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ABSTRACT. The argument examined in this paper is that music – when approached
through making and responding to coherent musical structures, facilitated by multiple,
intuitively accessible representations – can become a learning context in which basic
mathematical ideas can be elicited and perceived as relevant and important. Students’
inquiry into the bases for their perceptions of musical coherence provides a path into the
mathematics of ratio, proportion, fractions, and common multiples. In a similar manner,
we conjecture that other topics in mathematics – patterns of change, transformations and
invariants – might also expose, illuminate and account for more general organizing struc-
tures in music. Drawing on experience with 11–12 year old students working in a software
music/math environment, we illustrate the role of multiple representations, multi-media,
and the use of multiple sensory modalities in eliciting and developing students’ initially
implicit knowledge of music and its inherent mathematics.
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musical cognition

“Music is the arithmetic of the soul, which counts without
being aware of it.”

Leibnitz

INTRODUCTION

Interest in the mutual affinities between music and mathematics has had a
long history – Plato, Aristotle, Pythagoras, Leibnitz, and more recently
Hofstadter (1979), Rothstein (1995), Lerdahl and Jackendoff (1983),
Tanay (1998), and others. But unlike these carefully crafted and in some
cases formal theories, the connections we discuss here are empirical and
“cognitively real” in the sense that they seem naturally embedded in the
structures that generate the perception and invention of musical coherence.
These functional connections initially came to our attention in working
with college students reflecting on their own creative processes during
composition projects, facilitated by the text Developing Musical Intuitions
and its computer music environment, Impromptu (Bamberger, 2000).

The initial design of Impromptu was not at all intended to introduce
mathematical principles. Instead, the text and software were meant to
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support an alternative approach to college level instruction of music funda-
mentals. The goal was, as the title Developing Musical Intuitions suggests,
to provide an environment where, rather than giving up their intuitions,
students could learn in the process of developing and better understanding
them (Bamberger, 1996).

To this end, students begin with semi-structured melodic composition
projects, go on to create percussion accompaniments to their melodies, and
eventually more complex, multi-part compositions. To encourage students
to reflect on these activities, they are asked to keep a log of their decision-
making process while composing. These logs, which students submit
with their completed compositions, have constituted an empirical base
for an initial study of intuitive musical knowledge and its development
(Bamberger, 2003). Indeed, it was in analyzing musically novice students’
accounts of their work-in-progress, particularly as they experimented with
rhythmic possibilities, that we noticed mathematical relationships playing
a role in their perception and composition of musical coherence.

It may seem unremarkable that the principal mathematics that college
students spontaneously put to work involved ratio, proportion, fractions,
and common multiples. However, it turns out that these intuitively gener-
ated and perceived music/mathematical relationships are some of the
important mathematical concepts that are found to be most problematic
for middle school children (see, for example, Confrey and Smith, 1995;
Wilensky and Resnick, 1999; Thompson, 1996; Arnon et al., 2001). Thus,
it seemed worth exploring if music, through the mediation of Impromptu,
could help children understand and effectively use this apparently trouble-
some mathematics. Engaging both domains together might also enhance
the children’s appreciation and understanding of aesthetic relations shared
by mathematics and music.

To explore these ideas, we carried out an informal experiment with
a group of 6th grade children in a multi-cultural, mixed socio-economic
public school setting. Working together with one of their two regular
classroom teachers, we (JB) met with a group of six children once or
twice a week for 45 minutes over a period of three months. Activities
were drawn, in part, from projects in Developing Musical Intuitions, facil-
itated by Impromptu. In addition, as a way of confronting their work in
this virtual world with the more directly sensory experiences of real-time
action and perception, computer-based projects were coupled with singing
and playing real instruments – primarily drums of various sorts.



MUSIC AS EMBODIED MATHEMATICS 125

Impromptu, Mathematics, and Alternative Representations

Before considering the students’ work, we need to provide some back-
ground on Impromptu along with a bit of music theory for those who are
not already familiar with it, and also the psychology of representation.
Subsequent sections will show how these ideas are realized in the work
of children. In working with Impromptu, there are two basic aspects that
initially encourage students to make practical use of structures shared by
music and mathematics. The first aspect is internal to the structure of
music, particularly how music organizes time. The second aspect is the
way these musical structures are represented in Impromptu.

With regard to the first, the most direct connection lies in the fact that
all the music with which we are most familiar consistently generates an
underlying periodicity. Formally, this is called a beat – that is, what you
“keep time to”, tap your foot to, in listening to music. The underlying
beat becomes a temporal unit as it marks off the continuous flow of time
into discrete and regularly recurring events – the “counts” alluded to by
Leibnitz in the quote at the beginning of this paper. Further, most familiar
music generates several levels of beats – a hierarchy of temporal period-
icities. Beats at each level occur at different rates, but there is a consistent
proportional relationship among them – usually 2:1 or 3:1.

These periodic and proportional relations are easily responded to in
action – clapping, swaying, dancing, tapping your foot. In contrast, through
history, temporal relations have shown themselves to be persistently prob-
lematic to represent. In this regard, the history of the evolution of music
notation is particularly cogent. Beginning around the 9th Century and
up until the 12th–13th Centuries, notations had been kinds of “gestural
squiggles” inserted above the words in religious texts to guide singers
in coordinating words and music. These graphic marks, called neumes,
represented whole little motifs as shown in Figure 1 where neither pitch
nor rhythm (“notes”) was specifically indicated at all. Thus, singing the
text from this notation depended largely on singers knowing the melody
already – that is, the notation was essentially a mnemonic device.1 Pitch
notation as we know it today developed relatively rapidly, but it was only
in the mid-16th Century that present day rhythm notation finally emerged.
It is noteworthy that, partly as a function of the characteristics of temporal
organization in music up to that time, a central issue had been recog-
nizing (or constructing) the notion that an underlying beat could serve as a
“unit” with which consistently to measure and thus to represent the varied
temporal events that were to be performed.

The issues arising around representations of continuous time and
motion are not limited to music. Stated most generally: how do we trans-
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Figure 1. Gregorian Chant “neumes”.

form the elusiveness of actions that take place continuously through time,
into representations that hold still to be looked at and upon which to reflect.
Christopher Hasty in his book, “Meter as Rhythm” puts it this way:

. . . how shall we account for those attributes of rhythm that point to the particularity and
spontaneity of aesthetic experience as it is happening? To take measurements or to analyze
and compare patterns we must arrest the flow of music and seek quantitative representa-
tions of musical events . . . . To the extent we find it comprehensible, music is organized;
but this is an organization that is communicated in process and cannot be captured or held
fast. (Hasty, 1999, p. 4)2

Instead of finessing these enigmas, we made an effort in designing
Impromptu to confront them. In particular, by invoking multiple represen-
tations, we tried to make explicit the complex nature of transformations
involved in moving between experienced action and static representations.
Indeed, as we will illustrate, in the process of coming to understand and use
the Impromptu representations, users’ productive confusions have led them
to discover interesting and surprising aspects of temporal phenomena.

Impromptu’s Temporal Representations

A. Graphical Representations
Figure 2 shows the Impromptu graphics left behind when one of the syn-
thesizer drums plays just the rhythm, the varied “durations”, of the simple
tune, “Hot Cross Buns”. The representation captures only the information
available in clapping the tune, without singing it.3

Figure 2. A representation of the rhythmic structure of “Hot Cross Buns”. Spaces between
lines show the relative durations of events.
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The unequally spaced vertical lines show a spatial analog for varied
durations. “Duration”, here, refers to the time from the onset of one event
(clap) to the onset of the next. Thus, in the graphics, events that take up
more time (go slower in action), also take up more space. Similarly, events
that take up less time (go faster) take up less space. We chose this spatial
representation for actions in time because it is easy to explain: It is like
the actual trace you would leave behind if you “played” a rhythm with a
pencil on paper, moving the pencil up and down in one place, while pulling
the paper continuously from right to left. Moreover, this representation is
essentially borrowed from drawings children (and sometimes adults) make
spontaneously when asked to “invent a way of putting on paper what you
just clapped so someone else could clap it” (Bamberger, 1995).

The top row of Figure 3 shows the Impromptu graphics for the rhythm
of “Hot” and below it the three levels of beats that are being generated by
the varied durations of the tune – the metric hierarchy.

Figure 3. Beats in the metric hierarchy show constant proportions between levels.

To understand the graphics, sing the tune and just “keep time”. That is,
instead of clapping the varied durations of the tune, just accompany the
tune by clapping a steady beat that goes with it. Watching the graphics
as you clap, you will probably find yourself clapping the mid-level beat
shown in the graphics – the “basic beat” that “fits” most comfortably with
the tune. If you sing the tune again, you can also clap a slower beat, called
the “grouper”, which fits with the tune, as well. We call the slower beat the
“grouper” beat because it groups the basic beat. If you can tap both these
beats at once using two hands, you will find, as in the spatial graphics, that
there are two basic beats for each grouper beat – a 2:1 relationship between
these two rates. And, as in the graphics, you can also find and clap a third
beat that goes twice as fast as the basic beat – that is, it divides the basic
beat, again forming a 2:1 relationship. To summarize, three levels of beats
are generated by the tune, and together they form its metric hierarchy.

If a piece of music, like Hot, generates a 2:1 relationship between basic
beat and slower, grouper beat, it is said to be in duple meter. In contrast, if
you listen to a common waltz tune such as Strauss’s “The Blue Danube”,
you will find that the slower beat groups the basic beat into groups of three
– a 3:1 relationship thus commonly called triple meter. Figure 4 shows a
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comparison between the proportional relations among beat levels in duple
meter and typical triple meter.

Figure 4. Duple and triple meter.

It should be evident from these examples that, unlike the arbitrary,
outside fixed reference units typically used to measure and calculate in
mathematics and science, (centimeter, calorie, gram), beats, as units of
measure in music, are actually generated by the relations among events
internal to the music itself. Beats are not seconds or any other “standard”
unit of time. Instead, these are self-generated units that are used, in turn,
as a kind of temporal ruler to measure the durationally varied events that
are actually generating them – a nice example of self-reference.4

The periodicities at each level and the proportional relations among
them arise because the relations among the varied durations of performed
events are also primarily proportional. Figure 5 shows how the beat hier-
archy, as self-referencing units, measures the proportional durations of
Hot. The words emphasize the relation between the surface-level durations
of the melody and the metric hierarchy as temporal ruler.

Figure 5. Proportional relations of the melody.

Note that:

• the duration of events on the words, “Hot” and “cross” coincide with,
and actually initialize, the unit beat;

• the durations on the word, “buns”, are twice as long – lasting two unit
beats, thus coinciding with the grouper beat;

• each of the 4 events on one-a-pen-ny, are half as long as the unit beat
– they go twice as fast, thus coinciding with the divider beat.
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While we do not usually listen just to this underlying temporal metric, it
forms the framework within which we hear both coherence and also, as we
shall illustrate, the excitement associated with composed perturbations of
it.

B. Numeric Representations
Durations are more precisely represented in Impromptu by whole
numbers. The general principles are these:

• Larger numbers represent longer durations, smaller numbers represent
shorter durations. The smaller the number, the faster events will follow
one another.

• Proportionality of time can be seen in proportionality of number: e.g.,
durations of 2 following one another go twice as fast as durations of
4; durations of 6 following one another go twice as slow as durations
of 3.

Thus, the beats at the three levels of a typical, duple meter hierarchy
can be represented and generated in Impromptu by specifying integers that
have a 2:1 relation between each of the adjacent levels of a percussion
piece.

Figure 6 shows, as an example, a portion of an Impromptu computer
screen where three levels of beats played by three different percussion
instruments are producing a typical 2:1 duple meter hierarchy.

Figure 6. Duple meter.
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The large boxed numbers, called “drumblocks”, in each channel
(voice), specify the duration of events that are repeatedly played by a
synthesized percussion instrument – thus generating a steady beat. The
“repeat box” at the left of each voice indicates how many times a drumb-
lock in that voice is to be repeated. As can be seen in the graphics, the
12-block at the top level is repeated 8 times, and it “goes twice as slow”
as the 6-block, which is repeated 16 times. The 3-block in the bottom
channel “goes twice as fast” as the 6-block, and it is repeated 32 times. The
total time in each voice is the same, demonstrating the reciprocal relation
between frequency (or, more properly, repetitions) and period (or duration)
of the repeated event. That is, assuming a fixed overall length of time, the
repetitions specify frequency (number of events per unit time), and the
value of drumblocks specifies duration of each event [number of (absolute)
units per event], and these are inversely proportional to each other.

In the graphics window at the bottom of the screen, the relative space
between lines at each level reflects the relative value of beats in each of the
three voices. Thus, since spaces between lines show proportional relations
between beats, when the play button in Impromptu is pressed, the sounding
events represented by the vertical lines in the middle voice, for instance,
will go by twice as fast (twice as frequently) as sounding events in the top
voice.

Figure 7 shows an example of two levels (basic beat and grouper beat)
of a triple meter hierarchy. The beat (drumblock) values in this example (6
& 2) have a 3:1 relationship while the repeats (3 & 9) have the reciprocal
1:3 relation. The graphics in this example are an alternative representation
(“rhythm roll”) where the time/space between percussion attacks is filled
in. Rhythm roll contrasts with the vertical line graphics (“rhythm bars”),
where the lines mark just the onsets (or attacks) of each event. Figure 8
shows the same triple meter hierarchy represented in conventional rhythm
notation.

Figure 7. Triple meter – rhythm bars.



MUSIC AS EMBODIED MATHEMATICS 131

Figure 8. Triple meter – conventional notation.

Four kinds of representations have been discussed thus far – spatial
graphics (2 forms), numeric, and conventional rhythm notation. Figure 9
shows the four representations for the same tune, Hot Cross Buns.

Figure 9. Multiple representations.

Like all representations, each captures some features while ignoring or
minimizing others. For example, rhythm bars highlight onsets, which are
so critical to listeners’ perceptions of music; rhythm rolls highlight dura-
tion. Note that the duration of the final event is not shown at all in rhythm
bars. In standard notation, metric grouping is shown by the connecting
beams – e.g., notes beamed together equal the unit beat. However, other
groupings, such as phrasing and motivic grouping, are not shown at
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all. The numerical representation highlights precise durations and ratios.
Reflecting on the ontological differences, the differences among “what
they refer to” and emphasize, among these representations, brings to the
surface the enigmatic nature of representing time and motion as experi-
enced in music, while also pointing to the multiple distinct, but related
(and confoundable) aspects of the phenomena itself. So despite our efforts
in designing Impromptu to derive representations in close relation to the
common experience of clapping a beat or a familiar rhythm, the elusive-
ness of representing complex, multi-aspected experience remains. These
issues have emerged particularly in our observations of various users of
Impromptu. As we will illustrate in what follows, the confusions that arise
are in fact often more revealing and enlightening than bothersome.

Multiple representations and the different perspectives they offer are
important particularly in an educational (as opposed to professional)
environment. Individuals in particular disciplines tend to take the objects
and relations named by descriptive, symbolic conventions associated with
the discipline as just those that exist in the particular domain. Through
practice, symbol-based entities become the objects, features, and relations
that tacitly shape the theory and structure of the domain – how users think,
what they know, teach to others, and thus what they take to be knowledge.
As a result, units of description may come perilously close to (pretending
to be) units of perception – we hear and see (only) what we can say.

The ontological imperialism of homogeneous symbol systems is educa-
tionally problematic in at least three ways. First, the discipline is often –
or always – much more than what can be easily captured in small numbers
of conventional representations. For example, novice musicians can “play
the notes” but miss phrasing, nuances of emphasis and pace change that
distinguish “musical” from “mechanical” performance. Furthermore, the
notations do not show novices how to hear even the entities that are most
easily depicted. Conversely, conventional notations may not adequately
capture the easiest-to-hear aspects of the phenomenon (Bamberger, 1996).

What, for instance, do we mean by “faster” in musical situations; how
would you teach that meaning to someone who didn’t easily perceive it;
and how does it show up in various representations? The language of
“going faster (or slower)”, in fact, is exceedingly natural and usually spon-
taneously applied in everyday talk. So, we might make the presumption
that the root meaning of “faster” refers to physical motion – getting to a
standard place in less time, or getting to a more distant place in the same
time. But, marking a beat literally “goes” nowhere.

We might try to explain that “motion” through time is metaphorically
related to motion through space. But this explanation has the fault that
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the “faster” level of the hierarchy of beats doesn’t get to the end of the
piece any more quickly.5 The most obvious description of “faster” here
is “more beats per unit time”. But this presumes the understanding of a
technical concept, frequency, and in any case does not account for the
intuitive obviousness of the characterization that we would like to achieve.

Let us turn to graphical representation of “faster”: When using
Impromptu to generate beats, faster is shown numerically by the numeral
on a drumblock, the beat value – that is, the “duration” of the events
that are repeatedly played. That convention is both highly functional and
useful in that it leads directly to important mathematical insights about
music. (See later sections.) But, it might well be viewed as “unnatural” by
scientists, who see “faster” better expressed by frequency (events per unit
time), which varies inversely with duration. Doubling a beat value halves
the frequency (“per unit time”) of beat events. Indeed, many people, not
just scientists expect a bigger drumblock number to correspond to a faster
pace.

Ontologies are difficult things. Descriptions or representations are at
best partial. Certainly some make better starting points, perhaps connecting
better to naïve experience (e.g., rhythm bars with clapping). Some
also make better conduits to normative representations and expression
(numbers). Others, along with relations among representations, might raise
good questions, and initiate good inquires. We don’t systematize or settle
these issues in this paper, but highlight them and the deep cognitive issues
they represent in the data to come.

One additional brief example will show a more realistic problem of
representation, ontology, and instruction. Consider an instance of musical
terminology – a conventional definition of triple meter.

3/4 meter (or 3/4 time) means that the basic values are quarter-notes and these recur in
groups of three. Such metric groupings are indicated by bar-lines that mark off measures.
(Harvard Concise Dictionary of Music, 1978)

Notice that the definition is intra-symbolic, exclusively in terms of the
symbols of conventional notations, themselves (“3/4”, “quarter notes”,
“bar-lines”, “measures”). The definition is, so to speak, about the notation
more than about the musical phenomena being represented. Such defini-
tions finesse the fundamental issue of how one perceives the given relations
in favor of how one denotes them. “Limiting vision” to formally notated
aspects is particularly problematic in music since, in the service of giving
concise performance instructions, the notation leaves out critical aspects
of the coherence directly experienced by the listener.

Definitions in terms of representations hide ontological aspects of the
experienced phenomena. One cannot literally hear quarter notes or bar
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lines, so the perceptual objects to which these symbolic objects refer
are not even obliquely referenced in the definition. By the same token,
conventional music notation makes it more difficult to go beyond the
features represented by these conventions to other phenomena that share
similar underlying structures, such as harmonics in sound analysis, gears,
pendulums, and patterns in laying multiply-sized tiles.

We conjecture that definitions that finesse perceived relations in favor
of how one denotes them severely limit the sense students can make of
mathematics and science. In this regard, diSessa and Sherin (1998) have
argued that the essence of understanding some scientific concepts lies
precisely in developing strategies that allow for the perception of (“noti-
cing”) the relevant entities and relations. Problems are particularly acute
because those entities and relations occur within substantially varying
contexts, which might hide them or misdirect attention. We believe this
is a deep, rather than accidental relation between music and science, and
that the cognitive theory of music shares much with that of mathematics
with respect to representation and ontology.

WORKING WITH CHILDREN

Organizing Time

The examples that follow illustrate how the group of six 6th grade children
with whom we worked were sometimes guided by Impromptu’s multiple
representations and its appeal to multiple sensory modalities. In addition,
confronting differences in representation stimulated provocative questions
as the children interrogated one another’s work. As they developed projects
in this environment the children discovered principles of embodied math-
ematics in the common music all around us and also went on to use their
discoveries to create original melodies and rhythms. The initial examples
focus on rhythm, where the mathematics is most clear. More subtle and
perhaps more interesting intersections between music and mathematics
were discovered as the children composed melodies – particularly as
the graphic representations helped them come to consider patterns such
as symmetry, balance, grouping structures, orderly transformations, and
structural functions. Structural functions include, for instance, pitch/time
relations that function to “create boundaries”, or entities (e.g., phrases)
some of which sound “incomplete” and thus function to move a melody
onward, in contrast to entities that sound “complete”, thus functioning
to resolve or settle onward motion. Structural functions are not directly
shown in either conventional notation or in Impromptu’s notations. And
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yet, as we will show, these structural differences are immediately noticed
by children who have grown up listening to the familiar music of contem-
porary culture.

Examples

Example 1a: By the third session of the project the children were gener-
ally familiar with Impromptu’s proportional rhythm notation and with the
computer synthesizer’s percussion instruments. This session began with
the children, as a group, playing real drums. One child played a slow,
steady beat on a large Native American drum. We asked the others, using
claves, woodblocks or just clapping, to play a steady beat that went “twice
as fast”. With just a little guidance, the children were quite quickly able to
create the two levels of beats.

Then we asked the children to use the computers to make a drum piece
such that two of Impromptu’s percussion instruments, each playing its
own part, would play beats that were related to one another like the beats
they had just played on real drums. That is, they should experiment with
Impromptu drumblocks and pairs of percussion instruments so that one
of the instruments in one channel would be playing “twice as fast” as the
percussion instrument in the other channel. They were asked to find as
many different pairs of drumblocks with this relationship as they could.

Figure 10 shows examples of Sam’s and Anna’s first solutions for the
task.

Figure 10. Sam’s and Anna’s “twice as fast”.

Sam has 6 repeats for his 4-beat and also 6 repeats for his 2-beat.
Anna makes 10 repeats for her 6-beat and 20 repeats for her 3-beat. Max,
listening to the two examples, had an interesting question: “How do you
make them [the instruments] come out even, ‘cause Anna’s do, but Sam’s
faster beat stops too soon?” Anna explained that, “. . . like 3 is twice as fast
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as 6, so the ‘repeat’ has to be twice as much, too”. Sam tried it – making
his 2’s repeat twice as many times (12) as his 4’s (6). He also switched to
the rhythm roll graphics in order to see more clearly that the two drums
really did come out even (Figure 11).

Figure 11. Sam’s new solution.

Listening to the result, Sam had a different way of explaining what he
heard: “It works because the 2 is half as big, so it gets twice as many
repeats as the 4. I mean, the ‘twice as much’ is the same but it’s in reverse
– 4 is to 2 like 6 is to 12, only upside down”. We think it is quite likely
that the evident spatial relations of size and number in the rhythm roll
graphics supported Sam’s insight and way of talking about it. One can
literally see (if one is attuned to such things!) “half as big” and “twice as
many”. “Upside down”, on the other hand, refers to vertical placement of
the duration numbers (drumblocks) on the Impromptu display in relation
to the repeat numbers and/or possibly the spatial representation of standard
fraction numerals – note Sam’s “formal” language: “4 is to 2 like 6 is to
12”. The design of Impromptu, with corresponding numbers in a vertical
relationship, encourages making the connection to standard mathematical
presentations of ratios or reciprocal relationships.

Sam, learning from Anna, had discovered that there is a reciprocal rela-
tion between duration of events (how much) and number of repeats (how
many). That is, if the total time is the same for both instruments (they
“come out even”), the ratio for the durations and the ratio for the number
of repeats is the same but, as Sam said, “in reverse” (or “upside down”).

These students are exploring and describing relations among particular
kinds of phenomena in a specific situation. In order to confront the implicit
ontologies of representations and perception, let us couch the children’s
descriptions in the mathematical terms of the following equations:

mx = c

ny = c

(x > y)
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We emphasize that the equations do not express the same meanings
or even (necessarily or transparently) refer to the same kinds of entities
as the children’s descriptions. Specifically, the power of the equations
lies precisely in generalizing beyond any particular phenomena and any
specific situations. We can specialize the meanings of these equations with
the following statement: This pair of equations expresses the accumulation
of a number (m and n, respectively) of instances (measured by x and y,
respectively) that total a constant amount (c). This description remains
more abstract and general than the students’ meanings. However, it is more
specific to this case than “pure” algebra because the terms are intended to
refer to things to which the students are responding, such as iterations,
accumulation, and total. But the equations miss what Anna sees directly,
but which is only implicit in the equations: She says “. . . 3 is twice as fast
as 6, so the ‘repeat’ has to be twice as much, too”. To relate this to the
equations, we must do several things: First, we must associate the second
equation, ny = c, with the size of y (smaller) and the intuitive percep-
tion that this condition is “faster”. Then, we must connect this with the
inference that the faster occurrence (involving y, which is less than x) must
receive more repetitions. Thus, in the equations, Anna is stating that n must
be greater than m. In fact, “faster by a factor of two” translates into “more
by a factor of two”.

That Anna has an intuitive feel for multiplicative, as opposed to
additive, relations seems fair enough and this is not a trivial accomplish-
ment in itself. Anna is almost certainly not learning that here, although
other students might be. In particular, Sam might be, although he did
express his own version of the sense he made of this constraint after it was
pointed out to him. However, neither Anna nor Sam’s explanations have
any of the generality of the formal mathematical statements. Both Anna
and Sam’s descriptions apply specifically to this situation and what they
are hearing as influenced, in part, by the particular notations of Impromptu.
Numbers afford easy expression of multiplicative relations, and also, for
example, Sam plausibly saw “half as big, but twice as many” in the rhythm
roll graphics.

Put most directly, Anna and Sam, with Sam learning from Anna, have
succeeded in recognizing in this situation, relations that are reminiscent
(“correctly” and insightfully so) of relationships they have seen before
(and will see again) in their “school math”. The significant thing is that
they have, indeed, recognized the relations while working in an entirely
new medium, and they have been able to put them to work in this new
situation; the particular, musically important, work to be done is “to make
things come out even”. This is, we believe, a move in the direction of
generalizing.6
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However, we can be quite sure that the students cannot generalize
these relations in the way expressed in the formal mathematics, and this
raises interesting and fundamental questions: How can we describe the
specific ontological differences between the students’ understanding and
the implications of the mathematical formalisms; what is the nature of
the transformations involved in moving from limited practical situations
to generalizations such as expressed in the proposed equations? And why
is this move apparently so difficult?

Backing off from intractabilities, what we do see (we believe irre-
futably) in the students’ work is the following: Some students (Max
and, initially, Sam) do not immediately perceive the relations that Anna
notices immediately upon being questioned by Max. But in the context of
sounding events coupled with the use of graphical and numeric representa-
tions, they are able to generate, perceive, and thus validate these relations.
From this we infer that the multiple Impromptu representations and their
immediate sound-back in familiar musical structures (1) can help students
understand (and, possibly, generalize) the basic relations involved, and
(2) can be a step toward understanding proportional reasoning robustly
in a range of situations.

Example 1b. Joe made several pairs of drum beats that worked: 10 and 5,
8 and 4, 6 and 3, 16 and 8. Playing back what he had made for the other
children, Joe said, as if just telling the obvious, “Well, they’re just equiva-
lent fractions!” Joe, who is described by his teachers as an average student,
has again made a direct connection between sounding rhythmic structures
and school math: the equivalence of equivalent fractions could be heard!
We don’t take it to be a trivial matter that this child has found a context
in which the equivalence of fractions is directly salient and also powerful
(identifying things that “sound the same”) – in contrast to an inference
based on rules that have been memorized. See also, Arnon, Nesher and
Nirenburg (2001).

Overall, the children, working in an environment using joined media
(numbers, spatial representations, and sound-in-time) were able actually
to generate coherent structures using their understanding of the principles
of ratio and proportion expressed and experienced in novel situations; they
were learning about the reciprocal relationship between how much (dura-
tion) and how many (frequency); and they were learning the connection
between equivalent fractions and proportion embodied by pairs of iterat-
ively sounding events that are different in absolute “speed”, but the same
in their internal relations.

We played out these relations with other students in a different
modality. First, we marked off 8 equidistant lines about 1 foot apart on
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the floor. Then, while one child played a slow beat on a big Native Amer-
ican drum, two other children, side-by-side, walked “in time” with the
drummer. The children were given the following instructions: “One of you
(Rachel) will walk along stepping on each line in time with the drummer.
You (Simon) will take two steps for each one step of Rachel’s and two
steps for each one of the drummer’s beats. But you have to arrive together
at the end of the lines”. Thus, the students were doing in action – literally
embodying – what Anna and Sam did using the computer and the trace left
by the rhythm bar graphics. When the children had reached the end of the
marked lines, we asked, “So who was going faster, Rachel or Simon?” The
first and immediate response from several children was, “Simon!” But then
Simon quickly added, “But we got there together”. Considerable discus-
sion followed. Agreement was finally reached when Steven proposed that
“Simon’s feet were going faster, but their heads were going the same”.

Of particular importance is the effectiveness of the activity and the
environment (which includes, again, sound, action, and periodicities as
units of measure) in externalizing what might otherwise be tacit dilemmas.
Specifically, the students are working to stabilize the multiple possible
senses of going faster – “attend to feet”, or “attend to heads”. Although
we do not pursue this stabilizing here, later on, playing with huge card-
board gears and also with pendulums, these same children were able to
distinguish linear from rotational speed, and between linear speed and
frequency: linear speed – the number of teeth passing a point in unit time
– is preserved in contact between a bigger and smaller gear; but rotational
speed – revolutions per unit time – is not. A pendulum offers a similar
challenge. As it winds down, linear speed decreases, yet “speed of repe-
tition” stays the same.7 For more on the children’s work with gears and
pendulums see Bamberger (1990, 1998).

Example 2: During the next session in working with Impromptu, we (JB)
suggested the children try a beat with a duration value of 4 (a 4-beat) in one
percussion instrument and a 6-beat in another. See Figure 12. Listening to
what they had made, they agreed that it sounded “really cool”.

Going on, we asked, “So where do the two drums meet? Where do the
6-beat and the 4-beat come together at the same time?” Using the rhythm
bar graphics to make it easier to see where events came together, Kathy
said, “They meet at 12” (Figure 13).

When Kathy was asked how she knew, Joe interrupted to say, “Oh
that’s that least common multiple stuff!” To test if we could really hear
this “least common multiple”, we added a third instrument playing the 12-
beat (Figure 14). Listening to the result, it was as if the 12-beat “pulled the
other two beats together”. Once again, perceived rhythm met school math.
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Figure 12. 6:4 sounds “really cool”.

Figure 13. “They meet at 12”.

Figure 14. “Least common multiple stuff”.

It is important to note that the coincidence of periodicities is not intrins-
ically about least common multiple. But when experienced in a context that
numericized the control of repetitions, coincidence came to be about least
common multiple.

Further discussion and experimentation revealed more connections
between mathematics and music: for instance, there were two 6-beats for



MUSIC AS EMBODIED MATHEMATICS 141

every three 4-beats. “Well, of course, because it takes 2 6’s to make 12 and
3 4’s to make 12: 6 × 2 is 12, and 4 × 3 is 12”. Looking and listening,
those expressions became more clear as they became sound in action: You
could see and hear that 6 × 2 means, “do 6’s, 2 times”, and 4 × 3 means,
“do 4’s, 3 times”. We could also see and hear, once again, that the bigger
number and the slower beat needed fewer elements (2 of them), while the
smaller number and the faster beat needed more elements (3 of them).
Moreover, the 2:3 in number of beats per common multiple was the same
ratio as the value of the beats, 6:4, “but upside down”. And finally, the
number of repeats in each instrument, 16:24 was the same ratio as 6:4 but
still “upside down”. And all for the same reasons: bigger/slower events
need proportionally fewer elements than smaller/faster events to be equal
in total time.

So why did the drums sound so “cool”? This is an example of rhythmic
tension, “excitement” as described earlier. In this case, there is a tension or
conflict in a mismatch. The second of the duple meter (6) beats “misses”
the background triple meter (4) beat – which gets resolved in a convergence
at regular time intervals (on the 12-beat). We might say that, on the way to
the common slowest beat (or the common multiple), there was tension (2
against 3); yet, that tension is neither confusing nor chaotic because it is
always quickly resolved. In all, the rhythm was more interesting/exciting
than the regular alternation (as in 2:1). Stravinsky uses exactly this metric
conflict with its regular resolution at the common multiple (“dotted half
note”) to striking effect in Petrushka, where he pits a triple meter Viennese
waltz tune against a compound duple meter accompaniment. For more, see
Bamberger (2000).

Listening carefully to the computer version along with watching the
graphics, the children managed to play the 2:3 rhythm on their percussion
instruments. Reflecting more generally about representational affordances,
we note that the mathematical/musical inquiry into the relationships we
heard would hardly have emerged if we had been using the conventional
representation of compound duple meter against triple meter as shown in
Figure 15.

The usefulness of a representation, of course, depends on the purpose
for which it is intended. For example, on one hand, if the meanings
of conventional notation symbols have been internalized – say we are
dealing with conventionally conversant performers – playing the rhythm
from the notation in Figure 15 would be much easier than interpreting the
Impromptu numbers, 6:4, especially without the graphics.

Notice that in Figure 15, for example, the unit beat in duple meter (or
more technically, compound duple meter), is notated as a “dotted quarter
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Figure 15. Metric conflict: Triple against duple.

note”, while in triple meter, the unit beat is notated in a different way,
as a “quarter note”. The two different unit-beats share a common slower
beat, the common multiple notated as a “dotted half note”. However, the
relation “common multiple” is obscured in the notation in part because
the representation is limited to conventional note symbols rather than their
implicit arithmetic relations. Of course, specific note names are intern-
alized and effectively used by professionals. However, that efficiency
comes at the cost of clarity with respect to more general mathematical
structure. Moreover, in playing from a score, a professional scanning
a passage such as this uses familiarity with the specific, local spatial
pattern of the conventional notation (rather than “a note at a time”)
and not at all the calculations or the potential generalizations that are
implied. Conversely, it is exactly Impromptu’s proportional, integer nota-
tion that led to the children’s insights concerning common multiples and
proportional relations.

The children went on to use what they had discovered in these
experiments as the basis for composing percussion accompaniments for
melodies. The projects involved first listening to a melody played by an
Impromptu synthesized instrument (flute, clarinet, vibes, etc.), then finding
proportional values for beats at three levels of a metric hierarchy that fit
with the melody. Using the found hierarchy as a framework, the children
composed patterns of varied durations played on percussion instruments
that reinforced the hierarchy, as well as accompaniments that created
conflict (but not chaos) with the rhythm of the melody. They agreed that
making just the proportional relations “sounded good” but was boring.

Composing Melodies: Embodied Patterns

In a later session we introduced an idea that is powerfully shared by struc-
tures in both mathematics and music – looking and listening for patterns.
We began with the question, “What is a pattern?” Sam answered, “Some-
thing that’s repeated more than once”. After a moment, Katherine said,
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“But 1, 3, 5, is a pattern because it skips one every time”. We left the
meaning of pattern hanging for the moment, but intended to come back
to it. Their previous insights – common multiples, equivalent fractions,
reciprocal relations, proportion, ratio – are also patterns, of course, and
like most patterns, these involve noticing relationships that maintain their
integrity across media and sensory modalities.

Focusing, now, on melodic patterns in preparation for composing
melodies, we asked the children to listen to some short melodic frag-
ments – called “tuneblocks” in Impromptu. We begin melodic composition
with these short but structurally meaningful elements because research has
demonstrated that, in contrast to conventional music notation where the
units of description are individual “notes”, intuitive units of perception
are at the more aggregated level of whole melodic fragments (Bamberger,
1991, 1996). Indeed, “tuneblocks” represent the same level of musical
structure as the very early neumes. Figure 16 shows an abbreviated
version of the Impromptu Tuneblocks screen for composing with the set
of tuneblocks called “ELI”.

Figure 16. Impromptu Tuneblocks screen.

Tuneblocks can be heard individually by clicking the icons in the
Tuneblocks area. The designs on the icons are neutral graphics with
no reference to the melodic “shapes” that the blocks actually play. The
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intention is to focus students’ attention on their own musical perception,
listening to the melodies rather than looking at partial representations. To
build tunes, blocks are dragged into the “Playroom”, arranged and then
played back in any chosen order. Blocks placed in the Playroom can be
seen in several kinds of representations in the graphics area.

To make it easier to refer to the blocks, we gave them number names
from 1 to 7 according to the order they happen to appear in the Tuneblocks
area as shown in Table I.

TABLE I

ELI Tuneblocks

Asking the children to listen for patterns, we clicked Block 1 and
then Block 6 in the Tuneblocks area. (Remember, the children were only
listening with no visual cues yet – not even Impromptu graphics.) Anna
said, on hearing Blocks 1 and 6, “The rhythm is the same”, but several
other children immediately insisted, “No it isn’t!” Exploring the source and
meaning of this disagreement would be a continuing concern, but in the
short term, we suggested that the children could experiment by clapping
just the rhythm of each of the tuneblocks. Listening to their own clapping,
the children agreed that the rhythm of the two blocks sounded “pretty
much the same”. To test further, we listened to the two tuneblocks again,
this time dragging them into the Playroom area so we could listen and
look at Impromptu’s rhythm roll graphics while the blocks were playing
(Figure 17).

Joe agreed that the rhythm of the two blocks looked exactly the same,
but then he asked, almost petulantly, “Well then, how come they sound so
different?”

Looking this time at a different representation of the same blocks –
pitch contour graphics (Figure 18), the children noticed differences: Block
1 “just goes down”, but Block 6 “goes down and then up”, and both blocks
“end in the same place”.
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Figure 17. Blocks 1 and 6 in the Playroom with rhythm roll graphics. Sound files for
Figures 17–21 and Figure 23 may be found at: http://web.mit.edu/jbamb/.

Figure 18. Blocks 1 and 6.

While not arriving at a complete answer to Joe’s question, (which
continues to tease music theorists, as well – e.g., Hasty, 1997), just working
with these two blocks and looking at different representations, the children
were able to shift their focus between two dimensions of the same melodic
fragment – pitch and duration (rhythm). After some discussion the children
did conclude that it had to be the differences in pitch (the “ups and downs”)
between the two blocks that made the same rhythm sound different.
Moreover, in terms of level of detail, in first listening to and looking at
the block representation, their focus of attention had been on the integrity
of the entities as a whole. As they looked for patterns and compared pitch
contour and rhythm roll graphic representations, their focus moved down
the structural ladder (from the block level) to greater detail – to duration
and pitch (the note level). Differences in representation, and their own
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actions (e.g., clapping “just the rhythm”) disaggregated the two properties,
duration and pitch, which before were simply absorbed into the gestalt of
the structurally more aggregated tuneblocks.

In more general theoretical terms, we believe it is appropriate to say
that representations and operationalization processes (e.g., representing-
in-action) psychologically create the separate aspects; they don’t just
“reveal” or demonstrate them. Working in the Impromptu environment,
graphics along with other tools help in this process of disaggregation and
with it the emergence of new aspects by making it easy both to see and
to hear, as in this instance, just the rhythm or just the pitch of a block.
Perceptual influence across dimensions without these facilities makes such
a process much more difficult than might be imagined. In fact, while
listening to the unfolding of a melody, it is exactly this confluence, the
perceptual inseparability of dimensions, that gives an event in the moment
its particular “meaning” or function.

In technical terms, we would describe this as a perceptual influence
across parameters or across aspects. That is, patterns heard in one para-
meter (e.g., pitch) influence or disguise patterns perceived in another
parameter (e.g., rhythm) as compared to when one or the other aspect
is somehow isolated so as to become the single focus of attention. For
some specific examples, see Bamberger (1996). This basic phenomenon
undoubtedly reflects, at least in some instances, why experts cleanly see
“the structure” of two instances of some phenomenon as identical, and yet
novices do not. Identity, similarity, and the disguising effect of context will
continue to play a role in later discussion about tunes and the relation of
fragments composing them.

Functions, Fragments, and Transformations: What Makes an Ending?

Once pitch and duration were differentiated, the children had a basis for
noticing new, rather subtle patterns of similarity and difference in other
pairs of blocks. For instance, listening to Blocks 2 and 5 while watching
the pitch contour graphics (Figure 19), Max, who was a very shy child,
quietly said of this pair, “The second one [5] sounds ended but the first one
[2] doesn’t”.

Playing the pair again, the children agreed with Max, but then Kathy
made a surprising discovery: “But all the notes are the same in both of
them except for just the last two!” This prompted the same question as
before: “Well, then, how come they sound so different?” But added to that
question was, “And what makes something sound ended, anyhow?”

As the children listened to these two blocks, comparing them with
a focus on patterns, their attention had shifted to differences in struc-
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Figure 19. Blocks 2 and 5.

tural functions (e.g., tension, moving onward, in contrast with resolution,
arrival), along with a very basic and critical question: what makes a
certain pitch sound stable, resolved, “ended?” Once again the children had
encountered a situation that raised questions central to our perception of
musical structure. We did not pursue this path very far with these children.
From our experience with college students confronting the same questions
we have learned that it takes a lot of inquiry and experimenting before they
can arrive at even a tentative answer. Indeed, while music theorists give
names to this focal pitch (a “tonal center”), the question of why, in much
Western music, only one pitch in a given pitch context is heard as gener-
ating an ending, is one to which theorists continue to seek more consistent
and causal answers (e.g., Dahlhaus, 1990). And yet, to hear an ending or
resolution function in the familiar music of our culture is something even
very young children can do.

One way we have tried to explicate this seemingly intuitive but
culturally-specific, learned phenomenon, is with the following experiment:
Impromptu makes it easy to use an entirely different set of pitches to play
a sequence of notes that keeps the internal pitch and time relations the
same as in the original tune. Now the tune maintains its identity (it is heard
as the same tune), but listeners hear a different pitch as the most stable
– i.e., a new pitch has acquired the “ending” function, “tonal center”. In
music theoretic terms, changing a pitch collection but keeping internal
relations (pitch intervals and time intervals) the same is called transposing
the melody. It was easy to program the Impromptu software to transpose,
exactly because transposing is an example of a rule-driven transformation.

Going on with the children’s focus on patterns, we listened to Block
4 from the ELI set. Surprisingly, Kathy noticed that Block 4 was, “. . . a
piece of Block 2 – the end piece – with the rhythm changed” (Figure 20).

Music theory refers to this kind of modification as fragmentation.
Fragmentation is one of a group of transformation techniques whereby
composers preserve some aspect and thus a sense of cohesiveness, while
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Figure 20. “. . . a piece of block 2”.

generating and preparing for further variation, often generating a new
structural function. In the case of fragmentation, the fragmenting of a
melodic entity also increases the rate of events – that is, boundaries of
entities occur more quickly, as we shall see later in Kathy’s composition.

The focus on patterns had led to hearing both similarities and differ-
ences in comparing blocks. Patterns did include repetition, but also patterns
of change – like Kathy’s 1, 3, 5 pattern. For instance, listening to Blocks
3 and 7, the children said that Block 7 was just Block 3 “shoved down”
(Figure 21).

Figure 21. “. . . shoved down”.

This is another kind of very common transformation of a given entity
where the pattern of pitch and time relations remains intact, but the
whole pattern starts one step lower (or higher) along the scale – it is
literally “shoved down” in conventional or pitch contour representations.
Once again, the Impromptu pitch contour graphics helps to make this
relationship quite vivid for students. Called a “sequential relationship”,
Baroque composers, particularly Vivaldi, often used it as the basis for
extending whole compositions. (Sequential relationships are not neces-
sarily transpositions, since pitch intervals are not preserved in “moving
a note sequence” up or down the notational staff. C, D, E involves two
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whole step intervals; D, E, F involves a whole step from D to E, but a half
step from E to F.)

ABSTRACTING A CORE MATHEMATICAL STRUCTURE

This section is different than the previous and next in that it seeks to
draw out some mathematics that the students (and possibly, initially, some
readers) do not see in the music. It is provocative, we hope, in setting a
future agenda of further exploring what mathematics is implicit and might
be learned in the context of music, and what mathematics might be produc-
tively used in thinking about music. It is speculative in that we have not
tried to “draw out” this mathematics, and we do not know exactly what
aspects of a computationally supported context might facilitate it, in the
way Impromptu notations seemed to support student appreciation of the
inverse proportional relationship of “how much” and “how many”. This
provides an “experiment in waiting”. If we can succeed in drawing out
and making this mathematics functional, will that work in the same way
as the above (and below) instances; if we can’t, what is different about this
mathematics?

The mathematical structure at issue is common to two of the central
phenomena encountered above. In particular, it underlies the easy and
natural ability of children (and adults) to perceive rhythmic invariance
under a change in the tempo – that is, the rate of the underlying beat (or the
duration of the temporal unit). For example, the children had little difficulty
producing multiple examples where the proportional relations between
beats (2:1) stayed the same but the absolute durations of beats, and thus the
tempo, varied (e.g., 6:3 or 10:5). Similarly, the children had no difficulty
hearing invariance when pitch contour is maintained but shifted along the
pitches of a given scale, as in the commonalties between the two blocks
depicted in Figure 21. More dramatically, it accounts for transposition –
the perceived invariance when a tune is played “in a different key”. Even
though one uses a different set of absolute pitches, as long as the internal
relations of pitch and time are kept invariant, listeners hear both versions
as the same tune. Indeed, if the two hearings are sufficiently separated in
time, listeners may not notice the difference at all!

A simple model of the mathematical structure we seek to explicate is
to imagine a “thing” that contains “pieces” and “relations among pieces”.
For example, the thing might be a melody, or it might be a drum piece –
such as a drum “riff” in a marching band or a jazz improvisation. In the
case of a melody, the natural “pieces” are pitch/duration events (notes) and
possible relations are the pitch/time intervals between notes. In the case
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of a drum piece, one might call the “pieces” “sound onsets” since that is
actually the perceptually most relevant element. The relations, then, would
be “durations”, that is, the time between onsets. Some relations might be
regarded as pieces in their own right (e.g., durations), and hence relations
of relations (see below) might be considered.

In school and professional mathematics, a typical “thing” might be a
geometric shape or construction, the pieces might be points or lines, and
the relations among pieces could be distances between points or angles
between line segments.

To make our mathematics, we need one more kind of thing: We
need “transformations” that map one thing onto another. Thus, we might
consider the transformation that maps one instance of a given melody onto
another, one instance of a given drum piece onto another, or one instance
of a given geometric figure onto another. We presume that the mapping
“induces” submappings among the pieces, that is, we can identify the notes
in the transformed melody that correspond to (map from) the notes in the
original melody, or which points in the transformed shape correspond to
which points in the original one.8 If we do have the mapping between
pieces, then we can ask whether corresponding relations are the same,
before and after the transformation. When corresponding relations are the
same, this is called invariance.

We can formalize and notate this a bit more explicitly. But again we
wish to emphasize that changing notation can have important psycholog-
ical effects in terms of the nature of entities and relations that are perceived,
and with respect to level of generalization. We denote pieces in the original
thing by x, y, and z, and corresponding pieces in the transformed thing
by x′, y′, and z′. Obviously, we are assuming x “maps onto” x′, and so
on. Relations may often be represented in terms of units of measure, that
is, relations map a pair of objects into numbers (or into similar “measure
spaces”, such as conventional ways of measuring intervals, which includes
terms such as “major third”, “diminished fifth”, etc.).9 If we denote a rela-
tion by R and a transformation by T, then the most important question
we can ask is whether T preserves R, that is, whether R(x, y) = R(x′, y′).
[The latter is by definition R(T(x), T(y)).] In alternative language R is an
invariant of transformation T when, in general, R(x, y) = R(x′, y′).

Now, the set of all possible transformations is huge, and many of them
will be functionally irrelevant. That is, we won’t be able to see or hear
the relationship between the original thing and its transformed version.10

At the other extreme, a transformation that preserves everything can be
utterly boring; it is a literal repetition. In between, we can classify trans-
formations by what relations or properties they preserve and what relations
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or properties they don’t preserve. That is, we can name invariants and non-
invariants of the transformation. In music, we can further ask about the
function of the invariants and non-invariants: prominently, what does a
variation do? Identifying transformations, their invariants, non-invariants,
and musical function of both variance and invariance constitutes a cluster
of analyses of musical compositions, and furthermore, a potential language
for composition.

It is an easy exercise to recast the main points in the examples above
in these more formal terms. In a short percussion solo, an element might
be duration, the length of time between onsets, that is, between “hits” of
the drum. This can be seen as an analog to the length of a segment or the
distance between two points in geometry. An obvious relation is the ratio
between durations. If these relations, ratios of durations, are preserved,
we perceive the rhythm as being “the same”, only with a different tempo.
Leibnitz’s counting – one, two, three, one two three – demonstrates the
invariance of a three-to-one ratio; a waltz is a waltz. In more technical
terms, “the proportional structure of durations is invariant under the trans-
formation of ‘playing the same percussion piece’ at a different tempo”.
Functions for changes in tempo might be to introduce dramatic tension,
or to distinguish and mark an ending, as opposed to an introduction or
development.

With respect to melodies, a transposition in the strictest sense preserves
the relation, “pitch interval”, between events (as well as retaining the
relative durations), in which case we hear it as “the same tune”.11 But
music allows more subtle invariants that stretch our ability to hear “the
same”, while allowing variations that increase interest or serve a more
particular function for a composer. So, for example, a composer might
choose to write “the same melodic pattern” (contour or shape), but shifted
up or down along a given scale – as Vivaldi and others did and as in the two
tuneblocks shown in Figure 21. Since the pitch intervals within a scale are
not equal, in shifting a pattern up or down the scale, the general contour
of the melodic segment remains invariant and the segment continues to be
recognizable, even though the intervals between events are not exactly the
same.

Transposition preserves scale degree and intervals, but not pitch.12

Melodies with sequential relationships (Figure 21) preserve pitch contour,
but not intervals or scale degree. Shifting from one mode to another – for
example, from C major to C minor – preserves contour and scale degree,
but not intervals since the internal intervals in a minor scale are different
from the major. A shift from major to minor, while preserving a lot, is
likely to be perceived as dramatic, possibly changing the whole “feel” of
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the melody, from “happy” to “sad”. If the latter is the composer’s intent,
he or she might emphasize “happy” with a quick tempo, and “sad” with
a slow one. Schubert often used the shift from major to minor to reflect
changes in mood in his song texts.

Some of the richness of transformation, invariants, and musical func-
tion can be seen in the following possible aesthetic game. How far can
we press the transformation, and how little can remain invariant, before
the relation is perceptually lost? Bach certainly played this game in
the famously intractable “Goldberg Variations”. Further, composers who
invent new ways to change things that still preserve a sense of coherence
(like Vivaldi’s trademark sequences or John Coletrane’s riffs), or who find
new uses for the non-invariants, get credit for their invention.13

Figure 22. Left: an ornamental relief from the Alhambra palace involves multiple
elements and variations. Right: a geometric pattern inspired by Islamic art involves a single
element repeated in multiple orientations. The base element is difficult to find because it
is, in fact, ambiguous, and because perceived continuations from one instance to the next
suggest larger units. See Abelson and diSessa (1981, p. 103).

More of the aesthetic and mathematical games involved in transform-
ations and invariants can be seen in Figure 22. Both images rely on
transformations and invariants. Both produce global effects that transcend
literal repetition, where elements are transformed in their effect by the
local context. The design on the right is particularly clear in this regard
because it is difficult even to see the repeated element; the eye combines
it with its neighbors. The design on the left also uses literal repetition, or
very simple transformations (mirror image), to good effect: There is a left-
right symmetry in the picture. But there are more subtle transformations
and invariants that are not easily captured in geometry. A trefoil of leaves
appears here; a hextet of leaves (or is it a flower?) appears elsewhere. Is the
image about organic forms; can we say “organic nature” is the invariant of
many or most elements? Are the inscribed elements that background the
trefoil “stylized leaves” or organic at all? Are they deliberately ambiguous?
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The musical analog of many of these phenomena will play a role in
the next section. For now, we position these observations with respect to
the core issues of this paper. (1) Students manifestly hear certain kinds of
invariance and can even appreciate the mathematical formulations of some
of them (ratios of durations). How far can the mathematics of invariance be
drawn out of musical experience? Does it take pre-instruction of the math-
ematics, or can it literally be drawn out of music and/or visual art? (2) Can
that mathematics become a “language for design”, that permits students
to compose more effectively? In this regard, one would like to extend
Impromptu with a language of motivic transformation and composition (as
in, literally, putting together), so that students can explore transformation
and invariance instrumentally, in creating music. What are the appropriate
representational forms to make this possible, and to optimize mathematical
relevance without usurping musical sense?14

In the final main section of this paper, we return to structure that we
have direct evidence is inherent in students’ perception of music, and to the
strategy of telling the story from the musical (as opposed to mathematical)
end. We now pick up chronologically from where we left off in recounting
our experiences with the sixth grade group of children. We will extend and
exemplify the topic of this section – transformations and invariants, and
their perceptual consequences – although we will not realize the thought
experiment suggested above, to see whether the children can actually artic-
ulate the mathematics. In addition, we will look at the overall structure of
a tune produced by transformations and variations, and how that structure
is perceived.

MORE WORK WITH CHILDREN

The Structure of Melodies

Searching for patterns had been very productive, but would the children
use what they had heard and seen in composing their own tunes? To find
out, the goal of the next project was: “Make a tune that makes sense and
that you like using the ELI blocks”.

To compose a tune, each of the children at his/her computer listened
to the ELI blocks, then dragging tuneblocks icons into the playroom area,
they experimented with arranging and rearranging them as they listened to
the results of their orderings.

After about 20 minutes of concentrated work, most of the children
had completed a tune. Kathy’s tune is shown as Figure 23. The blocked
numbers are the numbers of the tuneblocks as shown in Table I.
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Figure 23. Kathy’s tune.

Kathy used the patterns we had discussed in interesting ways. For
instance, after a brief introduction using Block 3, she uses Tuneblocks 2
and 5 to form an antecedent/consequent pair – that is, two phrases that
begin the same but end differently. Recall that Kathy heard blocks 2 and
5 as the same except for the last two notes. In her tune, Block 5 which
sounded like an “ending”, brings the previous Block 2 to rest.

Going on, Kathy again uses her “start-up” block, Block 2, following
it with Blocks 3 and 7 which the children had described as a “shoved
down” version of one another (Figure 21).15 Kathy uses Blocks 3 and 7
as a sequential pair in this way, developing and moving her tune forward.
The sequence is one of our examples of transformation and invariance –
in this case a pattern of change analogous to the pattern of change, 1-3-5,
that Kathy mentioned earlier.

Going again to Block 2, Kathy follows it with repetitions of Block 4
which was described by the children as “a piece of Block 2”. And, indeed,
Kathy uses it as a fragmentation of the recurring Block 2. Repetition of
Block 4 results in a kind of stretching of Block 2 while at the same time
quickening the event-time because boundaries of motivic figures occur
in more rapid succession (Figure 24). “Fragmenting” is often used by
composers as a means adding tension, drama, contrast, and so forth.

To finish off her melody, Kathy makes a “coda” – an extended “tail”
(coda means “tail” in Italian). Juxtaposing Blocks 1 and 5, the melody
arrives three times at the most stable sounding pitch – the tonic (the
tonal “home base”, C). Then, prolonging that stability Kathy ends her
tune by repeating Block 6, which keeps returning to this same tonic pitch
(Figure 25). Following the two previous blocks, each of which ends solidly
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Figure 24. Fragmenting, stretching, quickening.

on the tonic in C minor, Block 6 extends this stability and brings the tune
to a close with a kind of poignant sigh.16

Figure 25. A coda.

Musical Know-How

From the view of the children’s intuitive musical know-how, there is no
doubt that Kathy, as well as the other children, in composing their tunes,
are actually making use of structural relations that we have pointed to in
our previous comments. These include, rule-driven transformations such
as sequence, fragmentation, and extension by repetition. In addition there
is no doubt that the children are able to hear the pitch that sounds most
stable – that is, the tonic function. All of the children ended their tunes
with either Block 1, 5 or 6, each of which ends on the tonic. Moreover, like
Kathy, several other children ended their tunes with a tonic prolongation,
most often the repeated Block 6. Later on, three children in a different
group edited Block 6 by extending the duration of the first C and removing
the last (C). In this way they reinforced the stability of the tonic by ending
their tune on a strong beat, as well. All of which seems evidence that the
children have available in-action what Meyer calls musical “archetypes”:

[A]rchetypes may play a significant role in shaping aesthetic experience and fostering
cultural continuity in the absence of any conscious conceptualization about their existence,
nature, or kinds. Rather, they may be and usually are internalized as habits of perception
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and cognition operating within a set of cultural constraints. (Rosner and Meyer, 1982,
p. 318)

CONCLUSION

Implications for Music Learning and Technology

As anticipated, the children’s work provides provocative initial evidence
for affinities between musical and mathematical structures. In addition,
it provides an initial roadmap of particular important connections that
might be made, and even fragments of interchange and inquiry where
children seem to be building or at least capitalizing on the connections.
The children seemed to gain insights and to move toward evocative gener-
alizations through discoveries that rhythmic structures embody and also
inform mathematical structures such as ratio, proportion, fractions, and
common multiples. Similarly, the more general theme of transformations
and invariants seems emergent and ready to be capitalized on.

The theoretical theme underlying this work is the complex set of rela-
tions among ontology, perceived experience, representations, dimensions,
and formalized versions of structures “evident” in how children perceive
and operate in a musical context. We emphasized the limited capability
of “professional” representations to connect to experience, but also, in
music, their limited capability to connect to generalization beyond music.
We’ve seen multiple representations and modalities exposing and helping
to resolve paradoxes of perception and representation. Various represen-
tations and modalities arguably also help stabilize and make accessible
dimensions for further consideration – elements (e.g., pitch, duration;
formal similarity like transposition and fragmentation) that are manifestly
part of, but not the entirety of musical experience.

Perhaps the most general aspect of the affinity between mathematics
and music might be the perception and articulate study of patterns.
Pursuing this agenda within music might encourage children to become
intrigued with patterns in other domains as well. And it might lend a
“sense” to mathematics as a tool for understanding more about what
we intuitively have some grasp of and care about. Some of the simplest
patterns become intriguing and paradoxical in a musical context. Consider
repetition, which we unflatteringly characterized as “boring” above. Yet,
even repetition is functional and can be an event full of subtlety. As
one child said, on being asked to find repetition in a melody, “But it
can never be the same because it’s later”. Indeed, a repeated melodic or
even rhythm segment often sounds different and may function differently
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when embedded in a different context (as in Kathy’s tune). With his focus
specifically on rhythm, Christopher Hasty puts it this way:

As something experienced, rhythm shares the irreducibility and the unrepeatability of
experience . . . when it is past, the rhythmic event cannot be again made present . . . Rhythm
is in this way evanescent: it can be “grasped” but not held fast. (Hasty, 1997, p. 12)

Perhaps in this sense, mathematics and music diverge – mathematics seeks
to “hold fast” ideas that may be fleeting, while in actually perceiving
music, we can say as Aristotle says of time:

One part of it has been and is not, while the other is going to be and is not yet . . . . The
“now” which seems to be bound to the past and the future – does it always remain one and
the same or is it always other and other? It is hard to say. (Aristotle, Physics, pp. 297–298)

It is worth underscoring what led to the productive emergence of
affinities – and also to interest-spurring paradoxes and “contradictory”
interpretations – in the experience of these students. Certainly it is rich
intuitive knowledge. Unless students are sensitive to certain structures and
patterns, there seems little basis on which to build. But students became
more sensitive, and articulately so, to these patterns. So, they could, for
example, make rhythmic accompaniment boring, or chaotic in a systematic
way. Much was clearly gained by providing the possibility for children
to move easily across media and sensory modalities, to have access to
multiple kinds and levels of representations, and actually to make music
building on their advancing ways of perceiving and conceiving it.

While the empirical work explored here involved only a small group
of children over a relatively brief period of time, the results suggest not
only significant intersections between musical and mathematical concep-
tual structures, but also more general directions for the development of
effective computer environments for learning.

NOTES

1 It may be interesting to note the similarity of the neumes to the Jewish Ta’amey
Hamikra, also called “cantilations”, surrounding the text in the original Hebrew Bible, to
indicate how the text should be sung.
2 “Time: First, does it belong to the class of things that exist or to that of things that do
not exist? Then secondly, what is its nature? If a divisible thing is to exist, it is necessary
that, when it exists, all or some of its parts must exist. But of time some parts have been,
while others have to be, and no part of it is, though it is divisible. For what is ‘now’ is not
a part: a part is a measure of the whole, which must be made up of parts. Time, on the
other hand, is not held to be made up of ‘nows’.” [Aristotle, Physics, p. 297]
3 For those not familiar with the tune, we show it here in conventional music notation:
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Hot Cross Buns
4 Scientists also try to use “natural units”, sometimes – such as the atomic mass unit, or
the frequency of some basic oscillation, which illustrates the same self-referential strategy.
The problem with the scientific use of units is that they often need to measure diverse
phenomena. Musical beats, for the most part, need to measure only the “present piece”.
5 Although this is not a paper about word semantics, we feel it is plausible that the root
meaning of “faster” that makes it transparently descriptive of both musical pace and phys-
ical motion is that “more is happening in a given time”. In the case of motion of objects,
more distance is accomplished, and in the metaphorical sense more beats are accomplished.
A more concrete explanation of the connection between the senses of faster is that in our
common experience of running, increased frequency of steps (beats) is associated with
increased speed of locomotion. So it is easy to “read” increased frequency (beats per unit
time) as “increased speed”.
6 Notice that generalizing amounts to adding a new, particular way of interpreting some
basic mathematical relations of proportionality. This view of “generalizing” (bringing to
more contexts) not by abstracting, but by adding “concrete” instances of reasoning is
inherent in the ideas in diSessa and Sherin (1998), and also in some more recent work
on “transfer” (Wagner, 2003).
7 It is worth noting that this “pulling apart” of senses of fast is exactly the reverse of seeing
(or trying to find) a common meaning for faster motion and faster notes.
8 In many cases, it might be more natural to think of the mapping as defined on the pieces,
e.g., points get transformed into new points, notes get transformed to new notes, which
induces a map from all aspects of the original melody to corresponding aspects of the
transformed melody. Further, a transformation on a single dimension – for example, pitch –
can induce a transformation on compound entities (a note includes both pitch and duration),
and thus, on the whole “thing”. Incidentally, such mappings would not be possible with the
medieval neumes notation given the total lack of specificity with respect to properties –
neither pitch nor duration. The fact that properties are not explicit prevents the mapping
invariants across instances.
9 “Relations” might be more exotic things like “binary predicates”, that map a pair
of entities into “true” or “false”. A familiar binary predicate would be “intersects”.
Intersect(l1, l2) = true expresses the fact that the two lines, l1 and l2, intersect. A mathem-
atician would not be uncomfortable with “relations of arity one”, that map a single entity
into a measure space, for example, we consider a “relation” to be merely the “size of a
geometric element”.
10 This applies to some of the transformations that were particularly attractive to
composers in the Renaissance period and currently composers with a more purely formal
bent along with those doing algorithmic composition. These include, for instance, pitch
transformations such as retrograde, where the succession of pitches is played backwards,
and inversion where the succession of intervals in a melody are tipped upside down. It is
usually quite difficult if not impossible actually to hear these transformations despite their
attractiveness as apparent means of generating structural coherence. Haydn (1773), Bach
(1781), and Schoenberg (1921) all used such transformations. We wish to distinguish these
transformations from ones that are perceptually salient, such as those the children noticed.
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11 If transposition keeps all intervals precisely the same, and people hear “the same tune”,
what could the function of the variation be? Here is one. Musical instruments have different
tonal qualities in different pitch ranges (registers). A composer might want to highlight a
particular instrument, with a particular tonal quality by putting its part “in a particular
register”. There is an important and general point here. While abstracting certain mathe-
matical properties, we can say “two things are the same”. And yet, there are always subtle
variances that may be artistically productive to control.
12 Neither do transpositions, typically, preserve tonal quality, as in footnote 11.
13 Some composers play the “reverse” game: How little can be changed and still maintain
the listener’s interest. Steve Reich is an example.
14 The predecessor of Impromptu, MusicLogo, had many of these properties and facil-
itated some of the explorations suggested here. We hope to revive it in refurbished form
sometime soon.
15 It is interesting that embedded in this context Block 3 is hardly recognizable as the same
block with which Kathy’s whole melody began. We hear it here, as a kind of continuation
and variation of the preceding Block 2, and, in retrospect, also the beginning of the next
sequence.
16 How do we abstract “a sigh” to see this last Block as one (playing a subtler version of
the game we did earlier, with “faster”)? A sigh might be described as a weakened after-
comment. Notice that Block 6 ends on a weak beat after the strong beat ending of Block 5.
Block 6 is “after” in the sense that it is later, but also, strictly speaking, it is unnecessary.
The piece has already been brought home to the tonic. The “weakened” part of this sketch
might be emphasized in performance by reduced volume and/or slowed tempo, possibly
deliberately separated somewhat rhythmically from the preceding segment.
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