
Learning Agent-based Modeling with LLM Companions:
Experiences of Novices and Experts Using ChatGPT & NetLogo

Chat
John Chen Xi Lu David Du

Northwestern University University of California, Irvine Northwestern University
Evanston, IL, United States of Irvine, CA, United States of America Evanston, IL, United States of

America xlu30@uci.edu America
civitas@u.northwestern.edu duyuzhou2013@gmail.com

Michael Rejtig Ruth Bagley Michael S. Horn
University of Massachusetts Boston Northwestern University Northwestern University
Boston, MA, United States of America Evanston, IL, United States of Evanston, IL, United States of

michael.rejtig001@umb.edu America America
ruth.bagley@northwestern.edu michael-horn@northwestern.edu

Uri J. Wilensky
Northwestern University

Evanston, IL, United States of
America

uri@northwestern.edu

ABSTRACT
Large Language Models (LLMs) have the potential to fundamentally
change the way people engage in computer programming. Agent-
based modeling (ABM) has become ubiquitous in natural and social
sciences and education, yet no prior studies have explored the
potential of LLMs to assist it. We designed NetLogo Chat to support
the learning and practice of NetLogo, a programming language for
ABM. To understand how users perceive, use, and need LLM-based
interfaces, we interviewed 30 participants from global academia,
industry, and graduate schools. Experts reported more perceived
benefts than novices and were more inclined to adopt LLMs in
their workfow. We found signifcant diferences between experts
and novices in their perceptions, behaviors, and needs for human-
AI collaboration. We surfaced a knowledge gap between experts
and novices as a possible reason for the beneft gap. We identifed
guidance, personalization, and integration as major needs for LLM-
based interfaces to support the programming of ABM.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Natural language interfaces; • Computing methodologies →
Simulation support systems.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

KEYWORDS
Agent-based Modeling, NetLogo Chat, ChatGPT, Programming
Assistant, LLM Companion, Learning with LLMs
ACM Reference Format:
John Chen, Xi Lu, David Du, Michael Rejtig, Ruth Bagley, Michael S. Horn,
and Uri J. Wilensky. 2024. Learning Agent-based Modeling with LLM Com-
panions: Experiences of Novices and Experts Using ChatGPT & NetLogo
Chat. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3613904.3642377

1 INTRODUCTION
The advent of coding-capable Large Language Models (LLMs) has
the potential to fundamentally change the way people engage in
computer programming[25]. As LLM-based programming inter-
faces (e.g. GitHub Copilot; ChatGPT) become increasingly popular[46],
some studies started to study their user perceptions[84]. However,
the research on their potential learning impacts is still limited.
Many prior studies only focus on impressions of educators[46]
or students[100], with little empirical data on the actual learning
usage of these tools. On the other hand, a few studies started to
explore how LLM-based interfaces can be designed to facilitate
programming education, indicating potential advantages for learn-
ers. Notably, these studies suggest that learners with more prior
programming experience tend to beneft more[42, 57]. While a
recent study identifes some challenges for novice learners with
LLM-based interfaces[101], there is a gap in understanding why
experienced programmers seem to gain more learning benefts from
these tools.

In this paper, we present the design of a novel LLM-based in-
terface, NetLogo Chat, for the learning and practice of NetLogo.
NetLogo is a widely used programming language for agent-based

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642377

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3613904.3642377
https://doi.org/10.1145/3613904.3642377
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642377&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

modeling (ABM), which applies simple rules on multiple individual
agents to simulate complex systems[94]. It is particularly powerful
in capturing emergent phenomena, e.g., the spread of viruses or
predator-prey systems[93]. It is an important methodology in com-
putational modeling across scientifc disciplines and education from
K-12 to postgraduate levels[88], where scientists and educators are
highly in need of LLM-based interfaces[21, 59]. As an important
part of computational modeling, the priorities of ABM difer from
general programming[65]. A modeler needs to verify that their
conceptual design of individual rules matches the real-world pat-
terns (e.g. a predator needs food to survive), the code matches the
design (i.e. there are no unexpected or implicit assumptions), and
the aggregated outcome matches real-world phenomena (e.g. if all
prey die out, predators die too)[28]. As most LLM-related studies on
computer programming work on general-purpose languages that
LLMs perform best (e.g. Python or Javascript), no LLM-related stud-
ies have explored ABM or other forms of computational modeling
at this point.

NetLogo Chat was designed with constructionist learning princi-
ples and incorporated known best practices for ABM and computer
programming. Constructionism advocates for the design of learn-
ing experiences where learners construct their understanding of
the world (e.g. knowledge of ABM) through building personally
meaningful artifacts (e.g. an agent-based model around learners’
interests)[61]. Similar to GitHub Copilot Chat[1], NetLogo Chat
was integrated into an integrated development environment (IDE).
Diferent from previous designs, it aims to give users more control
over the human-AI collaboration processes, strives to incorporate
authoritative sources, and tries to provide more support for trou-
bleshooting.

Using both ChatGPT and NetLogo Chat as a probe[101], we con-
ducted a qualitative study to highlight the diferent perceptions,
behaviors, and needs of experts and novices during open-ended
modeling sessions. We interviewed 30 expert and novice partici-
pants from academia, industry, and graduate schools worldwide.
Participants proposed diverse NetLogo tasks from their disciplines
and worked toward their modeling goals. We asked interview ques-
tions before, during, and after their interaction with each design.
We answered the research questions:

(1) What perceptions - strengths, weaknesses, and adoption
plans - do expert and novice users perceive LLM-driven
interfaces to support their NetLogo learning and practice?

(2) How do expert and novice users use LLM-driven interfaces
to support their NetLogo learning and practice?

(3) What are expert and novice users’ needs for LLM-based
interfaces to support their NetLogo learning and practice?

Learners generally agreed with our design principles and sug-
gested additional features for future designs. As in other studies,
experts reported more perceived benefts than novices. Compar-
ing the diferent interaction patterns between experts and novices,
our study reveals a behavioral gap that might explain the gap in
benefts. We found that experts collaborated with LLM-based in-
terfaces with more human judgment in all activities than novices,
helping them overcome AI hallucinations, while novices struggled
with evaluating and debugging AI responses. From there, we identi-
fed components of a knowledge gap between novices and experts.

We reported experts’ and novices’ needs in LLM-based interfaces
in three key themes: guidance (from LLMs); personalization (of
LLMs); and integration (into modeling environments), many of
which confrm and develop the design decisions of NetLogo Chat.
The contributions of this paper include:

(1) The design and implementation of NetLogo Chat, an LLM-
based system that supports learning and practice of NetLogo,
a widely-used programming language for ABM;

(2) An empirical study that contributes to the understanding of
how novices and experts perceive, use, and express needs
for LLM-based programming interfaces in diferent ways;

(3) A theorization of the knowledge gap between experts and
novices that might lead to the behavioral gap, and sugges-
tions of potential design interventions;

(4) The design discussion and suggestions for building LLM-
based programming interfaces that beneft both experts and
novices in agent-based modeling more equitably.

2 RELATED WORK

2.1 LLMs for Computational Programming and
Modeling

Researchers have been exploring natural-language-based interfaces
for programming for decades, yet early attempts were mostly ex-
ploratory and limited in capabilities. NaturalJava[64] required users
to follow a strict pattern when prompting, while later systems (e.g.
NaLIX[47] or Eviza[73]) asked for a specifc set of English expres-
sions. This created difculties for users and system designers, as
they felt “a main challenge of NLP interfaces is in communicating to
the user what inputs are supported.”[73] Without the capability to
generate natural languages, those interfaces were also constrained
to one-of interactions.

Recently, a new generation of LLMs demonstrated the capability
to understand and generate natural and computer languages. GPT-3
was examined in writing code explanations[52], documentation[44],
and providing feedback for assignments[3]. Soon, educators started
to believe that Codex could be used to solve simple programming
problems[27, 90]. Embedded in ChatGPT, GPT-3.5-turbo and GPT-4
demonstrated even stronger capabilities in programming. More
and more LLMs have gained the capability of coding (e.g. PALM 2;
Claude 2; CodeLLaMA 2), ushering in a new era of natural language
interfaces for programming.

Even the most powerful LLMs sufer from hallucinations and
may misunderstand human intentions. Early users of ChatGPT
complained about incorrect responses and struggled to prompt
ChatGPT for a desired output[74]. While LLMs might outperform
average humans in specifc, structured tasks[58], the evaluation
criteria might have been fawed[50], as LLMs struggled to combine
existing solutions for a novel challenge[23]. A study suggested
developers should not rely on ChatGPT when dealing with new
problems [81].

LLMs are naturally less prepared in low-resource programming
languages (LRPL). Here, our working defnition for LRPL is similar
to that of natural languages: with relatively scarce online resources
and have been less studied by the AI feld[53]. LRPLs are not less im-
portant: NetLogo, the most widely used programming language for
agent-based modeling (ABM)[80], is used by hundreds of thousands

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

of scientists, educators, and students for computational modeling.
ABM could simulate complicated emergent phenomena using sim-
ple computational rules for individual agents. It has been frequently
used in diferent scientifc disciplines[93] and science education[35]
for recent decades. With considerably fewer online resources to
train on, LLMs are much more prone to errors and/or hallucinations
with LRPLs[79].

A few studies attempted to improve LLMs’ performance with
LRPLs in two directions. First, some studies fne-tuned founda-
tional LLMs with LRPL datasets[12]. While this approach demands
considerable datasets and computational power, it has not been ap-
plied to generative tasks yet[31]. Second, some studies used prompt
engineering techniques. For example, aiming at simple tasks, a
study creates grammar rules for LLMs to fll in[86]. Another study
leveraged compiler outputs, allowing LLMs to improve their Rust
code iteratively, but was only tested in a smaller number of fxed
tasks[97]. The potential of LLMs in scientifc disciplines, including
in computational modeling, is rarely explored. Currently, the only
study targeted at STEM helps with a very specifc engineering task
[45].

2.2 User Perception and Behaviors with
LLM-based Programming Interfaces

Two strands of user perception and behaviors studies informed
our design and study: studies of conversational agents (CAs); and
LLM-based programming interfaces. For education, CAs were used
to develop learners’ writing[85], self-talk[29], and programming
skills[95]. Many of them are pedagogical conversational agents
(PCA) to mimic the behaviors of human tutors adaptively[96]. PCAs
could serve in multiple roles, such as tutors[85], motivators[11],
peer players[30], or learning companions[29].

Prior research of CAs underscored the importance of understand-
ing user perception and behaviors[30], yet the technical boundaries
of the pre-LLM era limited designers’ freedom. Previous studies
have explored aspects such as trust, mutual understanding, per-
ceived roles[18], privacy[69], human-likeness[36], utilitarian bene-
fts, and user-related factors[49] to understand users’ acceptance
and willingness to use CAs. However, many CAs before LLMs
had to use pre-programmed responses[87], and simply emulating
functional rules from human speech failed to deliver people’s high
expectations of CAs[19]. Without the capability to read or write
code, pre-LLM CAs for computing education were largely limited
to providing relevant knowledge[95] or supporting conceptual un-
derstanding of programming[48].

Recent studies have started to understand user perception and
behaviors with LLM-based programming interfaces. In education,
early studies focused on instructors’ and students’ perceptions of
LLM-based interfaces for programming. Computer science students
self-reported many potential benefts of using ChatGPT and were
less inclined to report potential drawbacks[100]. On the other hand,
computer science instructors were signifcantly concerned about
students’ widespread usage of ChatGPT[46]. While some instruc-
tors went as far as banning ChatGPT altogether, others suggested
exposing students to the capabilities and limitations of AI tools,
leveraging mistakes in generated code for learning opportunities.

Both instructors and students expressed the need to adapt to a new,
LLM-era way of teaching and learning[102].

For professionals, challenges and opportunities co-exist with
LLM-based programming interfaces. Recent studies found program-
mers preferred to use Copilot[84] and fnished tasks faster with
Copilot[62]. Yet, Copilot struggled with more complicated prob-
lems, providing buggy or non-reproducible solutions[23]. Profes-
sional programmers faced difculties in understanding and de-
bugging Copilot-generated code, which hinders their task-solving
efectiveness[84]. Programmers who trusted AI were prone to write
insecure code with AI[63]. For conversational interfaces, despite
inputs being in natural languages, users felt that they needed to
learn LLM’s “syntax”[26, 37].

Our understanding of user perception and behaviors with LLM-
based interfaces during (the learning of) computer programming is
still very limited. As the feld just started exploring this direction,
previous studies mostly focused on general user impressions[102],
or conducted behavioral tasks on pre-scripted, close-ended tasks[62].
While close-ended settings made it easier to assess objective metrics[7],
open-ended contexts open a wider window to understanding users’
learning patterns, behaviors, perceptions, and preferences[8]. For
example, a recent study observed two modes that professional pro-
grammers interact in open-ended tasks with Copilot: acceleration,
where the programmer already knows what they want to do next;
and exploration, where the programmer uses AI to explore their
options[4]. Another study on professionals’ prompt engineering
shed light on their struggles, challenges, and potential sources of
behaviors[101].

Still, we noticed two gaps in previous studies. First, a majority
of studies chose professional programmers or computer science
instructors/students as participants, while millions of people also
use LLM-based interfaces without a CS background for program-
ming tasks. Second, as HCI studies mostly focus on languages that
LLMs are known to perform best, e.g. Python or HTML, little is
known about user perceptions and behaviors when computational
modeling or LRPLs are involved.

2.3 LLM-based Interfaces for Learning
Programming and Modeling

While LLMs have shown promising potential in supporting human-
AI collaboration in programming, most design studies were pre-
liminary, and LLM-based interfaces for computational modeling
remained understudied. For example, the Programmer’s Assistant
integrated a chat window into an IDE[68]. Beyond simple integra-
tions, GitHub Copilot Chat[1] provided in-context support within
code editors, yet its user studies were still preliminary[10]. A simi-
lar design was done on XCode without a user study[78]. Another
study explored the integration between computational notebooks
with LLMs and emphasized the role of the domain (in this case,
data science) on LLM-based interface design[55].

LLMs have gained much attention among programming educa-
tors, but the design study is insufcient. Recent studies tested LLMs
on introductory programming tasks and achieved unsurprisingly
high scores[16, 70]. This prospect leads to great concerns among
computer science instructors as they observed the widespread us-
age of ChatGPT among students[46]. Yet, only a few LLM-based

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

design studies targeted programming learning. Using a Wizard of
Oz prototype, a study underscored the importance of supporting
students’ varied degrees of prior expertise[67]. A design study re-
ported positive short-term performance gains when young, novice
programming learners engaged with Codex[42]. Another study also
found LLMs’ benefts for novice programmers[57]. Both studies
found that more experienced programmers tended to beneft more,
yet the reason was still unclear.

In this study, we invoke the learning theory of Constructionism[61]
to inform our LLM-based system and empirical study design. While
Constructionism has no rigid defnition, it argues that learning
happens most felicitously when learners "consciously engage in
constructing a public entity"[61]. In the context of computer pro-
gramming, it means learning happens naturally through program-
ming computers, as it iteratively externalizes learners’ internal
understanding of the world in code, and then allows learners to im-
prove their understanding through watching how the code runs[60].
Moreover, it argues that computer programming is not as abstract
or formal as it appears; individual programmers’ approaches are
often concrete and personal, in pluralistic ways[83]. However, the
pluralism in thoughts is more difcult to capture by close-ended
tasks (such as a problem set) and objective metrics (such as comple-
tion rate/time)[8]. As such, constructionist learning studies often
prefer open-ended tasks (e.g. making games[40], designing instruc-
tional software[32], creating agent-based models in NetLogo[8]) 3.1 Design Overview
and qualitative studies, as they open windows into the nuances of
learners’ perceptions and behaviors in more natural and realistic
settings.

The Logo programming language and its descendants (e.g. Scratch;
Alice; NetLogo) succeeded in supporting multiple ways of knowing
and thinking in computing education and scientifc research[75],
yet to our knowledge, no published studies have explored their
synergy with LLMs. Many prominent constructionist design princi-
ples could be applied to AI-based interfaces[41] and inspired the
design of NetLogo Chat. For instance, “low foor, high ceiling, wide
walls” asks learning environments to provide 1) an easy entrance
for novices (low foor); 2) the possibility for experts to work on
sophisticated projects (high ceiling); 3) the support of a wide range
of diferent explorations (wide walls); 4) the support of many learn-
ing paths and styles[66]. We also learned from previous design
studies that stress the importance of adaptive scafolding[14, 72]
and support debugging[9] for novices to learn NetLogo. Hence, we
contributed to the feld one of the frst design studies of LLM-based
interfaces for learning programming that follow the constructionist
tradition.

3 NETLOGO CHAT SYSTEM
NetLogo Chat is an LLM-based system for learning and program-
ming with NetLogo. It comprises two main parts: a web-based in-
terface integrated with Turtle Universe (a version of NetLogo)[13]
(See 3.1); and an LLM-based workfow that improves the quality
of AI responses and powers the interface (See 3.2). We iteratively
designed the system by:

(1) Based on authors’ experiences in teaching NetLogo, we cre-
ated a design prototype based on the constructionist learning
theory (see 2.3), with a focus on supporting users iteratively

build up their prompts and smaller code snippets before
working on entire models. We developed a proof-of-concept
system, using prompt engineering techniques to interact
with GPT-3.5-turbo-0314.

(2) We internally evaluated the proof-of-concept with a group
of NetLogo experts. During this process, we encountered
frequent hallucinations with NetLogo (grammatical or con-
ceptual mistakes; inventing keywords that do not exist; etc).
For the system to provide guidance, we realized that author-
itative sources are necessary for LLMs’ performance;

(3) We incorporated the ofcial NetLogo documentation and
code examples into the system using prompt engineering
techniques (see 3.2), evaluated other LLMs’ potential, and
then conducted pilot interviews to evaluate the system with
three external NetLogo experts invited from NetLogo’s mail-
ing lists. The interviews used a protocol similar to the one
we formally used (see 4.2), with more fexibility and open-
endedness;

(4) Based on the external feedback, we identifed the need for
supporting troubleshooting, leading to the design decision
3.1.3. We upgraded the underlying LLM to GPT-3.5-turbo-
0613, fxed many minor usability issues, and fnalized the
prototype we used in the empirical study.

Figure 1: NetLogo Chat asking for details about human’s
needs.

3.1.1 Enable users to program the computer, rather than being pro-
grammed by the computer. Over-reliance on LLM-based interfaces
has become a major concern among educators and some learners,
where students blindly follow the instructions given by LLMs with-
out attempting to construct their representations of knowledge.
Such a scenario is antithetical to the constructionist learning tradi-
tion, where Seymour Papert’s fear of "computers program children"
comes back to life again[60].

Inspired by the Logo language, the design of NetLogo Chat aims
to give control back to learners: to suppress LLMs’ tendency to give
a quick response that often assumes too much about the learner’s
inclination, we force it to ask clarifcation questions more often. Fig

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 2: ChatGPT assuming details of human’s needs.

1 and Fig 2 provide an exemplary comparison between NetLogo
Chat and ChatGPT’s reaction to a simple modeling request. Here,
ChatGPT immediately assumes details of the user’s needs and gen-
erates an entire model for the user to copy and paste. Meanwhile,
NetLogo Chat attempts to frst clarify the user’s needs by asking
follow-up questions and suggesting exemplary answers. The sug-
gestions in Fig 1 serve as both an inspiration, in case learners get
confused about what to write; and a shortcut, in case learners fnd
any suggestions immediately usable.

For this feature to work efectively, it is essential to ask questions
with quality. To achieve this, we used a few-shot approach and
crafted templates for LLMs to follow. We conducted an informal
evaluation of LLM’s generated questions during our development
process and empirical study. Across the board, the LLM we used
was able to generate questions with acceptable quality, similar to
the one demonstrated in Fig 1. A future design could embed a larger
set of templates and retrieve a few relevant templates when needed.

3.1.2 Invoke Authoritative Sources Whenever Possible. Hallucina-
tion is another major concern for LLMs, particularly in an LRPL
like NetLogo. For example, the code generated by ChatGPT in Fig
2 contains multiple syntax issues and requires human experts to
address them. More powerful LLMs sufer from the same symptoms.
We submitted similar sample requests to GPT-4, PaLM2, Anthropic
Claude 2, and Falcon-180B: none could produce syntactically correct
code for a classical NetLogo model.

Following previous examples in related tasks[38], we integrated
NetLogo’s ofcial documentation and model examples to help im-
prove LLMs’ and human performance. Diferent from previous
studies, we not only provided related examples to LLMs, but also
revealed them to users. By doing so, we seek to improve the trans-
parency of LLM’s mechanism, foster trust in the LLM-driven system,
and provide authoritative guides and examples for users even when
LLMs might fail to provide precise support.

Figure 3: NetLogo Chat’s embedded editor for generated code.

3.1.3 Integrate with the IDE and Enhance Troubleshooting. We seek
to integrate NetLogo Chat into NetLogo’s IDE beyond integrating
a conversational assistant parallel to the code editor. To facilitate
a constructionist learning experience, the code editor needs to be
integrated into the conversational interface, where learners can
work with smaller snippets of code with more ease. Thus, the design
might lower the threshold for learners to tinker with the code, a
key learning process advocated by the constructionist literature
[61, 83].

Fig 3 provides a concrete example, where the embedded editor
displays a piece of generated code. Instead of having to copy and
paste the piece back into the main editor, the user could frst see
if any syntax issues exist in the code; run the code within a con-
versation; and ask follow-up questions or raise additional requests,
before putting back a working code snippet into their projects.

To further support the user’s troubleshooting, in addition to
error messages, NetLogo Chat will display extra debugging options
for users. Users could choose to look for an explanation, or ask the
LLM to attempt fxing the issue on its own, or with the user’s ideas.
During the process, the system will attempt to fnd documentation
and related code examples to reduce hallucinations. Building on
the literature on error messages’ impact on learning[5], we also
clarifed many messages to provide a better context for humans
and both LLM-based systems used in the study.

3.2 Technical Implementation

Figure 4: A brief outline for NetLogo Chat’s LLM workfow.

Since OpenAI started to provide fne-tuning on GPT-3.5-turbo
(the version also used in ChatGPT Free) only after we concluded the
main study in July, NetLogo Chat was implemented with prompt en-
gineering techniques. We built our project on ReAct[99], a prompt-
based framework that could reduce hallucination, improve human
interpretability, and increase the trustworthiness of LLMs. By re-
quiring LLMs to generate an action plan and delegate the action to

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

a third-party conventional agent (e.g. search for documentation, ask
clarifcation questions, conduct a static syntax check, etc.) before
composing the fnal response, the framework provides a promising
pathway to integrate external inputs (e.g. human input, ofcial
documentation) into LLM workfows. Fig 4 depicts a rough outline
of NetLogo Chat’s workfow. Imagine a user requests to "create a
predation model":

(1) The LLM is instructed, in the prompt, to frst elaborate on
the request (planning): "The user intends to create an agent-
based biology model related to predation. However, it is
unclear what exactly the user wants. We need to ask follow-
up questions."

(2) Next, the LLM is instructed to choose an action from the
list: Ask clarifcation question(s); Search for documentation;
Write a response; Say sorry. Here, imagine the LLM chooses
"Ask clarifcation question(s)" based on the planning.

(3) Then, the LLM needs to generate some questions based on
the request. Because LLMs are trained on real-world data,
it is not difcult for them to come up with some ideas. For
example, "What species do you want to put in the model?"
The LLM is also instructed to provide some examples, e.g.
"Wolf", "Sheep".

(4) When the user replies to the questions, the loop restarts
from step (1). Since there is sufcient information about
the request, the LLM decides to search for information, and
also generates keywords for the search, e.g. "Wolf-sheep
predation model in NetLogo".

(5) The system conducts a semantic search on a pre-assembled
database of NetLogo’s ofcial documentation and code ex-
amples. The system returns the search result, use it as a new
round of input, and restarts from step (1).

(6) With inputs from both the user, who clarifed the request;
and the database, which supplies the example; the LLM plans
again, chooses to write a response, and generates its fnal
response.

In the example, we initiated three requests with the LLM, each
with a prompt template that results in a structured response[99]
(e.g. any response needs to have a Plan, an Action, and a Parame-
ter). Each request could use a diferent LLM that works best for the
specifc request. Using this approach, the system can potentially
balance cost, performance, speed, and privacy. For example, a fu-
ture iteration of NetLogo Chat could leverage a fne-tuned local
LLM to probe the user’s intentions and search for documentation.
Then, with any personal or sensitive information stripped away,
the system could forward the compiled request to a powerful online
LLM (e.g. GPT-4).

For the empirical study, we chose GPT-3.5-turbo-0613 as NetLogo
Chat’s LLM backend. First, we expect most participants to be using
the free version of ChatGPT, driven by the same LLM. This way, we
would have a fair playing feld for the empirical study, where both
systems will be used. Second, at the time of our study, the response
time for GPT-4 was too long to sustain a real-time experience, while
we had no access to other NetLogo-capable LLMs’ APIs. Although
we did observe some remarkable improvement when internally
evaluating the system (e.g. ChatGPT has trouble answering ques-
tions for lesser-known NetLogo keywords, while NetLogo Chat

Table 1: Overview of Participant Demographics (n=30)

Gender Females: 10 (33%); Male: 19 (63%); Non-binary:
1 (3%)

Geography Africa: 1 (3%); Asia and Oceania: 5 (17%); Eu-
rope: 8 (27%); Latin America: 2 (7%); North
America: 14 (47%).

Occupation Academics: 14 (47%); Professionals: 12 (40%);
Students: 4 (13%)

does not), a more systematic evaluation rubric is needed for future
research.

4 EMPIRICAL STUDY

4.1 Participants
For the empirical study, we recruited 30 adult participants through
NetLogo’s ofcial Twitter and mailing lists; and through the Com-
plexity Explorer, a website run by Santa Fe Institute (SFI) to distrib-
ute learning resources of agent-based modeling (ABM). The exact
breakdown of participants’ demographic data can be seen in Table
1. The participant pool largely represented the scientifc modeling
community in NetLogo’s main audience, with a majority of partici-
pants coming from STEM disciplines. Many participants were also
related to the educator sector. 6 participants (20%) were instructors
who teach or are interested in teaching NetLogo in classrooms; 4
(13%) were graduate-level students interested in learning NetLogo,
making up a third of the population. Participation in the study
was voluntary. All participants signed an online consent form on
Qualtrics.

Building on the tradition of understanding the diference be-
tween experts and novices[17], we separated the participants into
experts and novices using self-reported survey data. To mitigate the
efect of inaccurate responses, NetLogo experts in the team, who
have been core developers and instructors of NetLogo, watched
every video and decided if a participant greatly overestimated or
underestimated their capabilities. We considered the participant’s
discussions with the interviewer, the think-aloud process, and the
coding behaviors. A vast majority of users’ reports correspond
with the experts’ judgment. Then, to simplify the analysis, we sepa-
rated participants (Table 2) by their levels into two main categories:
experts, who are either experts in NetLogo or programming in
general; and novices. In the study, we denote experts by the prefx
E (E01-E17) and novices by N (N01-N13). 13 experts had previ-
ous experience with ChatGPT (76%), including programming (65%,
n=11). 11 novices (85%) also used ChatGPT before, but much less
for programming (38%, n=5).

4.2 Interviews
Our study was conducted in 3 phases:

(1) We pilot interviewed 3 experts invited from NetLogo’s online
community. Each was asked to comment on LLMs for NetL-
ogo learning, as well as on ChatGPT and an early prototype
of NetLogo Chat.

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 2: Participant Information

ID Region Level (NetLogo) Level (Programming) Occupation
E01 North America Expert Expert Professional
E02 Asia and Oceania Expert Intermediate Academic
E03 Latin America Intermediate Expert Academic
E04 North America Expert Expert Academic
E05 Europe Intermediate Expert Academic
E06 North America Intermediate Intermediate Academic
E07 Latin America Intermediate Intermediate Professional
E08 Asia and Oceania Intermediate Intermediate Professional
E09 Asia and Oceania Intermediate Expert Professional
E10 North America Intermediate Intermediate Academic
E11 Africa Intermediate Expert Academic
E12 North America Intermediate Intermediate Academic
E13 Europe Expert Novice Academic
E14 Europe Intermediate Intermediate Academic
E15 Asia and Oceania Expert Expert Student
E16 Asia and Oceania Novice Expert Professional
E17 Europe Intermediate Expert Academic
N01 North America Novice Novice Professional
N02 North America Novice Novice Academic
N03 North America Novice Novice Professional
N04 North America Novice Intermediate Student
N05 Europe Novice Intermediate Student
N06 Europe Intermediate Novice Student
N07 North America Novice Intermediate Professional
N08 North America Novice Intermediate Professional
N09 North America Novice Novice Professional
N10 North America Novice Intermediate Professional
N11 Europe Novice Intermediate Academic
N12 Europe Novice Novice Academic
N13 North America Intermediate Novice Professional

(2) We improved the design of NetLogo Chat based on what we
learned from the pilot interviews and revised the interview
protocol accordingly.

(3) We conducted formal interviews with 27 online participants
(30 in total).

Each semi-structured interview lasted between 60-90 minutes
and was video recorded. Prior to each formal interview, participants
were asked to come up with a short NetLogo task that they were
interested in working on. Almost every participant brought forward
a modeling task from their career domain or personal interest, e.g.
to model "how honeybees decide to regulate the temperature of
the hive", or "the spread of conficting ideas". Only once, when
the task scope was too complicated for the session, did we ask
the participant to bring another. During any part of the interview
process, interviewers generally followed the protocol, asking follow-
up questions when needed. Specifcally:

(1) We asked baseline questions, e.g., “What do you think are
the potential advantages / disadvantages of using LLMs in
supporting your learning and programming of NetLogo?”
(in 2 separate questions)

(2) We asked the participant to work on their task with the help
of ChatGPT. Then, we asked the same baseline questions
again, then asked “What do you like or dislike about the
interface”. Repeat the procedure with NetLogo Chat;

(3) If time permitted, we further asked about their preferences
for learning and/or programming with NetLogo and asked
which feature they wanted to add/remove from either system.
Here, the objective was not to strictly compare the two sys-
tems, but to elicit more in-depth discussions over LLM-based
interfaces.

Since almost all users have already engaged with ChatGPT, we
did not randomize the order of ChatGPT/NetLogo Chat. Also, 3
participants used the paid version (GPT-4) during the task with
ChatGPT. While much of the generated data comes from the in-
evitable comparison between the two systems, we chose not to
interpret them as objective comparisons. Instead, the diferent de-
sign principles underpinning the systems presented two objects to
think with[60], that our participants drew on during their refec-
tions and discussions of LLM-based programming interfaces.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

4.3 Data Analysis
Our interviews resulted in around 40 hours of video data. Around
half of our data is behavioral in nature, where participants worked
on their tasks and were encouraged to think aloud; the other half is
more verbal, where participants answered questions. As such, each
interview was not only transcribed verbatim, but also watched by
a researcher to create observational notes. The two streams were
then combined into a single archive for analysis.

Based on our research questions, we iteratively applied the
grounded theory approach[22] to analyze our data. During each
step, the research team fully discussed the discrepancies between
each researcher and iteratively refned the codebook to improve
consistency. The analysis reached theoretical saturation at around
50% of interviews, when additional interviews no longer revealed
unexpected major insights for our research questions. Then, we
fnished the rest of qualitative coding with the fnalized codebook
(Table 3).

(1) Four researchers open-coded 2 interviews, one from a novice
and one from an expert, to summarize the topics mentioned
by participants. During this process, researchers coded in
diferent tabs to avoid interference. Three broad themes
emerged from this phase: participants’ approaches to pro-
gramming; participants’ interactions with AI systems; and
their comments on AI systems.

(2) Taking notes of the emerging themes, the frst author created
a preliminary codebook that categorizes dozens of codes
into themes. Each researcher coded another 2 interviews
in diferent tabs. In this phase, we refned the themes into
approaches to programming (which also helps to separate
experts and novices); perceptions and observed behaviors
related to AI systems; and comments on AI systems’ abilities.

(3) Based on the coding results, the frst author created a formal
codebook, with defnitions clarifed based on the discrepan-
cies between researchers (Table 3). To reduce the unbalanced
infuence of subjective interpretation, researchers only coded
explicit behaviors; or direct comments. To avoid missing in-
sights, researchers were instructed to highlight places where
existing codes cannot cover the topics. During the frst two
weeks, a few codes were created or merged as a result of
discussions. We retrospectively revised our coding.

Based on the codebook, the frst author iteratively incorporates
themes into an outline. To further mitigate individual diferences,
researchers were asked to include as many codes as possible for
each quote or observation.

5 FINDINGS

5.1 Perception: Before and After Interaction
5.1.1 Before Interaction: Positive Expectations. Prior to the tasks,
both novices and experts had positive expectations of LLM-based
interfaces for NetLogo, with novices holding higher expectations
than experts.

Both novices and experts expected LLM-based interfaces to save
human time and support human efort, especially compared to other
help-seeking activities. With LLMs, human time and energy could
be liberated for more high-level tasks (E12 , N03). Educators

felt that LLMs could facilitate more efcient teaching, allowing
students to “more complicated things with relative ease”, spiking
“their imagination.” (E02) LLMs can also bring emotional benefts
by reducing the fear of “bothering the teachers or the experts”
(E14) or asking “stupid questions” (N06).

Most participants highlighted AI’s potential to help them with
NetLogo’s syntax. For most participants, NetLogo is not the main
programming language they used. Before the advent of ChatGPT,
N06 felt that she needed to “recite the words (syntax of NetLogo)”.
Yet, the need was eliminated when “AI can teach you very quickly”.
Many experts also needed support, as NetLogo “has very strict
syntax rules” (E07) which makes writing more difcult.

Novices, in particular, expected that AI could be helpful for trou-
bleshooting. N08 , for instance, felt that LLMs could help him
through the troubleshooting process by describing “what I’m try-
ing to do and get a snippet of code that helps get me past that
block”. For novices without a background in programming, this
future looks promising. N12 is interested in the potential to “make
programming more approachable to students”.

5.1.2 Before Interaction: Negative Expectations. Almost every par-
ticipant expressed concerns or reservations about LLM-based inter-
faces. Yet, the concerns of novices and experts were conspicuously
diferent.

Experts focused on preserving human judgment. E01 believed
that AI should not “replace human judgment and ability”. Similarly,
E06 insisted that “(human) has to do the main thinking and ideas
and all of that.” E17 felt that humans cannot let AI “take over
the main reasoning and emotions, the emotions intervening in the
decisions.” Many educators were also “concerned about learning”
(E13), fearing the tendency to “default to the AI system to come up

with the answers instead of working through it ourselves” (E12).
Many experts explicitly explained their rationales. For example,
E08 was concerned that “if a model points me to a suboptimal di-
rection, I will have no idea, because I haven’t considered alternative
structure”. E15 feared that relying on AI responses might “make
your horizon narrow” because she would miss learning opportuni-
ties when browsing through the models library. For computational
modeling, AI also might lack “in-depth knowledge in a specifc feld”
to create an entire model (E05). As such, E05 would only trust
AI to “fnish a specifc task”.

Novices were more optimistic and more concerned with their ca-
pabilities of understanding AI’s responses or making AI understand
them. For example, while N04 thought “one of the hypothetical
drawbacks” to LLMs being “confdently incorrect”, they added that
“people are like this too”. On the other hand, N03 feared that she
would waste more time with AI if “it didn’t understand me, or if
I had difculty expressing”. N02 acknowledged that “there is a
limitation to not knowing how to code (on how much AI could
help).” Without knowledge of NetLogo, N11 felt difcult to spot
LLM-generated mistakes.

5.1.3 Afer Interactions: Diferent Impacts of Hallucination. All par-
ticipants encountered AI hallucinations throughout the sessions.
While some participants rated NetLogo Chat higher than ChatGPT’s

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 3: An Overview of the Codebook

Code Defnition
Approaches User’s perceptions about their approach to programming tasks, e.g. planning, separating into

smaller pieces, or working on it as a whole.
Learning How users learn NetLogo or programming in general, or think that people should learn.
Coding How users organize or write their code, or think that people should organize or write.
Help-seeking How users seek help in general, or think that people should seek help.
Human-AI User’s perception and behaviors related to Human-AI relationship.
Prior Users’ prior experiences with ChatGPT or other AI-based interfaces.
Attitude Users’ attitudes toward AI in general, or specifc AI-based systems.
Efort AI’s infuence on how much, and what kind of, eforts that humans made or need to make.
Abilities User’s perception related to AI’s abilities.
Response AI’s ability to provide desirable responses for humans.
Support AI’s ability to support learning/coding of NetLogo.
Interactivity AI’s ability to facilitate helpful interactions with humans.

Table 4: Novices and Experts’ Perceptions on LLM-based Interfaces for NetLogo

Experts Novices

Before, Positive

LLMs could save human time and efort,
especially in syntax.

LLMs could save human time and efort,
especially for syntax, and provide emo-
tional benefts.
LLMs could help troubleshooting.

LLMs could mislead humans to subopti-
mal directions.

While LLMs may make mistakes, it is no
worse than humans.

Before, Negative
LLMs could hinder learning processes. LLMs may not understand human inten-

tions.
LLMs could only work on smaller tasks. LLMs’ responses are difcult to under-

stand.

After Interaction

LLMs supported learning or practicing by
saving time.

LLMs supported learning or practicing by
saving time.

Will continue to use LLMs for learning or
practicing NetLogo.

Will seek alternative learning resources
before continuing to use LLMs.

free version, most participants had similar changes in perceptions:
experts, in general, reported more benefts from LLMs than novices.

Some participants reported more positively about NetLogo Chat’s
capabilities. Several experts questioned ChatGPT’s training in Net-
Logo, yet they trusted more in NetLogo Chat, for it incorporates
authoritative sources (see 3.1.2). E16 believed that NetLogo Chat
“understands your NetLogo syntax” and “the basic aspects of Net-
Logo”. N02 thought NetLogo Chat still had bugs but was “much
more informative and precise than ChatGPT.” As NetLogo Chat
is designed to support troubleshooting (see 3.1.3), E04 thought
NetLogo Chat “was able to kind of do some better troubleshooting
to a certain extent, for it clarifes error codes”.

In both cases, experts understood hallucinations as an inevitable
part of human-AI collaboration and reacted with more leniency.
When E03 frst encountered an incorrect response, he exclaimed:
“Very interesting! You’re mistaken.” E05 felt that LLMs helped him
“fnish most of the code”, though he still needed to “debug and see if
the code makes sense logically.” As experts did not rely on LLMs to
resolve issues but mostly leveraged them as a shortcut, E06 stated
that hallucinations were instances “where the programmer needs

to use own experience and discretion”, as risks would escalate if
one extrapolates “what ChatGPT provides you in a wrong manner”.

Novices, on the other hand, reported more obstacles and frustra-
tion, as they relied more on LLMs for their tasks. N07 emotionally
responded to a hallucination that ChatGPT “apparently made that
shit up”. N01 had difculties to “fx the bugs that were in it (the

generated code).” N08 ’s session ended up “hitting a dead end”,
with the frustration leading him to “go consult other resources”.

Most novices and experts still thought that LLM-based interfaces
supported their learning or practicing by saving time. Even though
N03 had “low trust” in ChatGPT, she still felt more confdent after
collaboration, for it “narrowed down the stuf I have to fgure out
myself and has made me much faster already.” As an educator, N12
felt that LLMs facilitated a constructionist learning experience in
which “you’re being thrown into the culture and have to learn it
on the fy.” E13 thought he learned a syntax from ChatGPT that
would “save me time in the future” and the learning process was “a
lot faster than if I were doing it by hand”.

As experts reported more perceived benefts, they predominantly
intended to continue using LLM-based interfaces for NetLogo. After

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

the task, E11 felt confdent that “I can write anything I want to
write”. Yet, many novices, driven by their frustration with LLMs,
sought alternative learning resources before considering a return.
N04 , for instance, had a 180-degree turn: expressing great hope
before the tasks, they now inclined to “build more by myself with
my own code, without AI.” N13 thought that she would prefer
to work with “someone who is familiar with the programming
language” together with LLMs.

5.2 The Behavioral Gap Between Novices and
Experts

5.2.1 Behavioral Gap in Planning and Prompting. While experts’
and novices’ tasks were similar in terms of complexity, we observed
diferences between how novices and experts plan out their tasks.
Since most participants gradually adapted their prompting styles,
we focused on participants’ frst-round prompts.

Two initial prompting patterns, one emphasizing modeling the
entire system and another focusing on smaller, initial aspects of the
task, emerged from our interviews. Most novices adopted the frst
pattern (11/13, 85%), while many experts adopted the second pattern
(9/17, 53%). Below, we introduce one vignette for each pattern:

(1) N05 started by asking: “I need to make a model of the
bunch of agents who are trying to promote political views
to other people (...)”. Although he used GPT-4, the returned
code still had several syntax errors. N05 then spent the
next 20 minutes trying to ask GPT-4 to fx issues without
success. He expected to “put the idea into it and we’ll run
the code”, but in the end “it didn’t happen.”

(2) E07 started by asking ChatGPT to “write code for drawing
a rectangle”. When GPT-3.5 failed to divide the rectangle
further, E07 instantly pivoted to another strategy: “I have
the following code that draws a rectangle. I want you to
modify it so the rectangle is divided by two”. GPT-3.5 still
failed, yet it produced working code and did “something
close to it”.

The second prompting pattern involved remarkable mental ef-
forts to decompose and plan out the task. For example, E07 de-
scribed his approach as “separate into small, general tasks you want
to do.” E04 explained that he “just likes to iteratively build (the
code)”. On the other hand, in the frst pattern, many participants
attempted to shortcut the eforts by delegating the tasks to AI, as
N05 said: “I just want to ask it (ChatGPT) to just directly make a
code for this task and that’s it.”

By the end of the task, most participants had realized the impor-
tance of breaking tasks into smaller pieces for coding with AI. Nat-
urally, when an LLM-based interface generated code with mistakes,
a participant would be (implicitly) guided to ask smaller follow-up
questions. Soon, many of them realized the benefts. N01 thought
it would be better if one “works through real small problems frst,
before getting to more complicated problems.” N10 would “start
with something really basic.” Experts using the frst pattern had
similar ideas. For example, E12 decided to restart “with something
simple and just work with it.”

5.2.2 Behavioral Gap in Coding and Debugging. As most partici-
pants engaged with an agent-based modeling task that they never
worked on, both experts and novices learned some aspects of Net-
Logo with the help of AI - although, in diferent ways. Experts
usually took a much more measured, prudent, and critical approach
during coding and debugging, while novices mostly followed AI’s
instructions.

Most novices focused on reading AI’s explanations and followed
AI’s instructions during their coding processes. ChatGPT often
gives instructions like “You can copy and paste this code into NetL-
ogo and run it”. Even without this hint, almost all novices would
copy and paste the generated code without much reading. The ten-
dency worried some novices, but they had no choice: “I feel like
I’m waiting for someone to tell me the answer, rather than learning
how to solve it.” (N11)

Experts put more emphasis on the code, often ignoring the ex-
planations provided by AI. During their reading, experts evaluated
and often criticized the responses, planning their next steps along
the way. Only a few experts tried copying and pasting the code to
see if they worked out of the box. Other experts selectively copied
and pasted parts of the code into their programs, or wrote their
programs with generated code on the side. Even when they copied
and pasted the code, experts were more cautious. For example,
while E04 decided to “just take this and see what this does”, he
also realized that AI-generated code would override his ideas and
manually edited the code.

All participants inevitably had to debug parts of the generated
code. Yet, novices sought support from AI more frequently and
often struggled with AI responses. For example, N12 would regu-
larly “copy the code that doesn’t make sense and go back to AI to
see if it can help me.” N09 complained that while ChatGPT gave
suggestions, “it obviously requires fddling around with it.” As she
had little idea about NetLogo, it became a purely trial-and-error ex-
perience. Even when AI did solve some errors, it was challenging for
novices to learn from the process. For example, N04 commented
that while NetLogo Chat provided an automated process, it was still
difcult for him to get the lesson, “since I didn’t write it myself.”

5.2.3 Behind the Behavioral Gap: The Knowledge Gap. We identi-
fed a knowledge gap that may lead to the behavioral gap. When
novices realized they needed to spend more efort decomposing
the task or vetting AI responses, they found themselves lacking
the necessary knowledge. In participants’ own words, we summa-
rized the four components of a knowledge gap that novices need
to overcome when working with AI.

Novices reported the need for conceptual knowledge of modeling.
For example, N07 described his experience as “like being adrift on
an ocean. Without a compass, and without a map.” With only a basic
understanding of agent-based modeling, N11 felt compelled to
accept ChatGPT’s response as “I don’t really know how to interpret
some of the output from it.” Such feelings correspond with novices’
tendency to skim through AI responses. Whereas, some novices
asked for help from LLMs with diferent degrees of success. N04
frst asked: “(...) Can you tell me what I will need to do before we
begin?” With AI’s suggestions, N04 had some more success asking
follow-up questions.

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 5: Novices and Experts’ Behaviors During Human-AI Collaboration

Experts Novices

Planning & Prompting

Many start by asking LLMs for a
smaller aspect of the task.

Most start by asking LLMs to work on the
entire task.

"NetLogo, I would like to spawn 50 tur-
tles"

"I want to use netlogo to help me model how
honeybees regulate the temperature in their
hive. What should I do?"

Evaluating
Focus more on the generated code. Focus more on the generated instructions.
"Talks too much. I want the code, not the
explanation yet."

"I am reading the text a little bit and it spits
out a bunch of code. So it did give me steps,
which is nice."

Coding

Most selectively copy and paste code,
or write code on their own.

Most start by copying and pasting LLM-
generated code.

"It’d be that I just take this and see what
this does. "

“This time it gives me.. two boxes to copy.”

Debugging

Debug themselves, or with help from
AI.

Debug with (more) help from AI.

"Oh, I didn’t ask him to move. That is
my problem."

"I’m going to ask it the same question, but I’m
confused why it said something about patches."

The unfamiliarity with the basic concepts of NetLogo and/or
coding in general further adds to the difculty in prompting and
understanding. After reading a guide suggested by NetLogo Chat,
N07 realized that he “probably wouldn’t have chosen NetLogo
to ever begin with” for his database-related task. Other novices
were often confused by NetLogo’s terms, even when they were
mostly in plain English. N03 was confused about “why (ChatGPT)
said something about patches” (note: patches are static agents that
form NetLogo’s modeling world), and that deepened her reliance
on ChatGPT. N10 realized that she “only understand 20% of what
I am reading, so I can’t vet it myself.” When the interviewer asked
about adding comments into code, N03 replied that while it might
be helpful, she was still missing “the high-level understanding of
how it comes together.”

Many novices also lack the experience for debugging, leading to
more unsuccessful attempts and more frustrations. Participants, in
particular novices, were often confused by error messages from Net-
Logo. N01 acknowledged that “without background knowledge,
it is hard to fgure out what the bugs are, if (LLM) gives you infor-
mation that is inaccurate.” Without experience in debugging, many
novices felt frustrated and helpless as previously reported. On the
other hand, E12 noted that his students “might not be comfortable

with the idea that debugging is a normal part of the process.” E01
believed that “the user needs a little practice in debugging their
own code” before working with LLM-based interfaces.

Most novices felt a need to learn to interact with LLMs. After
repeated failures, N01 felt that he did not “even know what ques-
tions to ask to get it to, because it is not doing the right thing.”
N06 thought AI would help a lot if she could “learn more about
how to use AI.” N05 realized that he needed to use the correct
keywords, for otherwise it “will never generate a good model.” This
knowledge is relatively easier to acquire though: while N09 felt
that “how to ask questions is very important”, she believed that
“you learn by actually doing it.”

5.3 Needs for Guidance, Personalization, and
Integration

5.3.1 "Good" Responses, "Bad" Responses. Participants generally
appreciate and expect less technical, clear instructions. Many of
them appreciate NetLogo Chat’s design decisions that include au-
thoritative sources in responses (see 3.1.2) and ask back clarifcation
questions (see 3.1.1). However, participants’ preferences are also
highly personal and situational.

For both designs, some participants explicitly went against exces-
sive or unnecessary explanations, particularly when the goal is pri-
marily to accomplish a task at hand. For instance, E09 complained
that GPT-4 “talks too much. I want the code, not the explanation
yet.” E14 complained that while related code samples provided
by NetLogo Chat could “contain a lot of good suggestions”, she
wanted to move them to “another box or an expandable line”.

Some participants appreciated and hoped that LLMs could stay
on topic and give smaller pieces of information at a time. E01
thought NetLogo Chat would be more helpful if it only attempted
to solve a bug “one at a time”, for users “always overfll their bufer”.
Novices, in particular, prefer concrete, step-by-step responses, given
their focus on AI-generated instructions. N04 wanted to “test one
by one if (LLM) gave me multiple suggestions.” Going beyond text
responses, N03 hoped that there could be “a visual to help me
better understand, or internalize what diferent elements of the code
are”, so her learning could move to a higher-level understanding of
the code’s intention.

For NetLogo Chat, most participants reacted positively to the
reference to authoritative sources (see 3.1.2), the usage of NetLogo’s
language, and the provision of links to sources. E03 believed that
“the possibility to go directly from this AI to the documentation”
would be helpful for his students. N10 “automatically like (Net-
Logo Chat’s response) better” because it used “NetLogo’s kind of
turtle and patch language.” E12 felt “a little bit more confdent
in the information I was getting because it seemed to be coming

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

Table 6: Users’ Needs for LLMs: Guidance, Personalization, and Integration

Guidance Personalization Integration
Should provide clear, less technical re-
sponses, stay on topic, and give smaller
pieces of information at a time.

Should provide responses based on users’
preferred styles.

Should provide better support for coding
chunks and iterative modeling.

Should provide responses based on authori-
tative sources and in NetLogo’s language.

Should provide responses based on the
knowledge levels and interests of users.

Should support working on existing model-
ing code.

Should assume less, clarify more, and stick
to user intentions for modeling.

Should support human help-seeking pref-
erences in diferent ways.

Should support input and output of compu-
tational modeling.

from inside of the application.” However, sticking too much to au-
thoritative explanations might have a downside. E10 complained
that NetLogo Chat gave him “dictionary reference”, and “dictionary
defnitions are not especially helpful.”

Many participants, in particular experts, reacted positively when
NetLogo Chat assumed less about and stuck more to their inten-
tions (e.g. asking questions back, see 3.1.1). For example, E09
commented that ChatGPT (GPT-4) “assumed what I wanted it to do,
whereas this one makes you specify your assumptions.” He prefers
NetLogo Chat’s approach, because “it makes you think about the
code more.” E12 felt that NetLogo Chat’s clarifcation of intention
was akin to “progressively guiding me towards a better prompt.”
As transparency is a key factor in computational modeling, N11
feared that if “anyone can produce an agent-based model, but with-
out actually understanding all the parameters”, hidden assumptions
introduced by ChatGPT could be detrimental.

5.3.2 Need for Personalization. In this section, we break down
the strong needs of experts and novices for more personalization,
besides response styles, into two themes: knowledge levels and
help-seeking needs.

Novices, in particular, felt a strong need for LLM-based inter-
faces to acknowledge their knowledge levels and produce responses
accordingly. N07 gave a stringent critique of both systems, feeling
both systems were “not useful at all”, for both “presumes you know
something about NetLogo”. N08 felt that “ChatGPT has no idea
of how much or how little I know about how to code in NetLogo,
or how to code in general.” Solving this issue would require more
personalized approaches. Coming from an educational background,
both N02 and E03 suggested that LLMs should frst probe users’
knowledge level before providing answers.

Participants gave a variety of suggestions that were sometimes
conficting:

(1) Some participants prefer a guided walkthrough. N08
hoped that LLMs could walk him through the process and
provide starting points. Both E14 and N03 hoped that
LLMs could be used alongside video tutorials, where they
could frst see a successful example of human-AI collabora-
tion and then ask follow-up questions.

(2) Some participants prefer contextual recommendations.
N11 hoped that LLMs could show related code examples
and provide “two or three other ways that you might look

with”. E10 suggested that LLMs provide in-context expla-
nations if “you don’t remember the defnition or explanation
of a particular command”.

(3) Some participants hope that LLMs could support help-
seeking from humans. E01 hoped that LLMs could help
novices “explain my situation so that I can paste it to the
user group”, so human experts could intervene more easily
when AI fails to unstuck novices. Similarly, E17 suggested
that AI could be combined with “peer to peer answers and
collaboration”.

(4) Some participants believed that incorrect responses
could become a learning opportunity. E02 was con-
cerned that students might be “exposed to fewer options”
with AI, compared with “coding from scratch”. E03 feared
that a system capable of directly producing solutions might
deprive students of the debugging process, where they would
have learned.” Novices also had similar feelings. After many
hallucinated responses, N08 thought that ChatGPT “forces
me to learn as opposed to just getting code that’s ready to
go.” To fully transform the moment of mistake into learning
opportunities, educators suggest the design not to frame mis-
takes as failures, but rather “as a learning moment” (E12).

5.3.3 Need for Integration. Compared with ChatGPT in a separate
browser window, most participants appreciated the NetLogo Chat
interface being an integrated part of the modeling environment.
They particularly favor the deep integration in NetLogo Chat’s
design that goes beyond placing a CA and an IDE side-by-side. We
further identifed many participants’ need for a deeper integration.

Many participants appreciated the integration of a sandbox-like
code editor in NetLogo Chat, where they can tinker with smaller,
AI-generated code chunks and execute them on the fy (see 3.1.3).
N12 “defnitely liked this feature of being able to go easily be-
tween the code and see what was changed and what was added.”
N04 appreciated that one can “see the code run” in the NetLogo

IDE, which ChatGPT could not do. N13 thought while some code
generated by ChatGPT was “so comprehensive”, NetLogo Chat was
able to break it down and make them “more conducive”. Partic-
ipants also expressed further needs for iterative modeling. E13
hoped that NetLogo Chat could help him “modularize all of my
commands” by splitting the code into many smaller, more manage-
able chunks. E12 asked for a comparison feature between versions
of code chunks that could help him “iterative changes quickly”.

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

In addition, participants also hoped that LLMs could help them
refect on longer pieces of (existing) code. N02 and E02 wanted
AI to support the combination of multiple, smaller code chunks into
a single, coherent code. As such, LLM-based interfaces should be
able to work with longer pieces of code. Both N06 and E08 hoped
that NetLogo Chat could “look at my code and make suggestions
based on my code”.

Many participants needed adaptive support for modeling more
than just coding. Many requested AI support in building model
interfaces that could be used to take in inputs or send out outputs.
For example, N06 needed NetLogo for her academic paper, hence

plotting became “very important”. For educators like E13 , while
the canvas output was “good for the three-quarters of a project”, it
hid “the real power of agent-based modeling - tracking the emer-
gent properties of the model, rather than simply making bits run
around the screen.” During the modeling processes, many interface
parts could become necessary or unnecessary depending on situa-
tional needs. Integrated LLM-based interfaces need to go beyond a
“side chat window” and support various spatial confgurations for
advanced users to decide on.

6 DISCUSSIONS
Our study frst reported, in detail, how novices and experts per-
ceive and use LLM-based interfaces (ChatGPT & NetLogo Chat)
diferently to support their learning and practice of computational
modeling in an open-ended setting. Most participants appreciated
the design direction NetLogo Chat is heading toward. However,
they also expressed their needs for improved guidance, personaliza-
tion, and integration which opens up huge design spaces for future
improvement.

6.1 Guidance: Bridging the Novice-Expert Gap

Figure 5: A preliminary theorization of the novice-expert
knowledge gap.

For most participants, guidance is what they need most from
LLMs in programming. While hallucinations from LLMs con-
stantly present a challenge to everyone, with a higher frequency
to evaluate and debug AI responses, experts sufered less negative
impact than novices. As a result, experts reported higher levels of

perceived gains and more optimistic adoption plans than novices.
While novices in our study also attempt to evaluate and debug
AI responses, they are ill-equipped for these tasks. Without un-
derstanding the knowledge gap between experts and novices, it
becomes impossible to design efective guidance.

Based on our empirical fndings, we theorize the two types of
knowledge novices might need when collaborating with AI in com-
putational modeling (Fig 5). First, the knowledge to efectively
decompose and plan modeling tasks. Second, the knowledge to
evaluate AI responses and identify potential issues. We further
identifed four components of knowledge that both novices and
experts reported to be essential: conceptual knowledge of modeling;
basic concepts of NetLogo and coding; experiences of debugging;
and how to interact with LLMs. To mitigate the impact of currently
inevitable hallucinations of LLMs, it is essential to help novices get
over the knowledge gap.

We propose three learning moments where design intervention
might work best. The frst moment is when users plan their next
steps. While most novices started by delegating the planning pro-
cess to AI, most of them eventually planned on their own. Here,
we follow the constructionist learning theory for a broader under-
standing of planning that includes both rigid, formal plans and
"softer", ad-hoc exploration of problem spaces[83]. Both planning
styles should be recognized as legitimate in learning and supported
by the design [83]. With our current design, most novices reported
positive feelings when NetLogo Chat attempted to clarify their
intentions and produce a plan for their task. Since this phase does
not involve any generated code, more support could be provided, as
novices may have fewer problems reading and evaluating natural
language responses. They may also feel more comfortable asking
questions about modeling or programming ideas, relating them
to the generated code later, without fearing that they cannot (yet)
read or write code. Moreover, LLMs could expand learners’ visions
by suggesting new ideas, proposing new plans, or taking notes of
human ideas. When novices are confused about basic concepts,
LLMs could suggest video or textual tutorials and provide Q&A
along the way.

The second moment is when users read and evaluate LLM-
generated code. Reading and understanding code is one of the most
important aspects of computing education[51]. However, novices
in our study were neither confdent nor equipped for reading code.
As a result, they intended to skip the code section. As predicted by
the interest development framework[56], the lack of skills (knowl-
edge) and confdence (identity) may mutually enhance each other.
Breaking the feedback loop requires designers to scafold their read-
ing experiences in both directions. By making explanations within
code (as comments or tooltips) or visualizing the code structures
(e.g. [76]), we might be able to help build novices’ connections be-
tween code syntax and real-world meanings. To build up learners’
confdence, LLMs should deliver code pieces and explanations in
adaptive sizes that work for learners. For learners who still could not
succeed, the interface should further provide ad-hoc support that
helps novices ask follow-up questions, or lead them to appropriate
learning resources.

The third moment is when users need to debug their code.
Debugging is considered a rich learning opportunity in construc-
tionist learning[39]. However, it is often associated with negative

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

feelings that both manifested in prior literature[91], as well as our
fndings. Unfortunately, cognitive science has found that negative
moods may further impede debugging performance[43], enlarging
the gap between novices and experts. Following the suggestions
of educators in our study, we suggest that LLM-based interfaces
could frame bugs in a more positive light, while providing a link
to a successful human-AI collaborative debugging process for frst-
time learners. Both novices’ and LLMs’ debugging processes are
often stuck in loops[92, 97]. While such situations are inevitable,
some expert participants suggest that LLM-based interfaces could
encourage learners to seek help from another human. Help-seeking
is recognized as an important part of programming education, yet
novices often struggle with it[54]. In such cases, LLM-based inter-
faces should further help them frame questions for human experts.

6.2 Personalization: Beyond “Correctness” of
LLMs

Personalization has been identifed as an essential factor for per-
ceived autonomy when users interact with conversational agents[98],
for emotional and relational connections[89], and for various edu-
cational benefts[6]. Adding to previous literature, we found per-
sonalization to be a crucial factor for LLMs to facilitate efective
guidance for learning, as participants expect LLMs to recognize
their knowledge levels and react accordingly.

While LLMs might have the potential to further the personal-
ization of learning, recent research in LLMs focused on the “ob-
jective” capabilities, ignoring the personalized aspect of its evalu-
ation. For example, technical reports of LLMs all reported bench-
marks in whether they could produce functionally correct programs
(HumanEval)[15]; if they could correctly answer multi-choice ques-
tions (MMLU)[33]; or if they could produce the correct answer of
grade school mathematical problems (GSM-8K)[20]. While working
toward such “correctness” benchmarks is certainly crucial for LLMs
to reduce hallucination and produce better responses, it becomes
problematic when the defnition of “helpfulness” or “harmfulness”
is measured with a ubiquitous scale without individual diferences
[2]. Unfortunately, today’s major LLM players seem to have adopted
a similar defnition.

At least in learning and practice programming, we argue that
helpfulness cannot be a singular metric, but instead varies based on
many factors. Corroborating with constructionist design principles[66],
we identifed some potentially important factors, such as knowl-
edge levels and help-seeking preferences, while other factors, such
as culture, ethnicity, and gender, could be as important. To support
human learning, the full potential of LLMs could only be achieved
through the recognition of epistemological pluralism[83]: humans
have diferent approaches toward learning, and technology needs
to be tailored to human needs.

Most participants in our study expected or asked for personaliza-
tion, in the sense that LLMs recognize their knowledge levels and
help-seeking needs, yet today’s designs are still far from that. While
it is virtually impossible to fne-tune thousands of LLM variants,
LLMs’ role-play capabilities and novel prompt-based workfows
(e.g. the one used by NetLogo Chat, or the concept of GPTs very
recently released by OpenAI) have shown promising potential. As

personalization requires the inevitable and sometimes controver-
sial collection of user data, we suggest a more upfront approach:
only collecting data that directly contributes to a more helpful AI
(e.g. the knowledge level), only using data for this purpose, and ex-
plaining the benefts, risks, and privacy processes at the beginning.
Alternatively, designers could also consider fowing the pathway
of cognitive modeling, which deduces learners’ knowledge levels
from known interactions with the system[77]. On the other hand,
our understanding of users’ perceptions, behaviors, and needs for
LLM-based programming interfaces has just begun, and we call on
more studies to pursue this direction.

6.3 Integration: LLMs for Computational
Modeling

For most participants, integration between LLM-based interfaces
and modeling environments goes beyond stitching a chat window
into the IDE. While most appreciated NetLogo Chat’s design direc-
tions, they put forward many needs worth considering in future
design. Here, we briefy discuss the two major themes: support for
troubleshooting; and support for modeling. For troubleshooting:

(1) The capability to work on smaller snippets of code,
with the capability to execute, explain, and debug code
in context. For both humans and LLMs[34], debugging com-
plicated code is known to be difcult. NetLogo Chat has made
the frst step in reducing the scope to smaller code chunks.
As such, it becomes easier for humans to debug and LLMs
to support their debugging processes. Whereas, more work
is needed to bring together the code chunks into coherent
full programs.

(2) The capability to leverage authoritative NetLogo doc-
umentation in generated responses and for the user’s
reference. In debugging contexts, LLMs’ tendency to hal-
lucinate becomes more frustrating. By providing users and
LLMs with authoritative explanations within the debugging
context, NetLogo Chat may reduce the efort for users to
seek related information, which is also known to be dif-
cult for novices[24]. More work is needed to explain in a
more personalized way: for example, pure novices may need
explanations for every basic term.

(3) The capability to automatically send in contextual in-
formation (i.e. code and error messages) for LLM to
troubleshoot. Users generally appreciated NetLogo Chat’s
design decision to support troubleshooting. However, the
convenience came with a potential price: when using NetL-
ogo Chat, users were more likely to ask LLMs for help, which
might lead to fewer human attempts and learning opportu-
nities. Further studies are needed to understand this design
balance better.

Many participants also asked for features that specifcally sup-
port their computational modeling tasks, which are known to have
diferent priorities from programming in general[65]. Here, two
more capabilities are warranted:

(1) The capability to assume less, actively probe, and stick
to user intentions. In addition to the potential learning
opportunities (see Discussion 1), for participants, hidden
assumptions in scientifc modeling are particularly harmful.

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

While users appreciate NetLogo Chat’s direction in having
LLMs ask questions back, future interfaces should be able
to facilitate the conversational build-up of plans and steps,
further supporting users to program computers piece-by-
piece rather than falling to hidden assumptions made by
LLMs.

(2) The capability to support modeling practices beyond
coding. Building the program is only one step; computa-
tional modeling also involves design, data visualization, and
validation[88]. For LLM-based interfaces to support model-
ing practices, future interfaces should go beyond coding to
support users’ eforts throughout the modeling process.

7 LIMITATIONS AND FUTURE WORK
There are limitations to our study that warrant future work. As
a widely used agent-based modeling language, a deeper under-
standing of user perceptions, behaviors, and needs for LLM-based
interfaces around NetLogo may inform us of design choices for
other modeling environments. Future work should consider com-
putational modeling or programming environments that might
have diferent priorities. Since the NetLogo language was designed
for an audience without a computer science background[82], it
becomes more important and meaningful to understand how to
design for bridging the novice-expert gap in LLM-based interfaces.
However, it is unclear whether our fndings and suggestions would
sufciently support novices’ and experts’ learning and practice of
NetLogo. Using a more rigid rubric to distinguish between experts
and novices might improve the rigor of our study. A quantitative,
controlled study in the future might further (in)validate our fndings
and suggestions. As such, we plan to work on a new iteration of
NetLogo Chat design and empirical study to understand the design
implications fully.

Although we aimed to recruit participants representative of Net-
Logo’s global audience, our participant pool was not as represen-
tative as we hoped in two key dimensions. First, our participants
were mostly professionals, academics, and graduate students. While
K-12 teachers and learners are another major audience for NetLogo
and agent-based modeling and may have diferent priorities and
preferences[71], only one K-12 teacher was present in the study.
More studies are warranted to further the empirical understanding
of LLM-based interfaces in education contexts. Second, the demo-
graphics of our participants skewed towards North American and
European, highly educated, and male. Such a group of participants,
recruited voluntarily, might manifest higher than average accept-
ability toward novel technology, e.g. most of our participants have
already engaged with ChatGPT. For future work, researchers need
to recruit a more balanced and diverse group of participants, if the
goal is for LLM-based programming interfaces to equitably support
novices and experts throughout the world.

8 CONCLUSION
As Large language models (LLMs) have the potential to fundamen-
tally change how people learn and practice computational modeling
and programming in general, it is crucial that we gain a deeper
understanding of users’ perceptions, behaviors, and needs in a more
naturalistic setting. For this purpose, we designed and developed

NetLogo Chat, a novel LLM-based system that supports and inte-
grates with a version of NetLogo IDE. We conducted an interview
study with 30 adult participants to understand how they perceived,
collaborated with, and asked for LLM-based interfaces for learning
and practice of NetLogo. Consistent with previous studies, experts
reported more perceived benefts than novices. We found remark-
able diferences between novices and experts in their perceptions,
behaviors, and needs. We identifed a knowledge gap that might
have contributed to the diferences. We proposed design recommen-
dations around participants’ main needs: guidance, personalization,
and integration. Our fndings inform future design of LLM-based
programming interfaces, especially for computational modeling.

ACKNOWLEDGMENTS
We would like to express our gratitude to the NetLogo Online com-
munity and Complexity Explorer for their help and support. We
especially thank the hundreds of NetLogo users who volunteered
for the study. We would also like to thank current and former lab
members and anonymous youth users of Turtle Universe, who
provided valuable feedback and ideas during our design process.
Specifcally, we want to acknowledge the intellectual contribu-
tions of Umit Aslan; Aaron Brandes; Jeremy Baker; Jason Bertsche;
Matthew Berland; Sharona Levy; Jacob Kelter; Leif Rasmussen;
David Weintrop; and Lexie Zhao. Finally, we appreciate the valu-
able and actionable feedback from our anonymous CHI reviewers,
which signifcantly strengthened the paper.

REFERENCES
[1] 2024. About GitHub Copilot Chat. https://docs.github.com/en/copilot/github-

copilot-chat/about-github-copilot-chat
[2] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova

DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas
Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nel-
son Elhage, Zac Hatfeld-Dodds, Danny Hernandez, Tristan Hume, Scott John-
ston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei,
Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared
Kaplan. 2022. Training a Helpful and Harmless Assistant with Reinforcement
Learning from Human Feedback. https://doi.org/10.48550/arXiv.2204.05862
arXiv:2204.05862 [cs].

[3] Rishabh Balse, Bharath Valaboju, Shreya Singhal, Jayakrishnan Madathil War-
riem, and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Confer-
ence on Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2023). Association for Computing Machinery, New York, NY, USA, 292–298.
https://doi.org/10.1145/3587102.3588852

[4] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111. Publisher:
ACM New York, NY, USA.

[5] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. Proceedings of the working
group reports on innovation and technology in computer science education (2019),
177–210.

[6] Matthew L. Bernacki, Meghan J. Greene, and Nikki G. Lobczowski. 2021. A
systematic review of research on personalized learning: Personalized by whom,
to what, how, and for what purpose (s)? Educational Psychology Review 33, 4
(2021), 1675–1715. Publisher: Springer.

[7] Paulo Blikstein. 2011. Using learning analytics to assess students’ behavior in
open-ended programming tasks. In Proceedings of the 1st international conference
on learning analytics and knowledge. 110–116.

[8] Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper,
and Daphne Koller. 2014. Programming pluralism: Using learning analytics
to detect patterns in the learning of computer programming. Journal of the
Learning Sciences 23, 4 (2014), 561–599. Publisher: Taylor & Francis.

https://community.netlogo.org/
https://community.netlogo.org/
https://www.complexityexplorer.org/
https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat
https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.1145/3587102.3588852

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al.

[9] Corey Brady, Melissa Gresalf, Selena Steinberg, and Madison Knowe. 2020.
Debugging for Art’s Sake: Beginning Programmers’ Debugging Activity in an
Expressive Coding Context. (June 2020). https://repository.isls.org//handle/1/
6319 Publisher: International Society of the Learning Sciences (ISLS).

[10] Christopher Bull and Ahmed Kharrufa. 2023. Generative AI Assistants in
Software Development Education: A vision for integrating Generative AI into
educational practice, not instinctively defending against it. IEEE Software (2023),
1–9. https://doi.org/10.1109/MS.2023.3300574 Conference Name: IEEE Software.

[11] Santi Caballé and Jordi Conesa. 2019. Conversational agents in support for
collaborative learning in MOOCs: An analytical review. In Advances in Intelligent
Networking and Collaborative Systems: The 10th International Conference on
Intelligent Networking and Collaborative Systems (INCoS-2018). Springer, 384–
394.

[12] Fuxiang Chen, Fatemeh H. Fard, David Lo, and Timofey Bryksin. 2022. On the
transferability of pre-trained language models for low-resource programming
languages. In Proceedings of the 30th IEEE/ACM International Conference on
Program Comprehension. 401–412.

[13] John Chen and Uri J. Wilensky. 2021. Turtle Universe. https://turtlesim.com/
products/turtle-universe/

[14] John Chen, Lexie Zhao, Horn Michael, and Wilensky Uri. 2023. The Pocket-
world Playground: Engaging Online, Out-of-School Learners with Agent-based
Programming. In Proceedings of the ACM Interaction Design and Children (IDC).

[15] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
and Greg Brockman. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[16] Zhutian Chen, Chenyang Zhang, Qianwen Wang, Jakob Troidl, Simon Warchol,
Johanna Beyer, Nils Gehlenborg, and Hanspeter Pfster. 2023. Beyond Generating
Code: Evaluating GPT on a Data Visualization Course. https://doi.org/10.48550/
arXiv.2306.02914 arXiv:2306.02914 [cs].

[17] Michelene TH Chi, Paul J Feltovich, and Robert Glaser. 1981. Categorization and
representation of physics problems by experts and novices. Cognitive science 5,
2 (1981), 121–152.

[18] Douglas Clark, Brian Nelson, Pratim Sengupta, and Cynthia D’Angelo. 2009.
Rethinking science learning through digital games and simulations: Genres,
examples, and evidence. In Learning science: Computer games, simulations, and
education workshop sponsored by the National Academy of Sciences, Washington,
DC.

[19] Leigh Clark, Nadia Pantidi, Orla Cooney, Philip Doyle, Diego Garaialde, Justin
Edwards, Brendan Spillane, Emer Gilmartin, Christine Murad, and Cosmin
Munteanu. 2019. What makes a good conversation? Challenges in designing
truly conversational agents. In Proceedings of the 2019 CHI conference on human
factors in computing systems. 1–12.

[20] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. Training Verifers to Solve Math
Word Problems. https://doi.org/10.48550/arXiv.2110.14168 arXiv:2110.14168
[cs].

[21] Grant Cooper. 2023. Examining Science Education in ChatGPT: An Exploratory
Study of Generative Artifcial Intelligence. Journal of Science Education and
Technology 32, 3 (June 2023), 444–452. https://doi.org/10.1007/s10956-023-
10039-y

[22] Juliet M. Corbin and Anselm Strauss. 1990. Grounded theory research: Proce-
dures, canons, and evaluative criteria. Qualitative sociology 13, 1 (1990), 3–21.
Publisher: Springer.

[23] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Zhen Ming Jack Jiang. 2023. Github copilot ai pair
programmer: Asset or liability? Journal of Systems and Software 203 (2023),
111734. Publisher: Elsevier.

[24] Brian Dorn, Adam Stankiewicz, and Chris Roggi. 2013. Lost while searching:
Difculties in information seeking among end-user programmers. Proceedings
of the American Society for Information Science and Technology 50, 1 (2013), 1–10.
Publisher: Wiley Online Library.

[25] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. 2023. Gpts
are gpts: An early look at the labor market impact potential of large language
models. arXiv preprint arXiv:2303.10130 (2023).

[26] Alexander J. Fiannaca, Chinmay Kulkarni, Carrie J. Cai, and Michael Terry. 2023.
Programming without a Programming Language: Challenges and Opportunities
for Designing Developer Tools for Prompt Programming. In Extended Abstracts
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–7.

[27] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10–19.

[28] Kenneth R. Fleischmann and William A. Wallace. 2009. Ensuring transparency
in computational modeling. Commun. ACM 52, 3 (March 2009), 131–134. https:
//doi.org/10.1145/1467247.1467278

[29] Yue Fu, Mingrui Zhang, Lynn K. Nguyen, Yifan Lin, Rebecca Michelson,
Tala June Tayebi, and Alexis Hiniker. 2023. Self-Talk with Superhero Zip:
Supporting Children’s Socioemotional Learning with Conversational Agents. In
Proceedings of the 22nd Annual ACM Interaction Design and Children Conference.
173–186.

[30] Katy Ilonka Gero, Zahra Ashktorab, Casey Dugan, Qian Pan, James Johnson,
Werner Geyer, Maria Ruiz, Sarah Miller, David R. Millen, Murray Campbell,
Sadhana Kumaravel, and Wei Zhang. 2020. Mental Models of AI Agents in a
Cooperative Game Setting. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376316

[31] Zi Gong, Yinpeng Guo, Pingyi Zhou, Cuiyun Gao, Yasheng Wang, and Zenglin
Xu. 2022. MultiCoder: Multi-Programming-Lingual Pre-Training for Low-
Resource Code Completion. https://doi.org/10.48550/arXiv.2212.09666
arXiv:2212.09666 [cs].

[32] Idit Harel and Seymour Papert. 1990. Software design as a learning environment.
Interactive learning environments 1, 1 (1990), 1–32. Publisher: Taylor & Francis.

[33] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring Massive Multitask Language
Understanding. https://openreview.net/forum?id=d7KBjmI3GmQ

[34] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large Language Models for
Software Engineering: A Systematic Literature Review. http://arxiv.org/abs/
2308.10620 arXiv:2308.10620 [cs].

[35] Nicole M. Hutchins, Gautam Biswas, Ningyu Zhang, Caitlin Snyder, Ákos
Lédeczi, and Miklós Maróti. 2020. Domain-specifc modeling languages in
computer-based learning environments: A systematic approach to support sci-
ence learning through computational modeling. International Journal of Artifcial
Intelligence in Education 30 (2020), 537–580. Publisher: Springer.

[36] Yuin Jeong, Juho Lee, and Younah Kang. 2019. Exploring Efects of Conver-
sational Fillers on User Perception of Conversational Agents. In Extended Ab-
stracts of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/3290607.3312913

[37] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J. Cai, and Michael Terry. 2022. Discovering the syntax and
strategies of natural language programming with generative language models. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–19.

[38] Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Ver-
bruggen, and Ivan Radiček. 2023. Repair Is Nearly Generation: Multilingual
Program Repair with LLMs. Proceedings of the AAAI Conference on Artifcial In-
telligence 37, 4 (June 2023), 5131–5140. https://doi.org/10.1609/aaai.v37i4.25642
Number: 4.

[39] Yasmin Kafai, Gautam Biswas, Nicole Hutchins, Caitlin Snyder, Karen Brennan,
Paulina Haduong, Kayla DesPortes, Morgan Fong, Virginia J. Flood, and Oia
Walker-van Aalst. 2020. Turning bugs into learning opportunities: understand-
ing debugging processes, perspectives, and pedagogies. (2020). Publisher:
International Society of the Learning Sciences (ISLS).

[40] Yasmin B. Kafai and Quinn Burke. 2015. Constructionist Gaming: Understanding
the Benefts of Making Games for Learning. Educational Psychologist 50, 4
(Oct. 2015), 313–334. https://doi.org/10.1080/00461520.2015.1124022 Publisher:
Routledge _eprint: https://doi.org/10.1080/00461520.2015.1124022.

[41] Ken Kahn and Niall Winters. 2021. Constructionism and AI: A history and
possible futures. British Journal of Educational Technology 52, 3 (2021), 1130–
1142. Publisher: Wiley Online Library.

[42] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the efect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. arXiv preprint
arXiv:2302.07427 (2023).

[43] Iftikhar Ahmed Khan, Willem-Paul Brinkman, and Robert M Hierons. 2011. Do
moods afect programmers’ debug performance? Cognition, Technology & Work
13 (2011), 245–258.

[44] Junaed Younus Khan and Gias Uddin. 2022. Automatic code documentation gen-
eration using gpt-3. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. 1–6.

[45] Varun Kumar, Leonard Gleyzer, Adar Kahana, Khemraj Shukla, and George Em
Karniadakis. 2023. MyCrunchGPT: A chatGPT assisted framework for scientifc
machine learning. https://doi.org/10.48550/arXiv.2306.15551 arXiv:2306.15551
[physics].

[46] Sam Lau and Philip J. Guo. 2023. From" Ban It Till We Understand It" to"
Resistance is Futile": How University Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and Explanation Tools such as ChatGPT
and GitHub Copilot. (2023).

[47] Yunyao Li, Huahai Yang, and Hosagrahar V. Jagadish. 2005. Nalix: an interactive
natural language interface for querying xml. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. 900–902.

https://repository.isls.org//handle/1/6319
https://repository.isls.org//handle/1/6319
https://doi.org/10.1109/MS.2023.3300574
https://turtlesim.com/products/turtle-universe/
https://turtlesim.com/products/turtle-universe/
https://doi.org/10.48550/arXiv.2306.02914
https://doi.org/10.48550/arXiv.2306.02914
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.1007/s10956-023-10039-y
https://doi.org/10.1007/s10956-023-10039-y
https://doi.org/10.1145/1467247.1467278
https://doi.org/10.1145/1467247.1467278
https://doi.org/10.1145/3313831.3376316
https://doi.org/10.48550/arXiv.2212.09666
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
https://doi.org/10.1145/3290607.3312913
https://doi.org/10.1609/aaai.v37i4.25642
https://doi.org/10.1080/00461520.2015.1124022
https://doi.org/10.48550/arXiv.2306.15551

Learning Agent-based Modeling with LLM Companions CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[48] Phoebe Lin, Jessica Van Brummelen, Galit Lukin, Randi Williams, and Cynthia
Breazeal. 2020. Zhorai: Designing a Conversational Agent for Children to
Explore Machine Learning Concepts. Proceedings of the AAAI Conference on
Artifcial Intelligence 34, 09 (April 2020), 13381–13388. https://doi.org/10.1609/
aaai.v34i09.7061 Number: 09.

[49] Erin Chao Ling, Iis Tussyadiah, Aarni Tuomi, Jason Stienmetz, and Athina
Ioannou. 2021. Factors infuencing users’ adoption and use of conversational
agents: A systematic review. Psychology & marketing 38, 7 (2021), 1031–1051.
Publisher: Wiley Online Library.

[50] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. https://doi.org/10.48550/arXiv.2305.
01210 arXiv:2305.01210 [cs].

[51] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. 101–112.

[52] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and
Ziheng Huang. 2022. Generating diverse code explanations using the gpt-3
large language model. In Proceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 2. 37–39.

[53] Alexandre Magueresse, Vincent Carles, and Evan Heetderks. 2020. Low-resource
Languages: A Review of Past Work and Future Challenges. http://arxiv.org/
abs/2006.07264 arXiv:2006.07264 [cs].

[54] Samiha Marwan, Anay Dombe, and Thomas W Price. 2020. Unproductive help-
seeking in programming: What it is and how to address it. In Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer Science
Education. 54–60.

[55] Andrew M. McNutt, Chenglong Wang, Robert A. Deline, and Steven M. Drucker.
2023. On the design of ai-powered code assistants for notebooks. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–16.

[56] Joseph E. Michaelis and David Weintrop. 2022. Interest Development Theory in
Computing Education: A Framework and Toolkit for Researchers and Designers.
ACM Transactions on Computing Education (TOCE) (2022). Publisher: ACM New
York, NY.

[57] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. 2023. In-IDE Generation-based Information Support with a Large
Language Model. https://doi.org/10.48550/arXiv.2307.08177 arXiv:2307.08177
[cs].

[58] OpenAI. 2023. GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.
08774 arXiv:2303.08774 [cs].

[59] Soumen Pal, Manojit Bhattacharya, Sang-Soo Lee, and Chiranjib Chakraborty.
2023. A Domain-Specifc Next-Generation Large Language Model (LLM) or
ChatGPT is Required for Biomedical Engineering and Research. Annals of
Biomedical Engineering (2023), 1–4. Publisher: Springer.

[60] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas.
(1980). Publisher: Basic Books.

[61] Seymour Papert and Idit Harel. 1991. Situating constructionism. constructionism
36, 2 (1991), 1–11.

[62] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The
Impact of AI on Developer Productivity: Evidence from GitHub Copilot. https:
//doi.org/10.48550/arXiv.2302.06590 arXiv:2302.06590 [cs].

[63] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2022. Do Users
Write More Insecure Code with AI Assistants? https://doi.org/10.48550/arXiv.
2211.03622 arXiv:2211.03622 [cs].

[64] David Price, Ellen Riloff, Joseph Zachary, and Brandon Harvey. 2000. Natural-
Java: A natural language interface for programming in Java. In Proceedings of
the 5th international conference on Intelligent user interfaces. 207–211.

[65] Zenon W. Pylyshyn. 1978. Computational models and empirical constraints.
Behavioral and Brain Sciences 1, 1 (March 1978), 91–99. https://doi.org/10.1017/
S0140525X00059793 Publisher: Cambridge University Press.

[66] Mitchel Resnick and Brian Silverman. 2005. Some refections on designing
construction kits for kids. In Proceedings of the 2005 conference on Interaction
design and children. 117–122.

[67] Peter Robe and Sandeep Kaur Kuttal. 2022. Designing PairBuddy—A Conver-
sational Agent for Pair Programming. ACM Transactions on Computer-Human
Interaction 29, 4 (May 2022), 34:1–34:44. https://doi.org/10.1145/3498326

[68] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and
Justin D. Weisz. 2023. The programmer’s assistant: Conversational interac-
tion with a large language model for software development. In Proceedings of
the 28th International Conference on Intelligent User Interfaces. 491–514.

[69] Shruti Sannon, Brett Stoll, Dominic DiFranzo, Malte F. Jung, and Natalya N.
Bazarova. 2020. “I just shared your responses”: Extending Communication
Privacy Management Theory to Interactions with Conversational Agents. Pro-
ceedings of the ACM on Human-Computer Interaction 4, GROUP (Jan. 2020),
08:1–08:18. https://doi.org/10.1145/3375188

[70] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle

to Pass Assessments in Higher Education Programming Courses. In Proceedings
of the 2023 ACM Conference on International Computing Education Research V.1.
78–92. https://doi.org/10.1145/3568813.3600142 arXiv:2306.10073 [cs].

[71] Pratim Sengupta, Amanda Dickes, Amy Voss Farris, Ashlyn Karan, David Martin,
and Mason Wright. 2015. Programming in K-12 science classrooms. Commun.
ACM 58, 11 (Oct. 2015), 33–35. https://doi.org/10.1145/2822517

[72] Pratim Sengupta, John S. Kinnebrew, Satabdi Basu, Gautam Biswas, and Douglas
Clark. 2013. Integrating computational thinking with K-12 science education
using agent-based computation: A theoretical framework. Education and Infor-
mation Technologies 18, 2 (June 2013), 351–380. https://doi.org/10.1007/s10639-
012-9240-x

[73] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A natural language interface for visual analysis. In Pro-
ceedings of the 29th annual symposium on user interface software and technology.
365–377.

[74] Marita Skjuve, Asbjørn Følstad, and Petter Bae Brandtzaeg. 2023. The User
Experience of ChatGPT: Findings from a Questionnaire Study of Early Users. In
Proceedings of the 5th International Conference on Conversational User Interfaces.
1–10.

[75] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry Lieberman, Mark L. Miller,
Margaret Minsky, Artemis Papert, and Brian Silverman. 2020. History of logo.
Proceedings of the ACM on Programming Languages 4, HOPL (2020), 1–66. Pub-
lisher: ACM New York, NY, USA.

[76] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic pro-
gram visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE) 13, 4 (2013), 1–64.

[77] Ron Sun. 2008. Introduction to computational cognitive modeling. Cambridge
handbook of computational psychology (2008), 3–19.

[78] Chee Wei Tan, Shangxin Guo, Man Fai Wong, and Ching Nam Hang. 2023.
Copilot for Xcode: Exploring AI-Assisted Programming by Prompting Cloud-
based Large Language Models. http://arxiv.org/abs/2307.14349 arXiv:2307.14349
[cs].

[79] Artur Tarassow. 2023. The potential of LLMs for coding with low-resource
and domain-specifc programming languages. http://arxiv.org/abs/2307.13018
arXiv:2307.13018 [cs].

[80] J. C. Thiele, W. Kurth, and V. Grimm. 2011. Agent-and individual-based modeling
with NetLogo: Introduction and new NetLogo extensions. Deutscher Verband
Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik-22.
Tagung (2011).

[81] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F. Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

[82] Seth Tisue and Uri Wilensky. 2004. Netlogo: A simple environment for modeling
complexity. In International conference on complex systems, Vol. 21. Citeseer,
16–21.

[83] Sherry Turkle and Seymour Papert. 1990. Epistemological pluralism: Styles
and voices within the computer culture. Signs: Journal of women in culture and
society 16, 1 (1990), 128–157. Publisher: University of Chicago Press.

[84] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[85] Thiemo Wambsganss, Tobias Kueng, Matthias Soellner, and Jan Marco Leimeis-
ter. 2021. ArgueTutor: An adaptive dialog-based learning system for argu-
mentation skills. In Proceedings of the 2021 CHI conference on human factors in
computing systems. 1–13.

[86] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, and Yoon Kim.
2023. Grammar Prompting for Domain-Specifc Language Generation with
Large Language Models. http://arxiv.org/abs/2305.19234 arXiv:2305.19234 [cs].

[87] Qiaosi Wang, Koustuv Saha, Eric Gregori, David Joyner, and Ashok Goel. 2021.
Towards mutual theory of mind in human-ai interaction: How language refects
what students perceive about a virtual teaching assistant. In Proceedings of the
2021 CHI conference on human factors in computing systems. 1–14.

[88] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defning Computational Thinking for Mathe-
matics and Science Classrooms. Journal of Science Education and Technology 25,
1 (Feb. 2016), 127–147. https://doi.org/10.1007/s10956-015-9581-5

[89] Galit Wellner and Ilya Levin. 2023. Ihde meets Papert: combining postphe-
nomenology and constructionism for a future agenda of philosophy of education
in the era of digital technologies. Learning, Media and Technology (2023), 1–14.
Publisher: Taylor & Francis.

[90] Michel Wermelinger. 2023. Using GitHub Copilot to solve simple programming
problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 172–178.

[91] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2021. Novice
refections on debugging. In Proceedings of the 52nd ACM technical symposium
on computer science education. 73–79.

https://doi.org/10.1609/aaai.v34i09.7061
https://doi.org/10.1609/aaai.v34i09.7061
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
http://arxiv.org/abs/2006.07264
http://arxiv.org/abs/2006.07264
https://doi.org/10.48550/arXiv.2307.08177
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.48550/arXiv.2211.03622
https://doi.org/10.48550/arXiv.2211.03622
https://doi.org/10.1017/S0140525X00059793
https://doi.org/10.1017/S0140525X00059793
https://doi.org/10.1145/3498326
https://doi.org/10.1145/3375188
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/2822517
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1007/s10639-012-9240-x
http://arxiv.org/abs/2307.14349
http://arxiv.org/abs/2307.13018
http://arxiv.org/abs/2305.19234
https://doi.org/10.1007/s10956-015-9581-5

CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[92] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2021. Novice Re-
fections on Debugging. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (SIGCSE ’21). Association for Computing Machinery,
New York, NY, USA, 73–79. https://doi.org/10.1145/3408877.3432374

[93] Uri Wilensky and William Rand. 2015. An introduction to agent-based modeling:
modeling natural, social, and engineered complex systems with NetLogo. Mit
Press.

[94] Uri J. Wilensky. 1997. NetLogo Wolf Sheep Predation model. http://ccl.
northwestern.edu/netlogo/models/WolfSheepPredation

[95] Rainer Winkler, Sebastian Hobert, Antti Salovaara, Matthias Söllner, and
Jan Marco Leimeister. 2020. Sara, the lecturer: Improving learning in online
education with a scafolding-based conversational agent. In Proceedings of the
2020 CHI conference on human factors in computing systems. 1–14.

[96] Rainer Winkler and Matthias Söllner. 2018. Unleashing the potential of chatbots
in education: A state-of-the-art analysis. In Academy of Management Proceedings,
Vol. 2018. Academy of Management Briarclif Manor, NY 10510, 15903. Issue: 1.

[97] Xingbo Wu, Nathanaël Cheriere, Cheng Zhang, and Dushyanth Narayanan.
2023. RustGen: An Augmentation Approach for Generating Compilable Rust
Code with Large Language Models. (June 2023). https://openreview.net/forum?

Chen, et al.

id=y9A0vJ5vuM
[98] Xi Yang and Marco Aurisicchio. 2021. Designing conversational agents: A self-

determination theory approach. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–16.

[99] Shunyu Yao, Jefrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R.
Narasimhan, and Yuan Cao. 2022. ReAct: Synergizing Reasoning and Act-
ing in Language Models. In The Eleventh International Conference on Learning
Representations.

[100] Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz. 2023. Augmented in-
telligence in programming learning: Examining student views on the use of
ChatGPT for programming learning. Computers in Human Behavior: Artifcial
Humans 1, 2 (2023), 100005. Publisher: Elsevier.

[101] J. D. Zamfrescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[102] Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and
Stephen MacNeil. 2023. Generative AI in Computing Education: Perspectives of
Students and Instructors. arXiv preprint arXiv:2308.04309 (2023).

https://doi.org/10.1145/3408877.3432374
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
https://openreview.net/forum?id=y9A0vJ5vuM
https://openreview.net/forum?id=y9A0vJ5vuM

	Abstract
	1 Introduction
	2 Related Work
	2.1 LLMs for Computational Programming and Modeling
	2.2 User Perception and Behaviors with LLM-based Programming Interfaces
	2.3 LLM-based Interfaces for Learning Programming and Modeling

	3 NetLogo Chat System
	3.1 Design Overview
	3.2 Technical Implementation

	4 Empirical Study
	4.1 Participants
	4.2 Interviews
	4.3 Data Analysis

	5 Findings
	5.1 Perception: Before and After Interaction
	5.2 The Behavioral Gap Between Novices and Experts
	5.3 Needs for Guidance, Personalization, and Integration

	6 Discussions
	6.1 Guidance: Bridging the Novice-Expert Gap
	6.2 Personalization: Beyond “Correctness” of LLMs
	6.3 Integration: LLMs for Computational Modeling

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

