false binary of adult- versus child-centered pedagogy (Vossoughi et al., 2021). In addition,
peripheral participation serves as a legitimate form of action and mode of learning (Lave &
Wenger, 1991). Indeed, the construct of rightful presence (Calabrese Barton & Tan, 2019) fore-
grounds authority within the context of learning communities. A related thread of research on
this topic proposes the construct of fluid synchrony (Mej�ıa-Arauz et al., 2018). These collabora-
tions involve “fluently attuned participants who provide relevant contributions in a shared
endeavor oriented toward a shared goal” and can shape the flow of work during pair program-
ming (Mej�ıa-Arauz et al., 2018, p. 117). By not equating authority with independence in these
ways, we can continue to recognize how students within collaborative participation frameworks
have power with voice and action to shape the approach to resolving impasses. In this way, Flood
et al. (2018) documented how instructors can make space for learners to engage in debugging
practices in ways that preserve their agency in problem solving.

In summary, there is a central place for research on failure that attends to how students
develop the skill to navigate the debugging process, not only in the sense of working alone, but
also in having and building capacity to select, enact, defend, prioritize, and expand their debug-
ging process while working with others.

Calibrating efficacy

A final consideration around how students respond to impasses is the process of deciding
whether arriving at a resolution is feasible. This consideration is well captured within the con-
struct of self-efficacy: “Perceived self efficacy is concerned with judgments of how well one can
execute courses of action required to deal with prospective situations” (Bandura, 1982, p. 122).
We note that perceived efficacy (whether by the individual or collective) is a conjecture or judg-
ment about capacity to handle a prospective set of conditions. Because of the uncertainty that
comes with some impasses, judgments about capacity to navigate the conditions following an
impasse matter a great deal. Indeed, Bandura (1982) mapped perceptions of efficacy specifically
to failure, noting that efficacy judgments shape how much people continue to engage “in the face
of obstacles or aversive experience” (p. 123). In addition, decades of research suggest that efficacy
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judgments following impasses are key factors in shaping the motivation to continue ahead (see
Eccles & Wigfield, 2002 for an overview).

In the computer science (CS) education literature, researchers have attended to the relationship
between perceived efficacy/confidence and debugging. For example, high perceived self-efficacy
among undergraduate students in an introductory programming course correlated with successful
debugging (Wiedenbeck, 2005). More broadly, a grounded theory analysis of undergraduate stu-
dents’ reflections on learning to program revealed that efficacy was a frequent topic, especially
when students described “encountering difficulties,” “dealing with difficulties,” and “succeeding”
(Kinnunen & Simon, 2011). A few studies have found that the experience of pushing through an
impasse and ultimately succeeding generates impressions of high efficacy, such as “boosts in self-
confidence” following successful debugging (Maltese et al., 2018, p. 120) and higher efficacy (“I
didn’t feel as though I could do as much before”) following learning from failure (Estabrooks &
Couch, 2018, p. 112). However, Kinnunen and Simon (2012) also recognized “a somewhat sur-
prising combination of positive programming episode and negative self-efficacy judgment” (p.
23), in which students critically evaluated the pace and effort of their debugging process.

Bracketing off for a moment the factors that predict and result from perceived self-efficacy, we
note that an underlying assumption of this research is often that high self-efficacy is valued. For
example, Michaeli and Romeike (2019) explicitly noted that “fostering students’ debugging self-
efficacy and eventually self-reliance is essential” (p. 6). While this goal might be valuable in the
long run, an alternative perspective on this topic recognizes that efficacy judgments, even per-
ceived low efficacy, could be helpful to the process of goal and strategy revision. As Bandura
(1982) noted, enacted efficacy is a complex notion: “operative competence requires orchestration
and continuous improvisation of multiple subskills to manage ever-changing circumstances” (p.
122). The process of forming accurate calibrations of efficacy has to account for that complexity,
and in many cases, may pick up on important information. For example, low perceived self-
efficacy has been found to correlate with programming “misconceptions” (Kallia & Sentance,
2018), which suggests that efficacy judgments can productively signal conceptual areas worthy of
learning investment. More fundamentally, learning success is contingent on external circumstan-
ces, such as having access to resources, time, expert pedagogy, and buffers against failure, among
many other supports, which have been unequally distributed on a persistent basis (McGee &
Stovall, 2015; Rose, 2015). Thus, instead of adopting the position that all impasses during learning
are necessarily resolvable, one might attend to the informative process of how students and
instructors calibrate confidence as part of the process of demanding accountability from multiple
stakeholders to support student learning. Drawing on a similar set of considerations as noted in
the previous section around divisions of labor in collaborative activity, we would also caution
against the reduction of perceived efficacy to self-efficacy, and instead, propose to attend addition-
ally to perceptions of collective-efficacy, or how people judge their capacity to “resolve their
problems… during concerted effort” (Bandura, 1982, p. 143).

In summary, students formulate judgments about their capacity to navigate prospective learn-
ing experiences, especially following impasses. These perceptions of self- and collective-efficacy
have been found to impact students’ motivation to persist following impasses, and importantly,
may provide key signals that internal and external resources are misaligned with task expecta-
tions. Because enacted efficacy itself is a complex process, we view the process of judging efficacy
as requiring calibration, perhaps through moments of holding judgments in “provisional status”
(Bandura, 1982, p. 124). These dynamics can be studied as the evolving understanding of connec-
tions between resources/skill and the conditions following an impasse.

Heterogeneous processes surrounding failure

In the literature review above, we make the case that each of five processes is central to what
instructors, students, and researchers have valued and pursued following impasses during
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learning. Despite substantial research around each process, we argue that our field would benefit
from a deeper understanding of whether and how these processes are foregrounded, back-
grounded, and blended when impasses arise during teaching and learning. This call resembles a
construct introduced to describe students’ failure as mosaic mindsets (Simpson et al., 2018),
which entail “viewing failure as either positive or negative based on context” (A. Anderson et al.,
2019, section “Failure descriptions”). We extend the mosaic metaphor here to frame failure
moments as pluripotent, capable of moving in multiple directions. That is, participants invested
in a goal disrupted by an impasse may choose to actively pursue a resolution to the impasse, pre-
pare to avoid the impasse in the future, use the occasion to develop general debugging skills,
involve the contributions of newcomers, or weigh their efficacy to resolve the problem, including
combinations of these processes. This framing of failure draws inspiration from Sengupta et al.’s
(2021) mapping between computer programming and Bakhtin’s scholarship on language
(Bakhtin, 1986). In bridging computational utterances and Bakhtin’s account of voice as filled
with tension, representative of heterogeneous speakers, and lacking neutrality, Sengupta et al.
argued that when “we begin to see coding as conversations between students (and teachers), the
complexities of negotiating multiple perspectives inherent in such conversations offer both oppor-
tunities and challenges for engaging with the code and the simulation” (Sengupta et al., 2021, p.
30). When studying debugging in the context of classroom conversation, we conjecture that
debugging is similarly a tension-filled activity in which teachers and students negotiate what to
foreground and value among distinct processes following a moment of failure.

Taking this possibility as a point of departure, we ask four research questions: (1) To what
extent do computer science instructors plan instruction around bugs with these five processes in
mind? (2) How does one student, in collaboration with peers and instructors, engage with each
process throughout and following debugging? (3) What patterns/regularities around each process
occur in one student’s coding practice over a sustained period? (4) When prompted explicitly,
how do instructors and students reflect post-hoc on these five processes? By acknowledging het-
erogeneous processes surrounding failure, we aim to start to understand the extent to which these
processes are intermingled during programming teaching and learning.

Method

This paper reports on the results of a series of analyses as part of a design-based research project
(Dahn & DeLiema, 2020; DeLiema, 2017; DeLiema et al., 2020). The site for this research is a
nonprofit community learning center on the West Coast of the United States in a large city, and
the design-based research participants included researchers (graduate students, a postdoctoral
researcher, and multiple faculty with expertise in CS, art making, and educational research) and
practitioners (CS teachers, workshop organizers, software developers). Research iteratively moved
through quick cycles of data collection/analysis and redesign taking place during multiple
8-session weekend programs throughout the year (Fall, Winter, and Spring), followed by stable
Summer implementations. Comprehensive data collection took place during these stable imple-
mentations at a two-week workshop in 2017 (Summer 1) and a three-week workshop in 2018
(Summer 2), each of which ran five days a week, 9am–4 pm. The research reported in this paper
comes from Summer 1 and Summer 2.

Framework timeline

The framework we propose solidified between Summer 1 and Summer 2. Several factors shaped
the framework: (1) a literature review of research on failure, debugging, and learning; (2) consid-
erations from our grant-funded advisory board about how to operationalize “productive” debug-
ging; (3) awareness of recurring themes that grounded our research-practice partnership
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conversations about the design of the learning space ahead of Summer 1; and (4) bottom-up anal-
yses of teacher-student interactions during debugging. With a preliminary framework in mind,
we addressed RQ1 and RQ2 by analyzing existing data from Summer 1, and we addressed RQ3
and RQ4 by explicitly designing Summer 2’s workshop and measures around the framework.

Participants

The 5th–10th grade students participating in the program came from schools across the city.
Student demographics varied across workshops, though most students identified as Latino/Latina,
and small proportions of students identified as Asian, Black, and White, including students who
identified with multiple categories. Students demonstrated either financial need or attendance at a
Title 1 school to enroll in the free program. There was slightly more demand than room available
at each workshop; students were admitted if they had attended past coding workshops in the
space or if their workshop application demonstrated high interest. The student data for our ana-
lysis come from a classroom of 18 students (RQ 2, Summer 1) and two classrooms totaling 40
students (RQs 3 and 4, Summer 2). Each classroom contained about an equal blend of students
new to programming and students with some prior programming experience. Instructors in these
classrooms were mostly undergraduate students majoring in computer science; a few were recent
graduates working in tech careers. All were at the beginning stages of developing their teaching
practice. Eight instructors participated in the professional development sessions around conjecture
mapping, described below (RQ 1). The two instructors followed in Summer 1 for RQ 2—Mia and
Jad—were both undergraduates pursuing CS majors at universities in the area: Mia was in her
second year of her program, and Jad was in his third. Both instructors had also been teaching in
the weekend program of this workshop during the Fall, Winter, and Spring program. An author
of this paper (DeLiema) served as the researcher in this classroom and spent most of his time
taking field notes during each class but occasionally circulated the room during coding time to
help students with debugging. In Summer 2, six instructors—including Mia, two authors of this
manuscript (DeLiema and Dahn), and three additional instructors, all of whom had experience
teaching at the site—were part of the sample for RQs 3 and 4.

Workshop design

The classroom parts of this data set involved working in PixelBots, a programming environment
in which students used JavaScript to control the movement and painting actions of an animal
avatar around a two-dimensional grid. PixelBots takes advantage of a central design principle of
Logo (Papert, 1980) by having students program the movement and painting actions of an animal
avatar on a grid. The PixelBots software was designed to offer a number of features to support
students’ debugging (see Figure 2). The Summer 1 curriculum invited students to learn how to
write functions that could paint different shapes, building toward a Picasso-like cubist painting
that creatively decomposed an object into abstract, recurring shapes. Students explored core cod-
ing concepts along the way, including how to call functions, how to sequence code, how to add
arguments to function calls, how to use loops, how to create functions, and how to create multi-
parameter functions. The first six days of the workshop were a mix of whole-class discussion
about these concepts and practice implementing the concepts on self-paced playlists. Students
then prototyped their final artwork and spent three days coding before sharing their pieces at a
final peer showcase. In Summer 2, the PixelBots curriculum covered the same concepts but
emphasized challenges instead of a cumulative project. Motivated by our research team and
instructors’ reflection on the first year’s design conjectures, additional changes to the Summer 2
curriculum included students self-selecting the difficulty of their PixelBots challenges, instructors

COGNITION AND INSTRUCTION 11



emphasizing and promoting peer-to-peer teaching and learning, and instructors spending less
time explaining concepts in whole-class settings and more time with small groups.

The arts-based component of both workshops differed from prior exemplars of arts-integrated
computer science curriculum emphasizing tangible artifacts (e.g., Buechley et al., 2013) in that
students in our workshops were not only using programming and art to create novel artifacts
(Peppler & Wohlwend, 2018) but were also creating art as a medium to reflect on and express
their experiences learning to program (see Dahn & DeLiema, 2020; Dahn et al., 2020). Across
both Summers, students worked in the art space for about an hour each day. In Summer 1, an
author of this paper who had several years of experience teaching visual arts, designed and taught
the curriculum. Summer 1 arts classes took place in an open, indoor space at the learning center
in a building across the courtyard from where students coded. The art curriculum was designed
to support students in telling stories about success and failure in the context of learning coding
and debugging. Over the course of the workshop, students worked on different art projects in
relation to the experience of learning to code. These projects included abstract watercolor pieces
about emotional aspects of coding experience, comic-strip story panels about events that hap-
pened during coding (or that students imagined happening), poetry reflections on feelings related
to particular lines of written code, graph-like depictions of emotional trajectories related to cod-
ing over time, and data visualizations of their debugging experiences. Throughout the workshop,
the art teacher-researcher reinforced the idea that art making had flexible goals and that art was a
way of reflecting on and communicating ideas and feelings about their experiences. Students also
had the opportunity to share their work with peers and families at the workshop’s conclusion as
part of the final showcase in a gallery-like context. In Summer 2, art making was more fully
integrated into students’ coding experiences as they explored and successively revisited three
projects—abstract emotion watercolor drawings, code poems, and data visualization of their
personal experiences—within the coding classroom and immediately preceding or following
coding activities. See Dahn and DeLiema (2020) and Dahn et al. (2020) for additional details on
the arts-based component of the workshop.

Figure 2. PixelBots programming interface with relevant debugging features highlighted.
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Debugging pedagogy designs
We implemented a number of designs to spark student reflection and communication about stu-
dents’ debugging processes (DeLiema et al., 2020). In lined-paper journals, students set goals at
the beginning of class about how they wanted to push their debugging practice forward that day,
and students reflected on whether their past debugging strategies had been working. Students
engaged with similar reflective prompts at the end of class. These reflections also often took place
on post-it notes (see Figure 3) that students then stuck to a specific category on a poster board;
the board offered five categories that aligned with the five steps of debugging that instructors set
out to implement (see details in the Professional Development section below). Students were
invited to use hashtags on their post-it notes and journals as a way to incorporate emotion into
the reflections. In addition, students were invited to fill out bug tickets at the end of class (see
Figure 3), small slips of paper that had the following questions: “1. What was the bug? 2. What
was the fix? 3. What was your debugging process?” Finally, instructors occasionally told stories
about how experts in contexts outside of programming approached failure in their practice (Lin-
Siegler et al., 2016), such as how a rock climber persisted throughout a difficult section of a
climb, with the goal of validating strategic thinking during failure.

Professional development

During two weeks of professional development leading up to Summer 1, a researcher and all
eight instructors collaboratively developed conjecture maps (Sandoval, 2014) describing three of
the workshop’s debugging-focused designs. Conjecture maps are detailed hypotheses about
expected connections between learning theories, how these theories are implemented in classroom
instruction, short-term outcomes of these designs evidenced by students’ observable actions, and
long-term goals of the learning space. They are a critical tool for design-based researchers (e.g.,
Bakker, 2018). We invited instructors into the conjecture mapping process, both its design and
evaluation, to foreground their perspective and help democratize our teaching and research pro-
cess (Ryan et al., 2019). These conjectures served as guideposts for our data analysis and deeply
informed revisions to our pedagogical approaches in Summer 2 (described earlier). These conjec-
ture maps focused on three designs: (1) student goal setting about debugging and reflection on

Figure 3. An example of one of Zoa’s post-it notes (left) and bug tickets (right).
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debugging in journals; (2) instructor modeling, prompting, and reflecting on debugging strategies
(designed with the reciprocal teaching framework from Palinscar & Brown, 1984 in mind); and
(3) students using five debugging steps, including debugging goal setting, describing what went
wrong, proposing causal explanations, testing fixes, and reflecting on the debugging process (see
DeLiema et al., 2020 for more detail). As part of professional development, instructors practiced
their debugging instruction in mock classrooms with other instructors who pretended to be stu-
dents, and instructors spent time watching video of prior classroom debugging instruction
focused on noticing (Sherin & van Es, 2005) key moments of the debugging process.

Data sources

Our data sources span participation in coding class, the artifacts produced along the way, and
reflection on interviews. To capture participation in the coding classroom, we used a combination
of overview cameras, participant (table) cameras, screen and audio recordings, and views of stu-
dent gestures toward their computer screens. To get these angles, we used two GoPro cameras at
each corner of the tables where students coded and one overview GoPro camera. Screen record-
ings, in addition to audio from the laptops, were captured using Quicktime software on Apple
laptops and Screencastify software on Chromebooks. End-of-workshop interviews focused on
debugging and asked students to talk about how they define debugging, what their debugging
process is, how they tried to improve with debugging, how they felt when they encountered bugs,
whether the art influenced their coding, what caused bugs in their code, how they experienced
the post-its and journals, what it was like working with their instructors, and where they have
room for improvement with debugging. A separate interview in Summer 1, conducted by the art
instructor/researcher, more specifically probed students’ art making experiences. In the art-
focused interview, students selected two of their works of art and described what they were trying
to show and if/how they thought art making might have shaped their coding practice during the
course of the workshop. For Summer 2, we also created a Likert-scale survey with five questions
(corresponding with our framework), iteratively piloted the survey with students in Winter 2018
by having students answer the questions and voice their understanding of the questions and their
answers, and then asked students and instructors to take the survey following PixelBots class
twice a week for the three weeks of camp (see Appendix for survey questions). The students filled
out the survey describing their own debugging experiences, and the instructors shared the task of
filling out one survey for each student in their class with the goal of trying to describe that indi-
vidual student’s debugging experience on that day. Finally, we video recorded our Summer 1 pro-
fessional development sessions focused on conjecture mapping and saved copies of the iteratively
designed conjecture maps themselves.

Analysis plan

Analysis plan for research question 1
To gauge the extent to which instructors planned their debugging teaching taking into account
the five processes we describe in our framework, we examined our three collaboratively con-
structed conjecture maps (see images of these maps in the Findings section). The analysis tied
conjecture map statements and connections to one or more of the five processes in the frame-
work. In particular, we attended to the short- and long-term outcomes that instructors predicted
would result from proposed debugging designs. By iteratively working through the data, docu-
menting in memos our rationale for mapping statements to categories, and attending to the facets
of the constructs covered in the literature review and described in our definitions below—an
enactment of the constant comparative method (Glaser, 1965)—we evaluated the extent to which
instructors naturally expected connections between their planned instruction and the processes

14 D. DELIEMA ET AL.



described in our framework. Because some short- and long-term outcomes in the conjecture
maps covered substantial ground, we were open to each addressing multiple processes in
the framework.

Analysis plan for research question 2
To examine debugging during coding class, we conducted a case study from Summer 1 data. The
boundary of the case study included one student over two weeks of PixelBots programming, her
interactions with two instructors during whole-class, small-group, and one-on-one debugging,
and her interactions with peers. Data sources included video-audio recordings of the student pro-
gramming, two interviews, and multiple artifacts (e.g., journals, bug tickets) produced along the
way. The focal student, Zoa, was a sixth grader who had coded at this organization’s fall robotics
workshop before attending the Summer session. We focused on this student for three reasons: (1)
We hoped to focus on a student with some experience in coding who could move past basic syn-
tax errors and into more complex logic bugs. We wanted to avoid focusing on a student in the
classroom with the highest content knowledge/most programming experience because we wanted
to leave open the possibility that the focal student would learn from their peers. (2) We wanted
to focus on a student who had committed to participating in the debugging designs at the work-
shop, including writing post-it notes, bug tickets, journaling, and art making. Almost all of the
students fit this criterion. (3) Lastly, we wanted a student for whom we had good data, including
good audio and video of coding sessions, good photographs of journals/artwork, and good audio
during interviews. We then randomly picked Zoa out of the remaining pool (five students) who
fit all of the above criteria.

Our analysis approach drew on principles of the constant comparative method (Glaser, 1965)
and multimodal interaction analysis (Goodwin, 2018; Jordan & Henderson, 1995). The analysis
was driven top-down by the five processes in the framework. In line with recent multimodal,
interactional debugging and programming research (e.g., Heikkil€a & Mannila, 2018; Murphy
et al., 2010; Sengupta et al., 2021), after forming a synchronized composite of video angles and
screen recordings in Adobe Premiere for each day of Zoa coding, we marked each moment of
discourse related to debugging, and created multimodal transcripts (representations of language,
code, gesture, and body movement) for moments we judged central to our analysis, following
conversation analysis conventions (Jefferson, 2004) interleaved with multimodal representations
in black italics between double parentheses. All other data sources were transcribed or photo-
graphed. Through successive examinations of data, written memos documenting our reasoning,
and data sessions with researchers outside of our team, we iteratively combed through each data
source, exploring possible mappings between aspects of the data (e.g., a sentence in an artist
statement, a strip of dialogue) and the five framework processes. In considering data from prac-
tice, artifacts, and reflection (Sandoval, 2012), we did not aim in this case study to comprehen-
sively describe Zoa’s growth or overall debugging trajectory, nor did we consider whether the
data triangulated to amount to a common/consistent account of Zoa’s debugging practice (Tracy,
2010). Instead, we approached the analysis looking for whether there were clear instances in
which participants foregrounded each of the five processes in the framework. Though we do not
report on this analysis in the present paper, we also started to investigate possible connections
between the framework characteristics by examining a stretch of debugging for Zoa that spanned
two workshop days.

Analysis plan for research question 3
To more specifically document patterns/regularities around each of the five processes in our
framework in one student’s coding practice over a sustained period, we conducted a case study
using Summer 2 data. We selected Maribel, the focus student, according to the same criteria we
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noted for research question 2. Maribel was a rising sixth grader who was learning to code for the
first time. This case study focused entirely on the video and audio recordings of Maribel’s coding
process over three weeks of PixelBots class. Two coauthors of this study worked together in
Adobe Premiere to mark every bug the student encountered and categorized each according to
the definitions provided in the core constructs section (below). Two coauthors developed and
refined these definitions and the accompanying coding scheme by coding the first week of
Maribel’s data, meeting to discuss discrepancies, refining the coding scheme, and re-coding the
data (see coding scheme below). The open-ended approach to refining the coding scheme contin-
ued once each coder then separately coded the remainder of the data. The two coauthors in add-
ition to a third coauthor met each week for a year to discuss any misalignment between the
coding scheme and the video data, refined the categories, and re-coded the data. The process was
iterative and collaborative to the final day of coding. All of the coded data was stored in a spread-
sheet to make possible the construction of data visualizations showing the student’s approach to
bugs over time.

Approach to Video Coding for RQ 3. For our RQ3 analysis, we considered the start of the
debugging session to be the moment the student noticed and started to work on fixing the bug,
and we considered the resolution to be the moment the student moved on to a new goal follow-
ing a period of debugging (however brief). In addition, we distinguished the observable failure
from the cause of the failure. The observable failure is the functional part of the code, or the
observable product of the code when run, which the student dispreferred and aimed to fix. The
cause of the failure, typically described as a bug in the CS ed literature, is the flaw in the code
that generated the functional problem. With these two terms in mind, we attended to debugging
outcomes that either resolved or left unresolved both the observable failure and the underly-
ing cause.

Our observations of debugging strategies focused on observable facets of students’ problem-
solving practices when faced with a bug (see full list in Figure 9): slowing down the code execu-
tion process with the PixelBots slider, stepping through code, looking up example syntax in the
API, working with peers, working with instructors, simulating code in gesture or drawing, con-
sulting help pages, creating new functions, reverting to a previous code version, and referencing
past working code. We also attended to experimentation by considering the amount of code the
student deleted (code within one or two lines versus anything involving three or more lines) and
whether the proposed new code worked with the existing coding concept (e.g., trying to work
with a loop that was broken) or used a new coding technique (e.g., reverting to a known tech-
nique, such as hard coding a sequence of commands, after a newer technique, such as the loop,
did not work). Finally, we attended to both actual statements of self-efficacy (e.g., “I got this,” “I
doubted that the code would work”) and proxy markers of efficacy during and following debug-
ging, including markers of low efficacy (e.g., in the context of code not working, publicly cursing,
slumping shoulders, groaning, grimacing, jamming the play button) and markers of high efficacy
(e.g., announcing epiphany moments, expressing self-praise, showing excitement/enthusiasm
about a debugging strategy). Lastly, we categorized bug types tailored to Maribel’s coding practice
by attending to all of her bugs and noticing commonalities both in their functional features and
their underlying causes. Our discussion section covers some of the discoveries, uncertainties, and
tensions that emerged around these constructs that we think would help researchers working
with these constructs moving forward.

Analysis plan for research question 4
To gauge how instructors and students reflected post-hoc on these five processes, we analyzed
our survey data from Summer 2. We analyzed the survey data by implementing two categorical
analysis techniques: the Chi-Square Goodness of Fit Test (GOF test) and the Cochran-Mantel-
Haenszel test (CMH test) to understand the rate of student and teacher responses as well as to
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measure the agreement between students and teachers on our five proposed facets of debugging.
More specifically, the GOF test is a hypothesis test used to determine how well a sample data dis-
tribution fits a specified distribution of data. The null hypothesis is that the sample data distribu-
tion matches the specified distribution, whereas the alternative hypothesis is that the sample data
distribution does not match the specified distribution. The specified distribution in this paper is
that the levels of the responses are all equally likely (e.g., students are equally likely to report
rarely, sometimes, and always fixing bugs). The CMH test, however, is used to determine if there
is agreement between two teachers and students regarding a categorical binary response over a
discrete number of time points. The null hypothesis is that there is no agreement between teacher
and student, whereas the alternative hypothesis is that there is agreement between teacher and
student. Each test was implemented on each construct for students and teachers.

Results

Study 1: conjectures linking instructional designs with student learning processes

Our collaboratively constructed conjecture maps from Summer 1’s professional development ses-
sion (see Figure 4) document that instructors positioned each of the five framework processes as
possible and valued outcomes of the workshop’s debugging designs (see Table 1). The instructors
formulated and refined these short- and long-term student learning processes in their own words,
viewed them as key processes to consider around failure, and used them to anchor the team’s
design conversations. Altogether, instructors highlighted students’ debugging processes (e.g.,
accurate hypotheses, effective explanations of the cause of bugs, likelihood of discovering bug);
planning around specific bugs (e.g., specific gaps, specific questions); general debugging strategies
(e.g., increased use of debugging resources; learning new debugging strategies); more personaliza-
tion of debugging strategies and more student authority (e.g., full capacity to navigate debugging,
student voice); and high self-efficacy (e.g., “ready to fix that bug” mindset).

Figure 4. Collaboratively designed conjecture maps from Summer 1’s PD workshop.
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This analysis provides evidence that instructors keyed into all five framework processes when
considering the purpose of their debugging-related pedagogical practices, and described them in
enough detail and with enough precision for our research team to map them onto the multi-
dimensional framework. This signals that instructors in this setting gauged students’ progress
around failure across a heterogeneous set of considerations. Four of the facets of the framework
that instructors noted were spread across more than one conjecture map; instructors thus pre-
dicted that different debugging pedagogies would contribute to the same valued facet of respond-
ing to failure. In contrast, bug fixing was judged to be relevant only to conjecture 3’s focus on
the steps of debugging, a design that focused on finding solutions to bugs. Another emergent
property of this analysis is that we can recognize that instructors emphasized general-purpose
debugging and student authority over and above the other three processes, mentioning them
more often and expecting to see them materialize across designs. Lastly, as we noted in our litera-
ture review, each of these processes is not uniform in its own right. For instance, authority
captures working independently (“on his/her own”), personalizing the debugging process (“adapt
our debugging process”), and commanding the debugging process (“full capacity to navigate”).

Study 2: case study of enacted debugging

Beyond instructors’ planning efforts, our first case study documents the extent to which partici-
pants foregrounded these five processes surrounding debugging in their teaching and learning
within one classroom. Across three types of data—participation during coding class, artifacts pro-
duced along the way, and reflection through interviews—we found moments in which each facet
of responding to failure was foregrounded by Zoa, her classmates, and her instructors. Below, we

Table 1. Summary of connections between valued debugging outcomes and our conjecture maps.

Five debugging processes Outcomes embedded in three conjecture maps from Summer 1

Fixing bugs More accurate hypotheses about location of bug (conjecture 3)
Sets the foundation for an effective explanation (conjecture 3)
Increased likelihood that student discovers bug on his/her own (conjecture 3)

Avoiding recurring bugs Students recognize specific gaps in their own understanding (conjecture 3)
Students generate specific questions about bugs (conjecture 2)

Growing the toolkit of
generalized debugging strategies

Students push themselves to learn new debugging strategies over time
(conjecture 1)

Instructors support students to learn these new debugging strategies
(conjecture 1)

Students set appropriate goals to move their debugging practice forward
(conjecture 1)

Students prepared to and capable of narrating their own debugging process
(conjecture 2)

Students across coding situations proactively recruit multiple tools when
debugging (conjecture 2)

Comparisons become more granular/specific over time (conjecture 3)
Students increase use of debugging resources (e.g., stepper tool) (conjecture 3)
Full capacity to navigate the debugging process (conjecture 3)
Student awareness of the repertoire of debugging strategies (conjecture 3)
Debugging vocabulary, quick access to it and used accurately (conjecture 3)

Debugging authority Students personalize/ adapt our debugging process (conjecture 2)
Shift from teacher voice to student voice (conjecture 2)
Students prepared to and capable of narrating their own debugging process

(conjecture 2)
Increased likelihood that student discovers bug on his/her own (conjecture 3)
Full capacity to navigate the debugging process (conjecture 3)
Remembering your goal from the day (conjecture 3)
Greater independence with debugging (conjecture 3)

Self-efficacy with debugging Positive attitude; no big deal; ‘ready to fix that bug’ (conjecture 3)
Productive state of mind in the next debugging process (conjecture 3)
Students know their strengths and weaknesses around debugging (conjecture 1)

The bolded words in the outcomes column most represent the framework process described in the first column.
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provide at least one transcript of coding activity, one artifact, and one statement made in post-
hoc reflection for each framework process to document how Zoa, her classmates, and her instruc-
tors foregrounded each during coding and reflection.

Fixing bugs
Over the course of the two weeks, instructors and peers routinely lent a hand when Zoa was
debugging, signaling at least implicitly that bug fixes were important enough to warrant extra
social resources. In a complementary sense, the software consistently signaled this value:
PixelBots challenges from Day 1 contained automated methods for checking code accuracy, and
PixelBots playlists contained numbered challenges that invited students to compare progress on
how many problems they had accurately solved. Together, these software features emphasized the
value of students precipitously arriving at correct code. This value was described on the final day
of coding before an event showcasing student work: The instructors asked Zoa and her classmates
to be especially conservative with their code that day to avoid introducing bugs that might dis-
rupt their projects.

There were numerous examples from Zoa’s coding practice of her pursuing bug fixes. We
focus on one transcript from the first day of coding, in which Zoa is working with her neigh-
bor, Kay:

Transcript 1 (Day 01)

01 Zoa: ((Zoa types turnleft into code editor))

02 Okay turn le:ft (1.2) (one) (.)

03 Flo: [Wait (0.4) you gotta (0.6) () capitalize the el

04 [((points with pencil eraser at code editor and then retracts

05 pencil))

06 [Like it like it yeah

07 [((points with left hand at code editor and then retracts hand))

08 [((points with pencil eraser at code editor and then retracts

09 pencil))

10 Zoa:[((deletes lowercase l and types capital L))

11 Flo: Ya:"::::w
12 (0.5)

13 Zoa:[>Yaw<

14 [((hands and head enact an abbreviated “dab” dance move))

15 [((smiles))

16 Flo:[Ya:":w

In Transcript 1, Zoa and Flo celebrated the moment when code flipped from a broken state to
a fixed state (lines 11–16). Flo isolated the bug in talk by stating “the el” (Transcript 1, line 3,
abbreviated subsequently as T1.L03) and gesture (pointing three separate times at the code;
T1.L04, T1.L07, T1.L08), and described an exact fix to the bug (“capitalize”; T1.L03). Both
students then laminated vocal cheers (T1.L11, T1.L13)onto the moment of fixing the error, and
Zoa added a celebratory smile and a “dab” dance move (where the head drops quickly into the
crook of the arm as both arms angle upward; T1.L14). In this way, Zoa and Flo established a pre-
cedent on the first day of coding that fixes to bugs were deserving of celebration.

In Zoa’s artwork, she alluded to this value by connecting a smiley emoji to bugs that were
“fixed” and an angry/frustrated emoji to the experience of being “confused” (see Figure 5).
Attention to this value is evident in Zoa’s writing about debugging: “Then I #fixed it” (Journal
Day 2), “I added ‘line()’ and everything was Ay-okay” (BugTicket Day 3), and “#Fix #Got a bug
#Finished the bug” (Post-it Day 6). In her end-of-camp interview, Zoa similarly emphasized bug
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fixes as an overall goal. When things were fixed, they were “done with.” More directly, Zoa
explained: “There’s a bug here I need to try to fix it so I can continue… so we can move our bug
away and continue our work and enjoy our coding.” In this last strip of talk, Zoa drew a sharp
distinction between broken code and correct code; it was correct code that led to continuation
and joy. In summary, in these coding practices, artifacts, and reflections, Zoa, her peers, and
instructors surfaced the process and value of fixing bugs.

Avoiding recurring bugs
Beyond getting bugs fixed, the coding workshop provided occasions for Zoa to focus her atten-
tion on avoiding recurring bugs. Materially speaking, this value was embodied in the bug ticket,
which on Day 3 an instructor explained in a way that highlighted its purpose as a resource for
eclipsing common bugs: “If you guys have a bug that you think you really need to remember for
next time, and you think it’ll be super helpful for someone else if they run into that specific kind
of bug, we have these bug tickets. You can take one, fill one out.” This articulation of the purpose
of the bug ticket brought to the surface its value as a tool for “remembering” a “specific kind of
bug” for “next time.”

The value of avoiding recurring bugs also arose in peer-to-peer interactions during debugging.
Toward the end of the first day of the workshop, Zoa learned to write example syntax in her
journal after she watched Flo do the same:

Transcript 2 (Day 01)

01 Zoa: ((leans to the side to look at Flo’s laptop screen))

02 Do you have the code?

03 (1.6)

04 Flo: [Eh::: I (kind of)

05 [((picks up code journal lying open next to laptop))

06 I [have it¼

Figure 5. Zoa’s artwork with a smiley emoji around “fixed” and angry emoji around “confused.”
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07 [((index finger and thumb touch journal page forming a bracket

08 over written text))

09 Zoa: ¼>Oh yeah you:: um< (0.4) wrote it down (0.8)

10 [I’m gonna write down my ()

11 [((picks up journal))

12 ((moves journal to other side of laptop, glances at laptop

13 screen, and starts writing in journal))

In Transcript 2, following Zoa’s request for example code to help her debug a broken program
(T2.L02), we see Flo highlight in gesture and talk where she had written down working code
(T2.L04-08), and we see Zoa starting to engage with the same practice on her own (T2.L09-13).
Whether intentionally or not, this practice provided Zoa with an effective way to curb recurring
syntax bugs. For example, from this point on, Zoa consistently wrote working syntax in her jour-
nal. Transcript 3 provides one example from five days later, in which Zoa both spontaneously
kept the practice alive and framed it around recurring bugs:

Transcript 3 (Day 05)

01 Zoa: ((corrects a mistake in two-parameter function))

02 I need to take a note on this cuz then I’ll forget

03 Sam: Multiple parameters maybe?

In the brief exchange above, Zoa wrote working code in her journal to make sure that she did
not “forget” a specific bug fix, which could be understood as either a proactive way to prevent
problems down the road should Zoa need to use the same syntax, or help her debug related
errors should they recur. The student sitting beside her, Sam, participated by offering a title
(“multiple parameters”) for her journal entry. By the end of the workshop, Zoa’s documenta-
tion of working code amounted to an array of syntactic guidelines spread throughout her journal
and other artifacts:

� I forgot line() (Bug Ticket Day 3)
� Next time…make sure I have line on my code (Post-it Day 3)
� Tips: circle (500,500,100,100) (Journal)
� Every function Begins with keyword Function (Journal)
� Always starts with word if (Journal)

These syntactic guidelines were narrow; they prepared Zoa to correct bugs relevant to specific
syntax, which she signaled with phrases like, “next time,” “every,” and “always.” Finally, during
her end-of-workshop interview, Zoa spelled out how her debugging process involved looking for
her common syntax mistakes, such as, “checking if I’m missing a curly brace.” In each of these
examples from Zoa’s coding, journaling, and interviewing, we see Zoa, her peers, and instructors
foregrounding the value of preventing specific, recurring bugs in code.

Preparing for novel bugs
Beyond getting bugs fixed and avoiding specific bugs, the instructors and Zoa at this coding
workshop invested time in teaching, developing, and reflecting on general-purpose debugging
strategies. This investment was geared toward students expanding their set of techniques for
responding to bugs, especially novel bugs for which students did not yet have ready-at-hand fixes.
Zoa’s instructors emphasized this value on Day 2 when Jad presented a slide with a long list
of debugging strategies and mindsets, and then invited his students to set a goal: “Before we
start coding, let’s do a debugging goal real quick… let’s pick one strategy we want to work on
today.” Noticing that students had been gravitating toward mindset goals, a researcher-teacher
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on Day 4 nudged the students to pick debugging strategies they had not already learned: “One
thing that I’ve noticed is that a lot of folks are picking a state of mind thing. But fewer people
are picking strategies. Pick a strategy for today. And if it’s something you don’t know, that might
even be better because then Mia, Jad, and I when we’re walking around will tell you what it
means and show you how to use it.” Jad revoiced this approach to goal setting on Day 8 of
the workshop.

Indeed, we observed numerous examples of instructors teaching students debugging strategies
during coding time, reflected in Transcript 4 below, in which Mia drew Zoa’s attention to a gen-
eral-purpose debugging strategy:

Transcript 4 (Day 02)

01 Mia: ((walks over and leans down between Zoa and Sam))

02 �How’s it going with you guys� (5.0) Zoa, do you remember, I think
03 (.) I mentioned it "to you before" >I’m not su::re<but (1.2) um:

04 about turn left (0.8) and turn right?

05 (0.6)

06 Zoa: Uh:::

07 Mia: A:::nd (0.6) you see how you’re [using it with the 1?

08 [((points toward code editor))

09 (3.2) But (.) [>if you look [at the<Yah]

10 [((points toward the API))]

11 Zoa: [Oh:: ri:ght]

12 Mia: ((nods and looks at Zoa))

13 Yeah (0.6) so you don’t need to— that’ll save you time. You

14 don’t have to put that mark (3.5) But () you still have to put

15 the parentheses though.

16 (3.0)

17 Zoa: Just like that? (.)

18 Mia: "Mmhm::" (1.0) Yep see just [like how it is here in the API

19 [((points toward the API))

In this transcript from the second day of coding, Mia provided direct advice to Zoa on
how to fix the bug (“you don’t have to put that” and “but you still have to put

the parentheses though”), and yet went further with her instruction. Mia worked to
draw Zoa’s attention to features of the PixelBots display that provided general-purpose
resources for debugging (T04.L09-10 and T04.L18-19). In this interaction, Mia positioned
Zoa’s syntax error as an opportunity to show Zoa where on the monitor she could find
accurate example syntax, pointing twice to the API (a space on the screen that contained
relevant example syntax), once before the fix (T04.L08) and once after the fix (T04.L19).
This teaching excerpt demonstrates how debugging instruction can accomplish more than fix-
ing bugs and providing techniques for avoiding specific bugs; instruction can simultaneously
model (or remind students about) general-purpose debugging strategies that will be useful
for novel, future bugs.

Outside of moments of debugging, the bug ticket, which included a question about students’
debugging process, served as a vehicle for generalizing debugging strategies from a specific bug
fix. A clear example of communicating general-purpose debugging strategies through bug tickets
occurred on Day 3, transcribed below.
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Transcript 5 (Day 03)

01 ((Zoa gets Jad’s attention. Jad stops walking and leans toward Zoa))

02 Zoa: [What is (.) what is

03 [((holding bug ticket, angling it toward Jad, and pointing at

04 3rd item))

05 [number three]

06 Jad: [What is] your debugging process so you know like the

07 stra::tegies that we have? or what (you) write in your books

08 Flo: Like

09 Jad: Like what did you u:::se how did you debug it

10 (0.2)

11 Flo: [I helped her

12 [((raises hand))

13 Jad: You you helped her so you [asked a frie::nd¼
14 Flo: [((smiles and points toward own face))

15 Flo to the rescue¼
16 Jad: [((laughs))

17 Zoa: [So

18 Jad: You could say I asked a friend? Or:: dih-

19 how did you help her, Flo

20 (0.2)

21 Flo: I no:ticed (.) [like that she had ta-

22 Zoa: [>Oh we were comparing each other<¼
23 Jad: ¼Oh you were comparing that’s [exactly ()

24 Flo: [She::::

25 Flo: Her function was called line and she forgot to write line to

26 make it work [so] I just said

27 Jad: [Okay]

28 Jad: So you compared? (.) you compared it? and you asked a friend that’s-

29 that’s how you- that’s your process

30 Flo: Okay

31 Jad: That’s a good process

Transcript 5 documents how Zoa, her instructor, and Flo collaboratively shaped an experience
with debugging into an account of general debugging strategies. Prompted by the bug ticket
(T5.L02), Zoa, Flo, and Jad’s story about debugging a missing function call evolved into an
account of a general debugging process: “you compared” and “you asked a friend” (T5.L28).
In their conversation, Flo highlighted her own involvement (T5.L11-12), and positioned herself as
the person who fixed the code (T5.L15, T5.L21, and T5.L26), while Zoa described a process of
comparing one another’s code (T5.L22). The instructor emphasized both (T5.L28), and indeed,
Zoa used both phrases on her bug ticket (see Figure 3). In this way, Zoa, Flo, and Jad collabora-
tively generated a general-purpose account (“compare” and “ask”) of the debugging process dis-
tilled from one specific coding impasse.

Zoa’s writing also contained a number of callouts to general debugging strategies, and even
an account of her desire to learn more strategies: “… experiment different codes to discover
new things (Journal),” “#bought more bug spray (Post-it Day 6),” “#Recall Imma use my
knowledge from last week (Journal 6),” “I want to… find out tricks to kill da bugs in my…
(Journal).” Zoa also described her debugging process in her cumulative interview: “Mostly
what I do is I try to look around and use the Xs and the little warning signs… and if I
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don’t find the bug, I comment it out… I ask myself what did I do wrong, how was it before,
and how can I change it?” In each example drawn from Zoa’s moment-to-moment coding
experience, journal reflections, and interviews, we saw Zoa growing and reflecting on her tool-
kit of debugging strategies.

Engaging with authority in the debugging process
Beyond the processes surrounding failure that we discussed above, the coding workshop included
features that nudged students to engage with authority in the debugging process. While authority
could refer to a number of dimensions of learning environments (see our literature review), we
followed Zoa’s lead of foregrounding independence. For example, in her end-of-workshop inter-
view, Zoa stated: “[The instructors] never really do the work for me. They give me hints… I
would figure out the problem.” Looking granularly at the division of labor when Zoa debugged,
we found a complex picture. Zoa learned new debugging strategies in the context of debugging
her code with a peer or with an instructor. For many of the strategies she learned (e.g., check
API, write down correct syntax, read error messages, step through code, experiment with code),
there were then numerous instances of Zoa applying that strategy on her own. In her coding
journal, Zoa captured some of this complexity with respect to the division of labor during her
debugging sessions. Zoa referred to fixes coming from herself (statements with “I”) and from
other people in the classroom (a “friend” and “awesome helpers”): “Then I #fixed it” (Journal
Day 2), “I compared my work and my friend helped me” (BugTicket Day 3), “I added ‘line()’ and
everything was okay” (BugTicket Day 3), “I encountered the problem by asking for assistance
from awesome helpers” (Journal). To provide one example from her coding activities on day 7,
we saw an instructor deliberately giving Zoa space to discover a fix:

Transcript 6 (Day 07)

01 ((Mia walks over to Zoa and leans down next to her))

02 Mia: Are you havin:: uh some iss::ues

03 (1.0)

04 Zoa: "I don’t know:: [who-uh::: (.) why it has the exes:::

05 [((drags cursor back and forth over red xs in

06 editor))

07 I’m looking::

08 (0.4)

09 Mia: So:: (1.0) right now you just ha:v::e (6.5) um (.) look at

10 the::: (0.4)

11 [compare your repeat syntax with (.) the API’s repeat syntax

12 Zoa: [((drags cursor around the repeat loop once, and then places the

13 cursor near the bottom of the loop))

14 [(28.0)

15 [((moves cursor to API repeat syntax and then back to the repeat

16 loop in her own code. Toward the end of this period, deletes

17 color and comma following color, and adds comma after num))

18 (1.5)

19 Mia: [Yup ] (1.5) >There ya go<

20 [((nodding))]

21 (0.4)

22 Zoa: Okay.

Looking at the details of this transcript, a few noteworthy moments with respect
to authority stood out. The student narrated active investment in finding the bug
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(I’m looking::), the instructor appeared to be on the cusp of presenting a solution
(“right now you just ha:v::e), and then the instructor paused for 6.5 seconds before
offering a debugging strategy (T6.L10-11), the same strategy we highlighted in the section
above. For 28 seconds of silence (T6.L14), the student actively compared the syntax in the
API with her own syntax and enacted a fix to her code (T6.L15-17), before the instructor
affirmed the correction (T6.L19). Authority here manifested in a number of ways. The stu-
dent conveyed her active strategy at the outset, the instructor held off from providing a solu-
tion and instead offered a tool, and both participants then allowed enough space for the
student to uncover both the bug and its resolution.

Outside of coding time, in response to an interview question about what it was like to work
with her instructors during debugging, Zoa described her own motivation for moving away from
instructor support toward the end of the workshop: “Since I’ve been doing so many codes, I
decided to like, instead of asking, I tried to compare with my partner… because if you keep on
asking for help, you’re never really going to improve, you’re just kind of getting the work done
by someone.” This suggests that Zoa wanted to practice driving the debugging process without
instructor support, and that Zoa indeed pursued that independence. Zoa’s interest in driving her
own debugging process, and the instructors’ efforts to signal that value, resulted in a number of
instances in which Zoa independently attempted to debug problems she had not yet encountered
in her code.

Self-efficacy during debugging
The last characteristic that we considered in this case study is self-efficacy. On Days 3 and 6, Jad
told his students a few stories at the start of class—one about the author J. K. Rowling and one
about the basketball player Isaiah Thomas—that focused on believing in oneself even when suc-
cess did not arrive immediately. Jad explained the moral of these stories as trying to “have no
fear, have faith, experiment” even when we do not immediately reach our goals or when “we just
have really bad days.”

In practice, Zoa’s stated expectations throughout the two-week workshop about whether
her debugging approach would work arrived as a mixed bag. The following contradictory
declaration Zoa made on Day 3 best documents this viewpoint: “I’m slowly dying. I got
this.” Simply put, Zoa wavered in her expectation that she could debug her code. In some
cases, Zoa made visible an assessment that her approach to debugging may not work. For
example, on Day 3, Zoa worked consistently over 10min to find a syntax bug (an errant
curly brace) in her code (with some support from Flo), but fell short of finding and fixing
it. Throughout that period, Zoa made a series of statements suggesting that she would not
find the bug:

Transcript 7 (Day 03)

01 Zoa: >I give up<

–––––––––––––––––––––––––––––––––––

02 Zoa: Screw it (.) if you won’t let me (.) if you say this is WRONG (.)

03 WHAT IS WRO:::NG WITH THIS

–––––––––––––––––––––––––––––––––––

04 Zoa: Why isn’t it wor:::king (1.4) I had a year of expe:rience

–––––––––––––––––––––––––––––––––––

05 Zoa: Oh:: M::ia:: we’re dy:::ing

–––––––––––––––––––––––––––––––––––

06 Flo: There’s nothing wrong

07 (0.2)

08 Zoa: There’s nothing wrong
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09 Flo: NOTHING wrong

10 Zoa: It is: (.) pure perfection.

–––––––––––––––––––––––––––––––––––

11 Zoa: So:: I was ty:ping and then like (.) for some reason it said there

12 was an error? but then my spelling was perfect so it’s just

13 like the [computer that’s having the bug

14 Flo: [It was perfe::ction

The above excerpts show Zoa stating that she was giving up (T7.L01), questioning how she
could have a year of coding experience and still not be able to find the bug (T7.L04), and ultim-
ately blaming the computer, not her code (pure perfection), for producing the problem
(T7.L06-10). In her abstract artwork, Zoa described her experience with these feelings of doubt:
“The crumbled paper shows the amount of times I doubted myself that the code wasn’t gonna
work.” And in her interview at the end of camp, Zoa described her emotional response in
moments when she could not debug her code: “And then angry is that I wouldn’t be able to find
it and I would get mad.” In fact, there were a few moments on Days 6 and 7 when Zoa out-
wardly expressed frustration (e.g., saying “… darn it!” and hanging her head down on the table
before exclaiming: “my life!”) during debugging episodes that did not lead to immediate fixes. In
one manifestation of this experience, Zoa, Flo, and Sam on Days 3 and 4 repeatedly sang a variety
of failure-themed lyrics and melodies from popular songs: Coldplay’s lyric, “When you try your
best but you don’t succeed,” A Great Big World’s lyric, “Say something I’m giving up on you,”
and Gloria Gayner’s lyric, “I was petrified.”

In contrast, in a journal entry, Zoa described wanting to have the expectation that her
bugs would be fixed: “#Determinationmode I want to believe.” Indeed, Zoa capably fixed
numerous other bugs, both tackled together with other people and approached by herself.
After one string of successful fixes on Day 3, Zoa looked up from her code and said, “This
is actually fun. I plan on doing this at home,” a remark that suggested her confidence with
debugging was high at that moment. In her end-of-workshop interview, Zoa also remarked,
“Okay, so there’s a bug, no deal. I just gotta figure out how to fix it. So, almost positive at
first.” On Day 8, an instructor who had not visited her classroom asked Zoa: “Do you have
any bugs here? Or is it bug free?” Zoa replied: “Everything is bug free if you know what
you’re doing. We’re all experienced now so not many bugs with PixelBots,” broadcasting
confidence with her coding and debugging practice. Overall, these excerpts from Zoa’s talk
about whether her approach to debugging would work document her fluctuations in confi-
dence, ranging from wanting to call an end to her search for the bug to describing a sense
of positivity at the start of a debugging session.

Brief Discussion of Heterogeneity in Zoa’s Case Study. We documented in this case study
that Zoa, and the classmates and instructors with whom she worked, encountered failure along
each of the multiple processes called out in our framework. Resonant with failure as mosaic fram-
ings (A. Anderson et al., 2019; Simpson et al., 2018), notions of computational utterances as het-
erogeneous (Sengupta et al., 2021), and learning as inherently heterogeneous (Rosebery et al.,
2010), bugs in code served as points of departure for reflecting on self-efficacy, growing the tool-
kit of general debugging strategies, preparing to avoid/handle similar bugs, positioning Zoa with
authority to handle the bug, and simply doing away with the problem. For example, on Day 1, a
bug served as a point of departure for getting to a quick fix (Transcript 1), whereas on Day 7, a
bug served as a point of departure for an instructor to both promote student authority and
reinforce a general debugging strategy (Transcript 7). Moments of coding, artifacts produced
along the way, and strips of reflection each served as activities through which Zoa and her collab-
orators could foreground these multiple facets of failure. The qualitative work in this case study
shows the details through which these processes come to the foreground (e.g., how a bug ticket
serves as a prompt to reify a general debugging strategy), while capturing some heterogeneity
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within each (e.g., wavering self-efficacy; crediting debugging to oneself or others), but the case
study falls short of documenting patterns within each process over time. Our next case study pur-
sues this angle.

Study 3: a quantitative, longitudinal examination of the framework through a
case study

Our next case study, focused on Maribel, documents the longitudinal trajectory of four frame-
work facets over the course of three weeks of coding for one student.2 The analysis of Maribel’s
coding in PixelBots focused on 181 distinct bugs that she encountered during the Summer 2
workshop. The data visualizations below document a range of features of the process through
which Maribel responded to these bugs. The purpose of this longitudinal analysis was to observe
trajectories of stability and change within the framework processes, and then raise questions
about their interconnections.

The first visualization captures when Maribel encountered bugs and how long they persisted
(Figure 6). The second shows whether the observable problem (OP) was resolved, whether the fix
addressed the bug that caused the observable problem (BC), and whether Maribel tackled/
attempted debugging the cause (Figure 7).

From these two visualizations, we see that Maribel encountered bugs throughout the three
weeks of coding activities. Her debugging sessions lasted anywhere from a few seconds, to a few
minutes, and even tens of minutes, and gaps between bugs had a range of shorter (a few seconds)
and longer (15min) durations. Days 8 and 9 in particular were filled with prolonged debugging
sessions, while Day 4 had shorter but more frequent debugging sessions. We note these features
to provide a baseline description of the prevalence of debugging for Maribel, and to signal that
days differed with respect to the debugging load Maribel experienced. Attending to the first facet
of our framework, we can see in Figure 7 that Maribel resolved the vast majority of her bugs (the
first three rows); there were only ten instances of ceasing to pursue a bug fix.

However, in considering bug recurrence, the second feature of our framework, we can attend
to Figure 7 again to see the extent to which Maribel addressed the cause of the observable prob-
lem, or whether she solved the problem in a way that eschewed the underlying cause. For an
example of the latter, a student working on a function definition that includes a loop to paint a
line might encounter an observable problem (e.g., the PixelBot paints too many squares) and
return to an earlier developed skill to resolve it, such as “hard coding” the same line with individ-
ual commands instead of with a loop. This would avoid what was originally broken about the
loop that caused the observable problem. For Maribel, we can see in the second and fourth rows
that Maribel occasionally tackled a bug causing an observable problem, but did not succeed, and
then either found a different way to solve the observable problem (unrelated to the bug) or aban-
doned the goal altogether. In rows three and five, we see examples of Maribel never attempting
to address the bug that caused the observable problem, and instead resolving the observable prob-
lem a different way or abandoning the goal altogether. Because addressing the causes of bugs is
critical to bug recurrence (Endres, 1975; Pea et al., 1987), these pathways through debugging that
avoid the underlying cause might indicate areas of investment for Maribel’s emerging coding
practice. Even more directly, in Figure 8, we can consider the specific bugs that Maribel encoun-
tered and whether they recurred.

This data visualization more precisely documents whether the bug types that Maribel encoun-
tered, based on a categorization scheme we developed bottom up by attending to Maribel’s

2This analysis does not consider authority; Maribel almost exclusively worked alone, and though independence is not
synonymous with authority, with this particular approach of looking only at bugs that Maribel encountered, we found it
difficult to pursue other facets of debugging authority.
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coding activity, recurred throughout her practice (the individual black squares in each row) and
how often they recurred (greener colors on the spectrum indicate delayed recurrence while redder
colors indicate more immediate recurrence). To highlight a few details about this visualization,
we can note that some bugs occurred frequently for a stretch of time, and then faded away, such
as when Maribel used the wrong argument in loops (row 6) and function definitions (row 13),
and came across computer literacy bugs (row 13). Other bugs showed the reverse pattern. For
example, with syntactic spelling errors, Maribel encountered a few and then several all in succes-
sion toward the end of the workshop as she struggled to correctly use or spell the names of the
various parameters she had used in her function definitions. In contrast, other bugs occurred
only infrequently, whether over a short span of time or throughout the three-week workshop.
Similar to Figure 7, Figure 8 shows where an instructor and/or Maribel might adjust their
approach to failure provided that a problem is persistently recurring or arising only occasionally.

Considering the third facet of the framework, we created a data visualization documenting
Maribel’s growth in debugging strategies (Figure 9) and one visualization documenting Maribel’s
use of debugging strategies related to the length of the bug (Figure 10).

In Figure 9, we see that one of Maribel’s debugging strategies, which involved specifically
replacing one or two features of code within the context of her existing strategy, persisted
throughout the workshop and occurred frequently. Others persisted throughout the workshop but
with less frequency. A range of new debugging strategies entered the picture roughly between bug
60 and bug 155 (corresponding mostly with the workshop’s second week). With the stepper tool,
first used on bug 78, Maribel used it repeatedly for a short duration of bugs, and then continued
to use it sporadically, while other strategies, such as looking up reference code and consulting an

Figure 6. Longitudinal visualization of bugs encountered and bug duration.

Figure 7. Visualization of resolutions with respect to bugs and bug causes.
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online help page, were used once or twice before never re-appearing in her practice. In compar-
ing Maribel’s use of strategies with the duration of her debugging sessions (Figure 10), it is evi-
dent that Maribel’s use of two, three, and four strategies almost always occurred during her
moderately long and very long debugging sessions. This suggests that the long debugging sessions
that occurred during week 2 of the coding workshop may have driven Maribel’s exploration of
new debugging strategies and efforts to deploy multiple debugging strategies at once.

Figure 9. Use of debugging strategies over time.

Figure 8. Recurring bugs over time (in black) and their frequency (in color), with redder sections documenting quick recurrence
and greener sections documenting delayed recurrence.
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Finally, we tracked when Maribel expressed outward signs of confidence/pride versus signs of
frustration and anger as proxy indicators of her self-efficacy both during and after debugging
(Figure 11). This visualization shows a number of noteworthy patterns. First, proxy indicators of
high efficacy and low efficacy tended to occur together: Maribel tended to pair her outward sig-
nals of frustration and low confidence with signals of confidence and pride. Moreover, high effi-
cacy signals during coding tended to occur following debugging and low efficacy signals tended
to occur during debugging. Lastly, Maribel’s high and low efficacy signals appeared all throughout
the three weeks of the coding workshop.

Brief discussion of Maribel’s case study
Taking into account all six data visualizations, they present a striking depiction of the range of
debugging experiences that Maribel encountered over just three weeks. We see that debugging
sessions were short or long; resolved or unresolved; used to pursue or avoid the cause of the
problem; part of a long or infrequent stretch of bugs; related to previous bugs or surfacing novel
bugs; tackled with specific debugging strategies and specific numbers of strategies; and accompa-
nied with high, low, and no signs of outward self-efficacy. By capturing the recent and distant
past of each of Maribel’s bugs, including how she experienced each of four framework processes
along the way, these visualizations show the heterogeneity of debugging experiences for Maribel.

Figure 11. Outward proxy indicators of high and low efficacy before and after debugging.

Figure 10. Number of debugging strategies used relative to bug duration.
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More specifically, the combination of visualizations show that each bug is part of a longer and
multi-dimensional trajectory. A specific bug might be recurring, tackled with often-used debug-
ging strategies, accompanied with outward indicators of low self-efficacy, and lasting a long time,
in contrast to a bug that has appeared for the first time, is tackled with a new debugging strategy,
accompanied with no signals of efficacy, and lasting only a brief time. We see stretches of growth
in debugging strategies (before many of these strategies fall away), stretches of rapidly recurring
bugs, spikes and dips in proxy markers of efficacy, and an overwhelming trend toward Maribel
fixing her bugs. One of our intentions in documenting these patterns, the diversity within each
failure process, and the heterogeneity in how multiple failure processes line up around a particu-
lar bug is to raise questions about what kind of pedagogy would be most supportive for Maribel
at specific points in her trajectory with failure (out of 181 total moments over three weeks). We
explore this question in the discussion section.

Study 4: post-hoc reflection on facets of the framework

Lastly, we present data on instructors’ and students’ post-hoc reflections on each facet of failure
to provide a window into their summary judgments of each and whether any substantive differ-
ences exist between their points of view (see Table 2 and Figure 12). This analysis points to
whether the learning community tends to experience the full range of failure experiences or a
partial range, including whether teachers and students align in their impressions of each fail-
ure process.

The GOF test was used for students’ and teachers’ responses with respect to each question to
determine if their responses were equally likely (e.g., across the three weeks, students reported
that bugs were equally likely to be fixed rarely, occasionally, or always on a given day). This gives
us a rough sense of whether the learning community experienced the full spectrum of each failure
process or just one end of the spectrum. The scale for each question was between 1 to 10 where
1 represented an end of the spectrum for the question (never fixing bugs; lots of help from
instructors) and 10 represented the other end of the spectrum for a given question (e.g., always
fixing bugs; never getting help). In order to implement the GOF test based on the amount of data
that was collected, ranges were created and specified based on the scale. The responses 1–3 were
labeled “Rare,” 4–6 were labeled “occasional,” and 7–10 were labeled as “frequent.” These levels
provide meaning to what the students and teachers imply by their numerical selection.

Table 2 indicates that students’ responses were only equally likely for the question about
debugging strategies. This implies that students’ responses to the other four questions indicate
that either one or two level(s) were more likely to occur than the other level(s). More specifically,
by examining Figure 12, we can see that students were more likely to report fixing bugs, working
alone, encountering old bugs, and having higher confidence. If these are read as valid indicators
of the failure culture in the classroom, they show that most students are experiencing a narrow

Table 2. Students’ and instructors’ post-hoc reflections on five facets of failure.

Questions

Chi-Square Goodness of Fit
Test

Students

Chi-Square Goodness of Fit
Test

Teachers Cochran–Mantel–Haenszel Test

Bugs fixed today 86.6 (p< .003) 106.2 (p< .003) 5.199 (p< .05)
New bugs encountered 30.23 (p< .003) 3.17 17.570 (p< .003)
Debugging strategies used 1.15 18.93 (p< .003) 1.114
Worked alone

during debugging
43.9 (p< .003) 1.94 14.067 (p< .003)

High confidence
during debugging

86.25 (p< .003) 52.09 (p< .003) 6.491

Note: The sample size was 274 and the degrees of freedom was 2. Since there were 15 tests run on this data set, a¼ 0.05
was divided by 15 to correct for inflation of Type I Error.
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slice of these failure processes: overwhelmingly succeeding when faced with bugs, working inde-
pendently, returning to bugs they’ve already encountered, and feeling confident along the way.

On the other hand, Table 2 indicates that teachers’ responses were equally likely for questions
about new bugs encountered and working alone during debugging. This implies that teachers’
responses to the other three questions indicate that either one or two level(s) were more likely to

Figure 12. Survey results of students and instructors’ views of five framework facets.
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occur than the other level(s). Figure 12 shows that for questions about bugs fixed and high confi-
dence during debugging, the “frequent” option was most likely, and for questions about debug-
ging strategies used, instructors more often reported that students were frequently and
occasionally using debugging strategies. These data suggest that instructors and students viewed
the debugging culture in their classrooms not as an even distribution of the processes described
in our framework, but rather as tilting toward some processes happening more frequently, such
as bug fixes and high confidence.

In addition, we compared instructors and students’ views with one another to determine if
they perceived these processes surrounding failure in different ways. In order to implement the
CMH test based on the amount of data that was collected, we needed to make the responses bin-
ary for each scale. The responses 1–4 were labeled “rare,” 5–10 were labeled “frequent.” The
CMH works by analyzing the role (student vs teacher) and the constructs across multiple time
points to determine whether there is an association between teacher and student responses. Based
on the data there were six time points at which the students and teachers were measured.
Instructors and students tended to align in their views along the dimensions of bug fixes, recur-
ring bugs, and collaboration. In contrast, students and instructors tended not to view the use of
debugging strategies and confidence in similar ways. Instructors were more likely to report that
students were using more debugging strategies (across weeks) and experiencing lower confidence
(in particular during week 1). This analysis raises questions about why instructors and students
might diverge in their impressions of some processes, how divergent and convergent views will
shape debugging teaching and learning, and how instructors and students can generate open
communication channels and/or gather more precise data to more deeply understand students’
experiences with failure. In all, this variation across students and instructors, including the vari-
ation within students and within instructors, suggest that participants in the same space do not
necessarily align in their views about the processes surrounding failure and do not equally experi-
ence all facets of failure.

Discussion

This study engaged with multiple processes surrounding failure as they unfolded in one learning
community during our first year of data collection on a design-based research project. As we
clustered this heterogeneity into five processes linked to how students respond to failure—fixing
bugs, avoiding recurring bugs, growing the toolkit of debugging strategies, engaging with author-
ity in the debugging process, and calibrating efficacy to debug—we found a rich literature exam-
ining the importance of each one of these processes (e.g., Engle & Conant, 2002; Kallia &
Sentance, 2018; Kapur, 2016; Katz & Anderson, 1987; Russ & Berland, 2019). In the next stage of
data collection and analysis (studies 1–4 reported above), we explicitly traced these five processes
in multiple ways within this learning community, finding that they were deeply embedded in the
teachers and students’ activity. Each of these five processes shaped how instructors planned in
advance of CS workshops to support debugging. They were selectively foregrounded and/or high-
lighted in social interaction, the artifacts produced along the way, and reflective interviews with
one student, her peers, and her instructors over two weeks. In addition, each process unfolded
with facets of both stability and variation at different points for one student during the process of
writing and debugging code over three weeks. Lastly, when explicitly reflecting back on how stu-
dents experienced each failure process, instructors and students were not entirely in agreement,
and both viewed the classroom’s failure experiences as tending toward an uneven expression of
some processes (e.g., fixing bugs and having higher confidence more often than not).

These research findings demonstrate that students and instructors engaged with a heteroge-
neous set of values and processes following moments of failure. By extending the failure as
mosaic point of view (A. Anderson et al., 2019; Simpson et al., 2018) and notions of
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computational utterances as inherently heterogeneous (Sengupta et al., 2021), we framed
moments of failure as pluripotent. Teachers and students can foreground, background, and blend
each of these five processes during classroom planning, actions taken to advance learning, and
moments of reflection related to impasses. We can consider heterogeneity around instructors’
rationales for specific learning design choices (e.g., asking students to set debugging goals to
encourage them both to expand their debugging strategies and gauge their own strengths).
Similarly, we can consider heterogeneity around how students and instructors respond to specific
bugs, for example, by working solely to resolve them or preparing to avoid their recurrence. In
addition, when examined over a longitudinal horizon, we see patterns of stability and variation in
how a student experiences each failure process (e.g., experiencing short-term growth in debugging
strategies or a string of outward expressions of low efficacy). Lastly, judgments about each failure
process may be viewed by participants from conflicting points of view and reveal that participants
are encountering a partial slice of failure experiences.

We suggest that research on failure can usefully acknowledge this heterogeneity and pursue a
number of questions around how to balance these processes surrounding failure given the history,
goals, and resources of specific students and learning communities. We unpack some of these
implications below.

What constitutes progress in responses to failure?

We return to the question that framed this paper: When teachers, researchers, and parents talk
about youth handling failure in the learning process in productive ways, what might they mean?
If a well-resourced, expert approach to failure would constitute realizing each of the proposed
five processes surrounding failure on a consistent basis, how might we evaluate a learning com-
munity’s efforts to support students’ progress toward that end? A number of considerations come
to mind. At the least, we would caution against answers to this question that focus narrowly on
one process from this framework, unless learning communities have committed to strongly valu-
ing one over and above the other processes related to failure. For example, the teachers in our
learning community formulated more design conjectures around students growing their repertoire
of debugging strategies and students expressing authority, suggesting perhaps that those facets of
responding to failure were most important to them. Conversely, both students and instructors
reported post-hoc that bugs were nearly always fixed and that student confidence was often high,
and both case studies suggested that bug fixing was valuable. These considerations raise the pro-
spect that progress with respect to failure can be judged according to the participants’ stated goals
and/or commonly experienced failure practices. In light of the diverse ways that each characteris-
tic has been studied in the literature (e.g., whether and when it matters to arrive at normative res-
olutions; when to value self-efficacy; what to consider a recurring problem), there is a case that
learning communities’ values with respect to failure could drive judgments of progress.

More fundamentally, we would advocate for more research that deepens our understanding of
how a student’s approach to one process impacts the other processes. From the existing research
literature, we know that some of these processes are intertwined, such as efficacy judgments rela-
tive to recurring misconceptions (Kallia & Sentance, 2018), or short-term failures preparing stu-
dents for similar, upcoming problems (Kapur, 2016). Growing our knowledge about
interconnections between all five processes, especially as they unfold over time in a learning com-
munity, could serve as key resources for educators. This research approach could lead to testable
and actionable conjectures, such as whether investing in general-purpose debugging skills sets up a
student empowered with high authority to fix a bug. Conversely, approaches that decenter the
value of arriving precipitously at normatively correct fixes (Donaldson, 2019; Maheux, 2016; Russ
& Berland, 2019) may set students up to focus more squarely on general-purpose debugging and
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background concerns about efficacy. Focusing exclusively on one process might eschew an under-
standing of how other failure processes are contributing.

A possible starting point in teaching and learning settings would be to value situations in
which educators support students along all five processes. Perhaps over time, stronger theoretical
predictions and empirical results could guide more nuanced claims about what kinds of early sig-
nals in newcomers’ practices suggest that the learning community is fully delivering in its failure
support. On the other hand, in consideration of definitions of equity that highlight tailored sup-
port for students (e.g., Guti�errez, 2011), an alternative gauge of progress would focus on whether
learning communities are supporting students to address the failure processes that students value
most and/or judge to be most challenging for themselves specifically. Because it is unreasonable
to expect that a learning community could fast-track a student toward growth along all five proc-
esses at once, how participants weigh the costs and benefits of addressing certain failure processes
is a key future research question to consider.

Pedagogical implications

In considering the pedagogical implications of our research, we would emphasize that educational
researchers have previously developed actionable and evidence-based strategies to support each of
the five processes we cover in this paper (we describe some of this research in our literature
review). We hope this paper raises new questions for educational researchers and teachers that
focus on how to balance these processes. These questions include when and in what order each
facet should be foregrounded in the learning process, how to pursue them simultaneously, what
kinds of supports and resources students could benefit from along the way, and how to forma-
tively take stock of all five processes. Rosebery et al. (2010) argue that “when heterogeneity is
deeply engaged, the opportunities for learning multiply” (p. 353). In line with Rosebery et al.’s
(2010) pedagogical recommendations, intentionally broadening and attuning educators’ attention
to these five processes may yield robust support for students across their frequent bouts
with bugs.

This balancing act could take place during a single debugging session: How can instructors
promote authority, bug fixes, deep learning, high confidence, and debugging strategy growth dur-
ing a single debugging session? If such support is not possible following a single encounter with a
bug, then how can instructors make judgments about which to foreground during a given debug-
ging session? Consider, for example, an instructor working with Maribel (study 3) at different
points along her debugging trajectory over three weeks. Beyond considerations about the present
bug (e.g., how long it has lasted, what debugging strategies Maribel has used so far), how would
knowledge about Maribel’s recent self-efficacy judgments, encounters with related bugs, and her
overall range of debugging strategies suggest that different failure processes should take priority?
We would note that to consider these questions, instructors would need approaches to forma-
tively understanding how students are engaging with each process of debugging. In this way, the
failure processes we highlight in this paper could guide instructors’ reflective processes over the
course of an instructional unit or during day-to-day and moment-to-moment interactions
with students.

In addition to using these five processes to guide thinking about instructional supports,
instructors could also consider how their pre-planned activity design choices, material designs,
and the organization of classroom discourse selectively foreground ways to make progress within
each. Our instructors who pursued this through conjecture mapping recognized that different
learning designs contributed to the same failure process, and noted in detail the slight variations
in how they viewed each valued failure process. It might be useful to think of the proposed five
processes as a point of departure to gauge the efficacy of specific classroom designs with respect
to a community’s goals around failure. As such, instructors could design formative markers of

COGNITION AND INSTRUCTION 35



each process as a way to gather feedback on how students are experiencing failure in their learn-
ing environments. Making these characteristics explicit in learning communities could help to
further an equitable culture of failure that foregrounds the processes instructors and students aim
most to cultivate.

Failure in other domains

Looking beyond computer science, we suggest that these five failure processes might provide
a guiding framework for documenting how newcomers to a discipline experience failure, and
can serve as a point of departure for thinking about lesson design and assessment choices.
Translating these five processes from the specific computer science context described in this
paper, we can describe them in general terms in the following way: determine which impasses
need to be fixed and when; curtail impasses that continue to arise; learn strategies for debug-
ging novel impasses; engage with authority in the repair process; and calibrate confidence
relative to skill, resources, task demands, etc. These processes could be prioritized and speci-
fied according to the particulars of a discipline, including informal activities such as playing
outdoors as a family (e.g., see Baker et al., 2022). For example, on a given day of instruction,
a science educator might devalue a student’s science model making accurate predictions, and
instead prioritize the student avoiding errors already found in classmates’ models while also
practicing independence with the process of iteratively tinkering with and assessing the model.
These features provide an overall framework for valuing, and perhaps guiding, the teaching of
troubleshooting.

Shortcomings and future research

Finally, we discuss weaknesses of the current study and additional openings for future research.
One weakness of the current study is its focus on case studies. Future work could aim to under-
stand how students and instructors in other settings, especially instructors with more expertise
than those in our learning community, navigate failure over time at the intersection of these five
processes. Another weakness of the current study is that we do not granularly examine intercon-
nections between the proposed failure processes. Future research could aim to systematically track
where specific configurations of these processes create stronger or weaker opportunities for pro-
gress. A third weakness of the current study is that we have only scratched the surface with how
to intentionally design learning spaces taking into consideration all five processes. Future design
research could involve researchers collaborating with educators to design specifically around these
processes of debugging. Lastly, we note that despite our expansive definition of authority from
the literature review, we often fell short of evaluating it as a collaborative accomplishment, and
instead highlighted independence. Future work should continue to problematize that narrow
interpretation.

We also wish to note a few measurement considerations for researchers who utilize and extend
this framework. In particular, through the process of developing a coding scheme for study 3, we
developed a few key insights/questions about failure. The first covers considerations about what
counts as a bug and when the debugging session starts and ends. A range of considerations come
into play, such as whether a code flaw was introduced by the student or located in starter code;
noticed by the student or as-yet-unseen; changing as new bugs enter the program; repaired with
the student noticing the fix or not yet noticing. Each of these considerations reshapes the view of
the debugging situation. The second (related) consideration is distinguishing between the observ-
able flaw in the output (the robot going out of bounds or painting the wrong grid cell) and the
flaw in the code that caused that observable discrepancy. The tension is that multiple lines of
code can in principle be positioned as the flaw, and this open-endedness makes it challenging to
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discern whether the programmer addressed the root cause and what would count as bug recur-
rence (DeLiema et al., 2021).

Conclusion

Through our engagement with the heterogeneity of failure in one learning community, we docu-
mented distinct processes that teachers and students pursue and value during debugging. We
argue that these processes resist simplification; they do not reduce to each other, but represent
genuinely distinct responses to impasses. Moments of failure can serve as catalysts for pursuing
fixes, warding off similar failures, inviting practice with general-purpose debugging strategies,
centering the contributions of newcomers, and calibrating efficacy, including combinations of
these features. Each one of these five processes not only materialized in our study context but
consistently played a role in students’ and instructors’ approaches to failure, both in terms of
what they hoped to accomplish and how they worked through debugging. Moreover, when
reflecting on their experiences with bugs, students and teachers in the learning community
diverged on their interpretation of some processes (e.g., students’ confidence and their use of
debugging strategies), and described an uneven distribution of experiences with several processes
(e.g., fixing bugs more often than leaving bugs unresolved). Failure, in this way, is not simply an
occasion for seeking a resolution. Failure is a point of departure for a decision about how and
what to foreground and interleave among a range of valued processes. Failure framed as a hetero-
geneous potential can invite educators, students, and researchers to grapple with central questions
about what combination of processes to foreground following failure, how to pursue them, who
makes these determinations, and how learning communities calibrate their approach over time.
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Appendix

Screenshot from the Qualtrics interface that students used to fill out their survey responses

COGNITION AND INSTRUCTION 43


	Abstract
	Literature review and theoretical framework
	Resolving moments of failure
	Avoiding recurring failure
	Preparing for novel failures
	Engaging with authority
	Calibrating efficacy
	Heterogeneous processes surrounding failure

	Method
	Framework timeline
	Participants
	Workshop design
	Debugging pedagogy designs

	Professional development
	Data sources
	Analysis plan
	Analysis plan for research question 1
	Analysis plan for research question 2
	Analysis plan for research question 3
	Analysis plan for research question 4


	Results
	Study 1: conjectures linking instructional designs with student learning processes
	Study 2: case study of enacted debugging
	Fixing bugs
	Avoiding recurring bugs
	Preparing for novel bugs
	Engaging with authority in the debugging process
	Self-efficacy during debugging


	Study 3: a quantitative, longitudinal examination of the framework through a case study
	Outline placeholder
	Brief discussion of Maribel’s case study

	Study 4: post-hoc reflection on facets of the framework

	Discussion
	What constitutes progress in responses to failure?
	Pedagogical implications
	Failure in other domains
	Shortcomings and future research

	Conclusion
	Acknowledgments
	Funding
	Orcid
	References




