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ABSTRACT
In the U.S. context, science standards encourage educators to engage
students in modeling practices, including computational modeling.
While much work has investigated the productivity of computa-
tional modeling with respect to students’ development of scientific
content knowledge, less work has focused on students’ development
of knowledge and skills for participation in computational mod-
eling practices. A first step in understanding how these practices
develop is examining students’ activity in the context of compu-
tational modeling environments with attention to the productive
moves they make. These moves can provide insight into the knowl-
edge they bring to their learning, which may be foundational to the
development of more sophisticated engagement in computational
modeling practices. This paper presents empirical results of an
investigation of the knowledge one student brings to her interac-
tion with a computational modeling microworld as she models the
spread of disease.

CCS CONCEPTS
• Social and Professional Topics; • Human-Centered Comput-
ing;

KEYWORDS
Science education, Computational modeling microworlds, Meta-
theoretic competence
ACM Reference Format:
Hillary Swanson and Uri Wilensky. 2024. Meta-Theoretic Competence for
Computational Agent-Based Modeling. In Symposium on Learning, Design
and Technology (LDT ’24), June 21, 2024, Delft, Netherlands. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3663433.3663458

1 INTRODUCTION
In the U.S. context, science education has shifted from teaching
students the content and skills of science separately, to helping
students learn both together in an integrated way, through partici-
pation in science practices [14], [28]. The perspective at the heart
of this reform is that students should construct the knowledge of a
domain through participation in its knowledge-building practices
[33]. Theory building is a key activity of science [36]. Recognizing
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its importance, the Next Generation Science Standards (NGSS) fea-
ture theory-building practices such as modeling and explanation
as standards for K12 science education [27].

Modeling has been a focus of design and empirical work within
science education research. Activities have been designed for engag-
ing students in the exploration, construction, evaluation, revision,
and application of different kinds of models, ranging from phys-
ical microcosms [22], [25], to drawn models illuminating causal
mechanisms “a level below” [20] a phenomenon [9], [19], [23], [29],
to mathematical models [21], [37]. Computational modeling is a
key theory-building practice of contemporary science [15], [34],
[44]. A number of research programs have developed learning en-
vironments featuring computational models. These environments
support a range of activities, from exploring and modifying compu-
tational models, to building, testing, and debugging them [7], [8],
[11], [12], [30], [41]. A subset of this group has designed learning
environments for engaging students in computational agent-based
modeling [42], [43], [45], [47], [50]. These environments support
exploring, building, testing, and debugging models of agent-level in-
teractions, to more accurately simulate the emergence of observable
phenomena at the aggregate level. Computational agent-basedmod-
eling environments are designed to help students explore complex
systems phenomena, from thermal equilibration to predator-prey
dynamics [46], [49].

While much work has investigated the productivity of computa-
tional modeling with respect to students’ development of scientific
content knowledge [3], [5], [32], [46], [49], less work has focused on
students’ development of knowledge and skills for participation in
computational modeling practices [24]. A first step in understand-
ing how these practices develop is examining students’ activity in
the context of computational modeling environments with atten-
tion to the productive moves they make. These moves can provide
insight into the knowledge students bring to their learning which
may be foundational to the development of more sophisticated
engagement in computational modeling practices. By understand-
ing the knowledge resources that are drawn out by computational
modeling environments, designers can tune modeling activities to
more systematically elicit and develop these resources into expert
practices.

Prior work has characterized students’ productive participation
in modeling practices in the context of computational modeling
environments, attending to the informal knowledge and skills they
leverage. This includes work documenting students’ prior knowl-
edge regarding particular phenomena [52] and work identifying the
productive moves they make in computational modeling activities
[39], [40]. The present work builds on this foundation, offering a
high-resolution characterization of the knowledge underlying the
productive moves made by one student during her construction
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of an agent-based computational model. The paper ends with a
discussion of how this knowledge might be intentionally drawn
out and developed through the design of modeling activities.

2 THEORETICAL FOUNDATIONS
2.1 Theory-Building Games
The present work views theory-building practices, including com-
putational modeling, through the lens of epistemic forms and games.
Collins and Ferguson [6] characterize the knowledge-building work
of scientists as epistemic games. Using the game of tic tac toe as an
analogy, they explain how a particular epistemic form guides the
play of an epistemic game. In tic tac toe, the crosshatch structure
(form) dictates the possible moves a player can make and therefore
the play of the game. In scientific games, scientists make moves to
fill out target forms, which are templates that organize the knowl-
edge they are building to address a particular research question or
more general inquiry. In filling out the form, scientists produce
a specific epistemic artifact through the enactment of particular
moves.

Collins and Ferguson introduce a number of forms and associated
games, including lists (e.g., a list of subatomic particles), hierarchical
lists (e.g., a taxonomy of the animal kingdom), spatial and temporal
decompositions (e.g., a diagram of an electrical circuit and a model
of the life cycle of a butterfly), constraint equations (e.g., Boyle’s
law), and aggregate-behavior models (e.g., an agent-based model of
predator-prey dynamics). A temporal decomposition, for example,
is a form that scientists use to understand the steps in a sequential
process. Piaget’s stage model of development is an example of a
temporal decomposition, as is a model of the life cycle of a star.
The simplest template for a temporal decomposition is a sequence
of steps composing a longer process. Moves played to fill out the
template include identifying meaningful steps in a larger process,
dividing the process into those discrete steps, and arranging them
in sequential order. More complicated temporal decompositions
may include causal drivers to explain transitions between steps. To
build these, the game entails additional moves, such as proposing a
possible cause for the transition between each pair of steps.

The present work examines a child’s engagement in a particu-
lar kind of theory-building game, focused on the construction of
a computational agent-based model. In the computational agent-
based modeling game, a player fills out a template structured by a
computational agent-based modeling environment. The template
requires them to write a program that, when run, simulates a com-
plex systems phenomenon of interest. The program must specify
the system’s initial conditions, as well as the behavior of individual
agents and their interactions. When the player runs the model,
the individual agents behave according to the rules encoded in
the program. Agent interactions ultimately lead to an emergent
phenomenon at the aggregate level. The phenomenon’s cause is
not interpreted as due to any particular sequence of agent interac-
tions and is instead understood as the outcome of countless random
individual interactions. In this paper, our focal student builds a com-
putational agent-based model of the spread of disease. An epidemic
is an emergent phenomenon, which appears at the population level
as a result of individuals’ interactions at the agent-level.

2.2 Knowledge as a Complex System
Thepresent work views knowledge as a complex system of elements
drawn into networks depending on the sense-making demands of
a given task or context. This view is described most precisely
by the knowledge in pieces heuristic epistemological framework
(KiP) [10]. KiP views the novice knowledge system as consisting
of less rigidly structured and more context dependent networks
than the expert knowledge system. It views the process of learning
as a gradual “tuning toward expertise” [10] through which the
more pliable and context-dependent novice knowledge system is
reorganized and refined into the more coherent and rigid expert
system. As such, the novice knowledge system is viewed as rich
with resources for the construction of new knowledge [17,] [35].
This makes KiP an anti-deficit perspective [1]. A primary concern
of the KiP enterprise is elaborating the framework with machinery
for building computationally explicit models of human knowledge
and learning.

Towards this, a number of KiP researchers have proposed on-
tologies of knowledge elements identified through grounded anal-
yses of rich process data. These ontologies include elements of
intuitive knowledge used to explain phenomena of our everyday
experience, such as phenomenological primitives (p-prims) [10]
like “more effort leads to more result.” They include epistemological
resources [17], such as “knowledge is truth taught to us by scientists
and teachers.” This work identifies elements of knowledge used
by individuals to engage in theory-building games. This space of
knowledge is called meta-theoretic competence.

2.2.1 Meta-Theoretic Competence. Meta-theoretic competence
(MTC) is a space of knowledge elements, which an individual
draws on during their engagement in a theory-building game [38].
These elements serve different functions in the individual’s enact-
ment of the game’s moves. Some elements orient the individual
to the game and others operationalize the moves through which
it is played. Orienting elements include epistemological resources,
such as knowledge of the epistemic form and entry conditions for
the game. Operating elements include knowledge elements that
facilitate the execution of the moves through which the game is
played. Operating elements share a family resemblance with skills
and procedural knowledge [2]. These two kinds of knowledge ele-
ments work synergistically with substantial knowledge to facilitate
an individual’s engagement in an epistemic game (Figure 1). Sub-
stantial knowledge includes descriptive and explanatory knowledge
elements, such as knowledge of facts and causal intuitions such as
p-prims.

It is conjectured that each individual would bring a different
space of meta-theoretic competence to the same theory-building
game, reflecting their unique experience and education. It is further
conjectured that each individual would bring a different space of
meta-theoretic competence to different games, as each game has a
different form, requires different moves, and is focused on explain-
ing a different phenomenon. This paper presents a fine-grained
investigation of the meta-theoretic competence one student brings
to their engagement in a computational agent-basedmodeling game,
identifying the moves they make and proposing elements of orient-
ing and operating knowledge underlying those moves.
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Figure 1: An individual’s meta-theoretic competence is the
space of knowledge they draw on to enact the moves of a
theory-building game. It includes orienting and operating
knowledge elements.

3 METHOD
This paper presents an instrumental case study to illustrate the
meta-theoretic competence underlying a student’s engagement in
a computational agent-based modeling game. The case study is
drawn from a larger study investigating middle school students’
engagement in different approaches to scientific theory building,
including the construction of computational agent-based models.

A practical goal of the larger project is to make computational
agent-based modeling accessible to middle school students. The ob-
jective is to lower the threshold for participation in computational
modeling so that science teachers might engage their students in
the construction of scientific content knowledge through compu-
tational modeling practices. Towards this, the project has focused
on designing block-based microworlds using the NetTango web
interface [18]. NetTango makes the computational power of Net-
Logo [45] accessible to modelers by providing, for each model, a
curated library of blocks that represent a narrow range of primi-
tives needed for modeling a focal phenomenon. Previously called
semantic blocks [51] and now called domain blocks [42], the blocks
are, from a student’s point of view, primitive elements of code that
represent agents’ actions, which can be combined to model a spe-
cific phenomenon. The project has designed domain-block libraries
for simulating a number of complex systems phenomena, including
the spread of disease [26], [47].

The empirical focus at the heart of the larger project is under-
standing how children use the blocks to engage in scientific theory
building. The present study is focused on answering the question
“What knowledge do students draw on in their construction of com-
putational agent-based models?” More specifically, it is focused on
understanding the meta-theoretic competence students draw on
during their attempts to build, test, debug, and make sense of a
model of a flu epidemic.

To address this question, a 1.5-hour interview with a middle
school student called Sage was analyzed. Sage was 13 years old
and had just started 8th grade at her local public school. Sage
had previous experience with block-based programming, having
participated in a one-day coding event at school where students
were introduced to Scratch. The programming was not, however,
used for the purpose of computational modeling. During the in-
terview, Sage explored the Spread of Disease modeling microworld.
Figure 2 shows the microworld with a model that has been built
and initialized. The black box to the left is the world. The world
shows the activity of the agents, which are programmed to behave

Figure 2: Spread of Diseasemicroworld, featuring Sage’s final
model of Ebola, which she modified to produce her initial
model of a flu epidemic.

according to the rules specified by the model. The setup and go
buttons are controlled by procedures (red blocks), which the user
must drag from the block library (far right) into the modeling field
(middle) and then define by connecting with blocks (purple, gray,
and green), such as move, if contact person, and infect. The box be-
low the world and modeling field displays a graph of the percentage
of the population that is sick, at any given point in time.

During the interview, Sage had command of the modeling mi-
croworld. The interviewer guided her through tasks and questions
from a semi-structured protocol. The interview opened with an
introduction of the microworld’s features through open exploration.
The interviewer then guided Sage through a sequence of modeling
tasks, through which she modeled the spread of each of several
diseases of her own choice. The interviewer prompted Sage to begin
each task and then asked questions to understand the motivation
and reasoning behind the moves she made as she engaged in the
task.

The interview with Sage was video- and audio-recorded and
her interaction with the microworld was captured by recording
the computer screen. The audio recording was transcribed and
analyzed along with the screencast using a fine-grained grounded
approach, called knowledge analysis [13]. The knowledge analysis
was directed at identifying the knowledge underlying Sage’s theory-
building activity, with a particular focus on identifying evidence of
orienting and operating elements of meta-theoretic competence.

The analysis proceeded as follows. First, the screencast of Sage’s
interview was reviewed to identify episodes during which she en-
gaged in buildingmodels for particular diseases, including Ebola, flu,
and a zombie apocalypse. The flu episode was selected for further
analysis, and decomposed into steps ofmodel building, testing, sense-
making, and debugging. These steps were organized sequentially,
to preserve their temporal order. Over the course of the 17 minutes
that Sage worked on her model of the spread of flu, she refined her
model across six drafts. For this paper, one cycle of model building,
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testing, sense-making and debugging was selected for analysis. For
each step, transcription of Sage’s utterances and verbal interactions
with the interviewer were analyzed to determine her moves. Her
moves were then explained in terms of meta-theoretic competence,
as motivated by particular elements of orienting knowledge and
facilitated by particular elements of operating knowledge. Below is
the temporal decomposition of Sage’s first four steps in modeling a
flu epidemic, highlighting the meta-theoretic competence she drew
on to play her computational agent-based modeling game.

4 FINDINGS
Sage sits at a desk in an office with the interviewer at her left. She
faces a laptop screen, viewing the Spread of Disease modeling mi-
croworld. She has been exploring the microworld for 40 minutes.
She began with open exploration, experimenting with different
combinations of blocks and observing the resulting activity in the
world. At the interviewer’s request, she turned her attention to
building and debugging a model of Ebola. Having produced a model
that matched her expectations of the disease, the interviewer asks
Sage how she would modify the code to model the spread of flu. Fig-
ure 2 (above) shows Sage’s final model of Ebola, which she modifies
to model the spread of flu. Sage’s modeling activity is presented be-
low, as a piecewise trajectory of four steps. Each step is illustrated
with transcript and presents a summary of her moves. Elements of
orienting and operating knowledge are then proposed (in italics),
which are conjectured to underlie her enactment of moves. Figures
are then presented to visually summarize the knowledge used by
Sage in her enactment of each move.

4.1 Step 1: Building the Initial Model
Sage examines the model of Ebola, considering how to modify the
code to model the spread of flu.

Sage: If it was flu, hmm, it’s less deadly.
Interviewer: OK
Sage: Like, I don’t know, like 10%. [Sage decreases the
deadliness parameter from 50.2% to 10% to 5.5%]

In this step, Sage determines that flu is less deadly than Ebola
and adjusts the probability that a sick agent will die, purposefully
selecting a new parameter value. She indicates some uncertainty re-
garding the parameter value, qualifying her choice with the words
“I don’t know.” Her moves and utterances suggest she is draw-
ing on a rich space of meta-theoretic competence and substantial
knowledge (Figure 3). She orients to her activity with a goal set
by the interviewer: to modify the Ebola code to model the spread of
flu. She appears to have heuristic knowledge that the deadliness
parameter for Ebola can be modified to model the spread of flu. This
leads to a sub-goal: to determine the deadliness of flu, relative to
Ebola. Her determination of the deadliness of flu with respect to
Ebola indicates the existence of operating knowledge facilitating
her comparison of the deadliness of Ebola with the deadliness of flu,
and substantial knowledge regarding the deadliness of Ebola and
flu. Sage’s purposeful selection of a new value for the deadliness
parameter indicates that she is orienting to the move with the goal
of modifying the deadliness parameter to model the spread of flu.
The move also indicates the existence of substantial knowledge
determined by her previous move, that flu is less deadly than Ebola,

and operating knowledge facilitating her purposeful adjustment of
the slider, to decrease the deadliness parameter. Her recognition of
her own uncertainty regarding the appropriate value of the param-
eter indicates a kind of metacognition, an awareness of the limits
of her own knowledge, and her utterance “like 10%,” suggests she
knows that approximation is a productive heuristic for modeling.

4.2 Step 2: Testing the Initial Model
The interviewer asks Sage how she thinks her modification is going
to influence the model outcome.

Sage: . . . I think the epidemic is going to spread like
much further because, um, people like when people
are moving around and infecting people, they’re like,
they’re, they’re not, they don’t have like a 50% chance
of dying every time. […] And so people weren’t,
people were dying faster than they were coming in
contact with people instead of. . .

In testing her initial model, Sage demonstrates a rich space of
meta-theoretic competence and substantial knowledge (Figures 4
and 5). She makes a prediction for the outcome of the model run,
comparing her expectation with results of previous runs of her
model of Ebola and explaining the aggregate-level outcomes of
those runs as the result of agent-level interactions. Her cognitive
activity is driven by the interviewer, who has oriented her to her
work with the goal of predicting how the modified code will change
the model outcome. This goal entails a sub-goal of comparing her
prediction for the outcome of the flu model with the outcome of Ebola.
Sage’s prediction further suggests she has orienting knowledge
that mental simulation can lead to realistic outcomes. Operating
knowledge facilitates her mental simulation of the flu model, and
her comparison of her imagined outcome of the flu model with the
observed outcome of the Ebola model. Her mental simulation also
entails substantial knowledge of the effects of her models’ parameters
on agent behavior. Sage’s explanation for the aggregate-level out-
come as a result of agent-level interactions suggests she is orienting
to the move with an aesthetic that it is important to explain the rea-
soning behind her prediction, which makes explaining her reasoning
a goal. Her explanation suggests operating knowledge facilitat-
ing her connection of the observed aggregate-level phenomenon and
agent-level behaviors. In explaining the causal relationship, Sage
appears to be drawing on substantial knowledge she constructed
while modeling Ebola, that if a disease is deadly to an infected indi-
vidual it will kill carriers before they can spread it to the rest of the
population.

Sage presses the “go” button, running the model to test her pre-
diction. She observes the model run, watching as the total number
of people in the world decreases as healthy people become infected
and sick people die. Running the model to test her prediction sug-
gests Sage orients to her activity with the aesthetic that a hypothesis
should be tested, which makes testing her prediction a goal. It also
suggests operating knowledge facilitating her start of the simulation.
Her observation suggests she orients to the model with the expec-
tation that it will produce meaningful results, which motivates a
goal of observing the model run, and has operating knowledge that
directs her attention to the visual displays of the simulation interface.
The outcome she observes contrasts with her Ebola model, where
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Figure 3: Left: The knowledge Sage draws on to determine that flu is less deadly than Ebola. Right: The knowledge Sage draws
on to purposefully select a new parameter value.

Figure 4: Left: The knowledge Sage draws on to predict how the outcome of the modified model will be different from that of
the original model. Right: The knowledge Sage draws on to explain the aggregate-level phenomenon as a result of agent-level
interactions.

Figure 5: Left: The knowledge Sage draws on to run the model and test her prediction. Right: The knowledge Sage draws on to
observe the model run.

all of the initially sick people died in the first few ticks of the model
run, leaving the rest of the population untouched and healthy.

4.3 Step 3: Making Sense of the Initial Model
The interviewer asks Sage if this model looks different from her
model of Ebola.

Sage: Yeah. Um, I think the percentage of population
is like going down as you can see. [Sage points at the
graph]
Interviewer: Ah, so what did you change in the um,
the flu case?
Sage: Well, people died less and it spread less. And
so, we went from like 221 people, 41 people because
it’s, um, it’s very infectious, but it’s like, like people

don’t die a lot. But when there are a lot of people then
people start dying. And then no one’s, then there’s
a less chance of getting infected. And so just people
keep dying and then eventually […] So, because no
one’s recovering, you can’t, I didn’t have it set to
recover.

In this step, Sage describes the flumodel’s outcome and compares
it with the outcome of the Ebola model. She interprets the graph to
understand what is happening at the aggregate-level, noting that
the population is decreasing over time and that 41 people have died
in this simulation, which she calculates using information from the
initial conditions programmed in the setup code and information
displayed in a box in the interface titled “number of people.” She
compares the results of this run with results of the previous runs
of the Ebola model. She explains the aggregate-level outcome in
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Figure 6: Left: The knowledge Sage draws on to interpret the graph of flu and compare it with Ebola. Right: The knowledge
Sage draws on to calculate the number of people who have died from the flu epidemic.

Figure 7: Left: The knowledge Sage draws on to explain the dynamics of the flu epidemic. Right: The knowledge Sage draws on
to identify a problem with the model’s code.

terms of agent-level behavior, expressing that the model of flu
produced a different aggregate-level outcome from the model of
Ebola because flu is less deadly than Ebola, to infected individuals.
Through her sense-making, Sage arrives at a powerful conclusion
about complex-systems dynamics: when a disease is deadly to an
infected individual, infected people die quickly and “there’s a less
chance of getting infected.” Flu is less deadly, so the disease is able
to spread to more of the population and ultimately kill more people.
Sage acknowledges that the population may have decreased too
much, because the only option for sick people is to eventually die,
as she left out of the model the possibility of recovering by leaving
out the “recover” block. In noting this, Sage connects the agent
behavior with the model code.

In making sense of the model, Sage demonstrates a rich space of
meta-theoretic competence (Figures 6 and 7). Her interpretation of
the graph and comparison with the Ebola model’s outcome is driven
by orienting knowledge, which is the goal (given to her by the in-
terviewer) of comparing the flu model’s outcome with the outcome
of the Ebola model. This goal entails a sub-goal of determining the
flu model’s outcome. Her interpretation of the graph is executed by
operating knowledge, which allows her to infer conceptual meaning
from the visual representation of the graph. Her comparison of the
flu model’s outcome with that of Ebola is facilitated by operating
knowledge executing that comparison. Her calculation of the num-
ber of people who had died suggests she orients to the task with
the goal of understanding how many people died in the flu model
as compared with Ebola, along with heuristic knowledge of how
the visual display can be used to calculate changes in population. It

suggests operating knowledge executing the calculation of change
in population.

Her explanation for the dynamics of the flu epidemic indicate
orienting knowledge, in the form of an aesthetic, that it is important
to explain the dynamics shown in the graph. This motivates explana-
tion as a goal. Operating knowledge works in coordination with
substantial knowledge about the effect of the model’s parameters on
agent behavior to facilitate her determination of a causal connection
between the agent-level interactions observed in the world with the
change in population observed at the aggregate level, represented by
the graph. Finally, her identification of a problem with the model’s
code indicates that she orients to the task with the expectation that
the model should produce results that align with experience, which in
this case, is encoded in substantial knowledge that people usually
recover from flu. This motivates the goal of identifying the source of
the unexpected behavior in the code, which is facilitated by operating
knowledge.

4.4 Step 4: Debugging the Initial Model
The interviewer asks Sage if she thinks as many people die in a flu
epidemic as shown in her model.

Sage: Probably not. It’s probably because I have the
infectivity high and people aren’t recovering. But
let’s say you recover like, I don’t know, 50%? No, like
75 but that’s going to be way too high. Yeah, 75 and
less infectious, and this will be hard to start your. . .
Wait, no, that’s recover, wait. Yeah. Infect like 10%.
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Figure 8: Left: The knowledge Sage draws on to determine that the model’s outcome is not realistic. Right: The knowledge Sage
draws on to explain the cause of the unexpected outcome.

At the interviewer’s prompting, Sage determines that hermodel’s
results are not realistic. She explains the unexpected outcome as
the result of an incorrect parameter setting and resulting agent-
behavior. She modifies the code to address the problem, adding
the “recover” block to the model and sliding the parameter value
to 73.1%. She also modifies a parameter to address the problem,
changing the probability of infection to 10.5%. In debugging her
model, Sage demonstrates a rich space of meta-theoretic compe-
tence (Figures 8 and 9). Sage’s determination of her model’s results
as unrealistic is motivated by orienting knowledge of the goal (set
by the interviewer) to assess her model’s performance against her
own expectations, and facilitated by operating knowledge, executing
her comparison of the model results with her expectations, which are
based on substantial knowledge that most people recover from flu.
Her explanation of the unexpected outcome suggests she orients to
the task with the expectation that the model should produce results
aligned with her experience, which gives her the goal of identifying
the source of the unexpected results. This motivates her search for
the cause of unexpected results in her model, which is facilitated by
operating knowledge. She arrives at an explanation by drawing on
substantial knowledge about the aggregate-level dynamics caused by
a high infection rate and a recovery rate of zero, which she developed
through her exploration of the model.

Having determined a potential cause, Sage orients to her activity
with the goal of modifying the model to obtain results aligned with
her expectations. Her modification is facilitated by operating knowl-
edge executing her addition of the “recover” block, her purposeful
selection of a high recovery rate and her decrease of the probability of
infection parameter. Her modification of the model through adding
the “recover” block, selecting a high recovery rate, and decreasing
the infection probability parameter is not based on prior knowledge
of infection or recovery rates for flu, but rather, substantial knowl-
edge of how each factor controls the behavior of individual agents,
and a growing sense for how the interactions at the agent level lead
to results at the aggregate level. Her attempt at debugging is more
of a reactive, “guess-and-test” tinkering, to see which parameters
need to be involved and to what values they must be set.

4.5 Step 5 – Step 22: Testing, Debugging, and
Making Sense of the Model

From this point forward, Sage continues to refine her model of flu,
engaging in another 18 steps of debugging, testing, and making

Figure 9: The knowledge Sage draws on to modify her model.

sense of model outcomes. The remaining steps feature most of the
same theory-building moves seen in the first 4 steps. In further at-
tempts at debugging, Sage modifies several parameters, decreasing
the recovery parameter again, increasing the infection parameter,
and decreasing the number of initially healthy people. She tests
the model after each parameter adjustment and observes the model
run to see if the modification solves her problem. She describes the
aggregate-level outcome of the model run and tries to explain it
in terms of agent-level behavior and interactions. She references
numerical data a number of times and does calculations in her head
to assess whether the results are realistic. Towards the end of the
activity, she slows down the model run to get a better sense for
what is happening at the agent level. She also engages in purpose-
ful exploration by comparing multiple trial runs, declaring that
she wants to “collect a dataset.” In total, Sage spends 17 minutes
refining her model across six drafts. She demonstrates evidence of a
rich space of meta-theoretic competence, engaging in sophisticated
modeling moves that may be motivated and facilitated by elements
of orienting and operating knowledge.

5 DISCUSSION
This paper presented a systematic investigation of the moves one
student enacted during her engagement in a computational agent-
based modeling game. A slice of the student’s work building, test-
ing, making sense of, and debugging a model of a flu epidemic
was analyzed. The episode was divided into 4 discrete steps and
candidate elements of meta-theoretic competence were identified,
including orienting knowledge motivating her moves and operating
knowledge facilitating their enactment.
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5.1 Contributions
The analysis of Sage’s construction of a model of a flu epidemic
suggests she has a wealth of knowledge resources for engaging
in the computational agent-based modeling game. This finding
makes an empirical contribution to literature concerned with using
computational agent-based modeling to teach science by building
on students’ intuitive resources [3], [43]. While previous work has
characterized content knowledge and skills students bring to their
productive participation in computational modeling activities [39],
[40], [52], the present work offers a high-resolution characteriza-
tion of the knowledge underlying one student’s construction of an
agent-based computational model. Importantly, the work charac-
terizes the knowledge motivating and facilitating the moves made
by the student in their enactment of a computational agent-based
modeling game. In this way, the work extends the KiP framework
with theoretical machinery for characterizing knowledge under-
lying students’ participation in computational modeling practices.
It also contributes to the broader discussion on engaging students
in authentic science practices [14], [28] by identifying resources,
which can be refined into scientific practices. In this way, the paper
joins the critical efforts of researchers urging educators and educa-
tion researchers to view students through an anti-deficit lens and
see their knowledge and activity as on a continuum with that of
expert scientists [1], [4], [31].

Finally, the paper makes a practical contribution to the design of
activities scaffolding students’ engagement in computational agent-
based modeling practices. Identifying the knowledge resources
students bring to their productive engagement in modeling can
help researchers design activities that intentionally draw out and
develop those resources into more sophisticated computational
modeling practices. For example, the analysis of the moves made
by Sage in building her initial model suggest that certain elements
of meta-theoretic competence facilitated her productive engage-
ment. These include orienting elements such as the goal of the
task, heuristic knowledge that one can modify the code of an ex-
isting model to produce a new model and that approximation is
productive in modeling, and the aesthetic that a hypothesis should
be tested. These also include operating elements such as the ability
to interpret a graph or purposefully manipulate a model’s parame-
ters. Activities in computational modeling microworlds could be
designed to intentionally elicit such knowledge from students in
the context of guided explorations and then help them reflect on
and develop it.

5.2 Limitations
While the results of this work can inspire the design of construc-
tivist computational learning environments and associated activi-
ties, it is important to recognize the limitations of the study. First,
it examines data taken from one interview with one student. The
results would likely have been different if a different student had
been interviewed or different prompts or microworld had been
used with the same student. Second, the data provide limited depth
and insight into the student’s knowledge. While rich interactions
between the student and microworld were captured, the analysis
attempts to go beyond merely describing observable moves and
explain those moves in terms of knowledge, which cannot be seen

but only inferred. As the construct of meta-theoretic competence is
in its infancy, so are methods for identifying and characterizing it.
It is therefore important to acknowledge the speculative nature of
the paper’s analysis. Despite this, the work is a step in a productive
direction. It is a fundamental assumption of KiP that knowledge
must underlie all thinking and purposeful action, and while it is
challenging to empirically study the knowledge involved in individ-
uals’ engagement in epistemic games, it is important to find ways
to study that knowledge and build theoretical models of it.
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