Download Partition Permutations Distribution.nlogo (28 KB)

Partition Permutation Distribution

Partition Permutation Distribution is authored in the NetLogo modeling-and-simulation environment. The model is part of ProbLab, a curricular unit designed to enrich student understanding of the domain. The online unit package will include a suite of models, student worksheets, and a teacher guide. Below is an applet of Partition Permutation Distribution. You can interact with this model by changing the slider values and switch settings and then pressing Setup and Go to run this model under different settings. For more details, please see the model itself in the NetLogo library. Note that this model is still under development and is yet to undergo our rigorous checkout procedure.


CM ProbLab: Partition Permutation Distribution -- Addend frequencies are reciprocal to their sizes
Don't see nothin'?

Gist

In how many different ways can you add up to 20? Well, there's just [20], then there's [19 + 1], [18 + 2], [18 + 1 + 1], [17 + 3], [17 + 2 + 1], [17 + 1 + 1 + 1], etc. all the way to [1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1], and that's without caring for the partitions' order. If we figured out all the different combinations, which number would occur most often? It looks like '1' wins easily. But how ubiquitous is it? How many more '1's are there as compared to, say, 7's? This model randomly generates many partition combinations of a target-total. If enough combinations are generated, the shape of the graphs stabilizes to show the relative frequencies of the addends.

Note that the sample space out of which the simulation selects randomly is NOT the space of all possible partition combinations. If it did so, then the combination [20] would be as likely to occur as the combination [1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1]. Rather, each addend is drawn independently. The simulation chooses randomly out of the space of integers between 1 and the target-total, for instance, out of the space 1, 2, 3,..., 20. So, whereas the chance of getting a [20] is 1/20, there is a ridiculously low chance of getting the long string (the chance is 1/20!, so please don't stay up waiting for this to happen).

Note that under the default setting of the model, the addend is drawn from an ever-diminishing space (the switch DIMINISHING-SAMPLE-SPACE? is "On"). For instance, once '13' is drawn randomly from the sample space of integers between 1 and 20, the next draw is from the range of 1 through 7 (the remaining difference to 20). Under the alternative setting of this model (DIMINISHING-SAMPLE-SPACE? is set to "Off"), the model will ignore the remaining difference up to the target total. For instance, once it is at 13, going on 20, it will select from a range between 1 and 20 and will keep dumping addends that are bigger than 7. These discarded choices do not become part of the sum, but the monitors and histograms keep a record of these choices as well as those that are kept in the sum.

Riddles

Questions to Ponder