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INTRODUCTION I. 

Basic to applying the constructivist epistemology to mathematics education are 
two claims: 

1. When students genuinely engage in solving mathematical problems, they proceed in 

2. Researchers and teachers must learn to listen and to hear the sense, and alternative 

Although necessary for the application of constructivist epistemology to 
research or teaching in mathematics education, acceptance of these two claims 
is not sufficient to ensure constructivist practices; for, they can be interpreted in 
multiple ways. 

personally reasonable and productive ways. 

meanings in these approaches. 

In this paper, I will: 

1. contrast alternative interpretations of these claims as they might be understood in the 
traditions of discovery learning, problem solving and misconceptions with a construc- 
tive interpretation. 

2. summarize some of the basic assumptions for conducting an investigation of students’ 
conceptions within the constructivist framework, and 

3. provide an illustration using interview excerpts from a student who was asked to 
represent on a number line a series of historical events given in scientific notation. 

Examining only briefly the similarities and contrasts between constructivism 
and other perspectives on student learning in mathematics has certain advan- 
tages and hazards. It can assist us in learning how constructivism complements 
or contrasts with other widely held approaches (as a puzzle piece fits in a jigsaw 
puzzle) in preference to presenting, in isolation, its own tenets and claims. The 
contrasting theories were selected because they share many assumptions with 
constructivism, and yet, their treatment of the epistemological character of 
mathematics or of the socio-psychological genesis of ideas is different. An 
inherent hazard of a brief presentation is that the constrasting theories may 
appear oversimplified and too easily dismissed without an appreciation for their 
role in the progress of educational thought. To compensate for this, references 
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to fuller treatments and reviews of the theories are provided. 
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LEARNING 

Many people will read the first claim for applying constructivisim as parallel to 
one of the basic assumptions behind “discovery learning” (Bruner, 1960, 1966). 
Discovery learning as it was advanced in the 1960’s referred to “methods that 
permit a student to discover for himself the generalization that lies behind a 
particular mathematical operation” and it was contrasted to “the method of 
assertion and proof in which the generalization is first stated by the teacher, and 
the class is asked to proceed through the proof.” (Bruner, 1960, p. 21) The 
methods of induction (drawing generalizations from an array of examples) and 
deduction (drawing conclusions from premises) formed the basis of the 
contrasting positions, with discovery learning relying on induction. As a 
proponent of discovery learning, one might interpret the first claim to mean: if a 
concept is inductively demonstrated through the use of mathematical problems, 
the students will actively participate in the process of “uncovering” that 
generalization in resourceful and effective ways. 

Discovery learning certainly rested on some assumptions that constructivists 
share. It stressed the importance of: 1) involving the student actively in the 
learning process; 2) emphasizing the process of “coming to know” over the 
rapid production of correct answers; and 3) extracting and making increasingly 
visible the structure of a concept. Its basic claim, that students could be guided 
to discover rather than be told, was a radical departure from the assumption that 
mathematics could only be taught through direct instruction following by drill 
and practice. 

However, the statement in the first claim, “genuinely engaged in solving a 
problem”, entails, for the constructivist, more than reasoning inductively to 
conclude with a predesignated generalization carefully manufactured by using a 
set of examples. Advocates for discovery learning assumed that behind the set 
of examples lies a generalization, awaiting discovery. That generalization, 
logically required by the structure of the concept, was assumed to be retrievable 
relatively automatically and uniformly across students by their application of 
inductive technique. The argument was that through such a process, the student 
would be more likely to internalize the results. Discovery learning was a model 
for promoting more effective learning - the epistemological content, (the claims 
about the mathematical knowledge to be learned) remained relatively un- 
touched. 

Most often, the applications of discovery learning did make the generaliza- 
tion itself evident as a repeated pattern. But, making such generalizations still 
did not ensure any deep understanding, for they left the content undisturbed. In 
striving to have students make inductive generalizations, the educators often 
neglected to assist students in developing a sense of the functionality of the 
concept - its purpose and usefulness as an explanatory construct, its epistemic 
character. For example, one can conclude inductively that changing a percent to 
a decimal requires one to move two spaces to the left without gaining any 

DISCOVERY II. 
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insight into the advantage of place value (even if the process includes use of the 
algorithm for dividing by 100). However, if the students do not see the ef- 
ficiency and elegance of the multiplicative structure of place value (as opposed 
to the awkwardness of the cumulative structure of systems like Roman 
numerals), the inductive generalization will be only minimally more meaningful 
to the student. In discovery learning, revisions in the mathematics itself were 
not considered necessary; only the logical process used to learn was altered, as 
induction replaced deduction. 

For the mathematicians and cognitive psychologists working on the ideas of 
discovery learning, mathematical ideas were seen to lie within a larger concep- 
tual field whose structure was hierarchical, consistent and logically necessary. 
“Big ideas” such as sets, functions, deductive systems and properties were 
thought to provide a powerful and parsimonious structure into which individual 
generalizations by student would be slotted. Thus, “discovery learning” entailed 
a commitment to a form of Platonic idealism. The truth value of a mathematical 
claim was derived from outside the framework of human experience. When 
students “discovered” a mathematical necessity, there was no need to consider 
the epistemological status of such a claim - its certainty, necessity, unformity 
and stability were assured by the membership in the class of mathematical 
truths. 

The view of mathematics underlying discovery learning is at variance with that 
of the constructivist. For the constructivist, mathematical insights are always 
constructed by individuals and their meaning lies within the framework of that 
individual’s experience. Students’ explanations, their inventions, have 
legitimate epistemological content and are the primary source for investigation 
(other potential sources include the beliefs of teachers and mathematicians). For 
the constructivist, mathematical ideas are created and their status negotiated 
within a culture of mathematicians, of engineers, of applied mathematicians, 
statisticians or scientists, and, more widely, in society as a whole, as it conducts 
its activities of commerce, construction, and regulation. 

The constructivist does not deny those who study or practice mathematics 
the authenticity of their experience of profound certainty when they have 
uncovered a mathematical claim. The sense of profound certainty, the documen- 
tation of concurrent inventions, the unpredicted convergence of apparently 
disparate fields, the tenacity of certain mathematical constructs all require 
explanation. But, equally important, the constructivist does not disregard 
numerous examples of mathematical claims by courageous individuals, denied 
at the time as impossible, which eventually led to significant advances; nor does 
s/he wish to ignore the evidence of views, widely held as self-evident at one, 
time, which later were viewed as in error or outside the mainstream of impor- 

III. A CONSTRUCTIVIST VIEW OF MATHEMATICS 
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tant mathematical thought. (Klein, 1980; Davis and Hersh, 1981; Trudeau, 
1987). 

In rejecting the idea of Platonist truths whose existence is independent of 
humanity, the constructivist relies on explanation based in the interplay between 
social negotiation of meanings and individual creativity and genius. In construc- 
tivism, the development of mathematical ideas is explained through their 
cultural history of negotiation (Lakatos, 1976; Toulmin, 1972); particular 
attention is given to examining how multiple systems of representation, 
symbolism and tools create occasions for the convergence of meanings - a 
convergence that is created through the ways in which those who practice 
mathematics weave together notational, linguistic, manipulative and operational 
forms of description. Regrettably, the Platonic view of mathematical truth (as 
existing outside of space and time and yet accessible through the purest forms 
of human abstraction) is reinforced by the scarcity of historians and mathe- 
maticians capable of “rational reconstruction” (Lakatos, 1976; Unguru, 1976). 
The work demands individuals capable of unraveling rich and complex chains 
of reasoning winding over long periods of time of time (Elkana, 1974; Toulmin, 
1972; Lakatos, 1976; Feyerabend, 1978; Tymoczko, 1986). 

Relying on the philosophers of science to provide the historical analysis, 
educational constructivists engage instead on a pursuit of documenting and 
describing the course of development of mathematical ideas in children, 
adolescents, and adults. It is this “genetic epistemology” (Piaget, 1970), a 
description of how people come to understand the epistemic structure of 
mathematical or scientific ideas, to which the constructivist programme is 
committed. The constructivist view of development of mathematical 
knowledge, which is assumed to entail similar influences whether it be studied 
as historical (across communities over significant spans of time) or developmen- 
tal (among individuals participating in society over life spans), is taken as an 
assumption which undergirds the constructivist programme. It can be stated as 
follows: 

Assumption One: Constructivists view mathematics as a human creation, evolving within 
cultural contexts. They seek out the multiplicity of meanings, across disciplines, cultures, 
historical treatments, and applications. They assume that through the activities of reflection 
and of communication and negotiation of meaning, human beings construct mathematical 
concepts which allow them to structure experience and to solve problems. Thus, mathematics 
is assumed to include more than its definitions, theorems and proofs and its logical 
relationships - included in it are its forms of representation, its evolution of problems and its 
methods of proof and standards of evidence. 

Accepting this description of mathematics has implications for the construc- 
tivist examining students who are engaged in solving problems. The construc- 
tivist does not expect a student to produce textbook generalization - in form or 
content. s/he begins with the assumption that what a student does is reasonable 
and then seeks to describe it from the student’s perspective. The investigation is 
assumed to have epistemological content - not just psychological content - in 
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that recognizing, unearthing and giving validity to a student’s method requires 
one to confer on it the status of genuine knowledge. If the student fails to ever 
articulate it, or to continue to demonstrate its usefulness and viability in solving 
his or her problems, then the interviewer may abandon this assumption. Such a 
situation is, however, surprisingly rare. Thus, unlike in discovery learning 
where the generalization sought after is presumed to be predictable prior to the 
investigation, the constructivist is engaged in a processs of invention - inven- 
tion of his/her own models for explaining students’ actions and words. 

Assumption Two: In examining a student’s understanding of a mathematical concept, a 
constructivist seeks to represent how a student approaches the mathematical content. S/He 
expects diversity - and idiosyncratic rationality. The interviewer’s knowledge of the 
mathematical content, complete with multiple representations, competing interpretations, 
various applications - guides the inquiry, but his/her intent is to examine the student’s use of 
examples, images, language, definitions, analogies etc. to create a model which may well 
transform the interviewer’s own understanding of the mathematical content in fundamental 
ways. 

A second interpretation of the first claim (p. 1) might be that it endorses 
problem solving approaches (Polya, 1945, 1962; Goldin and McClintock, 1979; 
Silver, 1982; Schoenfeld, 1985) Problem solving advocates argue for explicit 
instruction in the solving of mathematical problems. Problem solving is 
described through its use of heuristics and metacognitive strategies frequently 
set within Polya’s four-step process (understanding the problem, devising a 
plan, carrying out the plan and looking back.) 

The paradigm for problem solving shares with constructivism some basic 
assumptions that include stressing: 1) the value of a problem as “a means of 
finding a way out of a difficulty, a way around an obstacle, attaining an aim that 
was not immediately obtainable.” (Polya, 1972, p.v.); 2) the importance of 
problem clarification. “The worst may happen if the student embarks upon 
computations or constructions without having understood the problem”. (Polya, 
1945, p. 6); 3) the significance of elucidating strategies that are typically tacit 
but effective; and 4) the value of looking back, i.e. reflecting on one’s solution 
path. 

These shared assumptions constituted a profound shift in our perspectives on 
mathematics education. Identifying heuristics involved mathematicians and 
educators in a process of self-reflection which led to the expression of personal 
epistemological assumptions concerning the structure of mathematical 
problems. Moreover, by claiming that problem solving could be taught, 
problem solving theories weakened the insipid belief that mathematical ability 
was a holistic character trait conferred (or not) at birth. Remarkably, problem 
solving approaches began with the assumption that the bastion of mathematical 
creativity, the ability to solve problems, could be taught. Thus, the tradition of 

LISTEN  

III. PROBLEM SOLVING 



116 JERE CONFREY 

problem solving introduced talk-aloud methods of examining a person’s talk 
during the activity of problem solving. Finally, by focusing on problem solving, 
advocates clearly demonstrated teachers’ premature concern with proof, public 
standards of evidence while at the same time they ignored the process of 
invention - one which was to rely on intution, insight and heuristic. 

Just as proponents of discovery learning assumed a specific structure 
inherent in a concept, problem solving advocates tended to assume a well- 
defined structure inherent in a problem. Heuristics, (try a simpler problem, 
consider special cases, use auxiliary information) supported the perspective that 
mathematical systems were well-organized structures in which problems were 
suspended. In Polya (1945), we witness this formalization of a problem in his 
characterization of a student’s initial understanding of a problem as 
“incomplete”. He states, “Our conception of the problem is rather incomplete 
when we start the work; our outlook is different when we have made some 
progress; it is again different when we have almost obtained the solution.” (p.5) 
If an underlying structure is presumed to be inherent in a problem, then 
teaching problem solving can be viewed as mastery of a skill, as Polya did 
when he wrote that problem solving is “a practical art like swimming, or skiing 
or playing the piano: you learn it by imitation and practice.” (Polya, 1962, p. v.) 

Problems play an important role in the evolution of mathematical 
knowledge; their role in the teaching of mathematics is even more crucial. The 
common inclination to confer on them independent structure needs explanation. 
Even Lakatos after providing a rich and wonderfully social portrayal of the 
evolution of the Euler conjecture in Proofs and Refutations (1976) gives way to 
this inclination when he wrote: 

Mathematical activity is human activity. Certain aspects ... can be studied by psychology, 
others by history. Heuristic is not primarily interested in these aspects. But, mathematical 
activity produces mathematics. Mathematics, this product of human activity, ‘alienates itself’ 
from the human activity. It becomes a living, growing organism which acquires a certain 
autonomy from the activity which has produced it; it develops its own autonomous laws of 
growth, its own dialectic. The genuine creative mathematician is just a personification and 
incarnation of these laws which can only realize themselves in human action. Their 
incarnation, however, is rarely perfect. The activity of human mathematicians as it appears in 
history is only a fumbling realization of the wonderful dialectic of mathematical ideas. But 
any mathematician, if he has talent, spark, genius, communicates with, feels the sweep of, 
and obeys this dialectic of ideas. 

Now, heuristic is concerned with the autonomous dialectic of mathematics, and not with 
its history, though it can study its subject only through the study of history and through the 
rational reconstruction of history. 

A footnote from Lakatos’ students suggests that the Hegelian influence on him, 
apparent in this statement, was lessened by the influence of Popper, and thus 
this statement might have been significantly revised had Lakatos not died at 
such a young age. Nonetheless, his statement illustrates the strength of the 
human inclination to attribute to mathematical probIems a timelessness and an 
independence from humanity. 
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IV. A CONSTRUCTIVIST VIEW ON MATHEMATICAL PROBLEMS 

However, to confer on problems an independent ontological status as Lakatos 
seems to do in this passage and is so often done by problem solving advocates 
runs counter to the constructivist perspective. Problems, to problem solving 
advocates, are described as situations which require the solver to put together 
information in a new way. Polya describes problems as possessing an unknown 
(that which we seek), a given (that which we know as data which allow us to 
recognize the unknown) and a condition which will eventually link the un- 
known and the data. The problem in this description appears to be located in the 
very structure of the task. 

The model that emerges appears to be as shown in Figure 1 

Constructivists deny independent existence to problems. An example may 
demonstrate the point: 

Suppose a bank advertises 6% interest, compounded monthly, on savings accounts. If you 
deposit $100 on March 1 and withdraw it on April 1, how much interest will you have 
earned? 

Without knowing that interest is, by convention, always quoted on an annual 
rate, one might easily answer $6.00. However, familiarity with this social 
convention allows one to deduce that 6% per year is equivalent to 0.5% per 
month, and that the correct answer is 50. The structure is not in the problem - it 
is in the socially and contextually defined meaning of the words as interpreted 
by the listener. As von Glasersfeld reminded us. 

As seasoned users of language, we all tend to develop an unwarranted faith in the efficacy of 
linguistic communication. We act as though it could be taken for granted that the words we 
utter will automatically call forth in the listener the particular concepts and relations we 
intend to “express” We tend to delude ourselves that speech “conveys” ideas or mental 
representations. But words be they spoken or written, do not convey anything. They can only 
call forth what is already there.” (p. 485) 

For the constructivist, the problem is only defined in relation to the solver. A 
problem is only a problem to the extent to which and in the manner in which it 
feels problematic to the solver. When defined this way, as a roadblock to where 
a student wants to be, a problem is not given independent status. In order to 
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differentiate this approach to a problem from the typical use of problems in 
mathematics classrooms, I have chosen to use the term, the problematic, to refer 
to a student’s “roadblock”. In learning to listen to students, the constructivist 
devotes considerable time to imagining how the student views the problem. 

In discussing the relationship between a problem solver and the problematic 
as s/he sees it, one still needs to explain why problems are so crucial in 

everyone will admit that it has been the examples, the problems, not the 
definitions and proofs through which they have learned mathematics - and this 
needs explanation. 

The constructivist responds to this in two ways: by reconceptualizing what 
knowledge is and by describing the process of problem solving in relation to its 
affective character. In redefining knowledge, the constructivist draws on the 
fundamental processes described by Piaget: assimilation and accommodation as 
they act to restore equilibration. Human beings are living systems that seek 
equilibration and problems disrupt that equilibration. Once we admit of a 
problematic, (i.e. notice a disturbance), we work towards reestablishing 
equilibration. In this sense, problems while acting as roadblocks to where we 
wish to be are also “calls to action” - they get us poised to operate on a system. 

We act through sensory-motor and cognitive operations. We use tools and 
previously familiar systems of representation. Then, we monitor the results of 
our actions to see if the problematic has been resolved and equilibration 
restored. This may end the sequence, lead to a reconsideration and perhaps 
alteration of the problematic, and subsequently a new cycle of action and 
reflection. When an action or operation is seen as repeatedly successful in our 
progress towards resolution, we set apart that action or operation by various 
processes of naming it, discussing it, objectifying it (Confrey, 1985) or creating 
it into a tool or representation for further action. This is the process of reflective 
abstraction (Piaget, 1971). 

These intellectual processes are, for the constructivist, the source and the 
content of knowledge. Knowledge is not the accumulation of information; it is 
the construction of cognitive structures that are enabling, generative and proven 
successful in problem solving. Thus, problem solving becomes an essential 
intellectual act - not an enrichment, an occasional pastime. Figure 2 provides a 
simple model to describe this process of construction. 

The objectification of problems, seen in these terms, reveals a human 
tendency which is itself a part of the problem solving process. We act as though 
problems (and their solutions) are out there. Michael Polanyi in Personal 
Knowledge (1958) emphasized that a person (a student or a creative mathe- 
matician) needs to believe a problem capable of solution and be “looking for it 
[the solution] as if it were there, pre-existent” in order to consider it a problem. 
Thus, inherent in our establishment of a problematic is a belief that it is capable 
of being solved. We may not possess the confidence or arrogance to presume 
that we will be the successful ones - what we are expressing is our belief that 

mathematics. If they do not carry “content”, why are they so compelling? Most 
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we will recognize the solution if we were to see it, though we may not be able 
to articulate anything about it. Our assurance is only in its possibility of solution 
- an assurance which easily leads us to talk as though problems were out there. 

His characterization of the emotional dimensions of problem solving explain 
further how our investment in the process encourages us to confer on the 
problem an independent existence. Our belief that “we can’t create something 
from nothing” makes us wish to assume the problem solution came from 
outside. However, with a revised perspective on knowledge, we accept the 
recursive quality of knowledge construction and the emotional intensity helps to 
explain why problem solving is so successful in generating knowledge. As 
Polanyi put it, “obsession with one’s problem is, in fact, the mainspring of all 
inventive power .... And the intensity of our preoccupation with a problem 
generates also our power for reorganizing our thoughts successfully . . . (p. 127). 

Polanyi summed up the power of the problem solving activity in his 
definition of a problem: “A problem is an intellectual desire ... and like every 
desire it postulates the existence of something that can satisfy it .... As all 
desire stimulates the imagination to dwell on the means of satisfying it, and is 
stirred up in its turn by the play of the imagination it has fostered, so also, by 
taking interest in a problem we start speculating about its possible solution and 
in doing so, become further engrossed in the problem.” 

Asssumption Three: Problems serve a crucial role in the construction of knowledge. 
Problems reside in the mind of the student - not in textbooks or in the mathematics. 
Problems are felt discrepancies, roadblocks to where a student wishes to be and therefore 
catalysts for action. To accept a problematic an individual must believe that it is capable of 
being solved - and act as though the problem and solution were preexistent. The cycle of 
identifying (noticing) problematics, acting and operating on them and then reflecting on the 

This leads to a third assumpton for the constructivist position: 
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results of those actions is emotionally charged, motivating and demanding. It is this process 
of knowledge construction which is the critical site for constructivist researchers/teachers. 

Solely defining a problem in relation to the solver does not prove adequate, 
for the constructivist researcher/teacher, who uses problems and tasks as the 
means of examining students’ conceptions, promoting their continued develop- 
ment and assessing their progress. Thus, when problem solving is no longer a 
solitary affair, it involves an act of communication, an interaction which must 
be considered. The witness to the student’s problem solving activity cannot 
claim access to some ontologically independent world of problems, so that she 
too has a problematic, an individual interpretation of the problem. Thus, the 
model must be revised as illustrated in Figure 3. 

Figure 3. 

Notice that lines drawn from each other’s problematic are added to indicate 
that the researcher/teacher is trying to imagine what the student’s problematic is 
like, while the student, in a classroom or interview, is trying to anticipate what 
the researcher/teacher wants. Over the course of the interview or the class, it is 
hoped that the two will come to believe that they understand better each other’s 
expectations, conceptions and forms of solution -but this is best done when the 
student is engaged in his/her problematic and its resolution, and the research- 
er/teacher, guided by those responses, forms a powerful model and tests it while 
challenging the student with more sophisticated and yet relevant problems. 
Much of the success of the constructivist instructional or research model 
depends on how willingly the teacher 1) seeks to imagine how the student might 
be viewing the problem; 2) hears mathematical notions which differ from 
her/his own but possess internal consistency; 3) examines his/her own mathe- 
matical beliefs and 4) witnesses and describes the student’s choice of operation 
(action) and method of evaluation and recording (reflection). 

Assumption 4: Problem solving as enacted in interviews or constructivist instruction is an 
interactive process. The interviewer selects a task for its potential to invite students to 
engage with a particular mathematical idea. The task will yield to multiple interpretations 
and resulting approaches. The interviewer must seek out an understanding of the students’ 
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problematic, choices of actions and means of reflection. The interview setting will itself 
promote more self-reflection and a stronger approach to knowledge construction. The 
definition of the problem, of what concepts are related and of what constitutes an appropiate 
answer will evolve over the course of the interview. 

V. STUDENT ERRORS AND 

A third interpretation of the first claim, that when students genuinely engage in 
solving mathematical problems, they proceed in personally reasonable and 
productive ways, would be to interpret it to refer to reasoned error patterns. 
Research on the diagnosis of student errors has indicated that overly quick and 
localized responses by teachers to errors can result in a failure to see how 
individual mistakes can be linked together and remedied more effectively as 
classes. Though this research has proven relatively effective in remedying 
errors on simple arithmetic computations (Van Lehn, 1983) its effectiveness in 
more complex circumstances has been limited. 

A more promising interpretation of the phrase “personally reasonable and 
sensible ways” links it to the research on student misconceptions. Researchers 
have documented that students hold mini-theories about scientific and mathe- 
matical ideas that the theories and their forms of argument must be understood 
and directly addressed if students are to come to a more acceptable understand- 
ing of the concept. Unlike error patterns, these mini-theories relate formal 
scientific/mathematical meanings for terms with their everyday usage, examine 
how the theories relate to historical development and discuss how the theories 
reflect the child/student’s view of science or mathematics as a whole. (For 
reviews of this literature, see Confrey, 1990; Perkins and Simmons, 1987; 
Driver and Easley, 1978) 

Since many of the researchers in this area have contributed significantly to 
the constructivist program (Pope, 1985; Driver and Erickson, 1983; Novak and 
Gowin, 1984) no general distinctions can be offered. However, debate within 
this community over what to label the student’s perspective is an indicator of 
the variation which exists in people’s interpretation of constructivism. Labeling 
a student’s model as a misconception fails to take in consideration the perspec- 
tive of the student, for whom the belief may explain all instances under 
consideration and fail only in cases to which s/he is not privy. Another optional 
label has been that of alternative conceptions which stresses the possibility of 
multiple solutions, but subtly seems to give them a lower status, “alternative” as 
opposed to “normal” conceptions. Finally, others have chosen more simply 
conception, which omits any indication that the perspective may deviate 
considerably from the expert’s position. For the constructivist, this difficulty 
can be resolved by using the term “conception” while always declaring a frame 
of reference (observer, expert, or participant) and indicating whether it seems 
adequate from that person’s perspective. 

MISCONCEPTIONS 
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VI. A CONSTRUCTIVIST VIEW OF 

In my interpretation for constructivism, the phrase “personally reasonable and 
sensible ways” needs to incorporate certain commitments. As we examine 
students’ conceptions and encounter responses which deviate from the tradi- 
tional presentation, we need to keep in mind that: 

1) seldom are students’ responses careless or capricious (Ginsburg, 1977). We must seek out 
their systematic qualities which are typically grounded in the conceptions of the student. If 

their point of view. Thus, our first efforts must be towards encouraging students to describe 
their beliefs so that we might explore them. 
2) frequently when students’ responses deviate from our expectations, they possess the seeds 
of alternative approaches which can be compelling, historically supported and legitimate if 
we are willing to challenge our own assumptions. 
3) these deviations provide critical moments for researchers to glimpse and then to imagine 
how students are viewing an idea. The role of the discrepant event in building up conceptual 
structures is as essential as refutation is in the conduct of science/mathematics. It is essential 
in an individual’s progress in the development of the ideas and also provides an opportunity 
for us to describe the student’s conceptions. When the student proceeds in accord with our 
own models and expectations - we assume agreement with our models, but as von 
Glasersfeld (1984) reminds us, conceptual frameworks must fit our experience, as any key 
with the appropriate appendages can trip open a lock. That key need not match our own. It is 
at points of contact, at moments of discrepancy, that we have the highest probability of 
gaining insight into another person’s perspective. 

Assumption Five: Students’ responses which deviate from our expectations as research- 
ers/teachers can appear to he reasoned and well-considered to the student. They may be 
entirely legitimate - as an alternative perspective, or be effective for a limited scope of 
application. We must encourage students to express their beliefs, keeping in mind that 
deviations provide precious opportunities for us to glimpse the students’ perspectives. 

In order to demonstrate how one learns to listen to a student in a constructivist 
tradition, I have written up an episode which occurred over two interviews with 
a college student. The questions listed below summarize the major issues raised 
in the previous sections and provide a framework for the reader to consider as 
s/he considers the example: 

1. What mathematical ideas are under investigation and how can they be viewed as 
genetically developmental, functional for making sense of experience and viable in 
solving problems? 

2. What problematic is the student undertaking and does she solve it adequately? From 
whose perspective? 

3. How does she act to solve her problematic? What operations, representations and tools 
does she use? 

4. How does she reflect on her actions in relation to 
the problem? 

ERRORS 

we assume this, we will increasingly understand the sensibleness of their approaches from 

VII. AN EXAMPLE: SUZANNE 
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The preceding example is drawn from a teaching interview which I conducted 
on students’ understanding of exponential functions. The student interviewed 
was a college freshman at Cornell University who was majoring in nutrition. At 
the time of the interviews, she was taking a remedial algebra/trigonometry 
course. She volunteered to participate in a study of students’ mathematical 
reasoning and was paid for her participation. She met with the interviewer twice 
weekly for one-hour sessions over a five week period. The task described took 
place during the second and third interviews. The task (reproduced in Figure 4) 
was to represent a series of dates of significant historical events given in 
scientific notation (for the most part) on a number line. Scientific notation refers 
to the system of writing numbers as a product of a number between 1 and 10 
and a power of ten. The task was designed in order to examine how students 
understand scientific notation and, in particular, the relations among the 
exponents as orders of magnitude. 

Suzanne was given the problem statement and asked to read the introduction 
out loud and “to represent the dates on a number line”. She was provided a 
calculator, ruler, pens, pencils, a stack of computer paper and pads of graph 
paper. She chose to use the graph paper to make her number line and began by 

what she is looking at to make that decision, she says “Well, um, let’s say I put 
9 here, if I was going by thousands of years or whatever it is. 

Um, I would have to fit in here 3.5 whatever it is..” She proceeds to mark off 
8 7

This decision immediately meant that these intervals were spaced as in a 
logarithmic scale: as she moved right to left, each equal-sized interval spanned 
10 times as many years as the previous interval. For example the interval from 

2 to 

In order to decide on the spacing in terms of boxes between the intervals, she 
counted the number of boxes across the graph paper and the number of events 
which are listed in the chart (19 events) and divided number of events into the 
number of spaces (47 spaces). She indicated that “..I’m probably going to need 
a calculator because you mark this at the proper divisions between each one.” 

stating that she will “divide it up” and go from 1.5 • 1010, 1.5 • 109 When asked 

in 1.5 times 10

her intervals, 1.5 • 10 , 1.5 • 10  etc. 

11.5 • 10  to 1.5 • 102 covered from 15 to 150 years ago whereas 1.5 • 10
1.5 • 103 covered from 150 to 1500 years ago or 10 times as long (Figure 5). 
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From this, she decided to space her labels two squares apart. 
In one respect, it seems that Suzanne is muddled. She has not proceeded in 

the textbook fashion of discerning the range and then choosing a scale, labelling 
it, and then placing her points. Her method of deciding on the spacing seems 

seems to demonstrate a failure to understand the impact of exponents on the 
size of numbers. It seems unlikely that she will complete the task successsfully. 

However, if we struggle to listen to her as a competent problem solver, she 
has also provided us a rich opportunity to glimpse what constructs she is using 
in creating such a number line. Her first concern was with fitting the data on her 
paper. She was aware that “I can use the whole room if I want to, because this is 
such a long period of time,” and she recalled an exercise in ninth grade earth 
science where they created a timeline with pictures. However, she decided to 
limit her task to one piece of graph paper, and worked towards mapping the 
data within those restrictions. 

The interviewer who is charged with hypothesizing a model of her 
problematic listens carefully to her words to guess at her task - she saw her task 
as “dividing up” the page (creating intervals) and “fitting in the points” 
(locating all the points on that page). She stated her own problematic as “getting 
them all on, from first to last.” It seems that her immediate task was to place the 
points on the scale. The concern for representing the relative passage of time 
was never mentioned early in her activities. 

Within the constructivist paradigm, one would seek to imagine how these 
concepts, range, interval labelling and spacing within the interval are under- 
stood within the context of her problematic. We see that our “conventional 
wisdom” on how to construct a number line does not apply. She does not 
proceed in textbook fashion by: 1) identifying units (the variable in the one- 
dimensional scale), 2) determining the range, 3) choosing an origin and 4) 
deciding on an appropriate scale. Her problematic is to get the points on the 
line, i.e., to find their locations. 

To do so, she selected the Big Bang, the first point in the set, and hence 
ended up with a marker of 1.5 • 10  a choice which she will revise later. She 
chose her markers to proceed consecutively, but the counters she relied on were 
exponents; she exhibited no evidence that she recognized this implied a change 
in interval size as she moved right to left. It felt orderly and it allowed to cover 
her range of points systematically. From her later actions, it seems reasonable to 
assert that in the early stages, she was unaware of the discrepancy between her 
scale and a linear one. 

An important insight for the researcher is that it seems that her construction 
of the number line (on which she later must place her points) is not clearly 
differentiated from locating the set of numbers (data) she must place. We 
witness this in her decision to use the Big Bang as her origin, despite its 

1 • 1010 . Another example is evident in her assumption that the events them- 

flawed and her decision to make the intervals in increments labelled 1.5 • 10n 

n

), rather than to choose a value like somewhat awkward value (1.5 • 1010
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selves will be equally spaced, rather than the intervals on the scale. Recall how 
she decided how many spaces to put between each label of a marker; she 
counted the number of events, divided 44 by 19, and spaced by twos to “fit 
them all on.” 

For the researcher, these deviations from our expectations raise interesting 
questions about the conception of the number line, since she must create this 
representation in order to place the points. We explore our own understanding 
of the interrelationships among scale, range, unit and interval (Goldenberg, 
1988). Her initial lack of distinction can draw our attention to ways in which 
our own mathematical language makes such a distinction difficult to articulate. 
For instance, we refer to the representation of the number line without points 
labelled as a number line, yet, possess no language for referring specifically to a 
number line with the data points marked. In contrast, in Cartesian graphing (a 
representation of two perpendicular number lines), we ambiguously use the 
term, “graph” to refer to both the particular curve drawn (the relation) on the 
coordinate axis (and can put multiple graphs on the same axes) and to the 
combination of the particular curve and the coordinate axis. We do not refer to a 
naked coordinate axis as a graph. 

As we consider these as two related tasks, we begin to view the problem as 
the coordination of two kinds of representation - numbers represented in 
scientific notation and numbers represented as locations of points on a number 
line. By not differentiating these systems of representation initially, she uses 
particular points and intervals from her list of events to build her number line 
and unknowingly breaks some of her tacit assumptions about numbers. 
Interestingly enough, as the task proceeds, and she most locate a variety of 
points in relation to her interval labels, she progressively solves local problems 
and ends up with a practical solution. 

Her second attempt has her using two sheets of paper, and she increased her 
interval size to four boxes. She did so in response to beginning to try to plot the 
three events in Precambrian time and suspecting that she lacked the necessary 
spacing. As she began to imagine plotting points, she decided she has made a 
mistake. She moaned, “Oh, I totally messed this up, because when I counted I 
didn’t take into account that there are four, five, six at 108 and so many at 107 
so that’s not going to work . . . . I’m going to end up with a bunch of extra marks 
with nothing to put there.” She continued to examine the chart and then 
struggled to create a language to describe her error. She said, “So when I 
counted the total [number of events] I included them [multiple events with the 
same exponent] in the total not thinking that they are not necessarily in the total 
but they’re in the group . . . . So, what I have to do is, say, count the exponent as 
the group and not each individually.” 

The significance of this event for the constructivist is twofold: 1) she was 
easily convinced to change her mind on this, because she encountered conflict 
and acted to resolve it; and 2) her development of a language by,which to 
convey to the interviewer her insight required significant effort and probably 
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helped to stabilize that insight. In this regard, the interview setting constitutes a 
different setting for learning than would likely occur if she had been alone. The 
use of the term group, is an interesting one, for it establishes a way of reducing 
the size of her problematic of mapping from scientific notation to the number 
line - each point is a member of a group as defined by its exponent, and that 
exponent corresponds to a single interval on the number line. She now must 
only determine how to map within the intervals. Thus, her problematic has 
changed as a result of her own actions. 

In the next exchange, Suzanne acted on her insight to determine how many 
intervals she needed. Since the final seven events are not presented on the table 
in scientific notation, she transformed them. She proposed to change 500,000 
into 5 • 105 counting the zeros but expressed a lack of security with scientific 
notation. When the interviewer responded by asking, “What is 105?”, she 
multiplied it out to get 100,000 and checked it. 

Her encounter with the label “now” provided her with another opportunity to 
differentiate between the representation of the number line and the placement of 
her particular data. It also drew her attention to her units. She stated, “And I 
guess I am going to just put that on the graph [the word now]. I can’t really. I 
can put it to the zero. I mean, I guess, Oh, I can just, if I put 19[87]. Wait, this is 
actually zero, isn’t it, because it’s years ago? It’s right now, it’s because its zero 
years ago, so will go, um, I’ll have to put something in here, as 101 just so the 
graphs will stay even ... it will be 1.5 times 10  so that, no, that may not be 
important as far as the data, but I need it to keep the intervals in my graph.” 
This is a significant step for her for she makes the claim that the number line 
must meet a certain criterion, completeness, that may not be directly required 
by her data. 

Notice that the placement of “now” cannot be represented using her 
geometric progression of exponents since 1.5 • 100 = 1.5 • 1 = 1.5 and were she 
to continue her pattern of intervals, 1.5 • 10-1, 1.5 • 10-2 1.5 • 10-3 which yield 
.15, .015, .0015. No extension of such a sequence reaches the value of zero. 
Because she is still primarily concerned with placing points, she sees her task as 
finding a place to put “now”. She puts it on the point one, calling that “now”. 

This example illustrates how a student can simply dismiss an anomaly (and 
fail to “see” it), leaving intact the operating conception. The interviewer asked 
her if zero can be written in the same form as the other numbers, challenging 
her to see that it provides a challenge to her framework. She responded, “Um, I 
don’t know. As 1 . 100 or 100

 is 1, so it would just be one. I guess I could call it 
[now] one if I want to . . . since it’s my graph.” On hindsight, it is unfortunate 
that the interviewer did not pursue this either immediately or later. 

Suzanne now set about creating the third version of her number line. She 
counted to see she needed 11 intervals and decided to try a spacing of 10 boxes 
per interval. When that came out to be too large for her graph paper, she 
decided to use 8 squares. She drew this fourth version and labelled the intervals, 
1.5 • 1010, 1.5 • 109, 1.5 • 108 ... and wrote in zero for her last entry. She then 

1
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changed her mind again as she faced the task of locating points and said 
“Actually, I shouldn’t have used eight, because its hard to break that up. 
Probably 5 or 10. If I stayed at 10, it would have been a lot easier.” Her choice 
of using ten may have signaled either an awareness that she was facing the task 
of placing decimals or that she was accustomed to seeing ten spaces in previous 
work. 

She decided to continue to work with eight squares and encountered her next 
obstacle. The final resolution of this obstacle provided her with a consistent, 
albeit alternative, representation for this problem. She tried to decide how to 
divide the interval up. Her first suggestion was to divide the interval next to 

 into three parts and label tentatively from left to right the first section 
1.0 • 109 and the next .5x 109 (Figure 6). 

Figure 6. 

She quickly stated her confusion. After a short pause, she concluded, “I am 
going to make this one [the marker] 1 • 1011  so I can use “1” 

pointed to the middle of the interval (Figure 7). 

Figure 7. 

This change in labelling the intervals can be viewed as another step in 
differentiating the formal representation of the number line from the particular 
data. It also provides an opportunity to glimpse some of her assumptions which 

1.5 • 1010

 and this, 1 • 1010

and have some place to put this [1.5 • 1010 10]. So, I can put 1.5 • 10   here.” She 
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are in operation. She assumes that .5 must represent a “middle” point, perhaps 
because it is so frequently the middle in number lines of consecutive integers; 
perhaps because she is attending to the consecutive values of the exponents. If 
she had considered her intervals as 10n and 10n+1 (rather than as 1 . 10n and 
1 • 10n+1 , a claim which 
might have led towards a logarithmic scale. However, given her revised 
problematic, locating points within the intervals, she is most likely to be 
attending exclusively to the decimal number (n.nn) rather than the exponential 
(10n). 

Because she remained dissatisfied with having eight rather than ten squares, 
she redrew her number line with the interviewer’s assistance. She then had the 
number line shown in Figure 8. It started with 1 • 1011 and proceeded 
downward by powers of ten till 1 • 101 next to which was placed a final interval 
with a marker labelled NOW. She chastised herself stating, “My biggest 
problem is I don’t think things through enough before I start.” 

Her first inclination was to split each interval in half, which later she 
explained was to label it 1.5, but she caught herself and said, “no, I’m not going 
to do that. I am going to ... since our 10 ...”. She counted off the spaces 
between her markers, starting from her right marker at 1 and moving to the left 
counting 2, 3, 4, 5, 6, 7, 8, 9, 10 .... This caused her to reach 10 on the ninth 
square and to recalculate that value and say, “no, if I do 10 times 10 is . . .” 

Suzanne was experiencing the impact of a variety of competing frameworks. 
Her markers read 1 • 108 and 1 • 107 They seemed well-ordered to her, but she 
needed to figure out how to divide up the interval. Her first framework was to 
hypothesize that 1.5 • 107 would be halfway in between - a theory based on the 
consecutive values of the exponents. Her other framework guided her to rely on 
her choice of ten spaces and its resemblance to the decimal system and it led her 
to count off the values. This method, however, produced the surprise result that 
she ended up with an extra space since her count begins at one. 

. 

Figure 8. 

She admits “Um, I am confused now as to what I’m doing. Um..” and then 
chose to write out the numbers in standard form below the scientific notation. 
On the interviewer’s request, she restated her problem, this time using the 

 she might have claimed that the middle is l0 n+.5
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standard form of the numbers. “I don’t know how to go from 100 million to 10 
million. It’s just 10, 10 million times 10 is 100,000. The scientific notation is 
messing me up. This would be 10 million and 500 thousand, right? [She pointed 
halfway in-between 100 million and 10 million.] It would be halfway in- 
between, right? So it would be 1.5 right here?” 

The interviewer repeated her claim asking if 10,500,000 is halfway between 
10 million and 100 million and she quickly responded that it’s halfway between 
10 million and 11 million. Although she was confused, by writing the numbers 
in standard form, she has provided herself a third representation (in contrast 
with her segmented number line and her scientific notation) and she used this 
one to resolve her dilemma (Figure 9). She said, “All right, then I have too 
many spaces . . . since this is 10 million and this is 100 million, I have to go by 
10 millions. So, it would be - if this is 10 million - 20 million, 30 million, 40 
million, 50 million, 60 million, 70 million, 80 million, 90 million. Then I’d 
have an extra box.” Then she switched back to scientific notation and said, 
“then it would be 2 • l07, 3 • l07, 4 • I07 - like that. On interviewer’s request, 
she confirmed her method on the interval from 1 million to 10 million counting 
off by millions. As the interview ended, she expresses her need to redraw the 
number line and the interviewer agrees to provide one with nine divisions per 
interval for the next session. 

Figure 9. 

To this point, Suzanne has created a number line which resolves all her 
outstanding dilemmas. She has created a number line which involves two 
mapping procedures - the first maps the events within a group by their decimal 

interval. In more formal terms, her proposal creates a complete mapping from 
the set of all real numbers greater than zero to the number line representation. It 
is a combination of a logarithmic and a linear scale. 

The interviewer began the next session by asking her to review what she had 
done to which she replied: “I tried to make a number line with the numbers 
given here [in the chart], and I put them in scientific notation, just to make it 
easier . . . I tried to make even divisions so I could divide them up, I did them by 
tenths. I started 1011 and 1010 l09, and I put in finally, once I figured them out, 

numbers and to place them on a scale ranging from 1.0 to 9.9 . . . within that 
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put the proper numbers and space in between so that each could be labelled 
evenly, like 1 . l0 , 1 - 10 , down like that. From there it would be easier to 
divide them up like into the decimal point and things like that.” 

Curious to see if the solution she has proposed will satisfy the overall 
expectations Suzanne has for the task (recognizing that it does solve her local 
problematics), the interviewer asked Suzanne what would constitute a success- 
ful completion of her task. She identified three criteria: 1) to be able to locate 
the points on the chart; 2) to be able to look at the number line and “clearly see 
what was being, was trying to be said, or trying to be explained by things in the 
number line”; and 3) to see the years passing, “the difference between them. 
When you look at the line, you can see clearly that this is obviously closer. This 
one point is closer to this point than this one is. So there is a longer period of 
time between here and here.” 

Her answer is striking, because her number line only satisfied her first 
criterion completely. To this point, we see no reference by her to the context of 
the problem, the passage of time; and yet, when asked she states this as a 
criterion. Later in the interview, she learns to “see” on her number line and to 
calculate the years passing - but the placement of numbers remained of primary 
concern. 

She then located the events listed on the number line with little difficulty. 
Her representation allowed her to map the dates for the events listed in an 
algorithmic fashion. The interviewer began to raise questions to cause her to 
consider the impact of a changing unit size across the intervals. The question 
posed is “did the dinosaurs live for a longer period than humans, or have 
humans lived longer?” They decided to assume that the dinosaurs died out 
during the Triassic period. Thus it turns out they lasted approximately 
100,000,000 years and people, having entered the timeline at 2,000,000 years 
ago, have survived a much shorter length of time. On her number line, by 
distance considerations alone, it appeared that humans have outlived the 

She answered, “They began a longer time ago, but they lasted a shorter 
period of time”. This is the response one would expect her to have given, based 
on the appearance of her number line. 

The interviewer asked to be convinced, and she responded at first by saying, 
“Each exponent is a million years. I guess that’s what we were doing. Is um, 
what did we say. I have to think about this for a second.” She wrote out the 
standard notation for all of her intervals. Then she said, “OK, each of these, 
each of the divisions signifies a multiplication by 10 um? each of the large 
division. This is 10 years multiplied by 10. 10 million multiplied by ten is 100 
million. With considerable effort, she pondered the length of the interval for the 
dinosaurs which we had marked as from 2.45 • 10
said it’s one and with a long pause added, “I guess it would be one . . . hundred 
million.” To work this problem, she stayed within her number line representa- 
tion, switching from scientific notation to expanded decimal form. In then 

ll 10

dinosaurs (Figure 10). 

to 1.44 • 108. She quickly 8 
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deciding how long humans had survived, she also used her number line and 
began to add intervals. She added the first interval correctly (from 2 • 10 to her 
marker, 1 • 106) as 1 million but then called the next interval 100,000 (rather 
than 900,000) and then simply concluded that dinosaurs were around longer. 

By asking this question, the interviewer hopes to stimulate Suzanne’s 
thinking about interval size. Whereas before we have heard Suzanne express her 
awareness that the value of numbers between intervals increase ten times, “each 
of these, each of the divisions signifies a multiplication by 10” we saw no 
evidence that she was interpreting this in relation to the passage of time as 
represented by the length of the line. By working across her forms of representa- 
tion, the length of the line, subtraction of scientific notation and subtraction of 
expanded format, she gains some insight into these connections. It is at this 
point that she begin to apply her last two criteria to her number line, to “clearly 
see what was being, was trying to be said” and to see the years passing. Once 
again, when presented with a problem, she acts to solve it in an appropriate 
way. 

Her decision to determine how long humans had been around by adding her 
intervals, 1 million + 900,000 + 90,000 + 9,000 + . . . (which would be an 
infinite process in her representation if she had arbitrarily located one as now) 
rather than by reading off the number 2 million provides an interesting insight 

6 
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into her understanding of the meaning of the labels on her intervals. It might 
have also led to an interesting inquiry into her awareness of the differences in 
her number line from the traditional linear one. However, it was not pursued. 

Suzanne seemed to be reasonably capable of using her graph and seemed to 
understand what changes occurred in the value of the boxes. She summarized 
by saying, “Each box is worth a lot more over here than it is over here; you 
multiply by ten.” To pose a final test, the interviewer asked her how long it took 
for a human being to discover fire, a calculation which required her to calculate 
between two intervals. She responded, “Oh, um, 500,000 right here [counting 
the units in the smaller interval]. So it’s 500,000 thousand right here. And then 
right here is a million so it will be 1,500,000.” She used her representation quite 
successfully by breaking the problem into two pieces. She calculates each 
interval piece separately using its correct unit and adds the total. 

It appears that Suzanne has created a logically consistent solution to the 
problem. Once she learns to use it, it satisfies all her criteria and allows her to 
complete the task. The question for discussion is how legitimate is her solution? 

VIII. DISCUSSION 

The episode described is not unusual. Nearly every extended teaching experi- 
ment yields inventive solutions such as the one that Suzanne has demonstrated. 
Regardless of the extent to which one finds her solution mathematically 
acceptable, it seems reasonable to point out that she has certainly engaged 
vigorously with the problem and demonstrated the ability to create sensible 
solutions to each obstacle she encountered. 

It seems also reasonable to conclude that Suzanne seemed relatively 
effective in her use of her representation. She recognized the changes in the 
intervals and could adjust to account for those changes. Furthermore, it seems 
fair to claim that she does solve most of her problematic. From her perspective, 
what she has created is a perfectly adequate solution. 

This is not to suggest that no further work might be done with Suzanne on 
these types of problems. She does not appear to have engaged deeply with the 
implications of the absence of a point for zero - an implication which might be 
important for contextualized problems. The tension between seeing the label as 
a magnitude from zero (as in the two million years of humanity) and as a sum 
of an infinite geometric sequence is unresolved. And, in future work with all 
negative exponents in a comparison of small-sized objects, we witness an 
entirely different approach. Finally, she does express her own uneasiness with 
having different sized units and her wish that she could have found a solution 
which did not demand that “concession”. 

Secondly, her solution path provides us with interesting and useful informa- 
tion about the psychogenesis of a number line. It suggests that in coordinating 
two representations, scientific notation and a number line, we witness a process 
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of progressive differentiation. She does not treat the scaling of the number line 
as her prior task and the placement of the points as its successor. The two acts 

process despite its inefficiency from the expert's perspective is that she begins 
to create a functional need for ideas like origin, range, units and scale. With one 
experience, it is doubtful she could articulate these constructs in any sophisti- 
cated way, but it might turn out that she could use these ideas successfully in 
future tasks similar to this one. 

The question which remains is whether to consider the work she has done is 
legitimate mathematics. Many would deny its acceptability, because it is a 
hybrid between logarithmic and linear scales. Some would argue that it does not 
show the passage of time comprehensibly. However, if this objection were 
taken as valid, one would have to reject the logarithmic scale as well. Further- 
more, if she were to create a fully linear scale with one inch equal to 10,000 
years, such a representation would be fully fifteen miles long. 

Others would deny her solution legitimacy by claiming that her solution is a 
distortion of a logarithmic scale and therefore wrong. If one were to develop a 
purely logarithmic scale given her method, one would change all the numbers 
into a form of 10n.nn with no decimal number up front and then place them on a 
scale based on the value of the exponents. Thus, 10.5 would be halfway between 

proximately 3.16 rather than 5.5 on her nine point scale (Figure 11). 
100 and 101 and thus the midpoint between 1 and 10 could be  10 or ap- 
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Her scale is a distortion of the logarithmic scale, but its rejection as 
legitimate mathematics does not follow. Just as one would not agree to reject 
the logarithmic scale because it is a distortion of a linear scale. Perhaps we 
would be better off to refer to the changes in scale as transformations and 
examine their advantages and disadvantages. For the constructivist, however, 
no rejection of the legitimacy of her method can be made simply on the basis 
that it does not mirror the conventionally accepted solution. This may be a 
disadvantage in communicating her solution to others, but it does not under- 
mine the valdity of her solution. 

I would claim that Suzanne’s solution is: 1) mathematically valid within a 
specifiable system of mathematics, 2) preferable to a logarithmic scale for 
displaying data in scientific notation, and 3) reveals a fundamental tension 
between multiplicative structures and counting structures which is built into our 
systems of numeration in fundamental ways, and hence her solution provides us 
as researchers with an opportunity to reconsider our own understanding of 
numbers. 

1. Mathematical validity. Suzanne has created a system with a one-to-one mapping between 
the set of all real numbers greater than one and the number line. On her mapping, she 
identifies one as her origin (and decides to call that now - a relatively small quirk when we 

for crossing intervals is to split it into two parts and treat each one separately. Such a system 
lacks a constant rate of change either additively (as in linear scales) or multiplicatively (as in 
logarithmic scales). It does possess a predictable rate of change, which is a combination of 
the two. 
2. Better for Scientific Notation. If one wishes to claim that Suzanne’s scale is distorted (in a 
negative sense), one would have to ask distorted from what? For the constructivist, there is 
no “real” number system, preferable to all others. Number systems are created to allow us to 
accomplish certain things, to compare, represent, measure, order etc. Fractional form is 
easier when dividing up quantities; decimals allow easy comparisons of size. Thus, if her 
number system is a distortion of a logarithmic scale, then scientific notation would be also a 
distorted system. Few would make such a claim. 

In fact, I would claim that her system of representing those numbers on a 
number line creates the best imaginable fit with scientific notation. As with 
scientific notation, she is able to represent a huge span of time in an efficient 
manner. Her two part mapping allows her first to identify the interval and then 
to locate the decimal number. Scientific notation is designed to do exactly the 
same thing. By forcing the decimal portion into a standard form between one 
and ten, the scientist can compare the orders of magnitude. S/He can quickly 
reduce the problem to one of working with integral values, our counting 
numbers and our most familiar system. 

There is a functional elegance to scientific notation. It is a transformation of 
a logarithmic scale, but a useful one. Suzanne has simply created a number line 
with the same advantages and disadvantages. In order to add and subtract, you 
must have like exponents in scientific notation. In Suzanne’s system, you must 

are spanning 1010 years.) She develops a set of algorithms for working, identifying the units 
in any given interal as 10n and for adding and subtracting within an interval. Her algorithm 
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break the problem into like units. By creating her system, Suzanne has given us 
an opportunity to consider thoughtfully the assumptions behind scientific 
notation and behind the construction of the number line. 

If mathematics is viewed a functional, the emphasis is not with mirroring 
some unknowable reality, but in solving problems in ways that are increasingly 
useful in one’s experience. In mathematics that means one must weave together 
multiple representations in order to solve interesting problems. Effective uses of 
multiple representations possess two characteristics: 1) they display enough 
variance across representation to allow insight, and 2) they allow enough 
convergence among the representations to give one confidence in one’s 
solution. Suzanne’s coordination of the representations of number lines, tabular 
data, scientific notation and expanded form illustrate these two characteristics 
quite nicely. 

IX. MULTIPLICATIVE AND COUNTING STRUCTURES 

Suzanne’s treatment of this problem provides insight into a fundamental tension 
in mathematics: the relationship between multiplicative and counting (additive) 
structures. Confrey (1988, 1990) has argued for an existence of two relatively 
independent primitive structures in young children: counting and splitting. She 
has suggested that when these primitive structures are assimilated to each other 
(when we define multiplication prematurely as repeated addition) and can cause 
certain conceptual obstacles (powerful ideas which are difficult to learn) 
emerge. Place value is an example of a conceptual site in which students must 

powers of ten which are multiplicatively increasing. 
Suzanne’s solution and the insight which it gives into the structure of 

scientific notation provides another illustration of the uneasy but useful 
coordination of multiplicative structures (her intervals) and counting structures 
(within intervals). 

X. CONCLUSIONS 

The paper began with the statement of two assumptions concerning the 
application of constructivist theory to mathematics education. It made the claim 
that these two assumptions needed to be interpreted in a particular way in order 
to be compatible with constructivist epistemology. These included the claims 
that the mathematical content must be viewed as a human creation designed to 
serve human purposes; that the mathematics created inspired confidence 
because of its interwoven representations and that in any circumstance one 
should seek multiple mathematical solutions, diversity rather than uniformity. 

In the second section, I discussed the idea that within the constructivist 

coordinate their use of values ranging from 0, 2, ..., 9, and placement into 
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paradigm, problems must undergo individual interpretation and labelled this the 
problematic. I sought to argue that to understand a student’s actions, one must 
seek to model their problematic and not presume it is identical to one’s own. I 
further argued that apparent errors, discrepancies from the observer’s expecta- 
tions, provide particularly useful opportunities for one to imagine what a 
student’s problematic might be like. Finally, I argued that in examining 
students’ problems and methods of solutions, one has an opportunity to 
reconsider the mathematics involved. 

Suzanne’s solution to the number line problem provided such an example. 
She created and solved a series of problematics each of which was reasonable 
though somewhat atypical. Her solution was unconventional but inventive and 
original. She demonstrated adequate insight into it. For the most part, deviations 
which appeared erroneous from our position of expertise turned out to be 
surmountable conceptual obstacles for her. When given an opportunity to 
engage in her own cycle of problem solving, she demonstrated considerable 
progress, insight and experienced, by her own report, a sense of satisfaction. 

NOTE 

1. This research was funded under grants from NSF (N. MDR-8652 160) and the Apple 
Corporation. 
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