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Abstract

Our objective is to improve local decision-making for strategies to end the HIV epidemic
using the newly developed Levers of HIV agent-based model (ABM). Agent-based models
use computer simulations that incorporate heterogeneity in individual behaviors and interac-
tions, allow emergence of systemic behaviors, and extrapolate into the future. The Levers of
HIV model (LHM) uses Chicago neighborhood demographics, data on sex-risk behaviors
and sexual networks, and data on the prevention and care cascades, to model local dynam-
ics. It models the impact of changes in local preexposure prophylaxis (PrEP) and antiretrovi-
ral treatment (ART) (ie, levers) for meeting lllinois’ goal of “Getting to Zero” (GTZ) —
reducing by 90% new HIV infections among men who have sex with men (MSM) by 2030.
We simulate a 15-year period (2016-2030) for 2304 distinct scenarios based on 6 levers
related to HIV treatment and prevention: (1) linkage to PrEP for those testing negative, (2)
linkage to ART for those living with HIV, (3) adherence to PrEP, (4) viral suppression by
means of ART, (5) PrEP retention, and (6) ART retention. Using tree-based methods, we
identify the best scenarios at achieving a 90% HIV infection reduction by 2030. The optimal
scenario consisted of the highest levels of ART retention and PrEP adherence, next to high-
est levels of PrEP retention, and moderate levels of PrEP linkage, achieved 90% reduction
by 2030 in 58% of simulations. We used Bayesian posterior predictive distributions based
on our simulated results to determine the likelihood of attaining 90% HIV infection reduction
using the most recent Chicago Department of Public Health surveillance data and found that
projections of the current rate of decline (2016-2019) would not achieve the 90% (p =
0.0006) reduction target for 2030. Our results suggest that increases are needed at all steps
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of the PrEP cascade, combined with increases in retention in HIV care, to approach 90%
reduction in new HIV diagnoses by 2030. These findings show how simulation modeling
with local data can guide policy makers to identify and invest in efficient care models to
achieve long-term local goals of ending the HIV epidemic.

Introduction

Opver the past decade, advances in the development of evidence-based HIV prevention and
care interventions have led to considerable declines in new HIV infections in the United
States. These declines, coupled with a bold national HIV/AIDS strategic plan [1, 2] and the
recent Ending the HIV Epidemic (EHE) initiative [3], have defined a vision of HIV elimina-
tion throughout the United States. Using pre-exposure prophylaxis (PrEP) and antiretroviral
treatment(ART), the national EHE initiative seeks to reduce new HIV infection diagnoses in
the United States by 75% in 2025 and by 90% by 2030.

While EHE plans throughout the country share similar goals, the starting point and path-
way to achieving these goals vary considerably from one jurisdiction to another. To date, 13
states and 23 local jurisdictions have developed EHE plans; many more are in the process of
development [4]. According to the most recent progress report from the Centers for Disease
Control and Prevention [5], intermediary 2020 targets of decreasing new HIV infections by
25% were only met by 7 states, with 13 states moving in the direction of the goal. A separate
goal of increasing viral suppression among those diagnosed with a HIV infection has not been
met by any state, although 26 are making progress toward it. For PrEP, the initial goal of a
500% increase in prescriptions has been far exceeded [6]; however, in 2019 only 23.4% of those
eligible were prescribed PrEP. In addition, sex, race and age disparities in PrEP coverage
remain [5]. Similar disparities exist in retention in HIV care and viral suppression among
HIV-positive individuals [5], highlighting the necessity to differentiate intensities and combi-
nations of interventions in each jurisdiction in order to reach the EHE goals for all.

Recently, a number of HIV modeling studies have explored the impact of various interven-
tions on reducing HIV infections. Shah et al [7] developed a dynamic transmission model of
HIV progression and care engagement to determine which steps of the HIV care continuum
had the greatest impact on viral suppression rates and reductions in new HIV infections
nationally, focusing on awareness of HIV serostatus and linkage to and retention in HIV care.
They found that increases in HIV testing or linkage to care in isolation had a moderate impact
on disease burden, whereas increases in HIV care retention led to a 20% reduction in new
HIV infections. An agent-based model (ABM) developed by Jenness and colleagues [8] for
men who have sex with men (MSM) in Atlanta showed that neither a 10-fold increase in
screening nor a 10-fold increase in retention in HIV care would achieve local EHE goals,
whereas a combination of these interventions would achieve a 90% reduction in 12 years.
Another study by Nosyk and colleagues [9] used economic modeling to examine a combina-
tion of evidence-based prevention and care interventions in 6 US cities to identify the highest-
value intervention combination to reduce HIV infections. They found that each city had a
unique health-maximizing combination of interventions to reach EHE goals and achieved
varying levels of reduction in HIV infections (range, 39.5%-60.7%). These studies suggest (1)
that jurisdictions are faced with identifying unique combination and levels of interventions
needed to maximize reduction of new HIV infections locally and (2) that locally grounded
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simulation models can help by identifying intervention impact, and as such provide quantita-
tive guidance in the goal setting and execution of local EHE plans.

In this article, we describe how we support the Chicago Department of Public Health
(CDPH) implementation of Illinois’ EHE plan, known as the “Getting to Zero Illinois (GTZ)”
[10]. GTZ, in line with EHE goals, aims to reach a 90% reduction in new HIV infections by
2030. While the aim is clearly defined, the path to achieving it —the proposed interventions,
the optimal combinations and levels of PrEP and ART intensity—has yet to be delineated. Tra-
ditional clinical cannot provide intervention evidence because of their limited time span,
emphasis on internal validity over external contextual forces, and incomplete representation of
populations impacted by HIV [11-13]. This has resulted in a call for systems science methods
to better understand and predict systemic outcomes in health care [14-19] and in a specialty
field such as HIV prevention [20]. More specifically, there is a need to account for individual
variables, interactions that occur between individuals, feedback loops, and uncertainty about
behavior at the system level, all of which results in heterogeneity across healthcare settings and
individuals. Such heterogeneity drives local dynamics and is required to capture phenomena
like health disparities. To address this, our modeling relies on ABMs—a computer simulation
methodology that embraces heterogeneity in behaviors and interaction of individual, allows
for emergence of systemic behaviors, and can extrapolate into the future [19, 21]—to capture
the full complexity of the social system dynamics.

ABM have traditionally been used to build theory and make conceptual claims about the
dynamics of complex systems [22]. However, more recently, ABMs are being adopted as a tool
to support decision making in social systems. To help support decision making in the context
of HIV prevention, ABMs must capture local context and dynamics [19] and incorporate
details that affect a phenomenon in the real world [23]. Capturing realistic behaviors, comes
with a strong dependance on local data, and a need for validation. Population-level dynamics
should be aligned with those observed in reality (e.g., short-term incidence rates) and individ-
ual- (agent-) level behaviors should be aligned with local data [22].

We present an ABM—the Levers-of-HIV-Model (LHM) [24], that simulates 15 years of
new HIV infections among MSM. The model explores the impact of various scenarios of
change in the PrEP and ART cascades, which we refer to as levers, as a tool for examining
trends in new HIV infections in Chicago. These 6 levers focus on delivery of evidence-based
prevention and treatment interventions: (1) linkage to PrEP for those testing negative, (2) link-
age to ART for those living with HIV, (3) adherence to PrEP, (4) viral suppression by means of
ART, (5) PrEP retention, and (6) ART retention. Our simulations can be used to explore, tai-
lor, and optimize implementation strategies that target these levers of change and as a support
tool to inform policy makers by providing actionable, cost-efficient, and timely information
on which to implement strategies that meet GTZ goals. We use our model to identify optimal
combinations that would prevent committing scarce resources into implementing less impact-
ful strategies.

We review existing ABMs for HIV; describe our model and how local data have been used
to inform it; describe model validation and the structure of the simulation experiment; present
experiment outcomes and how they relate to GTZ 2025 and 2030 goals; and describe how
model results can inform public health implementation strategies.

ABMs for HIV spread

The epidemic nature of HIV spread, the impact of heterogeneous sex-risk behaviors, and the
complex social systems in which spread occurs make ABMs ideal tools for predicting optimal
treatment and care strategies to end the HIV epidemic. Various groups have developed high-
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Table 1. Comparison of agent-based models for HIV transmission.

Model Scope Population Interaction type Network data Are model outcomes fitted Interventions considered
Titan NY metro All IDU/Sexual Estimated Yes None

Path 2.0 Us PLWH Sexual Aggregate No None

Epimodel Atlanta MSM Sexual Local, Aggregate Yes Radiation: ART, Screening

Transmission: Condom use
Reception: PrEP

Bars2.0 Chicago south-side YB-MSM Sexual Local, Aggregate Yes Radiation: ART

LHM Chicago MSM

Transmission: N/A
Reception: PrEP

Sexual Local, Individual No Radiation: ART
Transmission: N/A
Reception: PrEP

Notes: ART indicates antiretroviral treatment; IDU, injection drug user; MSM, men who have sex with men; YB, Young Black; NA, not applicable; PLWH, people living

with HIV; PrEP, preexposure prophylaxis.

https://doi.org/10.1371/journal.pone.0274288.t001

fidelity models to support decision making aimed to achieve this goal. The most prominent
and comprehensive models are the Marshall model [25], the PATH2.0 model [26], EpiModel
[27], and the BARS model [28]. We compared these models with the Levers of HIV model [24]
(Table 1). While each model is grounded in field data and aims to capture HIV spread dynam-
ics, they differ in terms of the social and sexual contexts they incorporate and the means of
implementation.

The Marshall model [25, 29], later labeled TITAN (Treatment of Infection and Transmis-
sion in Agent-Based Networks), was one of the first HIV-focused high-fidelity ABMs. Written
in Python, it specifically addresses the cross-section of injecting and non-injecting drug use
and HIV spread in the New York metropolitan area. Individual-level heterogeneity is present
in this model; however, local data on sex-risk behavior and drug-use interactions is scarce, and
this model assumes homogeneous mixing among its populations and relies on parameter fit-
ting to ensure matching between model and reality of observable emergent characteristics.

The PATH 2.0 project similarly incorporates individual-level properties but bases its sexual
interaction dynamics on a sample of national US data for people living with HIV. As such, it
models national-level dynamics. Similar to the TITAN model, PATH 2.0 uses parameter fitting
to align model results to reality; however, this model incorporates aggregate-level interaction
data to build heterogeneous interaction networks. The national data and model scope of
PATH 2.0 likely miss critical local dynamics and sexual networks, the latter of which have
been shown to affect the dynamics of spreading phenomena [30].

Epimodel 2.0 [8, 27, 31], written in R, provides a simulation platform for diverse infectious
diseases. For its modeling of HIV dynamics, Epimodel uses social and sexual dynamics from 2
cohort studies among MSM in Atlanta, Georgia. It focused on local dynamics and considering
the disproportionately affected MSM population. Heterogeneity in the sexual networks is
explicitly modeled based on aggregate summaries of network data (degree distributions and
network homophily). Epimodel uses limited parameter fitting to align the modeled dynamics
to ecological-level dynamics, using a single parameter that represents an inflation of the num-
ber of sex acts within the network ties formed. Various extensions of Epimodel exist, one of
which has been tailored to fit Seattle ecological dynamics [32].

The BARS and related ABMs [28], written in C++, R (statnet [33]) and Repast, use data
from young Black MSM in Chicago and combine a representative cohort with specific data of
those who have had criminal justice involvement, a group that is disproportionately affected

PLOS ONE | https://doi.org/10.1371/journal.pone.0274288 October 17, 2022 4/27


https://doi.org/10.1371/journal.pone.0274288.t001
https://doi.org/10.1371/journal.pone.0274288

PLOS ONE

Prevention and care pathways to end the HIV epidemic in Chicago

by the HIV epidemic [34]. It uses detailed local egocentric interaction network data to model
the formation and ending of sexual relationships and relies on parameter fitting to align model
results to observed systemic trends.

The LHM model presented in this article [24] is written in NetLogo [35] and differs from
previously presented models. First, this work is derived from a partnership between the local
health department responsible for administering HIV programs—the Chicago Department of
Public Health (CDPH)—and researchers at Northwestern University and focuses on the
model on Chicago. Second, it uses longitudinal sexual network data from a large, ongoing
observational study in Chicago [36-38] to model formation and dissolution of sexual pairings,
rather than basing such dynamics on system-level aggregates. Third, this model limits its use
of parameter fitting to inputs rather than outputs, ensuring that system-level dynamics emerge
from the bottom up and the model does not rely on parameter fitting to align modeled system-
level dynamics with observed real-world trends. Last, the model combines both the treatment
(ART) and prevention (PrEP) intervention levers into a single model, allowing these levers to
be considered simultaneously and interaction effects across and within them to be explored.

Most HIV-related ABMs have been used to conduct virtual experiments of the impact of
various interventions [29, 31, 39, 40]. These interventions, like all interventions in propagating
phenomena, can be classified into targeting 1 of the 3 sub-processes of propagation [41]: radia-
tion, transmission, and reception. In the context of HIV spread, reducing radiation targets
infectiousness through detecting and reducing population viral load. Reducing transmission
includes policies such as safe sex campaigns. Reducing reception addresses susceptibility,
which includes providing PrEP to eligible individuals. For each intervention target, the poten-
tial impact is conditional on sexual networks, local spreading dynamics, and baseline levels for
any of these targets, all of which are highly heterogeneous across settings. This makes the value
of ABMs for supporting decision making dependent on their ability to capture local dynamics
[19, 28].

Methods

Herein we describe the model Levers of HIV model itself and our analysis plan, including
model validation and experimental design.

The Levers of HIV Model (LHM)

Currently, the LHM focuses on Chicago’s most heavily impacted population: MSM, who
account for most (73.5%) of new HIV diagnoses in Chicago. Unprotected anal intercourse
accounts for 95% of transmission and nearly all [42] (96%) new cases within this group. By
focusing on this group and this mode of transmission, we significantly simplify the model
while prioritizing the dominant population and means of spread for HIV.

The LHM consists of 5 major modules: (1) demographics, (2) network dynamics and part-
ner selection, (3) HIV transmission and progression, (4) health disparity, and (5) prevention
and care. An overview and description of the role of local data is provided for each module. A
comprehensive and detailed description of the models behaviors is provided in the Supple-
mentary Information (S1 Appendix), along with the model code [24].

Demographics module. Motivation for inclusion. To accurately describe the characteris-
tics and dynamics of our specific context we need to ensure that the population in our model
is representative of this context. For our model, we want racial, spatial, age, and HIV status dis-
tributions to follow those observed among MSM in Chicago.

Means of inclusion and data sources. Our starting point is the numbers of males aged 13 to
70 years in the Chicago census data by race/ethnicity. Based on the AIDSVu [43] MSM

PLOS ONE | https://doi.org/10.1371/journal.pone.0274288 October 17, 2022 5/27


https://doi.org/10.1371/journal.pone.0274288

PLOS ONE

Prevention and care pathways to end the HIV epidemic in Chicago

estimates of 6.6% of males in Cook County aged 13 to 80 years old, we calculated a total of
approximately 65,000 MSM living in Chicago. As detailed local data is missing, our model
assumes that the proportion of MSM is constant across race/ethnicity and age. To reduce
computational requirements, the LHM samples 10% of this population (6500 individuals),
describing the city on a 1:10 scale while maintaining the race/ethnicity, age, and location data
from the Chicago census, and HIV prevalence distributions using demographic conditions
from CDPH surveillance data.

The population size in the model will fluctuate over time. Model dynamics account for indi-
viduals who die (both due to natural causes and to HIV) at rates based on local data for non-
HIV and HIV-related mortality and for individuals aging out of our model’s age range or
entering our model as they become of age. Our model does not account for in or out migration
as this factor was not notable; inflow and outflow were roughly equal in our model, keeping
the total population around 6500 throughout the simulation.

Network dynamics and partner selection module. Motivation for inclusion. The average
rates of interactions, the variance in those rates, and the local structures that form due to this
variance impact potential spread. To capture such heterogeneity, data on sexual networks and
interactions from the RADAR longitudinal cohort study of more than 1200 Chicago MSM
assessed over a period of 3 years at 6-month intervals [37] was used to capture individual level
partnering behaviors, which inform individual-level partnering preference and sexual behav-
iors in the model. We let the network structure emerge from this process, rather than generat-
ing individual behaviors from global network attributes, as done in other models (Titan,
PATH 2.0, Epimodel, and Bars2.0). The RADAR cohort is primarily focused on younger MSM
(ages 16-34 years), and information on older MSM’s partnering patterns is scarce. We use age
assortative mating trends in the RADAR data to extrapolate the behavior of the older MSM in
our model. While the sexual networks of the comparatively older MSM are not fully repre-
sented in our input data, MSM younger then 40 years account for roughly 78% of new HIV
infections among MSM in Chicago.

Means of inclusion and data sources. Agents (i.e. Individuals) in the LHM form and end sex-
ual ties, resulting in sexual networks that are dynamic over time. Our model distinguishes
between one-time sexual events, ties that last less than a single week, and ties that persist for a
longer period, each with different attributes (e.g., condom use). Ties (and resulting networks)
are formed based on agent-level preferences for sexual activity and attributes of the desired
partner. This process is based on optimizing dyadic fit based on both partners’ HIV-status,
race/ethnicity, age, and sex-role (see S1 Appendix for details). Once ties are formed, we gener-
ate longitudinal profiles of tie duration, rate of sex acts, and rate of condom use assembled
from the observed distribution from the RADAR study. RADAR data provide rates of partner
formation, correlations between ego and alter attributes, and the distributions of sexual behav-
iors and characteristics within ties once they are formed.

HIV transmission and progression module. Motivation for inclusion. This module rep-
resents the probability of transmitting HIV in sero-discordant pairs during a given sexual act.
Transmission can be subdivided into 3 sub-processes of radiation, transmission, and reception
[41]. The transmission of HIV depends on the seropositive individual’s viral load (radiation),
the seronegative individual’s genetic receptibility and use of PrEP (reception), as well as char-
acteristics of the sex act including sexual position and protective vs. unprotective anal inter-
course (transmission). To realistically capture the risk of transmission during sex, we capture
each of these elements in our model.

Means of inclusion and data sources. The viral load of seropositive individuals is known to
have different trajectories in the absence or presence of treatment. Based on existing literature
on the virality of HIV [44, 45] the viral load is modeled as a function of time and ART. Our
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model follows the viral load progression module introduced in Epimodel [31], which, in the
absence of ART, is described by a 4-stage process of acute rise, acute fall, stable setpoint levels,
and rise during the AIDS stage until death occurs (see S1 Appendix for details). The probabil-
ity of radiation is determined as a function of the viral load during the sex act. For determining
the likelihood of transmission, we use RADAR local data to determine the rate of and variation
in condom use and sexual positions, and consider the circumcision of the seronegative partner
to determine the chances of viral infection. We model the presence of CCR mutations (which
account for large reductions in susceptibility—70% or 100%, depending on mutation type)
based on national rates by race/ethnicity [46] and PrEP use based on RADAR data, resulting
in likelihood of reception. We then take the product of radiation, transmission, and reception
to determine a total risk of transmission for a given sex act.

Health disparity module. Motivation for inclusion. African Americans and Latinos, as
well as young MSM, experience huge disparities in HIV infection risk. Evidence from Chicago
and other cities shows that race and ethnic disparities are not due to higher-level risk behaviors
(e.g., unprotected anal intercourse) [37] but are functions of differential social determinants,
including higher exposure to community viral load and limited health care access. Racial seg-
regation is particularly prevalent in Chicago, and socioeconomic characteristics, access to
healthcare, and community-level stigma vary significantly from neighborhood to neighbor-
hood. These sociodemographic and community-level factors, which have been shown to be
associated with poor HIV-related outcomes and racial/ethnic disparities [47], stem from the
environment in which individuals live rather than their individual behaviors or characteristics.
While such disparities are known to be present, the exact mechanisms by which they occur are
not fully understood.

Means of inclusion and data sources. Chicago reports community-level health, care, and
prevention data by its 77 community areas, which have been studied by researchers consis-
tently since the 1920s [48, 49] and used by CDPH to survey and allocate resources. To capture
some of these disparities in our model, we include a function that is based on included com-
munity area viral load (defined as the community HIV prevalence multiplied by community
rate of nonsuppression) and the neighborhood hardship index as a proxy for community risks.
This proxy captures major effects of the regional health disparities observed, while leaving the
question of what drives these disparities for future research. We use this proxy of community
risk by adjusting each agent’s risk depending on his neighborhood of residence. The risk of
contracting HIV during sex in a serodiscordant tie act will increase or decrease by a given fac-
tor based on the local viral load and overall hardship in that neighborhood.

Prevention and care module. Motivation for inclusion. Treatment and prevention are 2
primary ways in which the care system attempts to impact the spread of HIV. First, treatment
can reduce transmission (radiation) by having seropositive individuals receive ART. This
approach, referred to as Treatment as Prevention (TasP), aims to reduce the viral load of these
individuals, directly translating into lowering the likelihood for these individuals to transmit
HIV, thereby preventing new infections. Second, prevention can impact the chances of con-
tracting HIV (reception) for seronegative individuals. By having them receive PrEP, a medica-
tion that reduces the risks of seroconversion for seronegative individuals who come into
contact with HIV, the chances of spread are reduced.

Means of inclusion. The prevention and care module in LHM, summarized in Fig I,
includes a prevention arm, involving PrEP for seronegative individuals (prevention, green),
and a treatment arm, involving TasP for people living with HIV (red). For each arm, individu-
als will cycle through being linked to the appropriate medication, being adherent (for PrEP) or
suppressed (for TasP), and being retained in care, resulting in individuals over time either
being partly or fully protected (if negative) or being virally suppressed (if positive).
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Fig 1. The care and treatment system. A flowchart of the stages of the HIV treatment cascade that agents in the LHM can go through.
https://doi.org/10.1371/journal.pone.0274288.9001

Each of the flows in Fig 1 represents a rate or probability that is based on field data. All rates
in this figure are based on local data, with the exception of the rate of testing. As local data on
rates of testing was unavailable for Chicago, we opted to align our modeled testing rate to pre-
viously published Epimodel [31]). To inform the remainder of TasP-related rates surveillance
data provided by the CDPH was used, while for PrEP rates, RADAR cohort data was used. The
Supplementary Information provides details on these rates (S1 Appendix).

Parameter fitting. Most parameters included in the LHM are known from epidemiologi-
cal modeling (e.g., infectivity per sex act) or from local data (e.g., distribution of sex partners).
We call these fixed parameters. In contrast, parameters in the model that are adjusted to fit
aspects of the model are called free parameters. In the LHM we use free parameter fitting for 2
specific sub-modules where data are limited. First, we used free parameters to fit HIV inci-
dence rates by race and ethnicity in the health disparity module. We found an appropriate
weighting to ensure that 2 community-level risk factors of viral load and hardship agreed with
the 1-year race and ethnicity incidence rates. Second, we used free parameters to fit the treat-
ment module. Our initial TasP modeling was based on data that only covered the first 2 years
of viral suppression after diagnosis. When discussing with our partners at CDPH, this was
seen as inadequate for those with longer histories of HIV positivity. To remedy this and to
account for long-term viral suppression, we adopted a rate capturing a tendency to (temporar-
ily) discontinue care for those diagnosed more than 2 years earlier. Because no direct data
were available to inform this rate, we fit this parameter based on minimizing the error in
reproducing the known levels of suppression and levels of active treatment among people liv-
ing with HIV. While there is uncertainty on the accuracy of this rate, we performed a sensitiv-
ity analysis with alternative rates to examine whether our fitting assumption impacted our
results.
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Analysis plan

The analysis of model behavior involves 2 steps. The first checks whether the model is properly
validated, and whether systemic behavior matches what is observed in the real world. The sec-
ond uses this validated model to run a virtual experiment by projecting new infection among
MSM in Chicago to 2030 using varying levels of interventions in the HIV prevention and care
cascades.

Model validation

The dynamics of each of the modules within LHM are based on field data, ensuring that agent-
level behavior agrees with observed trends. While the use of local data in each module inde-
pendently should yield realistic dynamics, we ensured that interaction and accumulation of
modules yielded systemic behaviors that are in line with observed trends in field data.

A primary aim is to discover optimal pathways to reduce new infections through a combi-
nations of levers; therefore annual HIV incidence is a key system level outcome to validate
against. Because our model is built using 2015 data, we test the extent to which the model
aligns with the HIV incidence observed in 2016, for which we have CDPH surveillance data.
We checked whether the model simulations produced MSM incidence rates consistent with
real-world data and also compared incidence distributed by age and incidence distributed by
race/ethnicity.

Experimental design

As we intend to support the CDPH’s decision making to achieve GTZ goals in Chicago, we
focus our experimental design on levers of change that indirectly follow from the jurisdiction’s
health system funding of programs to recipient organizations and its own activities. Based on
the care system modeled in LHM, we identify 6 levers of change that pertain to proximal fac-
tors in delivering evidence-based interventions: (1) linkage to PrEP for those testing negative,
(2) linkage to ART for those living with HIV, (3) adherence to PrEP, (4) viral suppression by
means of ART, (5) PrEP retention, and (6) ART retention. Levers are not implementation
strategies themselves but targets for monitoring selected strategies. For each lever we consid-
ered various levels using a range from the “current” 2015 levels as a baseline (identified as level
0) to what is considered maximally achievable (Table 2).

Linkage to PrEP care. Linkage captures the extent to which individuals with a negative test
result initiate PrEP. Based on RADAR’s rate at which individuals adopt PrEP, we calculate the
baseline probability of PrEP uptake for the LHM. The linkage to PrEP lever then annually
increases this rate. Using 5 levels, this rate increased by either 0, 2, 4, 6, 8, 10 absolute percent
annually, which in the most extreme scenario would yield 100% linkage after 10 years. Uptake
encompasses all the steps that precede initiation (e.g., gaining awareness of and access to PrEP,
as well as a negative HIV test); hence, achieving these increases in uptake would require multi-
ple strategies.

Adherence to PrEP. The extent to which PrEP will be effective in reducing risk of HIV
acquisition is conditional on the individual’s adherence (see S1 Appendix). At the baseline
level (level 0), individuals are distributed among 4 adherence groups, based on observed rates.
This distribution is then increased for each of the other levels. At level 1 it is assumed no indi-
viduals will be completely non-adherent, and the individuals that were previously non-adher-
ent will be evenly divided among the remaining adherence groups. At level 2 the assumption is
everyone will be fully adherent.

Retention in PrEP care. Retention captures the tendency to stay in PrEP care over time.
PrEP prescriptions are provided for a limited duration to allow for routine clinical follow-up,
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Table 2. Levels of prevention and care levers used in the simulations.

Prevention

Linkage to PrEP

Adherence to PrEP

Retention of PrEP

(0) 7% individuals once testing
negative are linked to PrE

(0) Individuals are

distributed as follows:

21% is non-adherent /

7% is low-adherent /

10% is high-adherent /

62% is full-adherent

(mean risk reduction = 69.1%)

(0) Individual have a 53.5%
chance of staying on PrEP
each year

(1) 2% annual increase in
the chance of linking to PrEP
once testing negative

(1) 0%/ 14% / 17% / 69%
(mean risk reduction = 84.3%)

(1) Annual chance of retention
for PrEP is increased to 65.0%

(2) 4% annual increase in
the chance of linking to PrEP
once testing negative

(2)0% /0% / 0% / 100%
(mean risk reduction = 95.0%)

(2) Annual chance of retention
for PrEP is increased to 75.0%

(3) 6% annual increase in
the chance of linking to PrEP
once testing negative

(3) Annual chance of retention
for PrEP is increased to 85.0%

(4) 8% annual increase in
the chance of linking to PrEP
once testing negative

(5) 10% annual increase in
the chance of linking to PrEP
once testing negative

Treatment

Linkage to ART

Viral suppression

Retention in ART care

(0) 86% of those tested are linked

(0) The chances of becoming
suppressed are;

50.3% for the first visit,
22.1% for the second visit,
10.6% for following visits
(83.3% chance of suppression
after 3 visits)

(0) 90% of individuals are
retained across care visits
(72.4% for 3 care visits)

(1) 100% of those tested are linked

(1) These rates are increased
by 2% annually

(After 9 years, the chance

of suppression after 3 visits

(1) 2% increase in the
retention rate across visits
(77.4% of individuals are
retained for 3 care visits)
will be 95%)

(2) These rates are increased
by 3% annually

(After 6 years, the chance

of suppression after 3 visits

(2) 5% increase in the
retention rate across visits
(85.2% of individuals are
retained for 3 care visits)

(After 4 years, the chance
of suppression after 3 visits

will be 95%)
(3) These rates are increased (3) 10% increase in the
by 5% annually retention rate across visits

(96.7% of individuals are
retained for 3 care visits)
will be 95%)

https:/doi.org/10.1371/journal.pone.0274288.t002

generally 3 months [50], requiring retention in regular care to be maintained. If a lapse in
retention occurs, the individual will no longer have access to PrEP medication. We use
RADAR cohort data capturing whether a participant receiving PrEP at the time of interview as
a proxy to estimate the baseline level of PrEP retention (53.5% retention annually) and use the
PrEP retention lever to perturb this rate for 3 additional levels. At level 1 annual retention is

65%; at level 2 it is 75%; and at level 3 it is 85%.
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Linkage to HIV care. Linkage captures the extent to which people newly diagnosed with
HIV or who have fallen out of care are linked to HIV care to initiate ART. Linkage to care is
measured as having a CD4 or viral load test after diagnosis. CDPH data show that levels of
linkage at baseline are high (86%). Initial experiments showed limited sensitivity of the model
to small increments in increasing linkage; therefore we retained only a single potential pertur-
bation in which linkage is increased to 100%.

Viral suppression. The effectiveness of the TasP strategy depends on achieving and main-
taining an undetectable viral load. Most people will achieve an undetectable viral load within 5
months of starting ART [51]. There are, however, cases in which suppression is not achieved
due to intra-host biology preventing the drug from taking effect or failure to adhere to medica-
tion. Based on CDPH data LHM uses the percent virally suppressed over continuous care visits
at or above the baseline level. The 3 levels for viral suppression beyond baseline consist of 2%,
3%, or 5% annual increases.

Retention in HIV care. Retention in HIV care is key to maintaining viral suppression [52].
CDPH surveillance data suggest that regular meetings occur roughly every 3 months, and that
the chances of being retained across these visits is on average 90% for the baseline level (this
varies by race/ethnicity, age, and length in care; see S1 Appendix). Using the retention in HIV
care lever, we increase this rate of retention from 1 visit to the next by 2%, 5%, or 10% for levels
1, 2, and 3, respectively (capping at 100%).

HIV testing. Diagnosis, or frequency of testing, is commonly identified as a lever in the
HIV prevention system. We exclude it from our experiment because testing rates are proprie-
tary and unavailable to CDPH for monitoring. We have, however, conducted supplemental
simulations to examine the sensitivity of our findings to changes in this rate in our sensitivity
analysis section.

Size of the simulation experiment. This experimental setup resulted in 2304 (6*3*4*2*4*4)
combinations of levers, or scenarios. To account for variation in the model outcomes and gain
more reliable results, we simulated each scenario 44 times. This number of replications pro-
vides sufficient reliability to construct 95% ClIs for estimating a scenario’s population mean
incidence rate. This number of replications also allows us to display meaningful variations in
these rates within single or combined scenarios. In our figures and tables, we present 80 per-
centile simulation intervals as these quantiles are relatively stable even if based on a single sce-
nario with 44 replications. For each run we use an initial burn-in period of 5 years and
measure the annual incidence over time for 15 years after burn-in, representing the period
from 2016 to 2030.

Analysis of experimental data

After announcing the GTZ plan, Chicago launched its EHE initiative in 2018, which aims for
90% reduction of new HIV infections by 2030. Unlike the national plan, the local plan does
not mention an intermittent goal of 75% reduction of new infections by 2025, despite it being
of interest to local policy makers. In 2018 there were 564 new HIV infections diagnosed
among MSM in Chicago; to attain EHE goals, Chicago would have 141 new cases in 2025 and
56 cases in 2030. We assume that any simulation with fewer observed cases at 2025 or 2030
respectively will have “gotten to zero”.

Because we anticipate that the most successful scenarios that meet these criteria will involve
combinations of higher levels of several levers of change, we use partition, or classification,
trees [53] to analyze which combinations of levels in each lever achieve 75% or 90% HIV infec-
tions reduction by 2025 or 2030, respectively. Our classification tree analysis uses this binary
criterion as the dependent variable for each of the 101,376 runs—that is 44 replications of all

PLOS ONE | https://doi.org/10.1371/journal.pone.0274288 October 17, 2022 11/27


https://doi.org/10.1371/journal.pone.0274288

PLOS ONE

Prevention and care pathways to end the HIV epidemic in Chicago

2304 scenarios—with predictors being the levels of each lever. Classification trees form a tree
structure based on an algorithm that searches for an optimal split of a node among all possible
high and low dichotomizations of each predictor, e.g., 0 or 1 versus 2+ for retentions in ART
care. Such a split forms 2 new nodes. A tree is “grown” by subjecting each new terminal node
to this same search for the lever and cut point that optimally divides each new node into 2
additional nodes, representing those that are closest to meeting the reduction criterion and
those that do not. All possible splits are evaluated at each node, and the split is determined
based on minimizing the Gini index:

gini=1-> ()’ W

where p; is the proportion of each node attaining the EHE goal. This algorithm continues to
grow the tree by using the splitting algorithm at each terminal node, thus partitioning the
entire space of scenario runs into locally determined splits. After growth, the tree is “pruned”
of unstable end nodes using cross-validation. By following tree “branches” of better perform-
ing splits, the higher-performing levers and levels making the best progress can be displayed.
We use the binary outcomes of success for each run to create a partitioning tree in which the
most efficient pathways to achieving the EHE goals for Chicago are represented. Computations
and figures were performed in R using the functions rpart and rpart.plot [54].

Using a bayes predictive distribution to project from the most recent
incidence rate history

To examine whether Chicago’s most recent surveillance data is close to reaching the EHE
goals, we used the Bayesian posterior predictive distribution [55] of the reduction in HIV
infections by 2030 based on yearly MSM incidence from 2016 through 2019, the latest year
with epidemiological data available from CDPH. This projection weights all trajectories based
on how well they match the 2016-2019 rates and assesses what progress can be expected in the
next 15 years should current patterns continue. We use pseudo-classes [56-58] to obtain a
non-parametric posterior predictive distribution of new HIV infections among MSM in 2030.
This pseudo-class method provides asymptotically unbiased estimates of this predictive distri-
bution (see S2 Appendix for details). We report the mean and median of the predictive distri-
bution and the likelihood of attaining the EHE goals.

In Addition, we compared attaining EHE goals with a status neutral approach, which sup-
ports both HIV positives and negatives simultaneously, to 2 alternative approaches; one that
increases PrEP linkage, adherence, and retention while keeping the three ART components at
their baseline levels, and one that increases ART linkage, viral suppression, and retention
while keeping PrEP components at their baseline levels.

Results

To check the systemic behavior of the model, we present the model validation using 1-year
(2016) projections of new HIV infection overall, by age, and by race/ethnicity group.

Model validation

Total Annual HIV Incidence Per data collected by the CDPH, a total of 665 new HIV cases
occurred among MSM in Chicago in 2016. Over the 44 model runs with baseline behavior
(without additional interventions), LHM predicted a mean of 690.9 new HIV cases for 2016
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(95% CI, 647.8—733.7). The observed incidence is within the confidence intervals of our mean
model behavior, showing that LHM accurately reflects the observed HIV infection rates.

Annual HIV Incidence, Distributed by Age Fig 2 shows the modeled distribution among
each of the CDPH’s chosen age groups (grey) and how it compares to data from 2016 (blue).
Table 3 compares the mean and 2 simulation-based intervals with the observed HIV infection
rates by age group for 2016. The 80% simulation prediction interval corresponds to a range of
1-year age-specific HIV infections based on the 44 simulations of the baseline levels (i.e., the
10" and 90" prediction percentiles over the 44 replicates). We also provide 95% Cls for mean
population-based, age-specific incidence rates. Unlike the former intervals, the size of these lat-
ter intervals decreases with the number of replications and gives accurate bounds for the mean
trajectory.

These results show that the model presents an age distribution that closely approximates
the age distribution of CDPH surveillance data for 2016. It shows a peak of new HIV cases in
the 20-29 age bracket, and a decline towards the older age ranges. Because we observe only a
slight overestimation of incidence, primarily in the 13-19 age bracket, we consider the model’s
distribution of incidence by age a reliable representation of the real world.

Annual HIV Incidence, Distributed by Race/Ethnicity Consistent with CDPH reporting
we examine incidence among MSM for 4 race/ethnicity groups (Non-Hispanic Black, Non-
Hispanic White, Hispanic, Other). For each of these groups we compared the observed rate of
incidence based on 2016 CDPH data, with rates produced by our model. The result (Table 4)
show that the model must consider community-level factors, including community viral load
and local hardship, to reproduce observed disparities. Therefore we included the health dispar-
ities module, which resulted in prediction intervals that propperly reflect rates observed in the
real world. Even with this module in place there was a 31% overestimation of the mean inci-
dence among MSM in the ‘Other’ race/ethnicity group. However, only 5% of the population
falls into this “Other” category, and therefore consider this difference to have a very small
effect on projections. Additionally, there is a modest 16% underestimation for rates for the
non-Hispanic Black MSM, and overestimation of non-Hispanic white and Hispanic MSM by
8% and 24% respectively. Overall, these results indicate that the LHM results fit the observed
incidence by race/ethnicity moderately well, but there remains room for improvement.
Because this article discusses only the population level impacts, and because the LHM (with
the health disparities module) produces realistic racial incidence distributions, we deem it ade-
quate for our experiment.

Experimental results

Herein we examine the complete 15-year period included in the EHE plans using the previ-
ously described experimental design. The resulting partitioning trees show the vast majority of
scenarios do not attain the year 10 (2025) (Fig 3) and year 15 (2030) EHE goals (Fig 4). For
2025 (Fig 3), the 21% in the top primary node, indicates the percentage of all scenarios that
reach 75% reduction goal by 2025. Similarly, the 6% in the top primary node in in Fig 4 indi-
cates the percentage of all scenarios that reach the 90% reduction goal by 2030. The best splits
are identified down each path, with greater impact on incidence reduction on the left and
lesser impact on the right. For example, 35% of scenarios with PrEP linkage to care >3 achieve
75% reduction by 2025 years whereas 7% of scenarios with PrEP linkage to care <3 achieve
this goal. Dark red nodes represent very low rates; lighter red, low rates; lighter blue, modestly
high rates; and darker blues, high rates.

Three distinct pathways yielded a reasonable likelihood of success at at reading 75% reduc-
tion by 2025(Fig 3). The path with the greatest proportion of runs (77%) achieving the goal
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Fig 2. Incidence by age: Observed and predicted annual incidence cases by age, the modeled 80% prediction range (grey), the modeled mean
value (red), and the count observed in 2016 field data from the Chicago Department of Public Health.

https://doi.org/10.1371/journal.pone.0274288.9002

(Path 1, bold black line) entails increases in PrEP linkage (level>3), PrEP retention (level>2),
and PrEP adherence (level 2). The second most efficient path (68%)(Path 2, dotted line) entails
increases in PrEP linkage (level>3) and PrEP retention (level>2), and allows PrEP adherence
levels of <2. Path 2 includes the baseline unperturbed level and it does not require a specific
level of PrEP adherence. Instead, it requires the highest level of ART retention, and reaches its
goal only by combining treatment and prevention levers. The third most efficient path (63%)
(Path 3, dashed line) entails increases in PrEP linkage (level>3), PrEP adherence (level 2) and
ART retention (level 3). Unlike Path 1 and 2, Path 3 does not require any specific levels of
PrEP retention. Compared to the best path, Path 1, Path 3 permits lower levels of PrEP reten-
tion but requires maximum ART retention, yielding a 14% reduction (63% vs. 77%) in the pro-
portion of runs attaining the 2025 goal.
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Table 3. Observed and predicted annual incidence cases by age.

Age 2016 Field data Modeled prediction: Modeled Prediction: 80% simulation prediction Modeled Prediction: 95% CI of the
Group (CDPH) Mean interval mean
13-19 46 93.1 44.0-149.0 80.6-105.5
20-29 313 273.2 176.4-370.8 249.2-297.3
30-39 159 172.2 111.7-234.0 157.6-186.7
40-49 79 83.2 53.1-112.8 75.5-90.9
50-59 55 39.9 20.0-59.4 35.1-44.6
60 + 13 23.1 9.8-36.1 18.5-25.8
Total 665 690.8 519.7-827.7 647.8-733.7

Notes: CDPH indicates Chicago Department of Public Health.

https://doi.org/10.1371/journal.pone.0274288.t1003

For 90% reduction by 2030 (Fig 4) only one path has an acceptable chance (58%) of reach-
ing the goal. This path consists of the highest level of ART retention, moderate levels of PrEP
linkage (level>2), high levels of PrEP retention (level>2), and the highest levels in of PrEP
adherence (level 2). Compared with Path 1 for 2025, this path adds a requirement of maximum
ART retention, while reducing the required PrEP linkage (from level>3 to level>2); however,
a much lower proportion of runs achieves the desired 2030 reduction goal (58% vs. 77%).

This optimal path can be translated into an HIV prevention and care cascade to be used for
EHE prevention and care goals based on different combinations of prevention and care levels
of linkage, retention and adherence. Fig 5 displays projected 2030 cascades and compares cas-
cade steps assuming continuation of levels from 2015 vs. the optimal path for the 2030 goal.
For the 2030 goal, the combination of PrEP and ART levels identified in the optimal path
resulted in a 41% higher rate of viral suppression among MSM as compared to continuation of
baseline levels (75.7% vs. 53.75%). Similarly, we observe increases (490%) in the percentage of
eligible MSM receiving PrEP and a consequent reduction of individuals at risk.

How well are current trends progressing towards EHE goals?

Fig 6 shows incidence projections for the optimal path (bottom curve, green) and baseline
path (top curve, blue) and compares them with the most recent CDPH surveillance data for
new HIV diagnoses (2017—2019)(black curve). The CDPH data shows that the number of

Table 4. Observed and predicted rates of HIV incidence for MSM by Race/Ethnicity.

| NH Black \ NH White | Hispanic Other
Observed values (based on CDPH data)
Incidence rate per 10k I 183.3 ‘ 51.8 ‘ 91.8 47.8
LHM without the Health disparity Module
80% Prediction Interval 57.1-122.1 66.0-117.1 70.1-142.8 21.2-122.3
Mean incidence rate 88.5 89.7 109.1 68.2
Relative error 51.7% 73.4% 18.9% 42.9%
LHM w1=th the Health disparity Module
80% Prediction Interval 110.5-202.5 42.9-74.0 76.0-148.0 20.7-103.5
Mean incidence rate 153.4 56.0 114.1 62.6
Relative error -16.3% 8.3% 24.3% 31.0%

Notes: NH indicates non-Hispanic.

https://doi.org/10.1371/journal.pone.0274288.t1004
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Fig 3. Pathways toward interim EHE goal, 75% reduction of incidence by 2025.
https://doi.org/10.1371/journal.pone.0274288.9g003

HIV infections has steadily declined for the overall MSM population. While still within the
80% prediction range of our baseline model, the trend suggests gains beyond what would be
expected from continuation of 2015 baseline care and prevention activities. Using the observed
trajectory of yearly infections from 2016 through 2019 we calculated a Bayesian posterior pre-
dictive distribution [55] of the reduction in HIV incidence by 2030 and assessed if the current
trend would meet the EHE goals. The results of this projection (Fig 7)(black curve) show that
despite improvements every year, the continuation of current trends would not meet EHE
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Fig 4. Pathways toward final EHE goal, 90% reduction of incidence by 2030.
https://doi.org/10.1371/journal.pone.0274288.9004
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Fig 5. A comparison of care cascades between continuation of 2015 baseline levels vs. optimal path toward the 2030 goal of 90% reduction, for
both prevention (left) and treatment (right).
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goals. Extrapolation of the current trajectory yields 358 cases by 2025 (a 37% reduction), and
313 in 2030 (a 45% reduction). Based on the quantiles of this distribution the current trajectory
has a 0.013 likelihood of reaching 75% reduction by 2025 and a 0.0006 likelihood of reaching
90% reduction by 2030.

Fig 8 shows the projection of the optimal pathway to the 90% reduction goal and 2 pathways
that use either the maximum prevention (PrEP) or care (ART) levers in isolation. The PrEP-
alone improvement scenario is a pathway in which only the PrEP levers are maximally
increased, and ART-alone improvement scenario similarly maximizes the levers for ART
while leaving PrEP levers untouched. Neither of these scenarios achieved the levels of reduc-
tion attained by the optimal combination strategy, but the PrEP-alone scenario gets close.

Robustness of results

To ensure the robustness of our results, we explored the sensitivity of our main model out-
comes (the decision tree for achieving 90% reduction by 2030) for variations in the 2 inputs
for which we have relative uncertainty: “treatment discontinuation rate” for those receiving
care for longer than 2 years, and the “rate of testing”. First, we compared our main decision
tree with two alternative fitting values parameters of “treatment discontinuation rate”. This
comparison (S3 Appendix) revealed minor differences in the order of splits and the overall
rates of success depending on the fitting method used; however, the pathways to attaining the
desired reductions of annual incidence remain nearly identical. As such, we conclude that our
model provides a robust set of core lever combinations required to achieve the reduction
goals. Next, we compared modeled outcomes for different rates of testing. In the absence of
detailed local data on testing rates, our model assumed behaviors to follow uniform rates of
77.1% of individuals receiving annual testing [59], a rate that we vary in the second set of
robustness checks. The results of this analysis (5S4 Appendix) show that increases in the rate of
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Fig 6. Projected incidence over time: Projected number of incidence cases over time for the baseline model (blue) and the optimal 90%
reduction scenario (green). Solid line shows the mean projection; colored surface, the 80% Prediction Interval. The black line shows observed levels
based on the most recent CDPH surveillance data.
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testing yields minor differences in the order of splits and the overall rates of success. However,
the pathways to attaining the desired reductions of annual incidence again remain stable.

An exception is that extreme increases in the rate of testing can negate the need for

increases in retention in HIV care. This is not a surprising observation, because in our model,
testing for HIV-positive individuals is synonymous to their potential to re-engage in treat-
ment, and those who are already HIV positive will re-engage in treatment after receiving a pos-
itive test result.
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Fig 7. Projected number of incidence cases over time based on Bayesian posterior predictive distribution: Solid line shows the mean projection;
colored surface, the 80% Prediction Interval. The black line shows observed levels based on the most recent CDPH surveillance data.

https://doi.org/10.1371/journal.pone.0274288.9007

Discussion

Our model results suggest that the GTZ goal of a 90% reduction in new HIV diagnoses by
2030 will require considerable scaling up of interventions and strategies in both the prevention
and care cascades. Our results highlight the importance of a combination of retention in HIV
care and the central role of PrEP, at full scale, to reach this goal. Our findings align with previ-
ous observations made by Shah and colleagues [7] and Jenness et al [8] in that all models sug-
gest limited impact of retention in HIV care in isolation. Similarly, our findings support the
claims made by Khanna et al [28] that neither linkage to PrEP car nor retention in PrEP care
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Fig 8. Projected number of incidence cases over time for extreme scenarios: Projected incidence over time for 90% reduction (green); the ART-
only scenario that maximizes only ART related levers (yellow); and the PrEP-only scenario that maximizes only PrEP related levers (purple).
The solid line represents the mean of each projection; colored surface, the 80% Prediction Interval.

https://doi.org/10.1371/journal.pone.0274288.9008

in isolation is likely to achieve GTZ goals. Our experimental design that encompasses both
treatment and prevention simultaneously provides a comprehensive overview of what combi-
nation of interventions is required to “get to zero”. In contrast to previous work [7, 8], we find
that complementing retention in treatment (ART) with increased testing has only limited
impact, and that the path to substantial reduction in new HIV diagnoses and “getting to zero”
necessitates substantial efforts in prevention using PrEP with increased levels of retention in
treatment. Our model results suggest that pathways with a strong likelihood of attaining the
GTZ goal at minimum entail an annual increase of 4 percentage points in the percent of people
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linked to PrEP care (from 7% to 47% by 2025 and 67% by 2030); 75% or more of people receiv-
ing PrEP being retained in PrEP services annually; all people receiving PrEP to be fully adher-
ent; and 96.7% of people with HIV to be retained for 3 care visits after diagnosis. While we
find that the PrEP cascade has more room for improvement than the care cascade, and hence
seems to have a larger potential to move the needle initially, only a combined effort that
includes increases in retention in HIV care has a reasonable chance of success when it comes
to achieving the GTZ goals. Similar to the study by Nosyk et al [9], our results support and
stress the considerable contribution of a status neutral approach [60].

The main goal of GTZ is to reduce new incident cases by 90% by 2030, and to achieve this
goal this plan highlights a multi-sector collaboration focusing on two sub-goals: (1) increase by
20 percentage points the number of people living with HIV who are virally suppressed, and (2)
increase by 20 percentage points the number of people vulnerable to HIV who use PrEP. In
considering the cascades of treatment and care produced by the scenario that is most efficient
in attaining the main GTZ goal we found these sub-goals poorly aligned with the main GTZ
goal. Our optimal scenario far exceeds the suggested 20 percentage points increase in people
vulnerable to HIV who use PrEP. What is more, this scenario failed to reach the first sub-goal
and did not yield the suggested 95% viral suppression levels. Our model results also suggest
that an optimal intervention approach may reach the main GTZ goal without reaching 95%
viral suppression. In doing so, our results assess the potential success of a set of interventions,
can inform evaluation of ongoing progress, and identify critical sub-aims within the GTZ ini-
tiative, all of which are critically important for policy makers.

While mostly consistent with previous HIV modeling work in different contexts, our mod-
el’s focus specifically on MSM in Chicago presents a challenge as to the generalizable of our
findings. While the local context is likely to impact the numerical results of interventions, the
robustness of the found optimal path to reducing the epidemic suggests that even without
numerically identical outcomes our work contributes to the body of work (e.g., [9]) that high-
lights the need for a status neutral approach to end the HIV epidemic. Similarly, our focus spe-
cifically on unprotected sex among MSM prevents us from drawing a comprehensive picture
of the system-level HIV dynamics in Chicago. However, the fact that this model accounts for
roughly 70% of new incidence cases in Chicago makes us confident that our identified path
extends well beyond this population, while we acknowledge that numerical values will likely
differ in a full population approach. Similarly, while numerical results are likely to vary outside
our context, the robustness of our pathways to “getting to zero” is likely to persist and may be
generalized across similar contexts.

Limitations and future work

There are several limitations in our study. In interpreting our models results it is important to
recognize that our model considers measurable levers of change rather than implementation
strategies. As such, the question of which specific interventions, implementation strategies,
and resources are needed to achieve these changes remains unanswered. Translating model
outcomes into decisions about implementation strategies requires a mediation model that
accounts for the complex systems involved [61]. Specifically, the levels used in our experiment
are dimensional aspects devoid of knowledge about the intensity required to achieve these lev-
els. For example, obtaining nearly perfect retention in HIV care can be modeled easily, but
may be difficult to attain in practice. Therefore, when interpreting model findings, one should
consider that an intervention target in the experiment, or a given level of intensity in modifica-
tion, does not translate directly into an actionable approach in practice. While intervention
levels in each lever are chosen to represent the range of what is theoretically possible, we did
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not consider the practical implementation efforts required to attain these levels. Additionally,
there are substantial differences between the 6 levers. The number of levels differ by lever, and
the baseline values for each lever are different. Furthermore, the efforts required to move from
one level to the next can differ greatly, not only across levers but also within a lever itself. For
instance, facilitating linkage to care might be easier than maintaining someone in care, and
increasing the percent retained in care from 50% to 51% is likely easier than improving it from
99% to 100%. When interpreting the model’s results, it is crucial to be aware of this abstraction
and use the model as an input to decision making rather than a replacement of that process
altogether.

Additionally, as any model by definition is an abstraction, its power depends on its underly-
ing assumptions. Being transparent in the validation and fitting process reveals limitations,
boundaries, potential areas for further model development, and critical assumptions made in
the model and as such has been an integral part of our reporting. Below we summarize the spe-
cific limitations related to the Levers of HIV model itself.

First, we found that our ART treatment module might have dynamics that were potentially
incomplete, which would make it a prime candidate for updating. Our current mechanism is
underspecified in terms of capturing the rates of dropping out of care (for those in treatment
>2 years) and the process of re-engagement in care. While we have addressed this by consider-
ing a fitted term (for which we found no major impacts in our sensitivity analysis), we are cur-
rently in the process of refining this module based on more detailed local data from the CDPH
pertaining to the care cascade.

Second, we found that racial disparities in incidence are only partially captured by our
model. While we incorporated community-level factors that represent underlying structural
factors and social determinants driving such disparities, fully explaining disparities will require
additional refinement to the health disparities module. Although our model provides evidence
that individual risk behaviors do not explain the existing disparities, integrating accurate
mechanisms that drive disparities into our model is far from trivial. To open the black box of
what is driving disparities and understand what interventions are needed to address them, a
more comprehensive module should incorporate more detailed geo-spatial dynamics and
other drivers of disparities such as stigma. It is a future aim for the research team and CDPH
to better understand these disparities and to create more equitable intervention policy.

Third, it is important to note that our experimental design does not cover all interim steps
in the prevention and care cascades. While the levers in our experiment cover “treat” and “pro-
tect” dimensions of intervention [9] a third relating to “diagnosis and screening” by means of
testing is not completely covered in our experimental design. While an HIV test is a first step
in (re)connecting to the care system, accurate local rates of HIV testing are scarce, and only
linkage to care behavior is observed by local jurisdictions. As such, we opted to remove screen-
ing as a lever and instead check for potential impact of the testing rate as part of our sensitivity
analysis, finding it to have limited impact on our modeling results.

Last, our model does not address exogenous factors that would either enhance or facilitate
the achievement of high levels of the levers considered. Long-acting injectables, for example,
could well promote adherence to PrEP and ART [62], making the high levels required to
achieve 90% reduction more likely. Other exogenous factors could delay GTZ, such as the
COVID-19 pandemic, which has diverted efforts away from meeting HIV goals in multiple
locations [63] and is quite likely delaying GTZ progress. Such potential shocks to system
dynamics are not considered in our model.

While our model has limitations, its value for decision support is notable. As George
Box put it, “All models are wrong, but some are useful”. Our model is particularly useful as a
tool that provides evidence and concretely describes the level of scale-up needed to reach goals
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in a situation where uncertainty is great. Although the current model does not provide the
answer to a complex problem such as how to achieve the GTZ goals, its predictions can inform
potential systemic change, and such information can be used as inputs for the discussion on
what to target in intervention and implementation strategies. Further extensions of this model
can inform which implementation strategies are likely or unlikely to meet or approach the
levers needed to achieve the GTZ goals.

Conclusion

We present a new high-fidelity ABM for decreasing HIV infections among MSM, focused on 6
levers of the prevention and care cascades. To support decision making by the local health
department this model is aligned to the Chicago context, uses local individual level and com-
munity data, and has system behaviors that are validated against local HIV surveillance data.

Using detailed simulation experiments we found that achieving the GTZ goal of 90% reduc-
tion in HIV incidence by 2030 will require considerable and rapid scale-up of intervention
efforts that go beyond those currently in place—beyond what has been envisioned as required
to achieve this goal. Our findings suggest that achieving the GTZ goal for Chicago requires a
status neutral approach that combines interventions in both prevention for HIV-negative indi-
viduals (through increased linkage, adherence, and retention to PrEP) and treatment for those
who are HIV-positive (through increased retention in care). This approach can help policy
makers plan and scale strategies needed to yield the greatest results on the HIV epidemic and
achieve local and national goals to end it.
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