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ABSTRACT 
Large Language Models (LLMs) have the potential to fundamentally 
change the way people engage in computer programming. Agent-
based modeling (ABM) has become ubiquitous in natural and social 
sciences and education, yet no prior studies have explored the 
potential of LLMs to assist it. We designed NetLogo Chat to support 
the learning and practice of NetLogo, a programming language for 
ABM. To understand how users perceive, use, and need LLM-based 
interfaces, we interviewed 30 participants from global academia, 
industry, and graduate schools. Experts reported more perceived 
benefts than novices and were more inclined to adopt LLMs in 
their workfow. We found signifcant diferences between experts 
and novices in their perceptions, behaviors, and needs for human-
AI collaboration. We surfaced a knowledge gap between experts 
and novices as a possible reason for the beneft gap. We identifed 
guidance, personalization, and integration as major needs for LLM-
based interfaces to support the programming of ABM. 
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1 INTRODUCTION 
The advent of coding-capable Large Language Models (LLMs) has 
the potential to fundamentally change the way people engage in 
computer programming[25]. As LLM-based programming inter-
faces (e.g. GitHub Copilot; ChatGPT) become increasingly popular[46], 
some studies started to study their user perceptions[84]. However, 
the research on their potential learning impacts is still limited. 
Many prior studies only focus on impressions of educators[46] 
or students[100], with little empirical data on the actual learning 
usage of these tools. On the other hand, a few studies started to 
explore how LLM-based interfaces can be designed to facilitate 
programming education, indicating potential advantages for learn-
ers. Notably, these studies suggest that learners with more prior 
programming experience tend to beneft more[42, 57]. While a 
recent study identifes some challenges for novice learners with 
LLM-based interfaces[101], there is a gap in understanding why 
experienced programmers seem to gain more learning benefts from 
these tools. 

In this paper, we present the design of a novel LLM-based in-
terface, NetLogo Chat, for the learning and practice of NetLogo. 
NetLogo is a widely used programming language for agent-based 
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modeling (ABM), which applies simple rules on multiple individual 
agents to simulate complex systems[94]. It is particularly powerful 
in capturing emergent phenomena, e.g., the spread of viruses or 
predator-prey systems[93]. It is an important methodology in com-
putational modeling across scientifc disciplines and education from 
K-12 to postgraduate levels[88], where scientists and educators are 
highly in need of LLM-based interfaces[21, 59]. As an important 
part of computational modeling, the priorities of ABM difer from 
general programming[65]. A modeler needs to verify that their 
conceptual design of individual rules matches the real-world pat-
terns (e.g. a predator needs food to survive), the code matches the 
design (i.e. there are no unexpected or implicit assumptions), and 
the aggregated outcome matches real-world phenomena (e.g. if all 
prey die out, predators die too)[28]. As most LLM-related studies on 
computer programming work on general-purpose languages that 
LLMs perform best (e.g. Python or Javascript), no LLM-related stud-
ies have explored ABM or other forms of computational modeling 
at this point. 

NetLogo Chat was designed with constructionist learning princi-
ples and incorporated known best practices for ABM and computer 
programming. Constructionism advocates for the design of learn-
ing experiences where learners construct their understanding of 
the world (e.g. knowledge of ABM) through building personally 
meaningful artifacts (e.g. an agent-based model around learners’ 
interests)[61]. Similar to GitHub Copilot Chat[1], NetLogo Chat 
was integrated into an integrated development environment (IDE). 
Diferent from previous designs, it aims to give users more control 
over the human-AI collaboration processes, strives to incorporate 
authoritative sources, and tries to provide more support for trou-
bleshooting. 

Using both ChatGPT and NetLogo Chat as a probe[101], we con-
ducted a qualitative study to highlight the diferent perceptions, 
behaviors, and needs of experts and novices during open-ended 
modeling sessions. We interviewed 30 expert and novice partici-
pants from academia, industry, and graduate schools worldwide. 
Participants proposed diverse NetLogo tasks from their disciplines 
and worked toward their modeling goals. We asked interview ques-
tions before, during, and after their interaction with each design. 
We answered the research questions: 

(1) What perceptions - strengths, weaknesses, and adoption 
plans - do expert and novice users perceive LLM-driven 
interfaces to support their NetLogo learning and practice? 

(2) How do expert and novice users use LLM-driven interfaces 
to support their NetLogo learning and practice? 

(3) What are expert and novice users’ needs for LLM-based 
interfaces to support their NetLogo learning and practice? 

Learners generally agreed with our design principles and sug-
gested additional features for future designs. As in other studies, 
experts reported more perceived benefts than novices. Compar-
ing the diferent interaction patterns between experts and novices, 
our study reveals a behavioral gap that might explain the gap in 
benefts. We found that experts collaborated with LLM-based in-
terfaces with more human judgment in all activities than novices, 
helping them overcome AI hallucinations, while novices struggled 
with evaluating and debugging AI responses. From there, we identi-
fed components of a knowledge gap between novices and experts. 

We reported experts’ and novices’ needs in LLM-based interfaces 
in three key themes: guidance (from LLMs); personalization (of 
LLMs); and integration (into modeling environments), many of 
which confrm and develop the design decisions of NetLogo Chat. 
The contributions of this paper include: 

(1) The design and implementation of NetLogo Chat, an LLM-
based system that supports learning and practice of NetLogo, 
a widely-used programming language for ABM; 

(2) An empirical study that contributes to the understanding of 
how novices and experts perceive, use, and express needs 
for LLM-based programming interfaces in diferent ways; 

(3) A theorization of the knowledge gap between experts and 
novices that might lead to the behavioral gap, and sugges-
tions of potential design interventions; 

(4) The design discussion and suggestions for building LLM-
based programming interfaces that beneft both experts and 
novices in agent-based modeling more equitably. 

2 RELATED WORK 

2.1 LLMs for Computational Programming and 
Modeling 

Researchers have been exploring natural-language-based interfaces 
for programming for decades, yet early attempts were mostly ex-
ploratory and limited in capabilities. NaturalJava[64] required users 
to follow a strict pattern when prompting, while later systems (e.g. 
NaLIX[47] or Eviza[73]) asked for a specifc set of English expres-
sions. This created difculties for users and system designers, as 
they felt “a main challenge of NLP interfaces is in communicating to 
the user what inputs are supported.”[73] Without the capability to 
generate natural languages, those interfaces were also constrained 
to one-of interactions. 

Recently, a new generation of LLMs demonstrated the capability 
to understand and generate natural and computer languages. GPT-3 
was examined in writing code explanations[52], documentation[44], 
and providing feedback for assignments[3]. Soon, educators started 
to believe that Codex could be used to solve simple programming 
problems[27, 90]. Embedded in ChatGPT, GPT-3.5-turbo and GPT-4 
demonstrated even stronger capabilities in programming. More 
and more LLMs have gained the capability of coding (e.g. PALM 2; 
Claude 2; CodeLLaMA 2), ushering in a new era of natural language 
interfaces for programming. 

Even the most powerful LLMs sufer from hallucinations and 
may misunderstand human intentions. Early users of ChatGPT 
complained about incorrect responses and struggled to prompt 
ChatGPT for a desired output[74]. While LLMs might outperform 
average humans in specifc, structured tasks[58], the evaluation 
criteria might have been fawed[50], as LLMs struggled to combine 
existing solutions for a novel challenge[23]. A study suggested 
developers should not rely on ChatGPT when dealing with new 
problems [81]. 

LLMs are naturally less prepared in low-resource programming 
languages (LRPL). Here, our working defnition for LRPL is similar 
to that of natural languages: with relatively scarce online resources 
and have been less studied by the AI feld[53]. LRPLs are not less im-
portant: NetLogo, the most widely used programming language for 
agent-based modeling (ABM)[80], is used by hundreds of thousands 
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of scientists, educators, and students for computational modeling. 
ABM could simulate complicated emergent phenomena using sim-
ple computational rules for individual agents. It has been frequently 
used in diferent scientifc disciplines[93] and science education[35] 
for recent decades. With considerably fewer online resources to 
train on, LLMs are much more prone to errors and/or hallucinations 
with LRPLs[79]. 

A few studies attempted to improve LLMs’ performance with 
LRPLs in two directions. First, some studies fne-tuned founda-
tional LLMs with LRPL datasets[12]. While this approach demands 
considerable datasets and computational power, it has not been ap-
plied to generative tasks yet[31]. Second, some studies used prompt 
engineering techniques. For example, aiming at simple tasks, a 
study creates grammar rules for LLMs to fll in[86]. Another study 
leveraged compiler outputs, allowing LLMs to improve their Rust 
code iteratively, but was only tested in a smaller number of fxed 
tasks[97]. The potential of LLMs in scientifc disciplines, including 
in computational modeling, is rarely explored. Currently, the only 
study targeted at STEM helps with a very specifc engineering task 
[45]. 

2.2 User Perception and Behaviors with 
LLM-based Programming Interfaces 

Two strands of user perception and behaviors studies informed 
our design and study: studies of conversational agents (CAs); and 
LLM-based programming interfaces. For education, CAs were used 
to develop learners’ writing[85], self-talk[29], and programming 
skills[95]. Many of them are pedagogical conversational agents 
(PCA) to mimic the behaviors of human tutors adaptively[96]. PCAs 
could serve in multiple roles, such as tutors[85], motivators[11], 
peer players[30], or learning companions[29]. 

Prior research of CAs underscored the importance of understand-
ing user perception and behaviors[30], yet the technical boundaries 
of the pre-LLM era limited designers’ freedom. Previous studies 
have explored aspects such as trust, mutual understanding, per-
ceived roles[18], privacy[69], human-likeness[36], utilitarian bene-
fts, and user-related factors[49] to understand users’ acceptance 
and willingness to use CAs. However, many CAs before LLMs 
had to use pre-programmed responses[87], and simply emulating 
functional rules from human speech failed to deliver people’s high 
expectations of CAs[19]. Without the capability to read or write 
code, pre-LLM CAs for computing education were largely limited 
to providing relevant knowledge[95] or supporting conceptual un-
derstanding of programming[48]. 

Recent studies have started to understand user perception and 
behaviors with LLM-based programming interfaces. In education, 
early studies focused on instructors’ and students’ perceptions of 
LLM-based interfaces for programming. Computer science students 
self-reported many potential benefts of using ChatGPT and were 
less inclined to report potential drawbacks[100]. On the other hand, 
computer science instructors were signifcantly concerned about 
students’ widespread usage of ChatGPT[46]. While some instruc-
tors went as far as banning ChatGPT altogether, others suggested 
exposing students to the capabilities and limitations of AI tools, 
leveraging mistakes in generated code for learning opportunities. 

Both instructors and students expressed the need to adapt to a new, 
LLM-era way of teaching and learning[102]. 

For professionals, challenges and opportunities co-exist with 
LLM-based programming interfaces. Recent studies found program-
mers preferred to use Copilot[84] and fnished tasks faster with 
Copilot[62]. Yet, Copilot struggled with more complicated prob-
lems, providing buggy or non-reproducible solutions[23]. Profes-
sional programmers faced difculties in understanding and de-
bugging Copilot-generated code, which hinders their task-solving 
efectiveness[84]. Programmers who trusted AI were prone to write 
insecure code with AI[63]. For conversational interfaces, despite 
inputs being in natural languages, users felt that they needed to 
learn LLM’s “syntax”[26, 37]. 

Our understanding of user perception and behaviors with LLM-
based interfaces during (the learning of) computer programming is 
still very limited. As the feld just started exploring this direction, 
previous studies mostly focused on general user impressions[102], 
or conducted behavioral tasks on pre-scripted, close-ended tasks[62]. 
While close-ended settings made it easier to assess objective metrics[7], 
open-ended contexts open a wider window to understanding users’ 
learning patterns, behaviors, perceptions, and preferences[8]. For 
example, a recent study observed two modes that professional pro-
grammers interact in open-ended tasks with Copilot: acceleration, 
where the programmer already knows what they want to do next; 
and exploration, where the programmer uses AI to explore their 
options[4]. Another study on professionals’ prompt engineering 
shed light on their struggles, challenges, and potential sources of 
behaviors[101]. 

Still, we noticed two gaps in previous studies. First, a majority 
of studies chose professional programmers or computer science 
instructors/students as participants, while millions of people also 
use LLM-based interfaces without a CS background for program-
ming tasks. Second, as HCI studies mostly focus on languages that 
LLMs are known to perform best, e.g. Python or HTML, little is 
known about user perceptions and behaviors when computational 
modeling or LRPLs are involved. 

2.3 LLM-based Interfaces for Learning 
Programming and Modeling 

While LLMs have shown promising potential in supporting human-
AI collaboration in programming, most design studies were pre-
liminary, and LLM-based interfaces for computational modeling 
remained understudied. For example, the Programmer’s Assistant 
integrated a chat window into an IDE[68]. Beyond simple integra-
tions, GitHub Copilot Chat[1] provided in-context support within 
code editors, yet its user studies were still preliminary[10]. A simi-
lar design was done on XCode without a user study[78]. Another 
study explored the integration between computational notebooks 
with LLMs and emphasized the role of the domain (in this case, 
data science) on LLM-based interface design[55]. 

LLMs have gained much attention among programming educa-
tors, but the design study is insufcient. Recent studies tested LLMs 
on introductory programming tasks and achieved unsurprisingly 
high scores[16, 70]. This prospect leads to great concerns among 
computer science instructors as they observed the widespread us-
age of ChatGPT among students[46]. Yet, only a few LLM-based 
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design studies targeted programming learning. Using a Wizard of 
Oz prototype, a study underscored the importance of supporting 
students’ varied degrees of prior expertise[67]. A design study re-
ported positive short-term performance gains when young, novice 
programming learners engaged with Codex[42]. Another study also 
found LLMs’ benefts for novice programmers[57]. Both studies 
found that more experienced programmers tended to beneft more, 
yet the reason was still unclear. 

In this study, we invoke the learning theory of Constructionism[61] 
to inform our LLM-based system and empirical study design. While 
Constructionism has no rigid defnition, it argues that learning 
happens most felicitously when learners "consciously engage in 
constructing a public entity"[61]. In the context of computer pro-
gramming, it means learning happens naturally through program-
ming computers, as it iteratively externalizes learners’ internal 
understanding of the world in code, and then allows learners to im-
prove their understanding through watching how the code runs[60]. 
Moreover, it argues that computer programming is not as abstract 
or formal as it appears; individual programmers’ approaches are 
often concrete and personal, in pluralistic ways[83]. However, the 
pluralism in thoughts is more difcult to capture by close-ended 
tasks (such as a problem set) and objective metrics (such as comple-
tion rate/time)[8]. As such, constructionist learning studies often 
prefer open-ended tasks (e.g. making games[40], designing instruc-
tional software[32], creating agent-based models in NetLogo[8]) 3.1 Design Overview 
and qualitative studies, as they open windows into the nuances of 
learners’ perceptions and behaviors in more natural and realistic 
settings. 

The Logo programming language and its descendants (e.g. Scratch; 
Alice; NetLogo) succeeded in supporting multiple ways of knowing 
and thinking in computing education and scientifc research[75], 
yet to our knowledge, no published studies have explored their 
synergy with LLMs. Many prominent constructionist design princi-
ples could be applied to AI-based interfaces[41] and inspired the 
design of NetLogo Chat. For instance, “low foor, high ceiling, wide 
walls” asks learning environments to provide 1) an easy entrance 
for novices (low foor); 2) the possibility for experts to work on 
sophisticated projects (high ceiling); 3) the support of a wide range 
of diferent explorations (wide walls); 4) the support of many learn-
ing paths and styles[66]. We also learned from previous design 
studies that stress the importance of adaptive scafolding[14, 72] 
and support debugging[9] for novices to learn NetLogo. Hence, we 
contributed to the feld one of the frst design studies of LLM-based 
interfaces for learning programming that follow the constructionist 
tradition. 

3 NETLOGO CHAT SYSTEM 
NetLogo Chat is an LLM-based system for learning and program-
ming with NetLogo. It comprises two main parts: a web-based in-
terface integrated with Turtle Universe (a version of NetLogo)[13] 
(See 3.1); and an LLM-based workfow that improves the quality 
of AI responses and powers the interface (See 3.2). We iteratively 
designed the system by: 

(1) Based on authors’ experiences in teaching NetLogo, we cre-
ated a design prototype based on the constructionist learning 
theory (see 2.3), with a focus on supporting users iteratively 

build up their prompts and smaller code snippets before 
working on entire models. We developed a proof-of-concept 
system, using prompt engineering techniques to interact 
with GPT-3.5-turbo-0314. 

(2) We internally evaluated the proof-of-concept with a group 
of NetLogo experts. During this process, we encountered 
frequent hallucinations with NetLogo (grammatical or con-
ceptual mistakes; inventing keywords that do not exist; etc). 
For the system to provide guidance, we realized that author-
itative sources are necessary for LLMs’ performance; 

(3) We incorporated the ofcial NetLogo documentation and 
code examples into the system using prompt engineering 
techniques (see 3.2), evaluated other LLMs’ potential, and 
then conducted pilot interviews to evaluate the system with 
three external NetLogo experts invited from NetLogo’s mail-
ing lists. The interviews used a protocol similar to the one 
we formally used (see 4.2), with more fexibility and open-
endedness; 

(4) Based on the external feedback, we identifed the need for 
supporting troubleshooting, leading to the design decision 
3.1.3. We upgraded the underlying LLM to GPT-3.5-turbo-
0613, fxed many minor usability issues, and fnalized the 
prototype we used in the empirical study. 

Figure 1: NetLogo Chat asking for details about human’s 
needs. 

3.1.1 Enable users to program the computer, rather than being pro-
grammed by the computer. Over-reliance on LLM-based interfaces 
has become a major concern among educators and some learners, 
where students blindly follow the instructions given by LLMs with-
out attempting to construct their representations of knowledge. 
Such a scenario is antithetical to the constructionist learning tradi-
tion, where Seymour Papert’s fear of "computers program children" 
comes back to life again[60]. 

Inspired by the Logo language, the design of NetLogo Chat aims 
to give control back to learners: to suppress LLMs’ tendency to give 
a quick response that often assumes too much about the learner’s 
inclination, we force it to ask clarifcation questions more often. Fig 
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Figure 2: ChatGPT assuming details of human’s needs. 

1 and Fig 2 provide an exemplary comparison between NetLogo 
Chat and ChatGPT’s reaction to a simple modeling request. Here, 
ChatGPT immediately assumes details of the user’s needs and gen-
erates an entire model for the user to copy and paste. Meanwhile, 
NetLogo Chat attempts to frst clarify the user’s needs by asking 
follow-up questions and suggesting exemplary answers. The sug-
gestions in Fig 1 serve as both an inspiration, in case learners get 
confused about what to write; and a shortcut, in case learners fnd 
any suggestions immediately usable. 

For this feature to work efectively, it is essential to ask questions 
with quality. To achieve this, we used a few-shot approach and 
crafted templates for LLMs to follow. We conducted an informal 
evaluation of LLM’s generated questions during our development 
process and empirical study. Across the board, the LLM we used 
was able to generate questions with acceptable quality, similar to 
the one demonstrated in Fig 1. A future design could embed a larger 
set of templates and retrieve a few relevant templates when needed. 

3.1.2 Invoke Authoritative Sources Whenever Possible. Hallucina-
tion is another major concern for LLMs, particularly in an LRPL 
like NetLogo. For example, the code generated by ChatGPT in Fig 
2 contains multiple syntax issues and requires human experts to 
address them. More powerful LLMs sufer from the same symptoms. 
We submitted similar sample requests to GPT-4, PaLM2, Anthropic 
Claude 2, and Falcon-180B: none could produce syntactically correct 
code for a classical NetLogo model. 

Following previous examples in related tasks[38], we integrated 
NetLogo’s ofcial documentation and model examples to help im-
prove LLMs’ and human performance. Diferent from previous 
studies, we not only provided related examples to LLMs, but also 
revealed them to users. By doing so, we seek to improve the trans-
parency of LLM’s mechanism, foster trust in the LLM-driven system, 
and provide authoritative guides and examples for users even when 
LLMs might fail to provide precise support. 

Figure 3: NetLogo Chat’s embedded editor for generated code. 

3.1.3 Integrate with the IDE and Enhance Troubleshooting. We seek 
to integrate NetLogo Chat into NetLogo’s IDE beyond integrating 
a conversational assistant parallel to the code editor. To facilitate 
a constructionist learning experience, the code editor needs to be 
integrated into the conversational interface, where learners can 
work with smaller snippets of code with more ease. Thus, the design 
might lower the threshold for learners to tinker with the code, a 
key learning process advocated by the constructionist literature 
[61, 83]. 

Fig 3 provides a concrete example, where the embedded editor 
displays a piece of generated code. Instead of having to copy and 
paste the piece back into the main editor, the user could frst see 
if any syntax issues exist in the code; run the code within a con-
versation; and ask follow-up questions or raise additional requests, 
before putting back a working code snippet into their projects. 

To further support the user’s troubleshooting, in addition to 
error messages, NetLogo Chat will display extra debugging options 
for users. Users could choose to look for an explanation, or ask the 
LLM to attempt fxing the issue on its own, or with the user’s ideas. 
During the process, the system will attempt to fnd documentation 
and related code examples to reduce hallucinations. Building on 
the literature on error messages’ impact on learning[5], we also 
clarifed many messages to provide a better context for humans 
and both LLM-based systems used in the study. 

3.2 Technical Implementation 

Figure 4: A brief outline for NetLogo Chat’s LLM workfow. 

Since OpenAI started to provide fne-tuning on GPT-3.5-turbo 
(the version also used in ChatGPT Free) only after we concluded the 
main study in July, NetLogo Chat was implemented with prompt en-
gineering techniques. We built our project on ReAct[99], a prompt-
based framework that could reduce hallucination, improve human 
interpretability, and increase the trustworthiness of LLMs. By re-
quiring LLMs to generate an action plan and delegate the action to 
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a third-party conventional agent (e.g. search for documentation, ask 
clarifcation questions, conduct a static syntax check, etc.) before 
composing the fnal response, the framework provides a promising 
pathway to integrate external inputs (e.g. human input, ofcial 
documentation) into LLM workfows. Fig 4 depicts a rough outline 
of NetLogo Chat’s workfow. Imagine a user requests to "create a 
predation model": 

(1) The LLM is instructed, in the prompt, to frst elaborate on 
the request (planning): "The user intends to create an agent-
based biology model related to predation. However, it is 
unclear what exactly the user wants. We need to ask follow-
up questions." 

(2) Next, the LLM is instructed to choose an action from the 
list: Ask clarifcation question(s); Search for documentation; 
Write a response; Say sorry. Here, imagine the LLM chooses 
"Ask clarifcation question(s)" based on the planning. 

(3) Then, the LLM needs to generate some questions based on 
the request. Because LLMs are trained on real-world data, 
it is not difcult for them to come up with some ideas. For 
example, "What species do you want to put in the model?" 
The LLM is also instructed to provide some examples, e.g. 
"Wolf", "Sheep". 

(4) When the user replies to the questions, the loop restarts 
from step (1). Since there is sufcient information about 
the request, the LLM decides to search for information, and 
also generates keywords for the search, e.g. "Wolf-sheep 
predation model in NetLogo". 

(5) The system conducts a semantic search on a pre-assembled 
database of NetLogo’s ofcial documentation and code ex-
amples. The system returns the search result, use it as a new 
round of input, and restarts from step (1). 

(6) With inputs from both the user, who clarifed the request; 
and the database, which supplies the example; the LLM plans 
again, chooses to write a response, and generates its fnal 
response. 

In the example, we initiated three requests with the LLM, each 
with a prompt template that results in a structured response[99] 
(e.g. any response needs to have a Plan, an Action, and a Parame-
ter). Each request could use a diferent LLM that works best for the 
specifc request. Using this approach, the system can potentially 
balance cost, performance, speed, and privacy. For example, a fu-
ture iteration of NetLogo Chat could leverage a fne-tuned local 
LLM to probe the user’s intentions and search for documentation. 
Then, with any personal or sensitive information stripped away, 
the system could forward the compiled request to a powerful online 
LLM (e.g. GPT-4). 

For the empirical study, we chose GPT-3.5-turbo-0613 as NetLogo 
Chat’s LLM backend. First, we expect most participants to be using 
the free version of ChatGPT, driven by the same LLM. This way, we 
would have a fair playing feld for the empirical study, where both 
systems will be used. Second, at the time of our study, the response 
time for GPT-4 was too long to sustain a real-time experience, while 
we had no access to other NetLogo-capable LLMs’ APIs. Although 
we did observe some remarkable improvement when internally 
evaluating the system (e.g. ChatGPT has trouble answering ques-
tions for lesser-known NetLogo keywords, while NetLogo Chat 

Table 1: Overview of Participant Demographics (n=30) 

Gender Females: 10 (33%); Male: 19 (63%); Non-binary: 
1 (3%) 

Geography Africa: 1 (3%); Asia and Oceania: 5 (17%); Eu-
rope: 8 (27%); Latin America: 2 (7%); North 
America: 14 (47%). 

Occupation Academics: 14 (47%); Professionals: 12 (40%); 
Students: 4 (13%) 

does not), a more systematic evaluation rubric is needed for future 
research. 

4 EMPIRICAL STUDY 

4.1 Participants 
For the empirical study, we recruited 30 adult participants through 
NetLogo’s ofcial Twitter and mailing lists; and through the Com-
plexity Explorer, a website run by Santa Fe Institute (SFI) to distrib-
ute learning resources of agent-based modeling (ABM). The exact 
breakdown of participants’ demographic data can be seen in Table 
1. The participant pool largely represented the scientifc modeling 
community in NetLogo’s main audience, with a majority of partici-
pants coming from STEM disciplines. Many participants were also 
related to the educator sector. 6 participants (20%) were instructors 
who teach or are interested in teaching NetLogo in classrooms; 4 
(13%) were graduate-level students interested in learning NetLogo, 
making up a third of the population. Participation in the study 
was voluntary. All participants signed an online consent form on 
Qualtrics. 

Building on the tradition of understanding the diference be-
tween experts and novices[17], we separated the participants into 
experts and novices using self-reported survey data. To mitigate the 
efect of inaccurate responses, NetLogo experts in the team, who 
have been core developers and instructors of NetLogo, watched 
every video and decided if a participant greatly overestimated or 
underestimated their capabilities. We considered the participant’s 
discussions with the interviewer, the think-aloud process, and the 
coding behaviors. A vast majority of users’ reports correspond 
with the experts’ judgment. Then, to simplify the analysis, we sepa-
rated participants (Table 2) by their levels into two main categories: 
experts, who are either experts in NetLogo or programming in 
general; and novices. In the study, we denote experts by the prefx 
E (E01-E17) and novices by N (N01-N13). 13 experts had previ-
ous experience with ChatGPT (76%), including programming (65%, 
n=11). 11 novices (85%) also used ChatGPT before, but much less 
for programming (38%, n=5). 

4.2 Interviews 
Our study was conducted in 3 phases: 

(1) We pilot interviewed 3 experts invited from NetLogo’s online 
community. Each was asked to comment on LLMs for NetL-
ogo learning, as well as on ChatGPT and an early prototype 
of NetLogo Chat. 
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Table 2: Participant Information 

ID Region Level (NetLogo) Level (Programming) Occupation 
E01 North America Expert Expert Professional 
E02 Asia and Oceania Expert Intermediate Academic 
E03 Latin America Intermediate Expert Academic 
E04 North America Expert Expert Academic 
E05 Europe Intermediate Expert Academic 
E06 North America Intermediate Intermediate Academic 
E07 Latin America Intermediate Intermediate Professional 
E08 Asia and Oceania Intermediate Intermediate Professional 
E09 Asia and Oceania Intermediate Expert Professional 
E10 North America Intermediate Intermediate Academic 
E11 Africa Intermediate Expert Academic 
E12 North America Intermediate Intermediate Academic 
E13 Europe Expert Novice Academic 
E14 Europe Intermediate Intermediate Academic 
E15 Asia and Oceania Expert Expert Student 
E16 Asia and Oceania Novice Expert Professional 
E17 Europe Intermediate Expert Academic 
N01 North America Novice Novice Professional 
N02 North America Novice Novice Academic 
N03 North America Novice Novice Professional 
N04 North America Novice Intermediate Student 
N05 Europe Novice Intermediate Student 
N06 Europe Intermediate Novice Student 
N07 North America Novice Intermediate Professional 
N08 North America Novice Intermediate Professional 
N09 North America Novice Novice Professional 
N10 North America Novice Intermediate Professional 
N11 Europe Novice Intermediate Academic 
N12 Europe Novice Novice Academic 
N13 North America Intermediate Novice Professional 

(2) We improved the design of NetLogo Chat based on what we 
learned from the pilot interviews and revised the interview 
protocol accordingly. 

(3) We conducted formal interviews with 27 online participants 
(30 in total). 

Each semi-structured interview lasted between 60-90 minutes 
and was video recorded. Prior to each formal interview, participants 
were asked to come up with a short NetLogo task that they were 
interested in working on. Almost every participant brought forward 
a modeling task from their career domain or personal interest, e.g. 
to model "how honeybees decide to regulate the temperature of 
the hive", or "the spread of conficting ideas". Only once, when 
the task scope was too complicated for the session, did we ask 
the participant to bring another. During any part of the interview 
process, interviewers generally followed the protocol, asking follow-
up questions when needed. Specifcally: 

(1) We asked baseline questions, e.g., “What do you think are 
the potential advantages / disadvantages of using LLMs in 
supporting your learning and programming of NetLogo?” 
(in 2 separate questions) 

(2) We asked the participant to work on their task with the help 
of ChatGPT. Then, we asked the same baseline questions 
again, then asked “What do you like or dislike about the 
interface”. Repeat the procedure with NetLogo Chat; 

(3) If time permitted, we further asked about their preferences 
for learning and/or programming with NetLogo and asked 
which feature they wanted to add/remove from either system. 
Here, the objective was not to strictly compare the two sys-
tems, but to elicit more in-depth discussions over LLM-based 
interfaces. 

Since almost all users have already engaged with ChatGPT, we 
did not randomize the order of ChatGPT/NetLogo Chat. Also, 3 
participants used the paid version (GPT-4) during the task with 
ChatGPT. While much of the generated data comes from the in-
evitable comparison between the two systems, we chose not to 
interpret them as objective comparisons. Instead, the diferent de-
sign principles underpinning the systems presented two objects to 
think with[60], that our participants drew on during their refec-
tions and discussions of LLM-based programming interfaces. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Chen, et al. 

4.3 Data Analysis 
Our interviews resulted in around 40 hours of video data. Around 
half of our data is behavioral in nature, where participants worked 
on their tasks and were encouraged to think aloud; the other half is 
more verbal, where participants answered questions. As such, each 
interview was not only transcribed verbatim, but also watched by 
a researcher to create observational notes. The two streams were 
then combined into a single archive for analysis. 

Based on our research questions, we iteratively applied the 
grounded theory approach[22] to analyze our data. During each 
step, the research team fully discussed the discrepancies between 
each researcher and iteratively refned the codebook to improve 
consistency. The analysis reached theoretical saturation at around 
50% of interviews, when additional interviews no longer revealed 
unexpected major insights for our research questions. Then, we 
fnished the rest of qualitative coding with the fnalized codebook 
(Table 3). 

(1) Four researchers open-coded 2 interviews, one from a novice 
and one from an expert, to summarize the topics mentioned 
by participants. During this process, researchers coded in 
diferent tabs to avoid interference. Three broad themes 
emerged from this phase: participants’ approaches to pro-
gramming; participants’ interactions with AI systems; and 
their comments on AI systems. 

(2) Taking notes of the emerging themes, the frst author created 
a preliminary codebook that categorizes dozens of codes 
into themes. Each researcher coded another 2 interviews 
in diferent tabs. In this phase, we refned the themes into 
approaches to programming (which also helps to separate 
experts and novices); perceptions and observed behaviors 
related to AI systems; and comments on AI systems’ abilities. 

(3) Based on the coding results, the frst author created a formal 
codebook, with defnitions clarifed based on the discrepan-
cies between researchers (Table 3). To reduce the unbalanced 
infuence of subjective interpretation, researchers only coded 
explicit behaviors; or direct comments. To avoid missing in-
sights, researchers were instructed to highlight places where 
existing codes cannot cover the topics. During the frst two 
weeks, a few codes were created or merged as a result of 
discussions. We retrospectively revised our coding. 

Based on the codebook, the frst author iteratively incorporates 
themes into an outline. To further mitigate individual diferences, 
researchers were asked to include as many codes as possible for 
each quote or observation. 

5 FINDINGS 

5.1 Perception: Before and After Interaction 
5.1.1 Before Interaction: Positive Expectations. Prior to the tasks, 
both novices and experts had positive expectations of LLM-based 
interfaces for NetLogo, with novices holding higher expectations 
than experts. 

Both novices and experts expected LLM-based interfaces to save 
human time and support human efort, especially compared to other 
help-seeking activities. With LLMs, human time and energy could 
be liberated for more high-level tasks ( E12 , N03 ). Educators 

felt that LLMs could facilitate more efcient teaching, allowing 
students to “more complicated things with relative ease”, spiking 
“their imagination.” ( E02 ) LLMs can also bring emotional benefts 
by reducing the fear of “bothering the teachers or the experts” 
( E14 ) or asking “stupid questions” ( N06 ). 

Most participants highlighted AI’s potential to help them with 
NetLogo’s syntax. For most participants, NetLogo is not the main 
programming language they used. Before the advent of ChatGPT, 
N06 felt that she needed to “recite the words (syntax of NetLogo)”. 
Yet, the need was eliminated when “AI can teach you very quickly”. 
Many experts also needed support, as NetLogo “has very strict 
syntax rules” ( E07 ) which makes writing more difcult. 

Novices, in particular, expected that AI could be helpful for trou-
bleshooting. N08 , for instance, felt that LLMs could help him 
through the troubleshooting process by describing “what I’m try-
ing to do and get a snippet of code that helps get me past that 
block”. For novices without a background in programming, this 
future looks promising. N12 is interested in the potential to “make 
programming more approachable to students”. 

5.1.2 Before Interaction: Negative Expectations. Almost every par-
ticipant expressed concerns or reservations about LLM-based inter-
faces. Yet, the concerns of novices and experts were conspicuously 
diferent. 

Experts focused on preserving human judgment. E01 believed 
that AI should not “replace human judgment and ability”. Similarly, 
E06 insisted that “(human) has to do the main thinking and ideas 
and all of that.” E17 felt that humans cannot let AI “take over 
the main reasoning and emotions, the emotions intervening in the 
decisions.” Many educators were also “concerned about learning” 
( E13 ), fearing the tendency to “default to the AI system to come up 

with the answers instead of working through it ourselves” ( E12 ). 
Many experts explicitly explained their rationales. For example, 
E08 was concerned that “if a model points me to a suboptimal di-
rection, I will have no idea, because I haven’t considered alternative 
structure”. E15 feared that relying on AI responses might “make 
your horizon narrow” because she would miss learning opportuni-
ties when browsing through the models library. For computational 
modeling, AI also might lack “in-depth knowledge in a specifc feld” 
to create an entire model ( E05 ). As such, E05 would only trust 
AI to “fnish a specifc task”. 

Novices were more optimistic and more concerned with their ca-
pabilities of understanding AI’s responses or making AI understand 
them. For example, while N04 thought “one of the hypothetical 
drawbacks” to LLMs being “confdently incorrect”, they added that 
“people are like this too”. On the other hand, N03 feared that she 
would waste more time with AI if “it didn’t understand me, or if 
I had difculty expressing”. N02 acknowledged that “there is a 
limitation to not knowing how to code (on how much AI could 
help).” Without knowledge of NetLogo, N11 felt difcult to spot 
LLM-generated mistakes. 

5.1.3 Afer Interactions: Diferent Impacts of Hallucination. All par-
ticipants encountered AI hallucinations throughout the sessions. 
While some participants rated NetLogo Chat higher than ChatGPT’s 
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Table 3: An Overview of the Codebook 

Code Defnition 
Approaches User’s perceptions about their approach to programming tasks, e.g. planning, separating into 

smaller pieces, or working on it as a whole. 
Learning How users learn NetLogo or programming in general, or think that people should learn. 
Coding How users organize or write their code, or think that people should organize or write. 
Help-seeking How users seek help in general, or think that people should seek help. 
Human-AI User’s perception and behaviors related to Human-AI relationship. 
Prior Users’ prior experiences with ChatGPT or other AI-based interfaces. 
Attitude Users’ attitudes toward AI in general, or specifc AI-based systems. 
Efort AI’s infuence on how much, and what kind of, eforts that humans made or need to make. 
Abilities User’s perception related to AI’s abilities. 
Response AI’s ability to provide desirable responses for humans. 
Support AI’s ability to support learning/coding of NetLogo. 
Interactivity AI’s ability to facilitate helpful interactions with humans. 

Table 4: Novices and Experts’ Perceptions on LLM-based Interfaces for NetLogo 

Experts Novices 

Before, Positive 

LLMs could save human time and efort, 
especially in syntax. 

LLMs could save human time and efort, 
especially for syntax, and provide emo-
tional benefts. 
LLMs could help troubleshooting. 

LLMs could mislead humans to subopti-
mal directions. 

While LLMs may make mistakes, it is no 
worse than humans. 

Before, Negative 
LLMs could hinder learning processes. LLMs may not understand human inten-

tions. 
LLMs could only work on smaller tasks. LLMs’ responses are difcult to under-

stand. 

After Interaction 

LLMs supported learning or practicing by 
saving time. 

LLMs supported learning or practicing by 
saving time. 

Will continue to use LLMs for learning or 
practicing NetLogo. 

Will seek alternative learning resources 
before continuing to use LLMs. 

free version, most participants had similar changes in perceptions: 
experts, in general, reported more benefts from LLMs than novices. 

Some participants reported more positively about NetLogo Chat’s 
capabilities. Several experts questioned ChatGPT’s training in Net-
Logo, yet they trusted more in NetLogo Chat, for it incorporates 
authoritative sources (see 3.1.2). E16 believed that NetLogo Chat 
“understands your NetLogo syntax” and “the basic aspects of Net-
Logo”. N02 thought NetLogo Chat still had bugs but was “much 
more informative and precise than ChatGPT.” As NetLogo Chat 
is designed to support troubleshooting (see 3.1.3), E04 thought 
NetLogo Chat “was able to kind of do some better troubleshooting 
to a certain extent, for it clarifes error codes”. 

In both cases, experts understood hallucinations as an inevitable 
part of human-AI collaboration and reacted with more leniency. 
When E03 frst encountered an incorrect response, he exclaimed: 
“Very interesting! You’re mistaken.” E05 felt that LLMs helped him 
“fnish most of the code”, though he still needed to “debug and see if 
the code makes sense logically.” As experts did not rely on LLMs to 
resolve issues but mostly leveraged them as a shortcut, E06 stated 
that hallucinations were instances “where the programmer needs 

to use own experience and discretion”, as risks would escalate if 
one extrapolates “what ChatGPT provides you in a wrong manner”. 

Novices, on the other hand, reported more obstacles and frustra-
tion, as they relied more on LLMs for their tasks. N07 emotionally 
responded to a hallucination that ChatGPT “apparently made that 
shit up”. N01 had difculties to “fx the bugs that were in it (the 

generated code).” N08 ’s session ended up “hitting a dead end”, 
with the frustration leading him to “go consult other resources”. 

Most novices and experts still thought that LLM-based interfaces 
supported their learning or practicing by saving time. Even though 
N03 had “low trust” in ChatGPT, she still felt more confdent after 
collaboration, for it “narrowed down the stuf I have to fgure out 
myself and has made me much faster already.” As an educator, N12 
felt that LLMs facilitated a constructionist learning experience in 
which “you’re being thrown into the culture and have to learn it 
on the fy.” E13 thought he learned a syntax from ChatGPT that 
would “save me time in the future” and the learning process was “a 
lot faster than if I were doing it by hand”. 

As experts reported more perceived benefts, they predominantly 
intended to continue using LLM-based interfaces for NetLogo. After 
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the task, E11 felt confdent that “I can write anything I want to 
write”. Yet, many novices, driven by their frustration with LLMs, 
sought alternative learning resources before considering a return. 
N04 , for instance, had a 180-degree turn: expressing great hope 
before the tasks, they now inclined to “build more by myself with 
my own code, without AI.” N13 thought that she would prefer 
to work with “someone who is familiar with the programming 
language” together with LLMs. 

5.2 The Behavioral Gap Between Novices and 
Experts 

5.2.1 Behavioral Gap in Planning and Prompting. While experts’ 
and novices’ tasks were similar in terms of complexity, we observed 
diferences between how novices and experts plan out their tasks. 
Since most participants gradually adapted their prompting styles, 
we focused on participants’ frst-round prompts. 

Two initial prompting patterns, one emphasizing modeling the 
entire system and another focusing on smaller, initial aspects of the 
task, emerged from our interviews. Most novices adopted the frst 
pattern (11/13, 85%), while many experts adopted the second pattern 
(9/17, 53%). Below, we introduce one vignette for each pattern: 

(1) N05 started by asking: “I need to make a model of the 
bunch of agents who are trying to promote political views 
to other people (...)”. Although he used GPT-4, the returned 
code still had several syntax errors. N05 then spent the 
next 20 minutes trying to ask GPT-4 to fx issues without 
success. He expected to “put the idea into it and we’ll run 
the code”, but in the end “it didn’t happen.” 

(2) E07 started by asking ChatGPT to “write code for drawing 
a rectangle”. When GPT-3.5 failed to divide the rectangle 
further, E07 instantly pivoted to another strategy: “I have 
the following code that draws a rectangle. I want you to 
modify it so the rectangle is divided by two”. GPT-3.5 still 
failed, yet it produced working code and did “something 
close to it”. 

The second prompting pattern involved remarkable mental ef-
forts to decompose and plan out the task. For example, E07 de-
scribed his approach as “separate into small, general tasks you want 
to do.” E04 explained that he “just likes to iteratively build (the 
code)”. On the other hand, in the frst pattern, many participants 
attempted to shortcut the eforts by delegating the tasks to AI, as 
N05 said: “I just want to ask it (ChatGPT) to just directly make a 
code for this task and that’s it.” 

By the end of the task, most participants had realized the impor-
tance of breaking tasks into smaller pieces for coding with AI. Nat-
urally, when an LLM-based interface generated code with mistakes, 
a participant would be (implicitly) guided to ask smaller follow-up 
questions. Soon, many of them realized the benefts. N01 thought 
it would be better if one “works through real small problems frst, 
before getting to more complicated problems.” N10 would “start 
with something really basic.” Experts using the frst pattern had 
similar ideas. For example, E12 decided to restart “with something 
simple and just work with it.” 

5.2.2 Behavioral Gap in Coding and Debugging. As most partici-
pants engaged with an agent-based modeling task that they never 
worked on, both experts and novices learned some aspects of Net-
Logo with the help of AI - although, in diferent ways. Experts 
usually took a much more measured, prudent, and critical approach 
during coding and debugging, while novices mostly followed AI’s 
instructions. 

Most novices focused on reading AI’s explanations and followed 
AI’s instructions during their coding processes. ChatGPT often 
gives instructions like “You can copy and paste this code into NetL-
ogo and run it”. Even without this hint, almost all novices would 
copy and paste the generated code without much reading. The ten-
dency worried some novices, but they had no choice: “I feel like 
I’m waiting for someone to tell me the answer, rather than learning 
how to solve it.” ( N11 ) 

Experts put more emphasis on the code, often ignoring the ex-
planations provided by AI. During their reading, experts evaluated 
and often criticized the responses, planning their next steps along 
the way. Only a few experts tried copying and pasting the code to 
see if they worked out of the box. Other experts selectively copied 
and pasted parts of the code into their programs, or wrote their 
programs with generated code on the side. Even when they copied 
and pasted the code, experts were more cautious. For example, 
while E04 decided to “just take this and see what this does”, he 
also realized that AI-generated code would override his ideas and 
manually edited the code. 

All participants inevitably had to debug parts of the generated 
code. Yet, novices sought support from AI more frequently and 
often struggled with AI responses. For example, N12 would regu-
larly “copy the code that doesn’t make sense and go back to AI to 
see if it can help me.” N09 complained that while ChatGPT gave 
suggestions, “it obviously requires fddling around with it.” As she 
had little idea about NetLogo, it became a purely trial-and-error ex-
perience. Even when AI did solve some errors, it was challenging for 
novices to learn from the process. For example, N04 commented 
that while NetLogo Chat provided an automated process, it was still 
difcult for him to get the lesson, “since I didn’t write it myself.” 

5.2.3 Behind the Behavioral Gap: The Knowledge Gap. We identi-
fed a knowledge gap that may lead to the behavioral gap. When 
novices realized they needed to spend more efort decomposing 
the task or vetting AI responses, they found themselves lacking 
the necessary knowledge. In participants’ own words, we summa-
rized the four components of a knowledge gap that novices need 
to overcome when working with AI. 

Novices reported the need for conceptual knowledge of modeling. 
For example, N07 described his experience as “like being adrift on 
an ocean. Without a compass, and without a map.” With only a basic 
understanding of agent-based modeling, N11 felt compelled to 
accept ChatGPT’s response as “I don’t really know how to interpret 
some of the output from it.” Such feelings correspond with novices’ 
tendency to skim through AI responses. Whereas, some novices 
asked for help from LLMs with diferent degrees of success. N04 
frst asked: “(...) Can you tell me what I will need to do before we 
begin?” With AI’s suggestions, N04 had some more success asking 
follow-up questions. 
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Table 5: Novices and Experts’ Behaviors During Human-AI Collaboration 

Experts Novices 

Planning & Prompting 

Many start by asking LLMs for a 
smaller aspect of the task. 

Most start by asking LLMs to work on the 
entire task. 

"NetLogo, I would like to spawn 50 tur-
tles" 

"I want to use netlogo to help me model how 
honeybees regulate the temperature in their 
hive. What should I do?" 

Evaluating 
Focus more on the generated code. Focus more on the generated instructions. 
"Talks too much. I want the code, not the 
explanation yet." 

"I am reading the text a little bit and it spits 
out a bunch of code. So it did give me steps, 
which is nice." 

Coding 

Most selectively copy and paste code, 
or write code on their own. 

Most start by copying and pasting LLM-
generated code. 

"It’d be that I just take this and see what 
this does. " 

“This time it gives me.. two boxes to copy.” 

Debugging 

Debug themselves, or with help from 
AI. 

Debug with (more) help from AI. 

"Oh, I didn’t ask him to move. That is 
my problem." 

"I’m going to ask it the same question, but I’m 
confused why it said something about patches." 

The unfamiliarity with the basic concepts of NetLogo and/or 
coding in general further adds to the difculty in prompting and 
understanding. After reading a guide suggested by NetLogo Chat, 
N07 realized that he “probably wouldn’t have chosen NetLogo 
to ever begin with” for his database-related task. Other novices 
were often confused by NetLogo’s terms, even when they were 
mostly in plain English. N03 was confused about “why (ChatGPT) 
said something about patches” (note: patches are static agents that 
form NetLogo’s modeling world), and that deepened her reliance 
on ChatGPT. N10 realized that she “only understand 20% of what 
I am reading, so I can’t vet it myself.” When the interviewer asked 
about adding comments into code, N03 replied that while it might 
be helpful, she was still missing “the high-level understanding of 
how it comes together.” 

Many novices also lack the experience for debugging, leading to 
more unsuccessful attempts and more frustrations. Participants, in 
particular novices, were often confused by error messages from Net-
Logo. N01 acknowledged that “without background knowledge, 
it is hard to fgure out what the bugs are, if (LLM) gives you infor-
mation that is inaccurate.” Without experience in debugging, many 
novices felt frustrated and helpless as previously reported. On the 
other hand, E12 noted that his students “might not be comfortable 

with the idea that debugging is a normal part of the process.” E01 
believed that “the user needs a little practice in debugging their 
own code” before working with LLM-based interfaces. 

Most novices felt a need to learn to interact with LLMs. After 
repeated failures, N01 felt that he did not “even know what ques-
tions to ask to get it to, because it is not doing the right thing.” 
N06 thought AI would help a lot if she could “learn more about 
how to use AI.” N05 realized that he needed to use the correct 
keywords, for otherwise it “will never generate a good model.” This 
knowledge is relatively easier to acquire though: while N09 felt 
that “how to ask questions is very important”, she believed that 
“you learn by actually doing it.” 

5.3 Needs for Guidance, Personalization, and 
Integration 

5.3.1 "Good" Responses, "Bad" Responses. Participants generally 
appreciate and expect less technical, clear instructions. Many of 
them appreciate NetLogo Chat’s design decisions that include au-
thoritative sources in responses (see 3.1.2) and ask back clarifcation 
questions (see 3.1.1). However, participants’ preferences are also 
highly personal and situational. 

For both designs, some participants explicitly went against exces-
sive or unnecessary explanations, particularly when the goal is pri-
marily to accomplish a task at hand. For instance, E09 complained 
that GPT-4 “talks too much. I want the code, not the explanation 
yet.” E14 complained that while related code samples provided 
by NetLogo Chat could “contain a lot of good suggestions”, she 
wanted to move them to “another box or an expandable line”. 

Some participants appreciated and hoped that LLMs could stay 
on topic and give smaller pieces of information at a time. E01 
thought NetLogo Chat would be more helpful if it only attempted 
to solve a bug “one at a time”, for users “always overfll their bufer”. 
Novices, in particular, prefer concrete, step-by-step responses, given 
their focus on AI-generated instructions. N04 wanted to “test one 
by one if (LLM) gave me multiple suggestions.” Going beyond text 
responses, N03 hoped that there could be “a visual to help me 
better understand, or internalize what diferent elements of the code 
are”, so her learning could move to a higher-level understanding of 
the code’s intention. 

For NetLogo Chat, most participants reacted positively to the 
reference to authoritative sources (see 3.1.2), the usage of NetLogo’s 
language, and the provision of links to sources. E03 believed that 
“the possibility to go directly from this AI to the documentation” 
would be helpful for his students. N10 “automatically like (Net-
Logo Chat’s response) better” because it used “NetLogo’s kind of 
turtle and patch language.” E12 felt “a little bit more confdent 
in the information I was getting because it seemed to be coming 
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Table 6: Users’ Needs for LLMs: Guidance, Personalization, and Integration 

Guidance Personalization Integration 
Should provide clear, less technical re-
sponses, stay on topic, and give smaller 
pieces of information at a time. 

Should provide responses based on users’ 
preferred styles. 

Should provide better support for coding 
chunks and iterative modeling. 

Should provide responses based on authori-
tative sources and in NetLogo’s language. 

Should provide responses based on the 
knowledge levels and interests of users. 

Should support working on existing model-
ing code. 

Should assume less, clarify more, and stick 
to user intentions for modeling. 

Should support human help-seeking pref-
erences in diferent ways. 

Should support input and output of compu-
tational modeling. 

from inside of the application.” However, sticking too much to au-
thoritative explanations might have a downside. E10 complained 
that NetLogo Chat gave him “dictionary reference”, and “dictionary 
defnitions are not especially helpful.” 

Many participants, in particular experts, reacted positively when 
NetLogo Chat assumed less about and stuck more to their inten-
tions (e.g. asking questions back, see 3.1.1). For example, E09 
commented that ChatGPT (GPT-4) “assumed what I wanted it to do, 
whereas this one makes you specify your assumptions.” He prefers 
NetLogo Chat’s approach, because “it makes you think about the 
code more.” E12 felt that NetLogo Chat’s clarifcation of intention 
was akin to “progressively guiding me towards a better prompt.” 
As transparency is a key factor in computational modeling, N11 
feared that if “anyone can produce an agent-based model, but with-
out actually understanding all the parameters”, hidden assumptions 
introduced by ChatGPT could be detrimental. 

5.3.2 Need for Personalization. In this section, we break down 
the strong needs of experts and novices for more personalization, 
besides response styles, into two themes: knowledge levels and 
help-seeking needs. 

Novices, in particular, felt a strong need for LLM-based inter-
faces to acknowledge their knowledge levels and produce responses 
accordingly. N07 gave a stringent critique of both systems, feeling 
both systems were “not useful at all”, for both “presumes you know 
something about NetLogo”. N08 felt that “ChatGPT has no idea 
of how much or how little I know about how to code in NetLogo, 
or how to code in general.” Solving this issue would require more 
personalized approaches. Coming from an educational background, 
both N02 and E03 suggested that LLMs should frst probe users’ 
knowledge level before providing answers. 

Participants gave a variety of suggestions that were sometimes 
conficting: 

(1) Some participants prefer a guided walkthrough. N08 
hoped that LLMs could walk him through the process and 
provide starting points. Both E14 and N03 hoped that 
LLMs could be used alongside video tutorials, where they 
could frst see a successful example of human-AI collabora-
tion and then ask follow-up questions. 

(2) Some participants prefer contextual recommendations. 
N11 hoped that LLMs could show related code examples 
and provide “two or three other ways that you might look 

with”. E10 suggested that LLMs provide in-context expla-
nations if “you don’t remember the defnition or explanation 
of a particular command”. 

(3) Some participants hope that LLMs could support help-
seeking from humans. E01 hoped that LLMs could help 
novices “explain my situation so that I can paste it to the 
user group”, so human experts could intervene more easily 
when AI fails to unstuck novices. Similarly, E17 suggested 
that AI could be combined with “peer to peer answers and 
collaboration”. 

(4) Some participants believed that incorrect responses 
could become a learning opportunity. E02 was con-
cerned that students might be “exposed to fewer options” 
with AI, compared with “coding from scratch”. E03 feared 
that a system capable of directly producing solutions might 
deprive students of the debugging process, where they would 
have learned.” Novices also had similar feelings. After many 
hallucinated responses, N08 thought that ChatGPT “forces 
me to learn as opposed to just getting code that’s ready to 
go.” To fully transform the moment of mistake into learning 
opportunities, educators suggest the design not to frame mis-
takes as failures, but rather “as a learning moment” ( E12 ). 

5.3.3 Need for Integration. Compared with ChatGPT in a separate 
browser window, most participants appreciated the NetLogo Chat 
interface being an integrated part of the modeling environment. 
They particularly favor the deep integration in NetLogo Chat’s 
design that goes beyond placing a CA and an IDE side-by-side. We 
further identifed many participants’ need for a deeper integration. 

Many participants appreciated the integration of a sandbox-like 
code editor in NetLogo Chat, where they can tinker with smaller, 
AI-generated code chunks and execute them on the fy (see 3.1.3). 
N12 “defnitely liked this feature of being able to go easily be-
tween the code and see what was changed and what was added.” 
N04 appreciated that one can “see the code run” in the NetLogo 

IDE, which ChatGPT could not do. N13 thought while some code 
generated by ChatGPT was “so comprehensive”, NetLogo Chat was 
able to break it down and make them “more conducive”. Partic-
ipants also expressed further needs for iterative modeling. E13 
hoped that NetLogo Chat could help him “modularize all of my 
commands” by splitting the code into many smaller, more manage-
able chunks. E12 asked for a comparison feature between versions 
of code chunks that could help him “iterative changes quickly”. 
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In addition, participants also hoped that LLMs could help them 
refect on longer pieces of (existing) code. N02 and E02 wanted 
AI to support the combination of multiple, smaller code chunks into 
a single, coherent code. As such, LLM-based interfaces should be 
able to work with longer pieces of code. Both N06 and E08 hoped 
that NetLogo Chat could “look at my code and make suggestions 
based on my code”. 

Many participants needed adaptive support for modeling more 
than just coding. Many requested AI support in building model 
interfaces that could be used to take in inputs or send out outputs. 
For example, N06 needed NetLogo for her academic paper, hence 

plotting became “very important”. For educators like E13 , while 
the canvas output was “good for the three-quarters of a project”, it 
hid “the real power of agent-based modeling - tracking the emer-
gent properties of the model, rather than simply making bits run 
around the screen.” During the modeling processes, many interface 
parts could become necessary or unnecessary depending on situa-
tional needs. Integrated LLM-based interfaces need to go beyond a 
“side chat window” and support various spatial confgurations for 
advanced users to decide on. 

6 DISCUSSIONS 
Our study frst reported, in detail, how novices and experts per-
ceive and use LLM-based interfaces (ChatGPT & NetLogo Chat) 
diferently to support their learning and practice of computational 
modeling in an open-ended setting. Most participants appreciated 
the design direction NetLogo Chat is heading toward. However, 
they also expressed their needs for improved guidance, personaliza-
tion, and integration which opens up huge design spaces for future 
improvement. 

6.1 Guidance: Bridging the Novice-Expert Gap 

Figure 5: A preliminary theorization of the novice-expert 
knowledge gap. 

For most participants, guidance is what they need most from 
LLMs in programming. While hallucinations from LLMs con-
stantly present a challenge to everyone, with a higher frequency 
to evaluate and debug AI responses, experts sufered less negative 
impact than novices. As a result, experts reported higher levels of 

perceived gains and more optimistic adoption plans than novices. 
While novices in our study also attempt to evaluate and debug 
AI responses, they are ill-equipped for these tasks. Without un-
derstanding the knowledge gap between experts and novices, it 
becomes impossible to design efective guidance. 

Based on our empirical fndings, we theorize the two types of 
knowledge novices might need when collaborating with AI in com-
putational modeling (Fig 5). First, the knowledge to efectively 
decompose and plan modeling tasks. Second, the knowledge to 
evaluate AI responses and identify potential issues. We further 
identifed four components of knowledge that both novices and 
experts reported to be essential: conceptual knowledge of modeling; 
basic concepts of NetLogo and coding; experiences of debugging; 
and how to interact with LLMs. To mitigate the impact of currently 
inevitable hallucinations of LLMs, it is essential to help novices get 
over the knowledge gap. 

We propose three learning moments where design intervention 
might work best. The frst moment is when users plan their next 
steps. While most novices started by delegating the planning pro-
cess to AI, most of them eventually planned on their own. Here, 
we follow the constructionist learning theory for a broader under-
standing of planning that includes both rigid, formal plans and 
"softer", ad-hoc exploration of problem spaces[83]. Both planning 
styles should be recognized as legitimate in learning and supported 
by the design [83]. With our current design, most novices reported 
positive feelings when NetLogo Chat attempted to clarify their 
intentions and produce a plan for their task. Since this phase does 
not involve any generated code, more support could be provided, as 
novices may have fewer problems reading and evaluating natural 
language responses. They may also feel more comfortable asking 
questions about modeling or programming ideas, relating them 
to the generated code later, without fearing that they cannot (yet) 
read or write code. Moreover, LLMs could expand learners’ visions 
by suggesting new ideas, proposing new plans, or taking notes of 
human ideas. When novices are confused about basic concepts, 
LLMs could suggest video or textual tutorials and provide Q&A 
along the way. 

The second moment is when users read and evaluate LLM-
generated code. Reading and understanding code is one of the most 
important aspects of computing education[51]. However, novices 
in our study were neither confdent nor equipped for reading code. 
As a result, they intended to skip the code section. As predicted by 
the interest development framework[56], the lack of skills (knowl-
edge) and confdence (identity) may mutually enhance each other. 
Breaking the feedback loop requires designers to scafold their read-
ing experiences in both directions. By making explanations within 
code (as comments or tooltips) or visualizing the code structures 
(e.g. [76]), we might be able to help build novices’ connections be-
tween code syntax and real-world meanings. To build up learners’ 
confdence, LLMs should deliver code pieces and explanations in 
adaptive sizes that work for learners. For learners who still could not 
succeed, the interface should further provide ad-hoc support that 
helps novices ask follow-up questions, or lead them to appropriate 
learning resources. 

The third moment is when users need to debug their code. 
Debugging is considered a rich learning opportunity in construc-
tionist learning[39]. However, it is often associated with negative 
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feelings that both manifested in prior literature[91], as well as our 
fndings. Unfortunately, cognitive science has found that negative 
moods may further impede debugging performance[43], enlarging 
the gap between novices and experts. Following the suggestions 
of educators in our study, we suggest that LLM-based interfaces 
could frame bugs in a more positive light, while providing a link 
to a successful human-AI collaborative debugging process for frst-
time learners. Both novices’ and LLMs’ debugging processes are 
often stuck in loops[92, 97]. While such situations are inevitable, 
some expert participants suggest that LLM-based interfaces could 
encourage learners to seek help from another human. Help-seeking 
is recognized as an important part of programming education, yet 
novices often struggle with it[54]. In such cases, LLM-based inter-
faces should further help them frame questions for human experts. 

6.2 Personalization: Beyond “Correctness” of 
LLMs 

Personalization has been identifed as an essential factor for per-
ceived autonomy when users interact with conversational agents[98], 
for emotional and relational connections[89], and for various edu-
cational benefts[6]. Adding to previous literature, we found per-
sonalization to be a crucial factor for LLMs to facilitate efective 
guidance for learning, as participants expect LLMs to recognize 
their knowledge levels and react accordingly. 

While LLMs might have the potential to further the personal-
ization of learning, recent research in LLMs focused on the “ob-
jective” capabilities, ignoring the personalized aspect of its evalu-
ation. For example, technical reports of LLMs all reported bench-
marks in whether they could produce functionally correct programs 
(HumanEval)[15]; if they could correctly answer multi-choice ques-
tions (MMLU)[33]; or if they could produce the correct answer of 
grade school mathematical problems (GSM-8K)[20]. While working 
toward such “correctness” benchmarks is certainly crucial for LLMs 
to reduce hallucination and produce better responses, it becomes 
problematic when the defnition of “helpfulness” or “harmfulness” 
is measured with a ubiquitous scale without individual diferences 
[2]. Unfortunately, today’s major LLM players seem to have adopted 
a similar defnition. 

At least in learning and practice programming, we argue that 
helpfulness cannot be a singular metric, but instead varies based on 
many factors. Corroborating with constructionist design principles[66], 
we identifed some potentially important factors, such as knowl-
edge levels and help-seeking preferences, while other factors, such 
as culture, ethnicity, and gender, could be as important. To support 
human learning, the full potential of LLMs could only be achieved 
through the recognition of epistemological pluralism[83]: humans 
have diferent approaches toward learning, and technology needs 
to be tailored to human needs. 

Most participants in our study expected or asked for personaliza-
tion, in the sense that LLMs recognize their knowledge levels and 
help-seeking needs, yet today’s designs are still far from that. While 
it is virtually impossible to fne-tune thousands of LLM variants, 
LLMs’ role-play capabilities and novel prompt-based workfows 
(e.g. the one used by NetLogo Chat, or the concept of GPTs very 
recently released by OpenAI) have shown promising potential. As 

personalization requires the inevitable and sometimes controver-
sial collection of user data, we suggest a more upfront approach: 
only collecting data that directly contributes to a more helpful AI 
(e.g. the knowledge level), only using data for this purpose, and ex-
plaining the benefts, risks, and privacy processes at the beginning. 
Alternatively, designers could also consider fowing the pathway 
of cognitive modeling, which deduces learners’ knowledge levels 
from known interactions with the system[77]. On the other hand, 
our understanding of users’ perceptions, behaviors, and needs for 
LLM-based programming interfaces has just begun, and we call on 
more studies to pursue this direction. 

6.3 Integration: LLMs for Computational 
Modeling 

For most participants, integration between LLM-based interfaces 
and modeling environments goes beyond stitching a chat window 
into the IDE. While most appreciated NetLogo Chat’s design direc-
tions, they put forward many needs worth considering in future 
design. Here, we briefy discuss the two major themes: support for 
troubleshooting; and support for modeling. For troubleshooting: 

(1) The capability to work on smaller snippets of code, 
with the capability to execute, explain, and debug code 
in context. For both humans and LLMs[34], debugging com-
plicated code is known to be difcult. NetLogo Chat has made 
the frst step in reducing the scope to smaller code chunks. 
As such, it becomes easier for humans to debug and LLMs 
to support their debugging processes. Whereas, more work 
is needed to bring together the code chunks into coherent 
full programs. 

(2) The capability to leverage authoritative NetLogo doc-
umentation in generated responses and for the user’s 
reference. In debugging contexts, LLMs’ tendency to hal-
lucinate becomes more frustrating. By providing users and 
LLMs with authoritative explanations within the debugging 
context, NetLogo Chat may reduce the efort for users to 
seek related information, which is also known to be dif-
cult for novices[24]. More work is needed to explain in a 
more personalized way: for example, pure novices may need 
explanations for every basic term. 

(3) The capability to automatically send in contextual in-
formation (i.e. code and error messages) for LLM to 
troubleshoot. Users generally appreciated NetLogo Chat’s 
design decision to support troubleshooting. However, the 
convenience came with a potential price: when using NetL-
ogo Chat, users were more likely to ask LLMs for help, which 
might lead to fewer human attempts and learning opportu-
nities. Further studies are needed to understand this design 
balance better. 

Many participants also asked for features that specifcally sup-
port their computational modeling tasks, which are known to have 
diferent priorities from programming in general[65]. Here, two 
more capabilities are warranted: 

(1) The capability to assume less, actively probe, and stick 
to user intentions. In addition to the potential learning 
opportunities (see Discussion 1), for participants, hidden 
assumptions in scientifc modeling are particularly harmful. 
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While users appreciate NetLogo Chat’s direction in having 
LLMs ask questions back, future interfaces should be able 
to facilitate the conversational build-up of plans and steps, 
further supporting users to program computers piece-by-
piece rather than falling to hidden assumptions made by 
LLMs. 

(2) The capability to support modeling practices beyond 
coding. Building the program is only one step; computa-
tional modeling also involves design, data visualization, and 
validation[88]. For LLM-based interfaces to support model-
ing practices, future interfaces should go beyond coding to 
support users’ eforts throughout the modeling process. 

7 LIMITATIONS AND FUTURE WORK 
There are limitations to our study that warrant future work. As 
a widely used agent-based modeling language, a deeper under-
standing of user perceptions, behaviors, and needs for LLM-based 
interfaces around NetLogo may inform us of design choices for 
other modeling environments. Future work should consider com-
putational modeling or programming environments that might 
have diferent priorities. Since the NetLogo language was designed 
for an audience without a computer science background[82], it 
becomes more important and meaningful to understand how to 
design for bridging the novice-expert gap in LLM-based interfaces. 
However, it is unclear whether our fndings and suggestions would 
sufciently support novices’ and experts’ learning and practice of 
NetLogo. Using a more rigid rubric to distinguish between experts 
and novices might improve the rigor of our study. A quantitative, 
controlled study in the future might further (in)validate our fndings 
and suggestions. As such, we plan to work on a new iteration of 
NetLogo Chat design and empirical study to understand the design 
implications fully. 

Although we aimed to recruit participants representative of Net-
Logo’s global audience, our participant pool was not as represen-
tative as we hoped in two key dimensions. First, our participants 
were mostly professionals, academics, and graduate students. While 
K-12 teachers and learners are another major audience for NetLogo 
and agent-based modeling and may have diferent priorities and 
preferences[71], only one K-12 teacher was present in the study. 
More studies are warranted to further the empirical understanding 
of LLM-based interfaces in education contexts. Second, the demo-
graphics of our participants skewed towards North American and 
European, highly educated, and male. Such a group of participants, 
recruited voluntarily, might manifest higher than average accept-
ability toward novel technology, e.g. most of our participants have 
already engaged with ChatGPT. For future work, researchers need 
to recruit a more balanced and diverse group of participants, if the 
goal is for LLM-based programming interfaces to equitably support 
novices and experts throughout the world. 

8 CONCLUSION 
As Large language models (LLMs) have the potential to fundamen-
tally change how people learn and practice computational modeling 
and programming in general, it is crucial that we gain a deeper 
understanding of users’ perceptions, behaviors, and needs in a more 
naturalistic setting. For this purpose, we designed and developed 

NetLogo Chat, a novel LLM-based system that supports and inte-
grates with a version of NetLogo IDE. We conducted an interview 
study with 30 adult participants to understand how they perceived, 
collaborated with, and asked for LLM-based interfaces for learning 
and practice of NetLogo. Consistent with previous studies, experts 
reported more perceived benefts than novices. We found remark-
able diferences between novices and experts in their perceptions, 
behaviors, and needs. We identifed a knowledge gap that might 
have contributed to the diferences. We proposed design recommen-
dations around participants’ main needs: guidance, personalization, 
and integration. Our fndings inform future design of LLM-based 
programming interfaces, especially for computational modeling. 
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